
HAL Id: hal-04525620
https://hal.science/hal-04525620

Submitted on 28 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

A Performance Study of LLM-Generated Code on
Leetcode

Tristan Coignion, Clément Quinton, Romain Rouvoy

To cite this version:
Tristan Coignion, Clément Quinton, Romain Rouvoy. A Performance Study of LLM-Generated Code
on Leetcode. EASE’24 - 28th International Conference on Evaluation and Assessment in Software
Engineering, Jun 2024, Salerno, Italy. �hal-04525620�

https://hal.science/hal-04525620
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

A Performance Study of LLM-Generated Code on Leetcode
Tristan Coignion
Univ. Lille, CNRS, Inria

France
tristan.coignion@inria.fr

Clément Quinton
Univ. Lille, CNRS, Inria

France
clement.quinton@inria.fr

Romain Rouvoy
Univ. Lille, CNRS, Inria

France
romain.rouvoy@inria.fr

ABSTRACT
This study evaluates the efficiency of code generation by Large
Language Models (LLMs) and measures their performance against
human-crafted solutions using a dataset from Leetcode. We com-
pare 18 LLMs, considering factors such as model temperature and
success rate, and their impact on code performance. This research
introduces a novel method for measuring and comparing the speed
of LLM-generated code, revealing that LLMs produce code with
comparable performance, irrespective of the adopted LLM. We also
find that LLMs are capable of generating code that is, on average,
more efficient than the code written by humans. The paper further
discusses the use of Leetcode as a benchmarking dataset, the limita-
tions imposed by potential data contamination, and the platform’s
measurement reliability. We believe that our findings contribute to
a better understanding of LLM capabilities in code generation and
set the stage for future optimizations in the field.

ACM Reference Format:
Tristan Coignion, Clément Quinton, and Romain Rouvoy. 2024. A Per-
formance Study of LLM-Generated Code on Leetcode. In Proceedings of
The 28th International Conference on Evaluation and Assessment in Soft-
ware Engineering (EASE 2024). ACM, New York, NY, USA, 11 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
Large Language Models (LLMs) have recently increased in popular-
ity, especially with the advent of ChatGPT [28]. While LLMs have
been spreading over various application domains, such as text or
image generation, certain types of LLMs are being developed solely
for code-related purposes. These LLMs aim to assist the developers
by saving time and effort through the generation of code, documen-
tation, unit tests, etc. Many of these LLMs only come in a “raw"
form, that is, they do not integrate themselves into the developer’s
coding process. These include models, such as CodeGen [27], Star-
Coder [21],WizardCoder [24], CodeT5 [38], and Incoder [14].
On the other hand, some LLMs are already seamlessly integrated
into the developer’s IDE as code assistants, like GitHub Copilot,1
Amazon CodeWhisperer,2 and Tabnine.3

1https://github.com/features/copilot
2https://aws.amazon.com/fr/codewhisperer/
3https://www.tabnine.com/

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EASE 2024, 18–21 June, 2024, Salerno, Italy
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

There has been a significant amount of work dedicated to com-
prehending how these LLMs perform in various situations and
defining their limits. For instance, several works address the se-
curity of the code generated by such models [29, 30, 33] or the
prevalence of bugs in the generations [20]. Many researchers are
also investigating how developers interact with LLMs and how such
models fit into the programming workflow [7, 30, 34] There is also a
broad research effort to measure the actual efficiency of these LLMs
by creating common benchmarks for comparison [5, 10, 17, 37, 43]
or by actually measuring different qualities related to the genera-
tions, such as the success rate [42] or the robustness of the model
regarding variations [13].

To the best of our knowledge, there is no research work evaluat-
ing the performance of the code generated by LLMs. Yet, having
code that runs faster is an often sought-after characteristic of a
program. Indeed, programming efficiency is paramount, especially
when resources are scarce or programs are deployed on a large
scale. In today’s context where the energy consumption of soft-
ware systems has become a major concern, improving software
efficiency is particularly relevant since increasing the performance
of a program can also lead to energy consumption reduction [2, 36].

The process of code optimization is lengthy and intricate, re-
quiring careful attention and a certain level of expertise, especially
when searching for the best-performing algorithm, selecting the
most appropriate data structure, or struggling with memory hier-
archy. Yet, this process is necessary to identify opportunities for
improvement that may result in minor reductions in execution
time. LLMs can be used as a way to make this process easier, e.g., by
generating performance-improving code edits [11, 15, 25]. Garg et
al. [16] also presented RAPGen, a method for generating zero-shot
prompts to enhance performance. However, while users seem to
put a lot of trust in code generated by LLMs, they still have trouble
reviewing it [33, 34], which can lead to slow code being shipped in
production, especially if an LLM generates inefficient code.

The key contributions of this paper are as follow : (i) We study
the performance of the code generated by 18 LLMs on 204 prob-
lems and investigate performance differences across models using
a novel method for measuring and comparing the performance of
LLM-generated code. (ii) We compare the performance of the code
generated by LLMs to the code written by humans. (iii) Inciden-
tally, we evaluate the usability of Leetcode,4 a public repository of
algorithmic problems that we use as a dataset.

From section 2 to section 4, we describe the tasks dataset and the
models we selected, outline our experiment setup, and explain the
methodology we followed to analyze the obtained results, respec-
tively. We report in section 5 on the results of our evaluation and
provide a critical discussion in section 6. Finally, section 7 presents
the related works, and section 8 concludes the paper.
4https://leetcode.com/

https://orcid.org/0000-0003-3203-6107
https://orcid.org/0000-0003-1771-8791
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://github.com/features/copilot
https://aws.amazon.com/fr/codewhisperer/
https://www.tabnine.com/
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://leetcode.com/

EASE 2024, 18–21 June, 2024, Salerno, Italy Tristan Coignion, ClémentQuinton, and Romain Rouvoy

2 METHODOLOGY
2.1 Research questions
This paper covers the performance of code generated by various
LLMs. In particular, we aim to answer the following research ques-
tions:

RQ1: Can Leetcode be used as a dataset and a benchmark platform
for evaluating LLMs? Leetcode can serve as both a dataset of prob-
lems and a tool to evaluate and measure solutions to the problems.
Particularly, we study if the dataset is subject to recitation and if
the measures Leetcode provides are reliable.

RQ2: Are there notable differences between the performance of the
code generated by different LLMs? LLMs differ greatly in terms of
generating correct code, so we want to know if they also differ in
terms of generating efficient code.

RQ3: Is there an effect of the success rate and the temperature of
the LLM on the code’s performance? Having a higher temperature
decreases the capacity of the LLMs to generate valid code, so we aim
to study if this also applies to the performance of the code. In the
same way, we also study if an LLM that is very good at generating
valid code on one problem, is going to generate efficient solutions
to this problem.

RQ4: How efficient are the solutions generated by the LLMs com-
pared to human solutions? Comparing the LLMs to a set of human-
authored solutions can provide insights into their position relative
to humans in terms of code performance.

