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TANNAKA–KREĬN DUALITY FOR ROELCKE-PRECOMPACT NON-ARCHIMEDEAN

POLISH GROUPS

RÉMI BARRITAULT

Abstract. Let G be a Roelcke-precompact non-archimedean Polish group, B(G) the algebra of ma-
trix coefficients of G arising from its continuous unitary representations. The Gel’fand spectrum
H(G) of the norm closure of B(G) is known as the Hilbert compactification of G. Let AG be the dense
subalgebra of B(G) generated by indicator maps of open cosets in G. We prove that multiplicative
linear functionals on AG are automatically continuous, generalizing a result of Kreı̆n for finite di-
mensional representations of topological groups. We deduce two abstract realizations of H(G). One
is the space P(MG) of partial isomorphisms with algebraically closed domain ofMG , the countable
set of open cosets of G seen as a homogeneous first order logical structure. The other is T(G) the
Tannaka monoid of G. We also obtain that the natural functor that sends G to the category of its
representations is full and faithful.
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Introduction

A fundamental question in abstract harmonic analysis is: How much information about a
topological group can one recover from its representation theory ? In this paper, we are interested
in cases where the group can be fully reconstructed.

More precisely, a unitary representation of a topological group G is a continuous group mor-
phism π from G to the unitary group U (Hπ) of a complex Hilbert space Hπ. Continuity means
here that all the maps of the form g 7−→

〈
π(g)ξ,η

〉
for ξ,η ∈ Hπ , called the matrix coefficients of

π, are continuous. π is said irreducible if Hπ admits no non-trivial G-invariant closed subspace.
In the well-behaved cases, every unitary representation of G decomposes uniquely into an ag-
gregate of irreducible subrepresentations. Harmonic analysis on such a group G reduces to the
study of its unitary dual Ĝ, namely the collection of equivalence classes of irreducible unitary
representations of G. In various subcases, duality theories have been established, allowing for
the abstract reconstruction of G from Ĝ.

A fundamental instance of this is the case of locally compact abelian groups with the cele-
brated Pontryagin–van Kampen duality theory [Pon34, Kam35]. Indeed, if G is locally compact
and abelian, its irreducible representations always have dimension 1 and Ĝ can be identified with
Hom(G,S1), the continuous group morphisms from G to the unit circle. In particular, Ĝ is also
a group that is moreover locally compact and abelian. Finally, G is canonically isomorphic to its
bi-dual.

Another context where representation theory is very tame is the compact case. Indeed, recall
the Peter-Weyl Theorem which states, in particular, that every representation of a compact group
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splits in an essentially unique way as a sum of finite dimensional irreducible subrepresentations.
This ideal situation allowed Tannaka and Kreı̆n to develop, independently and with different
approaches, duality theories for compact groups.

Kreı̆n considered the algebraB ′(G) generated by thematrix coefficients of a general topological
group G arising from its finite dimensional representations and proved the following technical
but crucial result: positive linear functionals on B′(G) are automatically continuous [Kre41]. As a
consequence, theGel’fand spectrum of B ′(G) and that of its completion coincide. This is a compact
topological group known as the Bohr compactification bG of G and if G is compact, then G and bG
are canonically isomorphic.

Tannaka obtained similar duality results from a different perspective. He associated to a com-
pact group G a monoid T(G) of operations on the class of representations of G. More explicitly,
an element of T(G) is a family of operators (uπ)π where π ranges over all the finite dimensional
representations of G and uπ is an operator on the same the Hilbert space as π. Moreover, the
family must commute with representation morphisms and preserve the common operations on
representations: sum, tensor product and conjugation. The monoid law is pointwise composi-
tion. This structure can be endowed with a natural topology and is in a fact a compact group
canonically isomorphic to G [Tan38].

The wider class of Roelcke-precompact groups seems to retain a lot of the geometrical proper-
ties of compact groups. A topological group G is Roelcke-precompact if it is precompact in the
Roelcke uniformity, in other words if for every open neighborhood U of the identity, there exists
a finite subset F of G such that G = UFU . Roelcke-precompact Polish groups are receiving an
increasing amount of interest. Cameron started the investigation by carrying an extensive study
of the dynamical properties of Roelcke-precompact permutation groups [Cam90]. Uspenksij
[Usp98, Usp01] and Glasner [Gla12] showed that well known groups, such as the unitary group
of the separable Hilbert space or Aut(µ) for an atomless standard Borel probability measure, are
Roelcke-precompact and deduced strong properties such as minimality. [Iba16] and the pair of
papers [BT16, BIT18] studied compactifications of such groups. More recently, Ibarlucìa showed
that Roelcke-precompact Polish groups have Kazdhan’s Property (T) [Iba21], like compact group.
Moreover, the Roelcke-precompact Polish groups that are non-archimedean, i.e. that admit a basis
of identity neighborhoods consisting of open subgroups, have seen their unitary representations
fully classified [Tsa12] in a way that reminds a lot of the Peter-Weyl Theorem. Indeed, letMG

be the set of left translates of open subgroups of G. Then G acts continuously onMG seen as a
discrete space and it gives rise to a unitary representation:

ΛG : Gy ℓ2(MG).

This canonical construction captures all the representation theory of G, reminding of the left-
regular representation of a compact group. More precisely, the following holds:

Fact 1. Let G be a Roelcke-precompact non-archimedean Polish group.

(1) Every unitary representation of G splits a sum of irreducible subrepresentations.
(2) Every irreducible unitary representation of G is isomorphic to a subrepresentation of the rep-

resentation ΛG, which is faithful.

The first item is contained in [Tsa12, Th. 4.2]. The second item is a consequence of the same
result and is proved as part of Lemma 1.7 below.

The main source of examples for such groups is model theory. Indeed, by the classical Ryll–
Nardzewski Theorem (see e.g. [Hod93, Th. 7.3.1]) the automorphism group of any ℵ0-categorical
model theoretical structure is part of this class. This includes the group S∞ of all permutations
of the countable set, the group Aut(Q,<) of order preserving bijections ofQ, Homeo(2N), Aut(R)
the automorphism group of the random graph, or the group GL(∞,q) of linear automorphisms
of the countably infinite vector space over the finite field Fq.

There are however fundamental properties that are lost in the Roelcke-precompact case: their
irreducible representations can have infinite dimension and there is no Haar measure available.
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Using dynamical andmodel-theoretical properties of Roelcke-precompact non-archimedean Pol-
ish groups, we are still able to carry out similar constructions as Tannaka’s and Kreı̆n’s. In partic-
ular, we obtain an analogue of Kreı̆n’s technical result. Indeed, let B(G) denote the set of matrix
coefficients of G arising from all the unitary representation of G and let Cb(G) denote the alge-
bra of bounded continuous maps G −→ C. Considering sums, tensor products and conjugates of
representations, it is easily seen that B(G) is a subalgebra of Cb(G), closed under complex con-
jugation. Let AG be the linear span of the indicator maps of open cosets in G. This is in turn a
subalgebra of B(G) (see Remark 1.6 Item 3) which is dense by Fact 1. We obtained the following:

Theorem 1. Let G be Roelcke-precompact non-archimedean Polish group. Multiplicative linear func-
tionals τ : AG −→ C are automatically positive and continuous.

