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Abstract—Numerous signal/image processing tasks can be for-
mulated as variational problems, whose solutions depend, often
crucially, on the values of hyperparameters. Their automated
selection usually involves the computation of gradients of a well
chosen loss function, which often turns unfeasible analytically.
The deep-learning inspired use of automatic differentiation
to compute such gradients, though appealing, is significantly
impaired by the usually large number of iterations inherently
attached to functional minimization in variational problems. The
present work proposes and assesses the use of a restart strategy
for automated hyperparameter tuning, combining the benefits
of automatic differentiation with properties of proximal iterative
algorithms. It studies theoretically its conditions of applicability
in a generic algorithmic framework and its specification to ac-
celerated Chambolle-Pock iterations when dealing with strongly
convex objective function. The effectiveness is illustrated for
image denoising and texture segmentation problems.

Index Terms—Hyperparameter selection, proximal algorithms,
restart strategy, hypergradient computation

I. INTRODUCTION

Context. Numerous image/signal processing problems, e.g.,
restoration [1], [2], segmentation [2], pandemic intensity
monitoring [3], can be modeled by the following functional
minimization formulation:

x̂(z, θ) := argminx f(x, z) + λg(Lx) (1)

with f a data-fidelity term, g a prior/expert information, and
where θ = {λ} (or possibly θ = {λ, L} in the context
of dictionary learning) are hyperparameters, whose selection
drastically impacts the achieved solution.

Solving minimization (1) generally entails an iterative
scheme involving implicit or explicit (sub)-gradient descent
steps on f and g, leading to algorithmic steps denoted ϕz,θ,k

such that the procedure

Φz,θ,K := ϕz,θ,K ◦ ϕz,θ,K−1 · · · ◦ ϕz,θ,1, (2)

in the limit of infinitely many iterations leads to x̂(z, θ). A
large panel of (proximal) algorithms have been developed over
the last twenty years to efficiently solve (1) depending on the
properties of the involved functions (cf. [4] and references
therein).
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Regarding hyperparameter selection, the strategies are often
based on minimizing a well-chosen (supervised or unsuper-
vised) loss L:

θ̂ ∈ Argminθ∈Θ L(x̂(z, θ)). (3)

To solve (3), the most naive strategy is a brute force grid search
but it is obviously infeasible in most realistic problems. There-
fore, optimization tools can be considered, such as BFGS,
ADAM, or SGD, entailing the computation of the so-called
hypergradient ∂θ(L ◦ x̂(z, θ)) via automatic differentiation
(AD) [5], [6], [7].

However, it is well known [5] that AD’s memory footprint
increases linearly with the number of iterations which prohibits
its direct use when x̂(z, θ) is obtained from standard opti-
mization algorithms Φz,θ,K which typically have more than
K = 103 steps to solve (1). Effectively minimizing (3) for
large K is the difficult yet critical challenge addressed here.
State-of-the-art for hypergradient computation. Several
attempts addressed the issue of coping with large numbers
of iterations in using AD.

In the context of unfolded strategies [8], [9], [10], x̂(z, θ)
is replaced with the solution obtained after a limited number
of iterations thus AD can be applied. This however induces
a modification of the optimization landscape for L(x̂(z, ·))
and does not exactly solve the bilevel formulation (1)-(3).
Another strategy involving unfolded schemes (i.e. truncated
iterations) referred to as Deep Equilibrium allows to better
solve this bilevel problem by using the fixed-point equation
x̂ = Φz,θ,K(x̂) and the implicit function theorem to compute
the hypergradient but at the price of a complex implementation
[11], [12].

Alternatively, iterative differentiation in reverse mode has
been proposed in [13], [14], [15], [16]. This strategy offers
very good performance but at the price of a complex im-
plementation as requiring to derive the closed form of the
derivative of each algorithmic step ϕz,θ,k.
Acceleration and restart. Along a different line, as AD is
adapted for a limited number of iterations, a large panel of
optimization strategies were devised aiming to decrease the
number of iterations: e.g. inertia [17], [18], preconditioning
[19], multilevel [20], [21], or restart [22], [23], [24]. Though
promising, these accelerated optimization schemes were mas-
sively explored to solve (1) but much less to solve the more
complex bilevel problem (3), a gap the present work aims to
contribute to fill.