2.2 Tasks & Dataset
Task selection. The input tasks—i.e., problems specified by a
prompt—we consider to generate code from various LLMs has to
meet the following requirements:

• A given problem, should offer multiple candidate solutions,
whose generated code performs differently. This ensures one
can observe differences across the various LLMs;

• Generated solutions should exhibit variable execution times.
Given more complex inputs, one should differentiate O(𝑛)
from O(2𝑛) and O(𝑛2) algorithms.

As a result, task datasets, such as HumanEval or Mostly Basic
Python Programming (MBPP), which are classically used when eval-
uating LLMs for code assessments [1, 4, 10, 27], cannot be con-
sidered for our purpose. Indeed, while they do provide unit tests
to drive the generations, the size of the inputs in these unit tests
remains small and fails to scale to appreciate performance issues.
Moreover, the solutions that need to be generated are often very
short, which would lead to fewer possible variations between imple-
mentations. Also, the fact that many problems are not algorithmic
by nature makes them less prone to inefficient practices and perfor-
mance variation. To face such issues, we used input prompts that
were built from Leetcode problems. Leetcode is an online judge plat-
form that suggests programming problems to registered users. It
addresses the above limitations as it provides algorithmic problems
with varying levels of difficulty and test cases with large input sizes.
Leetcode also exposes a GraphQLAPI5 to fetch relevant metadata

5https://pypi.org/project/python-leetcode/

on the problems, such as exercise instructions, code snippets con-
taining the signature of the function to generate, as well as the
difficulty and topics of the problem.

We followed an experimental design similar to the one used by
Döderlein et al. [13], while using a different set of Leetcode ques-
tions. To avoid data contamination, which happens when an LLM
is tested on data it was trained on,6 we only considered problems
that were published after January 1𝑠𝑡 , 2023. As all the LLMs (except
GitHub Copilot) we evaluated were trained using datasets older
than these problems, we avoid any data contamination. As these
problems are published by Leetcode in the context of programming
competitions, they are always original. However, GitHub Copi-
lot being an online closed-source tool, one cannot tell whether
it underwent training with the problem set we employed. Our set
was composed of 204 problems—labeled as 56 easy problems, 104
medium problems, and 44 hard problems, as classified by Leetcode
upon the problem’s publication.

To answer RQ1, we also performed our experiment a second
time on the set of questions used by Döderlein et al. [13], which
is composed of 300 problems (95 easy, 105 medium, and 100 hard)
from the most liked problems of Leetcode. We will refer to this
dataset as the "old" dataset, and to our dataset of problems published
during 2023 as the "new" dataset. Code generation was performed
in Python for its ease of use and because of the prevalence of
Python-written datasets for evaluating LLMs [5, 10].

Input prompts. The instructions given by Leetcode for each
programming problem contain (i) the description of the problem,

6You can find more details on data contamination here.

Start of the input prompt
"""
Given an integer array nums, return all the triplets `[nums[i],

nums[j],nums[k]]` such that `i != j`, `i != k`, and `j != k`,
and `nums[i] + nums[j] + nums[k] == 0`.

↩→
↩→

Notice that the solution set must not contain duplicate triplets.
"""
class Solution:

def threeSum(self, nums: List[int]) -> List[List[int]]:
End of the input prompt

Start of the generated code
nums.sort()
res = []
for i in range(len(nums) - 2):

...
End of the generated code

Start of the benchmarking code
def check():

Solution().threeSum([82597, -9243, 83030, ...])
Solution().threeSum([0, 0, 0, 0, ...])
Solution().threeSum([0, 0, -1, -1, ...])

import pytest
@pytest.mark.benchmark(group="3sum")
def test_3sum_generated_1(benchmark):

benchmark(check)
End of the benchmarking code

Figure 1: Example of problem’s input prompt, generated code,
and benchmarking code.

https://pypi.org/project/python-leetcode/
https://web.archive.org/web/20231020160612/https://bdtechtalks.com/2023/07/17/llm-data-contamination/

A Performance Study of LLM-Generated Code on Leetcode EASE 2024, 18–21 June, 2024, Salerno, Italy

(ii) examples of inputs and outputs, and (iii) constraints on the
input data. To build the prompts inputted to the LLMs, we chose
to only include the description of the problem. This choice aimed
to maintain the prompt’s conciseness and ensure compliance with
potential LLMs’ length restrictions. Indeed, LLMs are constrained
by a context size, imposing the maximum number of tokens they
can process at once, encompassing both the prompt and the answer.
In our study, the majority of LLMs impose a context window of
1024 tokens. Figure 1 illustrates a descriptive prompt (enclosed
within triple quotes) along with a solution generated using this
prompt and the corresponding benchmark instructions. Leetcode
occasionally includes an additional comment in the prompt, indi-
cating the available methods of the elements passed to the solution
(e.g., binary trees). While adding examples in the prompt could po-
tentially increase the likelihood of generating correct solutions [13],
we chose not to include them due to the complexity of representing
Leetcode’s data structures (such as arrays, graphs, linked lists, trees,
etc.) in textual form. On Leetcode’s website, data structures are
textually represented using an array notation format with brackets
(e.g., “[1, 2, 3]"), which might be misleading for an LLM working
with data structures that differ from arrays or lists.

Canonical solutions. Each problem was matched with a single
valid solution, written by a human and fetched from various sources.
These solutions, referred to as “canonical solutions", are considered
as baselines during the benchmarking process, although they may
not represent the entirety of human-written solutions. They were
used to assess the stability of the measuring process. Most of the
canonical solutions were fetched from the WalkCC repository of
Leetcode solutions.7 When one question did not come up with any
solution in Python from this repository, we selected one solution
proposed by the Leetcode community among the most upvoted
ones (starting from the one with the most upvotes), which are also
publicly available on the Leetcode website. These modifications
only included changes to the function name, variable names, and
type hints except for one specific case, where a recursive solution
provided by WalkCC was replaced by an iterative one from the
Leetcode community because of the stack limit on our local setup.
We ended up with one Python-based canonical solution for each
problem of our dataset.

Test cases. Testing generated solutions is a twofold process, as
both the correctness and scalability (performance) of each solution
must be checked. First, to ensure that generated solutions are cor-
rect, we provide such solutions to the Leetcode online judge system,
which in turn validates them based on its test suites. Second, we exe-
cute the valid solutions with input data to assess their performance.
To retrieve such input data, we crawled through the problems’
instructions and extracted two to three examples of inputs and
expected outputs provided by Leetcode. However, such inputs were
too small to exhibit significant performance differences, e.g., arrays
containing only two to five elements. To execute the generated
solutions with larger input data, we took advantage of Leetcode’s
judge system that returns the inputs and expected output of the
first failed test of a test suite. We noticed that Leetcode tests if the
submitted solution is inefficient by using a timeout system. Since all
selected problems are algorithmic by nature, one simple way to put

7https://github.com/walkccc/LeetCode

a heavier load on their implementations is to increase the size of the
inputs. For every problem, we thus submitted a modified version
of a canonical solution that failed only when the size of the first
parameter exceeded a certain threshold. We then set this threshold
manually multiple times for every problem to extract three different
inputs for each problem, resulting in more than 150MB of fetched
input data with most inputs having over 105 elements.