Again, it implies that the Gel’fand spectra of AG and its completion (i.e. the completion of
B(G)) coincide. Since this spectrum is compact, it cannot be isomorphic to G in full generality.
However, it can be endowedwith a structure of semi-topological *-monoid. This structure is known
as the Hilbert compactification H(G) of G and has received quite some attention [GM14, BT16].
Along the way, we obtain an identification of the Hilbert compactification of G as the monoid
of partial isomorphisms with algebraically closed domains ofMG seen as a homogeneous model
theoretical structure (complete definitions are given in section 1).

Tannaka’s approach also bears fruit in this context, providing another realization of H(G).
Indeed, consider the category Rep(G) of unitary representations of G that are isomorphic to a
finite sum of irreducible representations. Let T(G) be the monoid of families of operators (uπ)π∈R
that commute with sums, tensor products and representation morphisms (complete definitions
are given in section 3 Definition 3.4). We obtained the following:

Theorem 2. Let G be a Roelcke-precompact non-archimedean Polish group. Then T (G) is a compact
semi-topological *-monoid canonically isomorphic to the Hilbert compactification of G.

Finally, we establish that the Hilbert compactification fully remembers the original group.
Indeed, a Roelcke-precompact non-archimedean Polish group G is homeomorphic to the set of
invertible elements of H(G) via the canonical map that sends g in G to the evaluation map at g .
Moreover, we can form the category whose objects are the Rep(G) for every Roelcke-precompact
non-archimedean Polish group G. With the right arrows (the admissible functors, see section 4
Definition 4.2), we have the following:

Theorem 3.

(1) Let G be a Roelcke-precompact non-archimedean Polish group. The canonical map G −→H(G)
is a homeomorphic embedding that respects the algebraic structures. Its image is the set of
invertibles of H(G).

(2) The contravariant functorRep that sends a Roelcke-precompact non-archimedean Polish group
to the category of its unitary representations is full and faithful, i.e. a duality.

Numerous treatments, variants and generalizations of the Tannaka–Kreı̆n duality can be found
in the literature. An extensive exposition of the theory, recounting both Kreı̆n’s and Tannaka’s
approaches successively, appears in [HR70]. A more modern take on Tannaka’s point of view,
phrased in the language of category theory, which also lists developments and applications, fig-
ures in [JS91]. Tannaka–Kreı̆n duality has sprouted roots in different domains of study. One is
category theory, with the works of Grothendieck, Deligne and Saavedra-Rivano among others,
who introduced Tannakian formalism to reverse the process of the classical duality. The idea is
that to a Tannakian category C can be associated an algebraic group G such that C is equivalent to
Rep(G) (see for instance [Saa72]). More recently, Tannaka–Kreı̆n duality theory has been reap-
propriated in a prolific way for the study of quantum groups and knot theory. It also appears
in mathematical physics, related to the superselection principle in quantum field theory. See the
survey [Vai15].

This article is organized as follows. In the first section we introduce the notations and some
necessary preliminary results. The second section is inspired from Kreı̆n’s approach to the dual-
ity and contains a proof of Theorem 1. In section 3, where the formalism follows that of [JS91], we
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switch to Tannaka’s point of view and use the automatic continuity property to prove Theorem
2. In the last section, we prove Theorem 3.

Acknowledgments. I am deeply grateful to Todor Tsankov for suggesting me to investigate on
this topic and for his support in the making of this article.

1. Preliminaries

In this section, we set the global framework by fixing notations and stating useful general
facts. We start with dynamical and model-theoretical notions.

Let G be a Polish group i.e. a separable and completely metrizable topological group. For
subgroups U,V of G, we will write

U\G/V = {UgV , g ∈ G} .

This is a partition of G. Note that if G is non-archimedean, then it is Roelcke-precompact if and
only if U\G/U is finite for every open subgroup U of G.

We will need the dynamical notion of algebraicity, which coincides with the model-theoretical
one in the ℵ0-categorical case but not in general. It is only assumed that the definition of first
order structure, substructure and isomorphism, in the sense of [Hod93], are known.

Definition 1.1. Let G be the automorphism group of some first-order structureM and A ⊆M.
1. We denote by GA the pointwise stabilizer of A and by G(A) the setwise stabilizer of A.
2. If A is finite, an element a ∈M is said to be algebraic over A if the orbit GA · a is finite. We

denote by acl(A) the algebraic closure ofA i.e. the set of all elements ofM that are algebraic
over A. If A is infinite, the algebraic closure of A is acl(A) =

⋃
{acl(B), B ⊆ A finite}.

3. A is said to be algebraically closed if acl(A) = A.

Recall that acl is a closure operator, in particular it is non-decreasing and satisfies acl2 = acl.

Definition 1.2. LetM be a first-order structure. A partial automorphism ofM is an isomorphism
between substructures ofM.

We will see these maps as subsets ofM×M. Thus, for partial automorphisms s, s′ ofM, s ⊆ s′

means s′ extends s and s∪s′ denotes the unique common extension of s and s′ to the substructure
ofM generated by dom(s)∪dom(s′), if it exists.

We will denote by P(M) the set of partial automorphisms ofM with algebraically closed do-
main and by F(M) the set of partial automorphisms ofM with finite domain. Note that those
sets are stable under composition where defined and inversion.

Finally, M is homogeneous if every element of F(M) extends to a total automorphism, i.e. an
element of Aut(M).

Remark 1.3. LetM be a structure. P(M) is a compact semi-topological *-monoid i.e.:
– it is stable under composition where defined with a neutral element: idM,
– it has an involutive anti-automorphism: u 7−→ u∗ = {(y,x), (x,y) ∈ u},
– it can be endowed with a compact topology that makes composition separately continu-

ous and ∗ continuous.
To define the topology, consider K =M∪ {∞} the one-point compactification of the discrete

structure M. Elements p ∈ KK can be seen as partial maps M −→ M, undefined wherever
p(x) = ∞. The domain of p corresponds to the set p−1(M).
KK is endowed with the product topology, which is compact and Hausdorff. In this space,

P(M) is exactly the closure of G = Aut(M) hence compact. More details can be found in [BIT18,
Prop. 3.8]. Subbasic neighborhoods of an element u0 ∈ P(M) are of two kinds:

Ox = {u ∈ P(M), u(x) = u0(x)},

where x ∈ dom(u0) and

Ux,A = {u ∈ P(M), [x ∈ dom(u)⇒ u(x) < A]},

where x < dom(u0) and A is a finite subset ofM.
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Note also that G naturally acts on P(M) by left-composition which is hence a semi-topological
*-monoidal compactification of G. An extensive survey regarding such objects can be found in
[GM14].

We will be needing the following combinatorial result, a variant of B.H. Neumann’s Lemma
appearing as [BBON76, Th.1]:

Theorem 1.4 (B.H. Neumann’s Lemma). Let G be a group acting on a set X such that all orbits are
infinite. For every finite subsets A,B ⊆ X, there exist g ∈ G such that g(A)∪B = ∅.