Goals, contributions and outline. In this work, we devise and
assess theoretically and practically the use of a restart strategy
for the automated selection of hyperparameters, in the generic
class of problems defined by (1)-(3). The proposed restart
strategy for solving the bilevel problem is defined and analyzed
in Section II. This generic theoretical analysis is specified for
the specific case of the so-called Chambolle-Pock algorithm,
classically used to solve (1) (Section III). Finally, the proposed
restart strategy is illustrated at work on two classical problems
(image denoising and texture segmentation) in Section IV,
which quantifies its effective ability to perform efficiently and
relevantly hyperparameter selection for these standard inverse
problems.

II. PROPOSED RESTART STRATEGY

A. Principle and definitions

The key ingredient of the proposed restart strategy is to
replace K iterations in the algorithm solving (3) by T (the
restart time) repeated applications of K0 ≪ K iterations such
that K ∼ TK0.

Formally, for solving (1), starting from any initialization x0,
we approximate K iterations of the form (2), i.e.:

x̂(z, θ) ≃ x̂K = Φz,θ,K(x0) (4)

with K0 iterations of the form (2) repeated T ≥ 1 times:

x̂T
K0

= ΦT
z,θ,K0

(x0) := (Φz,θ,K0
◦ · · · ◦Φz,θ,K0

)︸ ︷︷ ︸
T times

(x0). (5)

Based on this reformulation, we propose to perform hyperpa-
rameter selection through AD only on the last t-th iteration of
Φz,θ,K0 leading to the proposed Algorithm 1.

Algorithm 1
Require: Set K0, T ≥ 0.

Initialize θ[0] and x
[0]
T .

For ℓ = 0, 1, . . .
x0 = x

[ℓ]
T

For t = 1, . . . , T − 1⌊
xt = Φz,K0,θ[ℓ](xt−1)

θ[ℓ+1] = θ[ℓ] − η∂θ(L ◦ Φz,·,K0
(xT−1))(θ

[ℓ])

x
[ℓ+1]
T = Φz,K0,θ[ℓ](xT−1)

The key contribution of this work is to first prove that the
proposed approximation, x̂K ≃ x̂T

K0
, is consistent for K0

much smaller than the number of iterations K usually needed
to solve (1). The second contribution is to establish that, for
T sufficiently large, xT−1 will be close to the fixed point, and
considering recent advances in Deep Equilibrium formalism
[11], [25], we can establish that the hypergradient computation
thus only involves Φz,θ,K0

such that:

∂θL ◦ Φz,θ,K(x0) ≈ ∂θL ◦ Φz,·,K0
(xT−1) (6)

which allows to use AD only on the last t-th iteration.

B. Fixed point analysis of restart strategy

We denote by H a (finite-dimensional) real Hilbert space
and recall that an operator Φ: H → H is ω-Lipschitz
continuous for some ω ∈ [0, 1) if

(∀x ∈ H)(∀y ∈ H) ∥Φx− Φy∥ ≤ ω∥x− y∥. (7)

For such a class of operators, Banach-Picard theorem [26,
Theorem 1.48] asserts that for x0 ∈ H and FixΦ = {x̂} for
some x̂ ∈ H, the sequence (xt)t∈N) such that xt+1 = Φxt,
converges strongly to x̂ with linear convergence rate ω,

(∀t ∈ N) ∥xt − x̂∥ ≤ ωt∥x0 − x̂∥. (8)

As a direct consequence of Banach-Picard theorem and
Lipschitz continuity definition we obtain the following result.

Lemma 1. Let X0 ⊂ H and Φz,θ,K0
: X0 → X0 ωK0

-Lipschitz
with ωK0

∈ [0, 1), then the sequence (xt)t∈N generated as
xt+1 = Φz,θ,K0xt converges strongly for any choice of x0 ∈
X0 to FixΦz,θ,K0 with linear rate ωK0 and ΦT

z,θ,K0
is ωT

K0
-

Lipschitz.
The next result gives a sufficient condition to ensure that

x̂K ≃ x̂T
K0

when limK→∞ ωK → 0.