2.3 LLMs Under Study
Our empirical study covers a total of 18 LLMs, specifically designed
for coding purposes. We selected the 18 popular code LLMs from
Hugging Face,8 as well as GitHub Copilot, which is an online
closed-source code assistant. The LLMs were selected based on the
number of downloads and likes they exhibited. We chose GitHub
Copilot to offer a comparison between a commercial LLM and
open-source LLMs, but did not choose any other GPT models from
OpenAI because of their cost. Table 1 summarizes all the LLMs
considered in this study. This includes variants of the same base
LLM—i.e., models with varying sizes (in billions of parameters) or
different training data, such as variants of CodeGen, InCoder, and
CodeT5. LLMs belonging to the same family are models closely
related in terms of training data and method.We first performed our
experiment in March 2023 with a subset of the models presented
here, with the "old" dataset. We then performed it a second time in
September 2023 with all the models and the "new" dataset.

LLM Model Model family Size RQ1
GitHub Copilot Codex 11 ✓
CodeGen-Mono 6B CodeGen 6 ✓
CodeGen-Mono 2B CodeGen 2 ✓
CodeGen-Mono 350M CodeGen 0.35 ✓
CodeGen2.5-7B-mono CodeGen2.5 7
CodeGen2.5-7B-instruct CodeGen2.5 7
CodeLlama-7B-instruct CodeLlama 7
CodeLlama-7B CodeLlama 7
CodeLlama-7B-python CodeLlama 7
CodeLlama-13B-instruct CodeLlama 13
CodeLlama-13B-python CodeLlama 13
replit-code-v1-3b replit-code 3
WizardCoder-pythin WizardCoder 7
SantaCoder Santacoder 1.1 ✓
StarCoder StarCoder 15.5
InCoder 6B Incoder 6 ✓
InCoder 1B Incoder 1 ✓
CodeParrot Codeparrot 1.5 ✓

Table 1: LLMs considered in our study. Models with the RQ1
checkmark were also evaluated on the "old" dataset. Size is
in billions of parameters

3 EXPERIMENT SETUP
This section describes our experiment setup to generate and vali-
date the solutions produced by the LLMs. First, we describe how
solutions were generated from each LLM. Then, we outline the
three-step process used to filter invalid solutions. Finally, we ex-
plain how the run time of the generated solutions was measured.

3.1 Code Generation
We generated 10 solutions for each problem from our dataset by
varying the temperature of the LLMs used to generate them. Specif-
ically, we considered 6 different temperatures (0.1, 0.2, 0.4, 0.6,
8https://huggingface.co

https://github.com/walkccc/LeetCode
https://huggingface.co

EASE 2024, 18–21 June, 2024, Salerno, Italy Tristan Coignion, ClémentQuinton, and Romain Rouvoy

0.8, and 1.0). As Copilot’s temperature cannot be configured, we
used its default temperature for generating all the problems.

Generating code with GitHub Copilot. Automatically gener-
ating with GitHub Copilot for a reproducible experiment proved
to be a difficult task. Firstly, the code suggestion feature of Copilot
activates when typing in a text editor with the installed Copilot
plugin. Additionally, GitHub Copilot produces code based on a
context that encompasses the current file and the files previously
accessed by the user, impacting the generated solutions. Lastly, we
noticed a caching mechanism on the GitHub Copilot server side,
which resulted in very similar or identical solutions if we gener-
ated multiple solutions for a given problem in the same session.
To address these issues, we used a generation method similar to
the one used by Döderlein et al. [13] by instrumenting the GitHub
Copilot Neovim plugin9 and restarting the plugin between every
generation to avoid the caching effect. This method allowed us to
automatically generate solutions in a quick and isolated fashion. On
top of that, GitHub Copilot provides 2 means of generation: inline
generations (the suggested code is integrated with the editor) and
panel generations (Copilot generates at most 10 completions and
displays them on a panel next to the editor). We chose to exclusively
use inline generations, as panel generations yielded worse results
in terms of functional correctness than inline generations.

Generating code with open-source models. Regarding the
open-source models, we generated solutions by deploying the mod-
els on servers provided by the Grid5000 platform [6]. We used the
Deepspeed library to make the generation process faster and fit
larger models on our GPUs. Concerning the sampling, we used the
same methods as Chen et al. [10] and used nucleus-sampling [18]
with top 𝑝 = 0.95. The maximum number of tokens to be generated
was set to 600. This is because the LLMs we used have a limited con-
text size of 1024 tokens (prompt included). Thus, to avoid exceeding
the context size, we had to limit the number of tokens to gener-
ate. We also verified it did not significantly impact the functional
validity of the LLMs.

In total, we generated 2, 040 solutions with Copilot and 12, 240
with each of the eight other models, resulting in 210, 120 generated
solutions overall.

3.2 Validation
Each generated solution was tested to ensure its functional correct-
ness following a three-step process. At every step, if a solution was
found to be invalid, it was excluded from subsequent stages of the
experiment. The process was as follows:

i) Local validation. We filtered out code generations that included
easy-to-spot errors, such as syntax errors or runtime errors, by
using the small inputs we fetched earlier (see Section 2.2 - Test
cases). While this step was not strictly necessary, it quickly reduced
the number of solutions to be validated in the next step;

ii) Leetcode validation. Next, we submitted the solutions to the
Leetcode judge system using the Leetcode GraphQLAPI, where
they underwent a rigorous test suite managed by Leetcode. We kept
the solutions that passed all the test cases or exceeded Leetcode’s
allocated time limit. The latter was kept to ensure that correct
solutions that were too slow remained included in the benchmark;

9https://github.com/github/copilot.vim

iii) Exclusion of timeouts and other errors. Finally, we excluded the
solutions that reported errors when executed with our benchmark-
ing setup using the large inputs fetched beforehand. We invalidated
the code generations that took more than 10 seconds to run or
raised an error. Most of the errors raised in this step were recursion
errors caused by differences between Leetcode’s Python interpreter
and ours. Indeed, Leetcode’s seemed to have a higher recursion
limit than ours, which we set to 10, 000 instead of the default 1, 000
(we could not manage to set it any higher). Additional errors oc-
curred because we developed our helper classes differently from
Leetcode’s implementation. Although these classes are provided
by Leetcode during the submission process, they are not publicly
available. Out of the 4, 930 invalidated solutions that were caught
in this step, 4, 863 (98.6%) were due to timeouts, 20 (0.04%) to recur-
sion errors, and 47 (0.1%) to other errors. Following this validation
process, the initial set of 210, 120 generated solutions was pruned
down to 7, 481 (3.6%) valid solutions remaining across the 18 LLMs.

3.3 Measuring run time
We measured the performance as the run time of the generated
solutions using pytest-benchmark,10 which runs pytest unit tests
multiple times to obtain run times statistics. The measurements
were performed using parameters that ensured each solution ran at
least 10 times and for at least 1 second in total. We did not perform
warm-up runs of the benchmarks, as we did not notice any signifi-
cant difference in the measured time during preliminary testing. To
facilitate the measurement protocol, the generated solutions were
sorted into “runs", based on the specific LLM and temperature that
were used during the code generation. Within each run, which was
defined by a unique combination of model and temperature, the
solutions were measured in sequence during a single program exe-
cution. Furthermore, in every run, we added the canonical solutions
we previously collected, which would run alongside the generated
solutions. This approach ensured that the same canonical solutions
were executed in every run, allowing us to maintain measurement
stability. Specifically, we calculated the standard deviation of the
canonical solution run times across all runs, thus providing a reli-
able measure of the variability of the measurement protocol. We
observed that over 96% (196 out of 204) of the canonical solutions
had a standard deviation lower than 1/10𝑡ℎ of their average run
time, which we deemed to be an acceptable level of variation.