More precisely, the following translation of the above Theorem will be key in establishing the
main result of section 2.

Lemma 1.5. Let G the automorphism group of some homogeneous countable structureM and assume
it is Roelcke-precompact. Let s, s1, ..., sn be partial automorphisms ofM with finite domain such that:

∀i 6 n, dom(si ) * acl(dom(s))

Then, there exist g ∈ G that extends s but none of the si ’s.

Proof. By homogeneity ofM, we can pick g0 ∈ G extending s. Fix also xi ∈ dom(si )\acl(dom(s)) for
every i 6 n. Using Roelcke-precompactness of G, Lemma 2.4 in [ET16] tells us that Gacl(dom(s)) y

M\acl(dom(s)) only has infinite orbits. Now B.H. Neumann’s Lemma above gives u ∈ Gacl(dom(s))
such that:

u({x1, ...,xn})∩ {g
−1
0 (s1(x1)), ...,g

−1
0 (sn(xn))} = ∅.

Then g = g0u extends s but none of the si ’s �

Remark 1.6. Let G be a Roelcke-precompact non-archimedean Polish group. We will call (open)
cosets ofG the left-translates of (open) subgroups ofG. The set of open cosets ofGwill be denoted
MG. We recall well-known facts about these objects and give sketches of proofs.

(1) MG is countable. Indeed, let (Un) be a countable basis of open neighborhood of G con-
sisting of open subgroups and let D ⊆ G be a countable dense subset. Let U be an ar-
bitrary open subgroup of G. There exists n ∈ N such that Un ⊆ U . Since G is Roelcke-
precompact, there is F ⊆ D finite such that U = UnFUn. This only allows for countably
many distinct open subgroups. Moreover, since every open coset gU of G must contain
an element of D by density, G only has countably many open cosets.

(2) G naturally acts on the left of MG. This action is continuous and the associated mor-
phism G −→ Sym(MG) is a homeomorphic embedding. Because G and Sym(MG) are
both Polish, G must be closed in Sym(MG). Thus, after naming the orbits of the diagonal
actions GyMn

G for every n ∈N, we can viewMG as a discrete first-order homogeneous
structure such that:

G = Aut(MG).

(3) Let gU,hV be cosets of G. Then, gU ∩ hV , ∅ if and only if there is f ∈ G such that
f U = gU and f V = hV . In particular, if gU ∩ hV is non-empty, then it is a left-translate
of U ∩V .

(4) Suppose G = Aut(M) for some countable and homogeneous structure M. There is a
natural map F(M) −→MG. Indeed, for s ∈ F(M), fix an extension g0 ∈ G. Then, a given
automorphism g ofM extends s if and only if g ∈ g0Gdom(s) and this coset does not depend
on the choice of g0. Similarly, if dom(s) = A ⊆ B where A and B are finite, there is a
bijection between GA/GB and {s′ ∈ F(M), s ⊆ s′ and dom(s′) = B}, namely s′ 7−→ g−10 gGB
where g is any extension of s′ (this map does depend on the choice of g0).

Switching to representation theory, we will write Hilb(G) for the closure of B(G) in Cb(G) with
respect to the norm topology. This is called the Hilbert algebra of G. The Hilbert compactifica-
tion H(G) of G is the Gel’fand spectrum of Hilb(G), i.e. the weak*-compact space of non-zero
multiplicative linear functionals on Hilb(G) that commute with complex conjugation.
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Given two representations π,π′ of G, a morphism of representations between π and π′, or
intertwining operator, is a bounded operator h : Hπ −→Hπ′ that commutes with the action of G:

∀g ∈ G, h ◦π(g) = π′(g) ◦ h.

The set of such operators will be denoted either by Hom(π,π′) or HomG(Hπ ,Hπ′ ).
The following are consequences of the results in [Tsa12]. For the definition and properties of

induced representations, we refer the reader to section 6 of [Fol16]. It is usually defined in the
locally compact setting using invariant measures but the basic results still hold in this context
with the same proofs, and the formalism is even simpler. Indeed, our quotient spaces are all
discrete hence can be endowed with the counting measure. The distinction between isomorphic
representations is often omitted.

Lemma 1.7. Let G be a Roelcke-precompact non-archimedean Polish group

(1) Every irreducible representation of G is a subrepresentation of ΛG : ℓ2(MG) which is faithful.
(2) Let π1,π2 be two irreducible representations of G. Then π1⊗π2 decomposes as a finite sum of

irreducible subrepresentations.

Proof. We first show that any irreducible representation of G is a subrepresentation of a left-
quasi-regular representation λG/V : G y ℓ2(G/V ) of G for some open subgroup V (the quotient
space G/V is discrete and endowed with the counting measure).

Let π be an irreducible representation of G. Using Theorem 4.2 from [Tsa12], π is isomorphic
to an induced representation of the form IndGH (σ), where H is an open subgroup of G and σ is
an irreducible representation of H that factors through a finite quotient of H . More explicitly,
there exists V an open normal subgroup of H of finite index such that σ is the pullback of an
irreducible representation of the finite group H/V .

It is a fact that the quasi-regular representations λG/V : Gy ℓ2(G/V ) and λH/V : H y ℓ2(H/V )
are linked in the following way:

(1) λG/V = IndGV (1V ) = IndGH (Ind
H
V (1V )) = IndGH (λH/V ),

where 1V denotes the trivial one-dimensional representation of V . The first and last equalities
are basic properties of induction and the second one is given by the Theorem on induction by
stages (see e.g. [Fol16, Theorem 6.14]). Now, applying the Peter-Weyl Theorem to the finite group
H/V , we get that σ is a subrepresentation of λH/V . Since induction preserves subrepresentations,
we deduce from (1) that π = IndGH (σ) is a subrepresentation of λG/V = IndGH (λH/V ). Since λG/V
is a subrepresentation of ΛG, so is π. The faithfulness of ΛG is then a direct consequence of the
fact that closed permutation groups satisfy the Gel’fand-Raikov Theorem [Tsa12, Th. 1.1] hence
Item 1 is proved.

Next, fix π1 and π2 two irreducible representations of G. From what precedes, we can find
two open subgroups V1 and V2 of G such that πi is a subrepresentation of λG/Vi , i = 1,2. Then:

ℓ2(G/V1)⊗ ℓ
2(G/V2) ≃ ℓ

2(G/V1 ×G/V2)

≃
⊕

f ∈V1\G/V2

ℓ2(G · (V1, f V2))

≃
⊕

f ∈V1\G/V2

ℓ2
(
G/

(
V1 ∩ f V2f

−1
))
.

Since there is a natural surjective map (V1 ∩V2)\G/ (V1 ∩V2) −→ V1\G/V2 and G is Roelcke-
precompact, V1\G/V2 is finite. In particular, we have shown that π1 ⊗π2 is a subrepresentation
of a finite sum of quasi-regular representations.