Proposition 1. Let Φz,θ,k : X0 → X0 ω-Lipschitz with ωk ∈
[0, 1). If there exists K0 such that x̂ ∈ FixΦK0

= FixΦK for
all K ≥ K0, then ∥x̂K − x̂T

K0
∥ ≤ (ωT

K0
+ ωK)||x̂− x0||.

This is a direct consequence of the following inequalities:

||ΦT
K0

(x0)− ΦK(x0)||
≤ ||ΦT

K0
(x0)− x̂||+ ||x̂− ΦK(x0)||

≤ ωT
K0

||x0 − x̂||+ ωK ||x̂− x0|| = (ωT
K0

+ ωK)||x̂− x0||.

C. Efficient computation of the hypergradient

Following [11], [12], Deep-Equilibrium framework allows
us to compute hypergradients at a fixed-point x̂ as:

∂L ◦ x̂(z, ·)
∂θ

=
∂L
∂x

(x̂)(Jθ(x̂))
−1 ∂Φz,·,K(x̂)

∂θ
(9)

where Jθ(x̂) = I − ∂Φz,θ,K

∂x
(x̂). (10)

In practice, Jθ can be challenging to invert. Recent works [25]
have shown that if ∂xΦz,θ,K has a small operator norm,
then Jθ could be replaced by I leading to a much simpler
implementation with similar performances as standard Deep
Equilibrium. The context of Lipschitz operator with ωK0

< 1
fits this framework so that we use the Jacobian-free approxi-
mation [25]

∂L(x̂(z, θ))
∂θ

≃ ∂L
∂x

(x̂)
∂Φz,θ,K0

(xT )

∂θ
(11)

where xT is an approximation of the fixed point x̂ according
to Prop. 1. An interpretation of that assumption is that the
hypergradient can be computed by backpropagating AD only
over the last fixed-point iteration.

Next section allows us to specify this hypergradient restart
procedure to Chambolle-Pock algorithm considered in the
experimental part.



III. STRONGLY CONVEX CHAMBOLLE-POCK ALGORITHM

The Chambolle-Pock algorithm proposes an iterative
scheme for solving (2), whose Φz,θ,K0

is obtained by the
following procedure

For k = 0, 1, . . . ,K0 uk+1 = proxσk(λg)∗
(uk + σkLx̃k)

xk+1 = proxτkf(·,z)(xk + σkL
∗uk+1)

x̃k = xk+1 + βk(xk+1 − xk)

(12)

where g∗ denotes the Fenchel conjugate of g. The convergence
relies on assumptions recalled below.

Assumption 1. f ∈ Γ0(H), g ∈ Γ0(U) with H,U Hilbert
spaces and L : H → U a bounded linear operator with norm
M = ||L||op. f is γ-strongly convex (with γ > 0) and the
parameters of (12) are defined as βk = 1/

√
1 + 2γτk; τk+1 =

βkτk;σk+1 = σk/βk.

As shown in [18], under Assumption 1 and τ0σ0M
2 < 1,

the sequence of primal-dual iterates (xk, uk) ∈ H × U
converges to a solution (x̂, û) of

min
x

max
u

⟨Lx, u⟩+ f(x, z)− (λg)∗(u). (13)

and the sequence (xk)k∈N converges to a solution of (1).
This setting has the practical advantage that few regularity

assumptions are required over f and g in order to minimize
(1). If both f and g∗ are strongly convex it has been shown
[18] that Φz,θ,K is ω-Lipschitz, with ω ∈ [0, 1) which allows
for a straightforward application of results from the previous
section since FixΦK0 = FixΦK .