The cluster we used to run the benchmark was the chiclet cluster
of the Grid5000 testbed.11 It hosts 2 AMD EPYC 7301, with 16 cores
per CPU and 128GB of memory. When using the node, all the cores
of both CPUs were reserved, but only one was used at a time to
maximize the stability of the measurement protocol.

3.4 Replication package
All the artifacts of this study, including our results, code, and
datasets, are available in the following public repository: https:
//zenodo.org/doi/10.5281/zenodo.7898304.

10https://github.com/ionelmc/pytest-benchmark
11http://grid5000.fr

https://zenodo.org/doi/10.5281/zenodo.7898304
https://zenodo.org/doi/10.5281/zenodo.7898304
http://grid5000.fr

A Performance Study of LLM-Generated Code on Leetcode EASE 2024, 18–21 June, 2024, Salerno, Italy

4 DATA ANALYSIS
In this section, we describe the methods we adopted to analyze our
results. These methods fall into one of the two following categories:
functional correctness and code performance.

4.1 Functional Correctness
The functional correctness of an LLM defines how much the LLM
outputs code conforming to the program contract (as specified
by the input prompt). To evaluate the functional correctness of
our LLMs, we computed their pass@k metrics with 𝑘 = 1 and
𝑘 = 10, using the unbiased estimator proposed by Chen et al. [10].
The pass@k unbiased estimator which, from k samples produced,
considers the test as successful if one of these samples passes all the
tests, is computed as follows (with 𝑛 the total number of samples, 𝑐
the number of correct samples and E the expected value):

𝑝𝑎𝑠𝑠@𝑘 := E
𝑃𝑟𝑜𝑏𝑙𝑒𝑚𝑠

[
1 −

(𝑛−𝑐
𝑘

)(𝑛
𝑘

)]
(1)

As Chen et al. [10] suggest, we calculated the pass@k for each
temperature when evaluating an LLM’s functional correctness and
considered the best one as the pass@k for that LLM.

4.2 Code Performance
To measure the code performance, we considered three different
metrics. First, we used the memory usage reported by Leetcode.
Then, we computed themedian of the run timesmeasured by pytest-
benchmark for every generated solution. Lastly, to compare the
LLMs solutions to human-submitted solutions, we also used the
rank reported by Leetcode when validating the solution. This rank
is a number between 0 and 100 that indicates the share of submitted
solutions that are slower than the current solution (e.g., if a solution
has a rank of 90, it is faster than 90% of the submitted solutions on
Leetcode).

To assess the LLMs’ performances, we conducted pairwise com-
parisons as follows: For each pair of LLMs, we identified problems
where both models generated more than 5 valid solutions. For each
identified problem, we conducted a Student 𝑡-test on the mean run
time of the generations to determine if there was a significant dif-
ference. Then, for each pair A-B of LLMs, we computed the ratio
of problems where A’s code was significantly faster than B’s and
where B’s code was significantly faster than A’s.

5 RESULTS
In this section, we summarize the key observations from our exper-
iment and answer our research questions. In Table 2, you can also
find the functional validity results of the different LLMs on both of
our Leetcode datasets. Our results are also available in the form of
a companion notebook in our replication package. The companion
notebook offers more insight into the results and additional graphs.

5.1 RQ1: Can Leetcode be used as a dataset and a
benchmark platform for evaluating LLMs?

5.1.1 Can Leetcode problems be adopted as a dataset for LLM gen-
eration? As on can observe in Figure 2, the generated codes exhibit
on a significant drop in functional correctness between the two

LLM Model Pass@1 Pass@10

StarCoder 0.095 0.132
CodeLlama-13B-python 0.093 0.201
GitHub Copilot 0.092 0.196
CodeLlama-7B-instruct 0.082 0.191
CodeLlama-13B-instruct 0.078 0.206
WizardCoder-python-7B 0.075 0.157
CodeGen2.5-7B-mono 0.066 0.147
CodeGen2.5-7B-instruct 0.062 0.142
CodeLlama-7B-python 0.047 0.172
CodeGen-6B-mono 0.045 0.113
CodeGen-2B-mono 0.038 0.103
replit-code-v1-3b 0.025 0.083
InCoder-6B 0.021 0.064
SantaCoder 0.015 0.064
CodeLlama-7B 0.014 0.015
InCoder-1B 0.012 0.039
CodeGen-350M-mono 0.007 0.039
CodeParrot 0.002 0.015

Table 2: Functional validity of the LLMs on Leetcode (by
decreasing pass@1, higher is better)

Figure 2: Average pass@1 of the evaluated LLMs for every
difficulty and dataset, with 95% confidence interval (higher
is better)

datasets. The difference here is pretty staggering for every tested
LLM, reporting on a tenfold decrease in pass@k. We believe this
issue may stem from data contamination in the old dataset. Data
contamination occurs when an LLM is assessed on data that was
included in the training dataset, introducing bias into the evalua-
tion process. In our case, a significant number of questions in the
old dataset are widely known and have been extensively shared
on GitHub. For instance, a search for the prompt of the "3sum"
Leetcode problem on GitHub yields approximately 4.000 matches
in public repositories. These questions are also old enough to likely
be included in the training datasets of the LLMs under study, as
the majority of their training datasets have a cut-off date between
2021 and 2022. Due to this data contamination, LLMs tend to recite,
reproducing verbatim source code when generating solutions. This
phenomenon is more pronounced when the prompt is highly spe-
cific and lacks contextual information, as seen in Leetcode prompts

EASE 2024, 18–21 June, 2024, Salerno, Italy Tristan Coignion, ClémentQuinton, and Romain Rouvoy

Figure 3: Coefficicent of variation of the time measured by
Leetcode and locally for every problem using canonical solu-
tions

that closely match GitHub repositories. The observed shift in func-
tional validity between the two datasets could also arise from a
genuine difference in the difficulty of the questions within each
dataset. However, quantifying this last hypothesis proves to be
challenging.

5.1.2 Are Leetcode measurements reliable? Run time. As reported
in Figure 3, the coefficient of variation of the Leetcode measures
(0.089) is slightly higher than the coefficient of variation of the local
measures (0.035). This suggests that Leetcode’s measuring setup is
less suited to ensure accurate benchmarks.

We also study the correlation between our local measurements
and Leetcode’s, and we notice two issues: (1) the times measured
locally and by Leetcode only slightly correlate on average (0.28).
For some problems, the measures are highly correlated (> 0.8)
while, for others, they are almost not (< 0.2). This is more apparent
when we look at the scatter plot showing the measures of some
problems in Figure 4. In this problem, there are four clusters of
generations with a different locally measured time, but the clusters
are indiscernible in terms of Leetcode time. This could be due to
two main reasons. Firstly, as previously discussed, the variance of
the measures from Leetcode is higher and as such, there is much
more noise in the measures, decreasing the precision. Secondly,
the tests we employed may be more focused on performance test-
ing than Leetcode’s. Notably, our test suite comprises only three
tests featuring significantly large inputs, potentially accounting for
certain disparities in the results.