To finish the proof, it suffices to show that every quasi-regular representation λG/V for V an
open subgroup of G splits as a finite sum of irreducibles. Indeed, let H be the commensurator of
V , meaning:

H =
{
g ∈ G, [V ,V ∩ gV g−1] <∞ & [gV g−1,V ∩ gV g−1]

}
.
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The hypotheses on G implie that V has finite index in H [Tsa12, Lem. 2.7]. Hence,

V ′ :=
⋂

h∈H

hVh−1,

is in fact a finite intersection of conjugates of V . Thus, it is open and has finite index in V by the
definition of H .

To sum up, we have obtained that V ′ is an open normal subgroup of H with finite index.
In particular, H/V ′ is a finite group hence the quasi-regular representation λH/V ′ of H is finite
dimensional. It thus splits as a finite sum of irreducible subrepresentations:

λH/V ′ =
⊕

16i6n

σi .

Then, by the basic properties of induction:

λG/V ′ = IndGH (λH/V ) =
⊕

16i6n

IndGH (σi )

Finally, each of the IndGH (σi ) is irreducible by [Tsa12, Prop. 4.1]. Since V ′ ⊆ V , λG/V is a subrep-
resentation of λG/V ′ hence also splits as a finite sum of irreducibles.

�

In the next sections, we give two different characterizations ofH(G) for a Roelcke-precompact
non-archimedean Polish group G. For a detailed study of the Hilbert compactification of such
groups, see [BIT18].

2. Application to Kreı̆n’s duality

In [Kre41], Kreı̆n associated to a compact group G what is now called a Kreı̆n algebra. It is built
on the algebra of finite dimensional matrix coefficients of G together with a specific basis and the
information about how tensor products of irreducible representations decompose. We describe
a similar construction: we define a canonical dense subalgebra AG of B(G) for G a Roelcke-
precompact non-archimedean Polish group, fixed from now on. In some cases, it comes with a
canonical basis. However, at the intersection of both contexts, while the algebra we get coincides
with the one appearing in Kreı̆n’s work, the basis we (sometimes) obtain is different.

The main result of this section is the automatic continuity of multiplicative linear functionals
on that canonical algebra, an analogue of a central technical lemma in the establishment of the
original duality. A direct consequence of this is the identification in a canonical way of the
Gel’fand spectra of three algebras: AG , B(G) and Hilb(G), the spectrum of the latter being the
definition of H(G). We also obtain a model theoretic description of H(G) as P(MG).

Recalling Fact 1, we consider the ’universal’ representation ΛG : G y ℓ2(MG) and form the
matrix coefficients obtained from the canonical basis (δx)x∈MG

of ℓ2(MG). These are all the maps
of the form

fx,y : G −→C, g 7−→
〈
g · δx ,δy

〉
=

{
1 if g(x) = y,
0 otherwise.

for x,y ∈MG. We will denote by AG the linear span of these maps. The set of these generators is
exactly the set of indicator maps of open cosets inG together with the zero function. In particular,
AG contains the constant functions. Moreover, recalling Item 3 in Remark 1.6, AG is in fact
a unitary subalgebra of B(G) which moreover is norm-dense by Fact 1. It is also stable under
the involution f 7−→ f̄ of B(G) induced by complex conjugation as well as the one induced by
inversion in G.

Alternatively, AG can be described in terms of finite partial automorphisms ofMG. Indeed,
define for every s ∈ F(MG) a map

es : G −→ C, g 7−→

{
1 if g extends s,
0 otherwise.
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It follows from Item 4 in Remark 1.6 that these are also exactly the indicator maps of open cosets
in G. Note that for s, s′ ∈ F(MG), we have:

(2) es · es′ =

{
es∪s′ if s∪ s′ ∈ F(MG),
0 otherwise.

A special case of interest is when G can be presented as the automorphism group of some ℵ0-
categorical structureM that admits weak elimination of imaginaries. For the formal definition, we
refer the reader to section 4.2 of [Hod93]. Informally, an ℵ0-categorical structureM eliminates
imaginaries if we can recover all open subgroups of G = Aut(M) from the action G yM up to
finite index. More precisely, ifM is an ℵ0-categorical structure, the following property can be
taken as a definition of weakly eliminating imaginaries (see [Tsa12] Lemma 5.1): For every open
subgroup U of G, there exists a unique algebraically closed finite substructure A ofM such that

GA ⊆U ⊆ G(A).

Note that G(A)/GA is isomorphic to Aut(A), hence finite. In particular, GA has finite index in U .
It is a classical fact that all the examples from the introduction weakly eliminate imaginaries (see
for example section 4.2 of [Hod93]).

In that case, we can extract a canonical basis from the previous generating family of AG.
Namely, defining e′s : G −→ {0,1} as above for every s ∈ F(M), we have the following:

Proposition 2.1. LetM be a countable ℵ0-categorical structure that admits weak elimination of imag-
inaries and let G = Aut(M). Then

B =
(
e′s, s ∈ F(M), dom(s) = acl(dom(s))

)

is a basis of AG (and a subfamily of the previous generating family).

Proof. First, recall that in an ℵ0-categorical structure, algebraic closures of finite sets are finite
and finite partial automorphisms always extend to total automorphisms. Hence, using Item 4 in
Remark 1.6, the elements of B are indeed indicator functions of open cosets, namely of all cosets
associated to subgroups of the form Gacl(A) for A ⊆M finite.

Now if U is an open subgroup of G, we can find by weak elimination of imaginaries a finite
algebraically closed substructure A ⊂ M such that V = Gacl(A) ⊆ U with finite index. Then,
writing U = u1V ⊔ ...⊔unV for some u1, ...,un ∈U , we have for every g ∈ G:

1gU = 1gu1V + ...+ 1gunV ,

where 1X denotes the indicator function of the set X ⊆ G. In particular, B generates AG.
It remains to see that B is free. Assume we have an equation of the form λ1e

′
s1
+ ... +λne′sn = 0

for some λ1, ...,λn ∈ C and distinct s1, ..., sn ∈ F(M) with algebraically closed domains. Let i
be such that dom(si ) is minimal for inclusion. Using Lemma 1.5, there exists g ∈ G that ex-
tends si without extending sj for any j , i such that dom(sj ) * dom(si ). Note that if j , i and
dom(sj ) ⊆ dom(si ) then the domains are equal by choice of i and there exists a ∈ dom(si ) such
that sj (a) , si(a) = g(a). Thus g only extends si . Evaluating the above linking equation in g yields
λi = 0. We conclude by induction on n.

�

The main object of study in this section is the Gel’fand spectrum of AG, denoted SAG . In the
following Lemma, we do not need to assume that G is Roelcke-precompact nor Polish.

Lemma 2.2. Let G be a non-archimedean topological group. Let φ : AG −→ C be a non-zero multi-
plicative linear functional. There exists a unique partial automorphism uφ ofMG with algebraically
closed domain such that:

(3) ∀s ∈ F(MG), φ(es) =

{
1 if uφ extends s,
0 otherwise.
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Proof. First note that for every s ∈ F(MG), φ(es) ∈ {0,1} since e2s = es. Then, let

uφ =
⋃

s∈F(MG)
φ(es)=1

s.

