Tannaka-Krein duality for Roelcke-precompact non-archimedean Polish groups - Archive ouverte HAL
Pré-Publication, Document De Travail (Preprint/Prepublication) Année : 2024

Tannaka-Krein duality for Roelcke-precompact non-archimedean Polish groups

Dualité de Tannaka-Krein pour les groupes polonais Roelcke-precompact non-archimédiens

Résumé

Let $G$ be a Roelcke-precompact non-archimedean Polish group, $\mathcal{B}(G)$ the algebra of matrix coefficients of $G$ arising from its continuous unitary representations. The Gel’fand spectrum $H(G)$ of the norm closure of $\mathcal{B}(G)$ is known as the Hilbert compactification of $G$. Let $\mathcal{A}_G$ be the dense subalgebra of $\mathcal{B}(G)$ generated by indicator maps of open cosets in $G$. We prove that multiplicative linear functionals on $\mathcal{A}_G$ are automatically continuous, generalizing a result of Krein for finite dimensional representations of topological groups. We deduce two abstract realizations of $H(G)$. One is the space $P(\mathcal{M}_G)$ of partial isomorphisms with algebraically closed domain of $\mathcal{M}_G$, the countable set of open cosets of $G$ seen as a homogeneous first order logical structure. The other is $T(G)$ the Tannaka monoid of $G$. We also obtain that the natural functor that sends $G$ to the category of its representations is full and faithful.
Fichier principal
Vignette du fichier
Tannaka_krein_duality.pdf (243.82 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04525798 , version 1 (28-03-2024)

Identifiants

  • HAL Id : hal-04525798 , version 1

Citer

Rémi Barritault. Tannaka-Krein duality for Roelcke-precompact non-archimedean Polish groups. 2024. ⟨hal-04525798⟩
82 Consultations
26 Téléchargements

Partager

More