Although still usable, relying on the time reported by Leetcode in-
troduces some limitations due to its higher variance. Consequently,
Leetcode’s measures cannot allow us to discern the differences in
run time between different code implementations as precisely as
locally measured time.

Memory usage. While we did not measure the memory our-
selves, we observed the variation of the memory usage measure
provided by Leetcode. We notice that the memory usage for the

Figure 4: Scatter plot of the measures done by Leetcode and
locally for every generation for the problem "Difference be-
tween element sum and digit sum of an array". Orange points
are from multiple measures of the same canonical solution
and serve as visual references for the measurement error

same solutions decreases over time. There is indeed a slight corre-
lation of -0.24 between the day of the year we tested our solution
and the memory usage. The fact that the memory usage measure
evolves renders comparisons between LLMs harder. While we could
theoretically offset the memory usage when we detect changes over
time, it would require testing the canonical solutions alongside the
generated one on Leetcode.

Leetcode rank. The time ranking that Leetcode returns when
we test a solution represents the share of submitted and valid so-
lutions that are slower than ours. While this could be a great tool
to rank LLMs among human-submitted solutions, we find that the
ranking is heavily affected by our submissions and time. As you can
see in Figure 5, the overall rank of the LLMs we tested decreases
over time. To verify this, we tested GitHub Copilot twice, once
as the first LLM, and a second time after testing all the LLMs. The
first test of Copilot has an overall rank of 77, and the second test
ranks down to 54, despite it being tested with the same solutions.
This effect of the rank evolving becomes obvious when you con-
sider that the rank is determined using all the previously accepted
solutions, including ours. This means that by testing thousands of
our solutions on Leetcode, we are actively changing the ranks of
future tests.

RQ1: The evaluation of LLMs using Leetcode questions as a
dataset presents some challenges. Although Leetcode’s ques-
tions could serve as a valuable dataset akin to HumanEval,
limitations arise due to the constraint that only the prob-
lems published after the LLM’s training dataset formation
are usable for evaluating the LLM in question. This creates
potential difficulties in reproducibility, particularly as new
LLMs emerge, especially if they do not exclude Leetcode prob-
lems from their training datasets [19]. Additionally, while
Leetcode’s provided metrics, such as run time, memory usage,

A Performance Study of LLM-Generated Code on Leetcode EASE 2024, 18–21 June, 2024, Salerno, Italy

Figure 5: Scatter plot of LLM’s rank and date they were tested
on Leetcode. The twomodels in red are the samemodel tested
on different dates

and rank may offer practicality in various scenarios, their us-
ability and reliability are questioned when compared to more
traditional measurement methods. The presence of these chal-
lenges emphasizes the need for careful consideration and
scrutiny when adopting Leetcode to evaluate LLMs.

5.2 RQ2: Are there notable differences in
performances between LLMs?

The pairwise comparison depicted in Figure 6 reveals subtle distinc-
tions in the performances of various LLMs. Notably, some models,
such as StarCoder and the CodeLlama model with 13B parameters
specialized in Python, consistently exhibit slightly superior results
compared to others. Despite these observed variations, the mean
Cohen’s 𝑑 effect size measures a mere 0.024, a statistically insignif-
icant magnitude. This suggests that the practical impact of these
differences on the mean speed of code generation is remarkably
small. For instance, when comparing CodeLLama-13-instruct and
CodeGen25-7B-mono, CodeLLama outperforms the latter in a sta-
tistically significant manner in 3 problems out of 8. However, it
is crucial to note that the mean performance difference between
these models is a mere 0.02 standard deviation. It thus seems that
improving an LLM in terms of functional validity does not signifi-
cantly impact the performance of the code it generates. This may
be due to different factors, such as the fact that most LLMs share
the same datasets or that they are trained to produce valid code and
not fast code. Improving the performance of an LLM could be done
by curating a training dataset of only efficient code and fine-tuning
one of the foundational models we used, or by using reinforcement
learning to "teach" the model to produce better code. Madaan et al.
produced an LLM that could improve the performance of code [25].
This LLM could be leveraged in a generation pipeline to directly
improve the generated code.

Figure 6: Number of problems where an LLM (row) is better
than another (column)

RQ2: Our analysis uncovers statistical differences in the per-
formance of generated code among different LLMs. However,
the effect size, as measured by Cohen’s 𝑑 , is so negligible that
it raises questions about the practical significance of these
differences. Despite some models consistently outperforming
others, the overall impact on the mean efficiency of LLM-
generated code appears to be minimal.

5.3 RQ3: Is there an effect of the functional
validity of the LLM and its temperature on
the generated code’s performance?

Functional validity. When calculating for every problem the cor-
relation between the success rate of the LLM that generated the
solution and the run time of the solution, we find that there is
only a very slight negative correlation (−0.08) between the success
rate and the performance. There is close to no correlation (−0.11)
observed between the success rate of the model and the variation
in the performance of the generated code.

Temperature. There is no correlation (0.05) observed between
the temperature of the generations and the performance of the
generated code. This means that the temperature does not affect
how fast the solutions are. However, we observe that temperature is
moderately correlated (0.41) with higher variations in performances.
This means that higher temperatures tend to increase the variation
in performance across generations. The complete distribution of the
correlation for each of the 24 problems can be seen in Figure 7. So,
while increasing the temperature leads to a lower success rate [13],
it can help find a faster solution with an extended exploration of
generations. The fact that the temperature increases the variation
in performances comforts the idea that higher temperatures lead
to more diverse outcomes.

EASE 2024, 18–21 June, 2024, Salerno, Italy Tristan Coignion, ClémentQuinton, and Romain Rouvoy

Figure 7: Distribution of correlations for every problem be-
tween the temperature and the variation of the performance.
The red line is the median

RQ3: Our analysis of LLMs indicates that the quality of gen-
erated code does not have a substantial impact on its perfor-
mance. However, we observed that modifying temperature
settings within an LLM significantly affects the diversity of
code performances produced. This implies that, while code
validity may not be a decisive factor in performance, adjusting
temperature settings can be a valuable strategy to enhance
the variety of outcomes in code generation processes.

5.4 RQ4: How fast are LLMs compared to
humans ?

As previously stated, the Leetcode time ranking evolves, so we
chose to compare the second model we tested on Leetcode with
humans (Copilot being the first, it did not have enough generations
overall because of its lack of a temperature setting). The results of
this comparison are depicted in Figure 8. The comparison is done
using the Leetcode ranking, with the assumption that most of the
previous submissions were made by humans.

We observe in Figure 8 that the solutions generated from LLMs
are faster than most previous submissions with a mean rank of 73%,
and that it even generated some solutions that were faster than 95%
of the previous submissions.

RQ4: It seems that the LLMs are faster thanmost of the human
solutions on Leetcode, on average. If the LLM we tested were
in an actual competition, his valid solutions would be on
average faster than 73% of the other solutions on Leetcode.