We will show that uφ satisfies the claim.

– uφ is a function:

Let x ∈MG be such that there exists s, s′ ∈ F(MG) with x ∈ dom(s)∩dom(s′) and φ(es) =
1 = φ(es′ ). By multiplicativity of φ, we have

φ(eses′ ) = φ(es)φ(es′ ) = 1.

In particular, eses′ , 0 which implies the existence of g ∈ G that extends both s and s′.
Thus s(x) = s′(x) and uφ is a partial functionMG −→MG.

– uφ is a partial isomorphism:

SinceMG is a relational structure, every set inMG is a substructure. Thus, it is enough
to show that each restriction of uφ to a finite set extends to an automorphism ofMG. To
that aim, let A = {a1, ...,an} ⊆ dom(uφ) be finite. By definition of uφ , there exists s1, ..., sn ∈
F(MG) such that for all i 6 n, ai ∈ dom(si ) and φ(esi ) = 1. Up to replacing si with si |A, we
can assume dom(si ) ⊆ A for every i 6 n. Using the multiplicativity of φ, we get:

φ(es1 · · ·esn ) = φ(es1 ) · · ·φ(esn ) = 1.

In particular, es1 · · ·esn , 0 and there exists g ∈ G a common extension of s1, ..., sn hence of
uφ|A. Note also that, as es1 · · ·esn = es1∪···∪sn = euφ|A , we have that φ(euφ|A ) = 1.

– dom(uφ ) is algebraically closed:

Let A ⊆ dom(uφ) be finite and b ∈ acl(A). As noted above, φ(euφ|A ) = 1 and there exists
g0 ∈ G that extends uφ|A. An element g ∈ G that coincides with uφ on A lies in g0GA hence
must send b in the finite set g0GA · b. In other terms, writing g0GA · b = {g0(b), ...,gn(b)} for
some g1, ...,gn ∈ G, we have:

euφ|A = eg0|A∪{b} + ...+ egn|A∪{b} .

Applying φ to the above equation gives by linearity that:

1 = φ(eg0|A∪{b} ) + ...+φ(egn|A∪{b} ).

Since φ is {0,1} valued at idempotents, there exists i 6 n such that φ(egi |A∪{b} ) = 1. This
shows that b lies in dom(uφ) which is thus algebraically closed.

Now that we have built uφ , recalling that φ(uφ|A) = 1 for every finite subset A of MG, the
Theorem is proved. �

In the Roelcke-precompact and Polish case, this construction yields an identification of the
Gel’fand spectrum SAG of AG:

Corollary 2.3. Let G be a Roelcke-precompact non-archimedean Polish group. The map

SAG −→ P(MG)

φ 7−→ uφ

is a homeomorphism.

Proof. It is straightforward from the previous result that the map is injective. We now show
surjectivity, i.e. that if u ∈ P(MG) is fixed, the conditions

∀s ∈ F(MG), φ(es) =

{
1 if u extends s,
0 otherwise,
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always define a multiplicative linear functional φu : AG −→ C. To that aim, assume we have an
equation of the form

(4)
∑

i6n

λiesi = 0

for some s1, ..., sn ∈ F(MG) and λi ∈ C. Recalling the identification G = Aut(MG) from Remark
1.6, we set up for the application of Lemma 1.5.

We define the following sets:

A =
⋃
{dom(si ), i 6 n, dom(si ) ⊆ dom(u)} and I = {i 6 n, dom(si ) * acl(A)}.

By Lemma 1.5, there exists g0 ∈ G that extends u|A but none of the si for i ∈ I . We claim that it
satisfies the following:

(5) ∀i 6 n, [si ⊆ g0 ⇐⇒ si ⊆ u] .

Indeed, assume that si * u. Then either dom(si ) is included in dom(u) or not. In the first case,
there must exist a ∈ dom(si ) such that si(a) , u(a) = g0(a) hence si * g0. In the second case, we
also have dom(si ) * acl(A) otherwise dom(si ) ⊆ acl(dom(u)) = dom(u). Hence i ∈ I and si * g0.
The converse is clear by construction.

Now, evaluating (4) in g0 yields:

0 =
∑

i6n

λiesi (g0) =
∑

si⊆g0

λi =
∑

si⊆u

λi .

Thus φu is well defined and linear. We check the multiplicativity of φu on the spanning subset
{es, s ∈ F(MG)}. Recalling (2), it follows from the observation that, for every s, s′ ∈ F(MG), we
have:

φu (eses′ ) = 1 ⇐⇒
[
s∪ s′ ∈ F(MG) and s∪ s

′ ⊆ u
]
⇐⇒ s, s′ ⊆ u ⇐⇒ φu (es) = 1 = φu (es′ ).

Finally, it is non-zero since the empty map ∅ belongs to F(MG) and we always have ∅ ⊆ u.
To finish the proof, recall that P(MG) is compact and Hausdorff. Since SAG is Hausdorff too,

we can use Poincaré’s Theorem and it suffices to show that P(MG) −→ SAG is continuous.
Recall that {es, s ∈ F(MG)} are idempotents and linearly span AG. In particular, φ(es) ∈ {0,1}

for every φ ∈ SAG and s ∈ F(MG) hence the following sets form a subbasis for the topology on
SAG :

Os,ε =
{
φ ∈ SAG , φ(es) = ε

}
, for s ∈ F(MG) and ε ∈ {0,1}.

Now, let s ∈ F(MG) and ε ∈ {0,1}. We treat the case ε = 0, the other is similar. We have:

φ ∈Os,0 ⇐⇒ φ(es) = 0

⇐⇒ s * uφ

⇐⇒ ∃x ∈ dom(s),
[
x < dom(uφ ) or uφ(x) , s(x)

]

⇐⇒ uφ ∈
⋃

x∈dom(s)

{v ∈ P(MG), x ∈ dom(v)⇒ v(x) < {s(x)}} .

Recalling the definition of the topology on P(MG) from Remark 1.3, we see that the desired
continuity holds.

�

We can now turn to the main result of this section. As mentioned in the introduction, the
next Theorem is an adaptation of a technical but crucial Lemma from the compact duality: Kreı̆n
proved [Kre41] that for a compact group K , positive multiplicative linear functionals on B ′(K)
are automatically continuous. Bochner [Boc42] gave an alternative proof, based on generalized
Fourier analysis and uniform approximation. It also appears as Theorem 30.2 in [HR70] with
Bochner’s proof and more context. We prove here that multiplicative linear functionals on AG
are automatically continuous.
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The key tool from the compact case, namely the Haar measure, is not available here. Instead,
we rely on dynamical properties of Roelcke-precompact groups, in the form of Lemma 1.5.

Theorem 2.4. Let G a Roelcke-precompact non-archimedean Polish group and let φ : AG −→ C be
multiplicative and linear. Then φ is bounded.