However, in order to fit our application context where only
f is strongly convex, the next result investigates convergence
of the restarted scheme (5) when strong convexity is only
assumed for f . The proof is provided in Appendix VI.
Proposition 2. Under Assumption 1, and considering σ0 =
1/(τ0M

2) for any τ0 > 0, then there exists some K ′(ε, γτ0) >
γτ0
1+ε s.t. for all K0 ≥ K ′ the following holds for any T ≥ 1

||x̂−xT
K0

||2 ≤
(

1 + ε

γ2τ20K0
2

)T

||x̂−x0||2+κ||û−u0||2 (14)

where κ =
τ2
0M

2

1− 1+ε

γ2τ2
0K0

2

.

For τ0 small enough and K0 large enough, the restart algo-
rithmic procedure ΦT

z,θ,K0
is close to be Lipschitz. In this

context, the assumptions are close to those of Prop. 1 and its
application in (11) leading to Alg. 1.

The above estimate is pessimistic as the proof relies on the
dual estimate initialization with the same u0 for all T where
in practice we will use uT−1

K for T > 1 since the sequence
(uk)k is known to converge (at least weakly) to û.

IV. PERFORMANCE ASSESSMENT
A. Denoising and texture segmentation framework

We assess the performance of the proposed hyperparameter
restart selection procedure applied in the context of image
denoising and texture segmentation, problems that can both
be cast in the form of (1).
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Fig. 1: Evolution of the objective function considering ΦT
z,θ,K0

such
that K0T = 104 in the context of (a) image denoising and (b) texture
segmentation.

We define an input x as a map Ω × B → R involving a
coordinate space denoted by a graph Ω and a set of bands
B = {1, . . . , B}. For images, Ω corresponds to the lattice
defined by n = (nx, ny) ∈ Ω = {1, . . . , Nx} × {1, . . . , Ny}.
For gray-scale images B = 1 and for RGB images B = 3.
The multiband isotropic total variation of an input x is defined
below for Λ̃ = (λ̃(1), . . . , λ̃(B)) with λ̃(b) ≥ 0,∀b ∈ B

TVΛ̃(x) =
∑
n∈Ω

√∑
b∈B

λ̃(b)
∑
n′∼n

|x(b)
n − x

(b)
n′ |2. (15)

For gray-scale images and Λ̃ = 1 we recover the standard
isotropic total variation [18]. The choice of setting

∑
b in-

side the square-root favors simultaneous changes through all
bands [27]. We may also observe that with the following linear
operator (LΛx)

(b)
n =

√
λ̃(b)(x

(b)
nx − x

(b)
nx−1, x

(b)
ny − x

(b)
ny−1) then

TVΛ(x) = ||LΛx||2,1.
For image denoising we set f(x, z) = 1

2 ||x − z||22 where
z denotes the noisy version of an original image x (i.e. z =
x + ε with ε ∼ N (0, σ2I)) and g(x) = ∥x∥2,1 where the
hyperparameter to estimate is θ = {λ}.

For the texture segmentation purpose, we first recall that
non-smooth textures can be analyzed from multiscale local
quantities |c(b)j,n| (e.g. wavelet coefficients where j denotes
the scale, n the location in space and b the band to capture
anisotropy) [27], [29], [30] and more specically by con-
sidering their scale-free behaviour allows us to write that
z
(b)
j,n := log |c(b)j,n| ∼ v

(b)
n + jh

(b)
n . This leads to the data-

fidelity term 1
2 ||Ax− z||22 where A is the linear map defined

as (Ax)
(b)
n = (v

(b)
n + jh

(b)
n )J−1

j=0 ∈ RJ with x
(b)
n = (h

(b)
n , v

(b)
n ).



(a) σ = 50 (b) σ = 100 (c) σ = 200
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Fig. 2: Denoising. From top to bottom: noisy observations with
corresponding noise; PSNR optimization landscape; loss and hyper-
parameter of Alg. 1 through learning; denoised estimates from Alg.
1 after 100 epochs with T = 10,K0 = 50.

In that setting we consider a TV penalization as expressed in
(15) and proposed in [14], [31].

The considered multiscale quantity is the undecimated dual-
tree complex wavelet transform [32] which gives 6-wavelet
coefficients per pixels so that there are B = 12 coefficients
per pixel.
B. Convergence of forward mode (solving (1))

We numerically assess the convergence behaviour of the
proposed primal-dual restart scheme in the context of image
denoising and texture segmentation. The results are displayed
in Fig 1. More precisely, we evaluate the impact of performing
either Φz,θ,K or ΦT

z,θ,K0
for several choices of K0.