6 DISCUSSION
In this section, we discuss the results reported in the previous
section, their implications, and the limitations of our study.

Figure 8: Distribution of the ranking for the CodeGen-6B-
mono model

6.1 Discussion of the results
On the Leetcode measures and usability. The data contamina-
tion issuewe unveiled poses a significant challenge in the evaluation
of LLMs, as it prevents an accurate evaluation of their real perfor-
mances. Because Leetcode’s problems are not filtered from the
training datasets, as research on LLMs continues, even the newer
problems might contaminate future training datasets, thus render-
ing reproduction of our study harder [19]. This conclusion also
holds for any study using Leetcode as an evaluation dataset, such
as [8, 13, 26]. However, we believe that the methodologies employed
and the conclusions drawn would likely hold validity with alterna-
tive sets of questions from Leetcode or other performance-oriented
datasets. This suggests that future studies seeking to replicate our
findings would primarily need to change the dataset employed
for assessing LLMs. Addressing the data contamination concern
could involve leveraging pre-filtered evaluation datasets, such as
HumanEval, already separated from the training processes, and
repurposing them into performance evaluation datasets.

On functional correctness. The ranking of the functional cor-
rectness of the LLMs is consistent with the previous evaluations of
the LLMs onHumanEval [1, 4, 10, 21, 24, 27, 32]. However, it seems
that InCoder performs worse than presented in its introductory
paper [14], which may be due to our experimental protocol—using
it only for left-to-right generation instead of infilling like it was
built for.

We observe that Leetcode’s problems seem harder for the LLMs
to solve thanHumanEval’s problems. Indeed, StarCoder, the model
that performed the best with a pass@1 of 0.09, had a pass@1 of
0.408 onHumanEval [21]. We believe this is due to multiple factors.
First, our Leetcode prompts and expected solutions are longer than
in HumanEval (the average length of solution in HumanEval is
180 characters vs 425 characters in our dataset), thus increasing the
chance of a generation to fail. Indeed, having to generate more code
can lead to a higher chance of making a mistake, as shown by a
correlation of −0.30 between the solution’s length and the success
rate of the problem. Second, Leetcode problems come from pro-
gramming competitions and need a lot of thinking to be solved. The

A Performance Study of LLM-Generated Code on Leetcode EASE 2024, 18–21 June, 2024, Salerno, Italy

causal generation of the LLMs does not allow a "thinking" process
to happen, which for harder problems causes a drop in functional
validity. This could be solved by making the LLMs mimic human
thinking with methods, such as Chain-of-Thought prompting [39].

On the performance of generated code. To the best of our
knowledge, our methodology for evaluating LLMs based on the per-
formance of generated code is novel and could serve as a benchmark-
ing approach for future studies involving new LLMs and datasets.
While we aimed for a singular performance score for LLMs, similar
to pass@k, the varying rates at which LLMs generate valid solu-
tions posed a challenge, leading us to employ pairwise comparisons.
An improvement to our method could involve using an optimal
solution as a reference point and comparing the speed of each gen-
erated solution to the optimal solution’s speed. Speed would thus
be expressed as a factor relative to the optimal time, addressing
the issue of problems having different time scales and potentially
laying the groundwork for a more comprehensive "performance
score."

The low success rate of LLMs on Leetcode posed a considerable
challenge for their comparison. Among the 204 problems, only 24
had (i) valid solutions from at least 10 different models (out of the 18
assessed LLMs) and (ii) at least 10 valid solutions in total (see to the
companion notebook). This low success rate complicated pairwise
comparisons, as numerous models could not be compared due to
an insufficient number of common problems with a substantial
number of generated solutions.

Our discoveries offer valuable insights for developers in their
choice of LLMs. For example, when developers are considering an
LLM for tasks like code generation, such as with GitHub Copilot,
the performance of the generated code may be an important con-
cern. With our findings, developers can be assured that there is no
significant variance in the performance of code generated by dif-
ferent LLMs. This means that if they aim to have fast code, there’s
no necessity to consistently opt for the largest model available;
instead, a smaller one suffices. We also hope that our findings will
incentivize further research on building new LLMs that produce
even more efficient code.

6.2 Limits and Threats to Validity
Regarding functional correctness, although we did our best to gen-
erate code in the most optimal conditions, some changes to the
input prompt (i.e., adding examples and constraints), or the config-
uration of the models may have changed the performance of the
LLMs. However, we believe that this should not significantly impact
the validity of our experiment, as all the models were configured
similarly.

GitHubCopilot being a closed-source tool, it might be retrained
without the community’s knowledge, which could potentially lead
to a modification in the tool’s performance in upcoming experi-
ments.

The majority of our validation and benchmarking process relied
on Leetcode’s test suite and online judge system. Thus, it is possible
that some big test cases we extracted for the benchmarking favored
some types of implementations over others. We mitigated this issue
by systematically fetching three test cases and by having a large
dataset of problems to generate from. During our experiments, we

also tried to generate plausible inputs using random generators,
but this method did not yield satisfying results because randomly
generating data structures with specific shapes, or properties (e.g.,
generating valid regular expressions) is difficult to achieve.

One gap in our study is that we do not consider memory usage
at all when studying the LLMs. This is because our benchmarking
setup did not allow for memory monitoring and doing otherwise
would have cost us a lot of time. Moreover, we believe our results
obtained with only the run time to be self-sufficient.

The way we compared an LLM to a human using Leetcode rank-
ings gives a good idea of where the LLM stands in terms of per-
formance. However, because the ranking evolves and we have no
information about the population the LLM is ranked against, the
results here should be taken with a grain of salt.

It is also important to note that Leetcode as an evaluation dataset
suffers from some issues. As we only evaluate the LLMs on algorith-
mic problems, the performances of the LLMs are hard to generalize
across all programming fields. However, this is difficult to improve
on for similar reasons to HumanEval: we only have a limited con-
text size and have to make the LLM generate in one go a completion
to some code, which must be self-contained (meaning, all the in-
formation needed to generate the solution must be in the prompt).
Also, in terms of performance, it is difficult to find another kind
of self-contained code than algorithmic problems that have, such
variations in performance. While studying the LLMs on SQL gen-
eration could be a good idea, it would not fit into our studies with
generalist programming languages.

Regarding Leetcode as a platform, we are heavily dependent on
it for validating the generated solutions and are limited by its daily
rate limits of 1, 000 submissions per account. For future studies, it
would be great to consider alternatives to Leetcode, such as the
project CodeNet [31], which does not have as many restrictions as
Leetcode.

7 RELATEDWORKS
Previous research has investigated various aspects of LLMs for code-
related tasks, including the security of their suggestions [29, 30, 33],
the prevalence of bugs in the generated code [20], how developers
interact with them [7, 30, 34] or just the quality and correctness of
the code they generate [13, 22, 26, 42]. There have also been efforts
to measure the efficiency of LLMs through the creation of bench-
marks for comparing them, such as HumanEval[10], MBPP [5],
CoderEval [43], APPS [17], CodeXGLUE [23] or ReCode [37].
Xu et al. [40] also led a comparative evaluation of multiple LLMs
for code including Codex and Codeparrot.