Proof. We will show the positivity of φ. To that aim, fix f ∈ AG. The exist s1, ..., sn ∈ F(MG) and
λ1, ...,λn ∈C such that f =

∑
i6nλiesi . Recalling the identification G = Aut(MG) from Remark 1.6,

we set up for the application of Lemma 1.5.
LetA =

⋃
{dom(si ), i 6 n, dom(si ) ⊆ dom(uφ )}which is finite and let I = {i 6 n, dom(si ) * acl(A)}.

By Lemma 1.5, there exists g0 ∈ G that extends uφ|A but none of the si for i ∈ I . Exactly as in the
proof of Corollary 2.3, g0 in fact satisfies:

(6) ∀i 6 n,
[
si ⊆ g0 ⇐⇒ si ⊆ uφ

]
.

It follows from (6) and the properties of uφ that:

φ(f ) =
∑

i6n

λiφ(esi ) =
∑

si⊆uφ

λi =
∑

si⊆g0

λi = f (g0).

In particular, if f is such that ∀g ∈ G, f (g) > 0, then φ(f ) > 0. Hence φ is positive in a strong
sense which is well-known to imply continuity (simply note that for every f ∈ AG, ||f ||∞ · 1± f is
in AG and only takes positives values).

�

A direct consequence of this result is that the map from Corollary 2.3 lifts to an homeomor-
phism H(G) −→ P(MG).

The Hilbert compactification comes with a semi-topological monoid structure. The compo-
sition law is a form of convolution. Sometimes seen as a variation of the Arens product, it also
appears in [Boc42]. It is built as follows:

For φ ∈H(G), one can define a map φ : AG −→AG by setting

∀f ∈ AG ,∀g ∈ G, φ(f )(g) = φ(g
−1 · f )

To see that it is well defined, note that for g ∈ G and s ∈ F(MG), we have φ(g−1 · es) = φ(eg−1◦s) = 1
if uφ extends g−1 ◦ s and 0 otherwise. In other terms,

(7) φ(es) =

{
es◦(u−1φ ) if dom(s) ⊆ dom(uφ ),

0 otherwise.

Thus, in both cases, φ(es) is an element of AG. Next, given φ and ψ in H(G), we can define a map
φ ∗ψ : AG −→ C by setting φ ∗ψ = φ ◦ψ.

Then, given s ∈ F(MG), using (7) we obtain:

φ ∗ψ(es) = φ ◦ψ(es)) =

{
1 if s ⊆ uφ ◦uψ ,
0 otherwise.

By Corollary 2.3, φ ∗ ψ is an element of SAG which, by Theorem 2.4, uniquely extends to an
element of H(G). Moreover, we obtained along the way that the map φ 7−→ uφ sends convolution
in H(G) to composition where defined in P(MG).

The Hilbert compactification also has an involution φ 7−→ φ∗, which is given by:

∀f ∈Hilb(G), φ∗(f ) = φ(f ∗),

where f ∗(g) = f (g−1) for every f ∈Hilb(G) and g ∈ G. It also preserved by themap P(MG) −→ H(G).
Indeed, if s ∈ F(MG), we have:

φ∗(es) = φ(e
∗
s) = φ(es∗ ) =

{
1 if s ⊆ u∗φ ,
0 otherwise,

hence uφ∗ = u
∗
φ .
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Consequently, we can identify the Hilbert compactification of G with P(MG). We have in fact
just proved the following (a similar statement obtained with a different approach appears as
Theorem 0.3 in [BIT18]):

Theorem 2.5. The map H(G) −→ P(MG) is an isomorphism of semi-topological monoidal compactifi-
cations of G.

3. The Tannaka monoid: Another description of H(G)

In [Tan38], Tannaka associated to a compact group K a monoid T(K) of operations on the
class of representations of K . More explicitly, an element of T(K) is a family of operators (uπ)π
where π ranges over all the finite dimensional representations of K and uπ is an operator on
same the Hilbert space as π. Moreover, the family must commute with intertwining operators
and preserve the common operations on representations: sum, tensor product and conjugation.
The details can be found in [Che99] or [HR70]. A more recent treatment of this approach using
efficient terminology from category theory appears in [JS91]. Inspired by this take on Tannaka’s
duality, we carry a similar construction for Roelcke-precompact non-archimedean Polish groups.
While Tannaka showed in the compact case that T(K) is a compact group canonically isomorphic
to K , we will obtain a *-monoid canonically isomorphic to the Hilbert compactification.

Given a topological group G, we will denote by Rep(G) the category whose objects are repre-
sentations of G that split as a finite sum of irreducibles and whose morphisms are intertwining
operators. B ′(G) will denote the algebra of matrix coefficients of G arising from representations
in Rep(G). Recall that Ĝ denotes the unitary dual of G, i.e. the set of equivalence classes of
irreducible unitary representations of G.

Proposition 3.1. Let G be a Roelcke-precompact non-archimedean Polish group. The following prop-
erties hold:

(1) Rep(G) is stable under tensor product of representations.
(2) Only countably many equivalence classes of representations appear in Rep(G).
(3) AG ⊆ B ′(G).

Proof.

(1) Follows directly from Lemma 1.7.
(2) By definition of Rep(G) it suffices to see that Ĝ is countable. For every λ ∈ Ĝ, fix a

representative πλ. We deduce from Fact 1 that:
⊕

λ∈Ĝ

πλ 6ΛG.

Since ΛG is defined on ℓ2(MG) whereMG is countable, Ĝ must be countable.
(3) We have seen at the end of the proof of Lemma 1.7 that ℓ2(G/U ) splits as a finite sum of

irreducible subrepresentations for every open subgroup U of G. Since AG is generated
by matrix coefficient arising from such representations, this proves the claim.

�

Let UG be the forgetful functor from Rep(G) to the category of Hilbert spaces and letNat(UG)
denote the class of natural transformations of UG. Explicitly, an element of Nat(UG) is a family
u = (uπ)π∈Rep(G) where for every representation π ∈ Rep(G), uπ is a bounded operator onHπ with
the following condition. For every pair of representations π1,π2 ∈ Rep(G) and every intertwining
operator h ∈Hom(π1,π2), the following diagram is commutative:

Hπ1
Hπ1

Hπ2
Hπ2

uπ1

h h

uπ2
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It is easily seen thatNat(UG) is a complex algebra under coordinatewise sum and composition.
Moreover, elements ofNat(UG) behave well with subrepresentations:

Lemma 3.2. Let G be a Roelcke-precompact non-archimedean Polish group and let u ∈ Nat(UG).
(1) Let π ∈ Rep(G) and let F be a closed subspace of Hπ that is stable under the action of G. Then

F is also stable under uπ.
(2) Let π1,π2 ∈ Rep(G). Then:

uπ1⊕π2
= uπ1

⊕ uπ2
.

Proof.
(1) Let pF : Hπ −→ Hπ be the orthogonal projection on F. Then F is stable under the action

of G if and only if pF commutes with the action of G. In particular, if F is G-stable then
uπ must also commute with pF , i.e. uπ(F) ⊆ F.