Leetcode, while being just a coding competition platform, is also
used as a dataset to evaluate the capabilities of LLMs on program-
ming tasks. Döderlein et al. [13] measured the performances of
Copilot and Codex on Leetcode and the effects of changing the
prompts. Nguyen and Nadi [26] studied Github Copilot’s code
suggestions on Leetcode problems and the complexities of its gener-
ated code. Vasconcelos et al. [35] studied the effects of highlighting
the uncertainty of AI-powered code completions using Leetcode
problems and Codex.

Various other methods have also been employed to investigate
the impact of temperature on the generated code, apart from the

EASE 2024, 18–21 June, 2024, Salerno, Italy Tristan Coignion, ClémentQuinton, and Romain Rouvoy

approach we proposed: Chen et al. [10] evaluated the best temper-
ature of Codex in terms of pass@k. Austin et al. [5] also studied
the effects of the temperature on the performance of their model.
Christopoulou et al. [12] also studied the effects of the temperature
and nucleus-sampling on their LLM. Döderlein et al. [13] highlight
the importance of correctly tuning the temperature of a model
when using it to generate code. The research led by Aghakhani et
al. [3] shows that poisoned models suggest insecure code more
often as the temperature increases. Our results demonstrate that
increasing the temperature also increases the chance of generating
slow and inefficient code.

On the subject of performance, Madaan et al. [25] fine-tuned
LLMs to make them improve the performance of code. Multiple
other techniques have been proposed for automatically improving
the performance of code using LLMs [9, 11, 15]. Our contribution
is the first—as far as we know—to investigate the differences in
the performance of LLM-generated code. Future LLMs that would
be adapted with these performance-improving techniques could
also be compared using our methodology. Regarding recitation, few
works have been done on this subject, but Yan et al. [41] proposed
a method to detect cases of recitations in LLMs using inference
fingerprinting. Jacovi et al. [19] explained why data contamination
in LLMs was problematic and proposed methods to mitigate it.

To summarize, our paper evaluates the performance of code gen-
erated by various LLMs and investigates differences in the perfor-
mance of the generated code across models on Leetcode problems,
which, to the best of our knowledge, has not been done previously.

8 CONCLUSION
In this study, we presented a comprehensive analysis of the perfor-
mance of code generated by various LLMs using a novel methodol-
ogy that measures and compares the runtime speed of solutions to
algorithmic problems. Our findings suggest that the performance
of the generated code is largely similar across different models,
regardless of their size or training data. Furthermore, increasing the
temperature parameter during code generation leads to a greater
variance in performance, though not necessarily to better or worse
solutions on average. We also critically evaluated the suitability of
Leetcode as a dataset and benchmark platform for assessing LLMs.
The results indicate that, while Leetcode’s problems are suitable for
performance evaluation, their measures should be used cautiously
due to issues with stability and reliability. Additionally, we observed
that the use of newer Leetcode problems is essential to avoid data
contamination and ensure the validity of LLM evaluations.

This work opens up several avenues for future research, includ-
ing the development of performance-oriented training datasets and
the fine-tuning of LLMs for performance improvement. As the field
of AI-assisted programming continues to evolve, studies such as
ours will play a critical role in understanding and enhancing the
capabilities of LLMs.

ACKNOWLEDGMENT
This work received support from the French government through
the Agence Nationale de la Recherche (ANR) under the France 2030

program, including partial funding from the CARECloud (ANR-23-
PECL-0003), DISTILLER (ANR-21-CE25-0022), and KOALA (ANR-
19-CE25-0003-01) projects. Experiments presented in this paper
were carried out using the Grid’5000 testbed, supported by a scien-
tific interest group hosted by Inria and including CNRS, RENATER
and several Universities as well as other organizations.12

REFERENCES
[1] 2022. Codeparrot/Codeparrot · Hugging Face. https://huggingface.co/codeparrot/

codeparrot.
[2] Hayri Acar, Gülfem I Alptekin, Jean-Patrick Gelas, and Parisa Ghodous. 2016.

The Impact of Source Code in Software on Power Consumption. International
Journal of Electronic Business Management 14 (2016), 42–52.

[3] Hojjat Aghakhani et al. 2023. TrojanPuzzle: Covertly Poisoning Code-Suggestion
Models. (2023). https://doi.org/10.48550/ARXIV.2301.02344

[4] Loubna Ben Allal et al. 2023. SantaCoder: Don’t Reach for the Stars!
arXiv:2301.03988 [cs]

[5] Jacob Austin et al. 2021. Program Synthesis with Large Language Models.
arXiv:2108.07732 [cs]

[6] Daniel Balouek et al. 2013. Adding Virtualization Capabilities to the Grid’5000
Testbed. In Cloud Computing and Services Science. Communications in Computer
and Information Science, Vol. 367. 3–20.

[7] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proceedings
of the ACM on Programming Languages 7, OOPSLA1 (April 2023), 78:85–78:111.

[8] Sébastien Bubeck et al. 2023. Sparks of Artificial General Intelligence: Early
Experiments with GPT-4. arXiv:2303.12712 [cs]

[9] Binghong Chen and othersy. 2022. Learning to Improve Code Efficiency.
arXiv:2208.05297 [cs]

[10] Mark Chen et al. 2021. Evaluating Large Language Models Trained on Code.
arXiv:2107.03374 [cs]

[11] Zimin Chen, Sen Fang, and Martin Monperrus. 2023. Supersonic: Learning to
Generate Source Code Optimizations in C/C++. arXiv:2309.14846 [cs]

[12] Fenia Christopoulou et al. 2022. PanGu-Coder: Program Synthesis with Function-
Level Language Modeling. arXiv:2207.11280 [cs]

[13] Jean-Baptiste Döderlein, Mathieu Acher, Djamel Eddine Khelladi, and Benoit
Combemale. 2023. Piloting Copilot and Codex: Hot Temperature, Cold Prompts,
or Black Magic? https://doi.org/10.2139/ssrn.4496380

[14] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. InCoder: A
Generative Model for Code Infilling and Synthesis. arXiv:2204.05999 [cs]

[15] Spandan Garg et al. 2022. DeepDev-PERF: A Deep Learning-Based Approach for
Improving Software Performance. In Proceedings of the 30th ACM Joint ESEC/FSE.
948–958. https://doi.org/10.1145/3540250.3549096

[16] Spandan Garg et al. 2023. RAPGen: An Approach for Fixing Code Inefficiencies
in Zero-Shot. arXiv:2306.17077 [cs]

[17] Dan Hendrycks et al. 2021. Measuring Coding Challenge Competence With
APPS. Proceedings of the Neural Information Processing Systems Track on Datasets
and Benchmarks 1 (Dec. 2021).