(2) Let π = π1⊕π2. By definition,Hπ =Hπ1
⊕Hπ2

. Moreover, the inclusion mapsHπ1
−→Hπ

are intertwining operators. Thus, the following diagram must be commutative, which
proves the claim:

Hπ1
Hπ1

Hπ Hπ

Hπ2
Hπ2

uπ1

uπ

uπ2

�

The following is essentially Proposition 4 in [JS91]. The proof is the same but we reproduce it
for completeness. IfH is Hilbert space, L(H) will denote the space of bounded operatorsH −→H
and L1(H) the subset of those operators with norm at most 1.

Proposition 3.3. Let G be a Roelcke-precompact non-archimedean Polish group. For every λ ∈ Ĝ, fix
πλ : G −→U (Kλ) a representative of λ. Then, the restriction map

q : Nat(UG) −→
∏

λ∈Ĝ

L(Kλ), u 7−→ (uπλ )λ∈Ĝ

is a bijective correspondence that respects the algebra structures. In particular, Nat(U) is a set.

Proof. Lemma 3.2 together with the fact that our representations are finite sums of irreducibles
show that an element u is determined by its image under q. In particular, q is injective. For
surjectivity, fix (tλ) ∈

∏
λ∈ĜB(Kλ). We will define a pre-image u for (tλ).

Let π : G −→ U (H) be an element of Rep(G). There is a unique isotypical decomposition
H =

⊕
λHλ into closed invariant subspaces where for every λ ∈ Ĝ, any irreducible subrepresen-

tation ofHλ is isomorphic to πλ. Since π ∈ Rep(G), the space HomG(Kλ,Hλ) is finite dimensional
(this is an application of Schur’s Lemma). Thus, there is a canonical G-equivariant isomorphism:

Ψλ : Kλ ⊗HomG(Kλ,Hλ) −→Hλ.

Using Ψλ, we can define uπ as follows:

uπ =
⊕

λ

[
Ψλ ◦ (tλ ⊗ 1) ◦Ψ

−1
λ

]

To see that it defines a natural transformation of UG, fix π,π
′ ∈ Rep(G) and write H = Hπ

and H′ = Hπ′ . Let h ∈ Hom(π,π′). Recalling the classical general fact that Hom(πλ,πµ) = 0 if

λ , µ ∈ Ĝ, we see that h preserves the isotypical decompositions of π and π′:

∀λ ∈ Ĝ, h(Hλ) ⊆H
′
λ
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with the above notations. Moreover, these decompositions are also preserved by uπ and uπ′ by
construction. Hence, we can reduce to the case H = Hλ and H′ = H′λ for a single λ ∈ Ĝ, which
leaves us with the following diagram:

Hλ Kλ⊗HomG(Kλ,Hλ) Kλ⊗HomG(Kλ,Hλ) Hλ

H′λ Kλ⊗HomG(Kλ,H
′
λ) Kλ⊗HomG(Kλ,H

′
λ) H′λ

h

Ψ
−1
λ tλ⊗1

1⊗(h◦·)

Ψλ

1⊗(h◦·) h

Ψ
′−1
λ tλ⊗1 Ψ

′
λ

To conclude, we need to prove that the greatest square is commutative. But the three smallest
squares are easily seen to be commutative, which is enough. �

Consider the weak operator topology on L(H) for every representation G. Then we can endow∏
λ∈ĜL(Hλ) with the product topology. Nat(UG) can also be endowed with the coarsest topology

for which the projection maps u 7−→ uπ are continuous for every representation π of G. Then q is
also a homeomorphism for those topologies.

Tensor product is the last ingredient we need to add in order to define our version of the
Tannaka monoid:

Definition 3.4. The Tannaka monoid T(G) of a Roelcke-precompact non-archimedean Polish
group G is the set of elements u ∈ Nat(UG) that are non-zero and commute with tensor prod-
uct, i.e. such that:

u1 = IdC and ∀π,π′ ∈ Rep(G), uπ⊗π′ = uπ ⊗ uπ′

where 1 denotes the trivial representation of G on C. The operation is coordinatewise compo-
sition: for every u,v ∈ T(G), (u ◦ v)π = uπ ◦ vπ. It also admits an involution u 7−→ u∗ given by
coordinatewise adjunction. It is endowed with the induced topology as a subspace ofNat(UG).

Note that every g in G naturally defines an element ug ∈ T(G). In the compact case, Tannaka
essentially showed that this map is a group homeomorphism. In our context, we obtain the
Hilbert compactification of G again:

Theorem 3.5. Let G be a Roelcke-precompact non-archimedean Polish group. Then T(G) is a compact
semi-topological *-monoid isomorphic to the Hilbert compactification of G.

Proof. First, it is easily seen that composition is separately continuous in T(G) as it is in L(H)
with the weak operator topology for every Hilbert space H. Similarly, the involution ∗ of T(G) is
also continuous.

Next, we will define a map Φ : T(G) −→ H(G). Fix u ∈ T(G) in order to define a continuous
linear multiplicative functional φ : Hilb(G) −→C. For every π ∈ Rep(G) and x,y ∈ Hπ, denote by
f πx,y : g 7−→

〈
π(g)x,y

〉
the associated matrix coefficient. We first define φ on B ′(G) by setting:

(8) φ(f πx,y ) =
〈
uπ(x),y

〉
.

To see that it correctly defines a linear map B ′(G) −→ C, fix π1, ...,πn ∈ Rep(G) with underlying
spaceH1, ...,Hn respectively and let x1,y1 ∈ H1, ...,xn ,yn ∈ Hn and λ1, ...,λn ∈C such that:

(9) λ1f
π1
x1,y1 + ...+λnf

πn
xn ,yn = 0.

Then, let π = ⊕i6nπi , x = x1 + ...+ xn and y = λ1y1 + ...+λnyn. Equation (9) becomes:

∀g ∈ G, 0 =
〈
π(g)x,y

〉
=
〈
x,π(g−1)y

〉
,

i.e. x lies in (π(G)y)⊥, a closed subspace of H stable under the action of G. Using Lemma 3.2, we
also have uπ(x) ∈ (π(G)y)⊥ and even:

0 =
〈
uπ(x),y

〉
H = λ1

〈
uπ1

(x1),y1
〉
H1

+ ...+λn
〈
uπn (xn),yn

〉
Hn
.

This shows that φ is well defined on B ′(G). It clearly is non-zero since u is non-zero.
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It only remains to see that φ is multiplicative (since continuity is then automatic Proposition
3.1 and Theorem 2.4). To that aim, fix f πx,y , f

π′

x′ ,y′ ∈ B
′(G). We have:

φ(f πx,y)φ(f
π′

x′ ,y′ ) =
〈
uπ(x),y

〉〈
uπ′ (x

′),y′
〉

=
〈
uπ(x)⊗ uπ′ (x

′),y ⊗ y′
〉

=
〈
uπ ⊗ uπ′ (x ⊗ x

′),y ⊗ y′
〉

=
〈
uπ⊗π′ (x⊗ x

′),y ⊗ y′
〉

= φ(f π⊗π
′

x⊗x′ ,y⊗y′ )

= φ(f πx,y f
π′

x′ ,y′ ),

where we used the fact that u ∈ T(G) to obtain the fourth equality. Multiplicativity is proved
hence Φ : T(G) −→ H(G) is well defined. The identity (8) above also shows that this map is
continuous as H(G) is endowed with the pointwise convergence (=weak*) topology.