[18] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The
Curious Case of Neural Text Degeneration. arXiv:1904.09751 [cs]

[19] Alon Jacovi, Avi Caciularu, Omer Goldman, and Yoav Goldberg. 2023. Stop
Uploading Test Data in Plain Text: Practical Strategies for Mitigating Data Con-
tamination by Evaluation Benchmarks. arXiv:2305.10160 [cs]

[20] Kevin Jesse et al. 2023. Large Language Models and Simple, Stupid Bugs. In 2023
IEEE/ACM 20th International Conference on Mining Software Repositories (MSR).
563–575. https://doi.org/10.1109/MSR59073.2023.00082

[21] Raymond Li et al. 2023. StarCoder: May the Source Be with You! (2023).
arXiv:2305.06161 [cs.CL]

[22] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. Advances in Neural Information Processing Systems
36 (2024).

[23] Shuai Lu et al. 2021. CodeXGLUE: A Machine Learning Benchmark Dataset for
Code Understanding and Generation. arXiv:2102.04664 [cs]

[24] Ziyang Luo et al. 2023. WizardCoder: Empowering Code Large Language Models
with Evol-Instruct. arXiv:2306.08568 [cs]

[25] Aman Madaan et al. 2023. Learning Performance-Improving Code Edits.
[26] Nhan Nguyen and Sarah Nadi. 2022. An Empirical Evaluation of GitHub Copilot’s

Code Suggestions. In Proceedings of the 19th International Conference on Mining
Software Repositories. 1–5. https://doi.org/10.1145/3524842.3528470

[27] Erik Nijkamp et al. 2022. CodeGen: An Open Large Language Model for Code
with Multi-Turn Program Synthesis. arXiv:2203.13474 [cs]

12See https://www.grid5000.fr

https://huggingface.co/codeparrot/codeparrot
https://huggingface.co/codeparrot/codeparrot
https://doi.org/10.48550/ARXIV.2301.02344
https://arxiv.org/abs/2301.03988
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2208.05297
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2309.14846
https://arxiv.org/abs/2207.11280
https://doi.org/10.2139/ssrn.4496380
https://arxiv.org/abs/2204.05999
https://doi.org/10.1145/3540250.3549096
https://arxiv.org/abs/2306.17077
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2305.10160
https://doi.org/10.1109/MSR59073.2023.00082
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2102.04664
https://arxiv.org/abs/2306.08568
https://doi.org/10.1145/3524842.3528470
https://arxiv.org/abs/2203.13474
https://www.grid5000.fr

A Performance Study of LLM-Generated Code on Leetcode EASE 2024, 18–21 June, 2024, Salerno, Italy

[28] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs]
[29] Hammond Pearce et al. 2022. Asleep at the Keyboard? Assessing the Security of

GitHub Copilot’s Code Contributions. In 2022 IEEE Symposium on Security and
Privacy (SP). 754–768. https://doi.org/10.1109/SP46214.2022.9833571

[30] Neil Perry et al. 2023. Do Users Write More Insecure Code with AI Assistants?. In
Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications
Security (CCS ’23). 2785–2799. https://doi.org/10.1145/3576915.3623157

[31] Ruchir Puri et al. 2021. CodeNet: A Large-Scale AI for Code Dataset for Learning
a Diversity of Coding Tasks. Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks 1 (Dec. 2021).

[32] Baptiste Rozière et al. 2023. Code Llama: Open Foundation Models for Code.
https://doi.org/10.48550/arXiv.2308.12950 arXiv:2308.12950 [cs]

[33] Gustavo Sandoval et al. 2023. Lost at C: A User Study on the Security Implications
of Large Language Model Code Assistants. In 32nd USENIX Security Symposium
(USENIX Security 23). 2205–2222.

[34] Priyan Vaithilingam et al. 2022. Expectation vs. Experience: Evaluating the
Usability of Code Generation Tools Powered by Large Language Models. In CHI
Conference on Human Factors in Computing Systems Extended Abstracts. 1–7.
https://doi.org/10.1145/3491101.3519665

[35] Helena Vasconcelos et al. 2023. Generation Probabilities Are Not Enough: Ex-
ploring the Effectiveness of Uncertainty Highlighting in AI-Powered Code Com-
pletions. (2023). https://doi.org/10.48550/ARXIV.2302.07248

[36] Roberto Verdecchia et al. 2017. Estimating Energy Impact of Software Releases
and Deployment Strategies: The KPMG Case Study. In 2017 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measurement (ESEM).
257–266. https://doi.org/10.1109/ESEM.2017.39

[37] Shiqi Wang et al. 2022. ReCode: Robustness Evaluation of Code Generation
Models. https://doi.org/10.48550/ARXIV.2212.10264

[38] Yue Wang et al. 2021. CodeT5: Identifier-aware Unified Pre-trained Encoder-
Decoder Models for Code Understanding and Generation. arXiv:2109.00859 [cs]

[39] Jason Wei et al. 2023. Chain-of-Thought Prompting Elicits Reasoning in Large
Language Models. arXiv:2201.11903 [cs]

[40] Frank F. Xu et al. 2022. A Systematic Evaluation of Large Language Models of
Code. In Proceedings of the 6th International Symposium on Machine Programming
(MAPS 2022). 1–10. https://doi.org/10.1145/3520312.3534862

[41] Weixiang Yan et al. 2022. WhyGen: Explaining ML-powered Code Generation by
Referring to Training Examples. In Proceedings of the 44th Int. Conf. on Software
Engineering, vol. 2 (ICSE ’22). 237–241. https://doi.org/10.1145/3510454.3516866

[42] Burak Yetistiren et al. 2022. Assessing the Quality of GitHub Copilot’s Code Gen-
eration. In Proceedings of the 18th Int. Conf. on Predictive Models and Data Analytics
in Software Engineering. 62–71. https://doi.org/10.1145/3558489.3559072

[43] Hao Yu et al. 2023. CoderEval: A Benchmark of Pragmatic Code Generation with
Generative Pre-trained Models. arXiv:2302.00288 [cs]

https://arxiv.org/abs/2303.08774
https://doi.org/10.1109/SP46214.2022.9833571
https://doi.org/10.1145/3576915.3623157
https://doi.org/10.48550/arXiv.2308.12950
https://arxiv.org/abs/2308.12950
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.48550/ARXIV.2302.07248
https://doi.org/10.1109/ESEM.2017.39
https://doi.org/10.48550/ARXIV.2212.10264
https://arxiv.org/abs/2109.00859
https://arxiv.org/abs/2201.11903
https://doi.org/10.1145/3520312.3534862
https://doi.org/10.1145/3510454.3516866
https://doi.org/10.1145/3558489.3559072
https://arxiv.org/abs/2302.00288

	Abstract
	1 Introduction
	2 Methodology
	2.1 Research questions
	2.2 Tasks & Dataset
	2.3 llm Under Study

	3 Experiment Setup
	3.1 Code Generation
	3.2 Validation
	3.3 Measuring run time
	3.4 Replication package

	4 Data Analysis
	4.1 Functional Correctness
	4.2 Code Performance

	5 Results
	5.1 RQ1: Can Leetcode be used as a dataset and a benchmark platform for evaluating llm?
	5.2 RQ2: Are there notable differences in performances between llm?
	5.3 RQ3: Is there an effect of the functional validity of the llm and its temperature on the generated code's performance?
	5.4 RQ4: How fast are LLMs compared to humans ?

	6 Discussion
	6.1 Discussion of the results
	6.2 Limits and Threats to Validity

	7 Related Works
	8 Conclusion
	References