To define the reciprocal Ψ : H(G) −→ T(G), fix φ ∈H(G) and π ∈ Rep(G). Then, the map

Hπ ×Hπ −→C, (x,y) 7−→ φ(f πx,y )

is a sesquilinear form. It is also bounded since for every x,y ∈ H:

|φ(f πx,y)| 6 ||φ|| · ||f
π
x,y||∞ 6 ||φ|| · ||x|| · ||y||.

Using the Riesz representation theorem, there exists a unique bounded operator uπ ∈ L(Hπ) such
that:

(10) ∀x,y ∈ Hπ , φ(f
π
x,y ) =

〈
uπ(x),y

〉
.

It is straightforward to show that (uπ)π∈Rep(G) lies in T(G) and that (10) implies the continuity of
the map Ψ : H(G) −→ T(G). Equations (8) and (10) together imply that those maps are inverse to
each other, hence homeomorphisms.

To finish the proof, it only remains to show that the monoid structures are preserved. To see
this, fix u,v ∈ T(G), and let π ∈ Rep(G). For every x,y ∈ Hπ the following holds:

Φ(u ◦ v)(f πx,y) =
〈
uπ ◦ vπ(x),y

〉

= Φ(u)(f πvπ(x),y)

= Φ(u)
[
g 7−→

〈
vπ(x),π(g

−1)y
〉]

= Φ(u)
[
g 7−→ Φ(v)(f π

x,π(g−1)y)
]

= Φ(u)
[
g 7−→Φ(v)(g−1 · f πx,y)

]

= Φ(u) ∗Φ(v)(f πx,y ).

�

4. Additional properties of H(G)

We end this article by recovering previously known basic properties of H(G) and by turning
the previous result into a proper duality, i.e a contra-variant functor that is full and faithful.

First, recall that there is a natural map ι : G −→H(G) that sends g ∈ G to the evaluation map at
g . Viewing H(G) as T(G), ι(g) is given by:

∀π ∈ Rep(G), ι(g)π = π(g)

Finally, viewing H(G) as P(MG) and identifying G with Aut(MG) by Remark 1.6, ι becomes the
canonical inclusion G →֒ P(MG). It allows for an abstract reconstruction of G from H(G):

Theorem 4.1. Let G be a non-archimedean Roelcke-precompact Polish group. The natural map

ι : G −→H(G)
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is a homeomorphic embedding such that:

∀g,h ∈ G, ι(gh) = ι(g) ∗ ι(h) & ι(g−1) = ι(g)∗.

Moreover, ι(G) is exactly the set of invertible elements of H(G). In other words, G is canonically
isomorphic, as a topological group, to the set of invertible elements of H(G).

Proof. View H(G) as P(MG). The restriction of the topology of P(MG) to Aut(MG) is easily seen
to coincide with the pointwise convergence topology, since Aut(MG) does not see the open sets
of the second kind in Remark 1.3. Since we identified G with Aut(MG) as topological groups in
Remark 1.6, our map is indeed a homeomorphic embedding. The other properties are obviously
satisfied by the inclusion map G →֒ P(MG). �

Finally, we can reformulate the previous results as an equivalence of categories, or more
precisely a duality. Let RPnA be the category whose objects are the Roelcke-precompact non-
archimedean Polish groups and arrows the continuous group morphisms. Note that if p : G −→H
is a continuous group morphism between topological groups, it induces a functor p̃ : Rep(H) −→
Rep(G) by setting p̃(π) = π ◦ p for every π ∈ Rep(H) and p̃(h) = h for every morphism T between
representations of H . The functor p̃ has additional properties, it is admissible in the following
sense:

Definition 4.2. Let G,H be topological groups. A functor F : Rep(H) −→ Rep(G) is said to be
admissible if it satisfies the following properties:

(i) F sends the trivial one dimensional representation of H to the trivial one dimensional
representation of G.

(ii) For every π ∈ Rep(H), F(π) has the same underlying Hilbert space as π.
(iii) For every π,π′ ∈ Rep(H) and h ∈Hom(π,π′), F(h) = h.
(iv) F commutes with tensor product of representations, i.e. for every π,π′ ∈ Rep(G),

F(π ⊗π′) = F(π)⊗ F(π′).

The collection of such functors is stable under composition and contains the identity maps.
We can thus form the category Rep(RPnA) whose class of objects is (Rep(G))G∈RPnA and whose
arrows are the admissible functors. We obtain the following, which is also true for compact
(resp. locally compact abelian) groups by the usual duality theories of Pontryagin–van Kampen
and Tannaka-Krein.

Theorem 4.3. The canonical contravariant functor

Rep : RPnA −→ Rep(RPnA)

G 7−→ Rep(G)

p 7−→ p̃

is a duality.

Proof. It is clear by construction that Rep is surjective with regard to objects. To prove that it
is faithful, let G,H ∈ RPnA and assume that p,q : G −→ H are such that p̃ = q̃. Then, for every
π ∈ Rep(G), we have π ◦ p = p̃(π) = q̃(π) = π ◦ q. Since Roelcke-precompact Polish groups satisfy
the Gel’fand-Raikov Theorem (i.e. irreducible representations separate points [Tsa12, Th.1.1]), it
implies that p = q.

Finally, we prove that Rep is full. Let G,H ∈ RPnA and let F : Rep(H) −→ Rep(G) be an
admissible functor. Let us prove that there exists p : G −→H such that F = p̃. First, we show that
F induces a map pF : T(G) −→ T(H). Indeed, let u ∈ T(G) and π ∈ Rep(H). Since F is admissible,
we can define pF (u) at π by setting pF(u)π = uF(π). Now, let π,π′ ∈ Rep(H) and let h ∈Hom(π,π′).
Since F is a functor, F(h) lies in Hom(F(π),F(π′)). Hence, by definition of T(G), the following
diagram is commutative:
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HF(π) HF(π)

HF(π′) HF(π′)

uF(π)

F(h) F(h)

uF(π′ )

Since F is admissible, the above diagram is equal to the following:

Hπ Hπ

Hπ′ Hπ′

pF (u)π

h h

pF (u)π′

Thus, in order to prove to pF(u) is an element of T(H), it only remains to see that pF(u) respects
tensor products. By admissibility of F:

pF (u)1 = uF(1) = u1 = IdC,

and, for every π,π′ ∈ Rep(H), using the fact that u is in T(G),

pF(u)π⊗π′ = uF(π⊗π′) = uF(π)⊗F(π′) = uF(π) ⊗ uF(π′) = pF(u)π ⊗ pF(u)π′ .

Hence pF (u) is an element of T(H). Clearly, pF is continuous and respects the monoid struc-
tures. Recalling the last statement of Theorem 4.1, we see that pF restricts to a continuous group
morphism p : G −→H that induces F. �
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