For denoising, we consider the image in Fig. 2 (a) with
σ = 50 and we set λ = 50. For texture segmentation we
consider the clean image of Fig. 2 with λ = 50.

In Figures 1 (a)-(b), we compare the evolution of the
objective function (1) when ΦT

K0
described in (12) is applied

for five choices of K0 where the number of restart is s.t.
K0T0 = 104. In particular the CP algorithm with (resp.
without) strongly convex acceleration correspond respectively
to the choices K0 = 104 (resp. K0 = 1). All methods
converge to the same minimal value of the criterion (1) and we
also notice that although at restart points, the criterion might
increase, it is overall decreasing at about the same rate as the
strongly convex CP algorithm.

C. Hyperparameter estimation in the denoising framework

We apply Alg. 1 in the context of denoising and display
results (Figs. 2 (f)-(h)) for 3 noise levels (Figs. 2 (a)-(c)) with
same variance across channels so that we only learn θ = {λ}.
We consider a MSE loss L(x) = ||x − x̄||22 and observe
(Figs. 2 (e)) that the sequence (θ[ℓ])ℓ converges quickly and
monotonically to an optimal value of λ in terms of PSNR
(Figs. 2 (d)). Similar results are obtained when considering
the unsupervised loss SURE [33].

D. Multiband hyperparameter estimation for segmentation

In order to assess the versatility of the method with respect
to the choices of hyperparameters, we propose to also learn
a multiband penalization Λ̃ in (15) in the context of texture
segmentation. We display in Fig. 3 (e) the convergence for
θ = {λ, (1, . . . , 1)} and θ = {λ, (λ̃(b))b∈B}. In both settings
the values of λ converge approximately to the same value
while the λ̃(b) converge to different values corresponding to
different regularization levels which are to be applied for each
band b ∈ B. In Fig. 3 (c) and (d) we display the results of
segmentation when θ = {λ, (1, . . . , 1)} or θ = {λ, Λ̃} illus-
trating the benefits of considering different weights through
the bands. We observe that considering θ = {λ, Λ̃} instead
of θ = {λ} remains stable, improves performance in terms of
misclassified pixels and sharpness of contours at a minimal
difficulty of implementation thanks to the AD framework.

V. CONCLUSIONS AND PERSPECTIVES

Our contributions leverages AD to tune hyperparameters
for variational problems solved through iterative optimiza-
tion algorithms. We showed that under Lipschitz continuity
assumption over successive steps of iterative algorithm, their
very large number of steps can be replaced by a small number
of iterations restarted a large number of times. This assumption
also justifies selecting hyperparameters by backpropagating
AD only through the last restart. Extending this work to other
iterative algorithms, possibly dictionary learning θ = {λ, L}
or unrolled, might be a subject of future work.

VI. APPENDIX

Under the assumptions of the proposition for any ε > 0
there exists some K ′ s.t. for all K0 ≥ K ′ [18]

||x̂− xK0 ||2 ≤ 1 + ε

γ2τ20K0
2

(
||x̂− x0||2 + τ20M

2||û− u0||2
)
.
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Fig. 3: Segmentation. (a) heterogeneous texture obtained from two homogeneous Anisotropic Fractional Brownian Fields [28] according to the mask (b).
(c)-(d) K-class segmentations from the (RB)Ω estimates on which apply a K-means segmentation over the set of B-dimensional features to group pixels by
similarity, percentage of misclassified pixels is also reported. In Fig. (e) we display the evolution of {λ} and {λ, Λ̃} through epochs.

Computing iteratively the bound for a number of restarts T
we obtain

||x̂− xT
K0

||2 ≤ 1 + ε

γ2τ2
0K0

2

(
||x̂− xT−1

K0
||2 + τ2

0M
2||û− uT−1

K0
||2

)
≤ 1 + ε

γ2τ2
0K0

2

(
1 + ε

γ2τ2
0K0

2 (||x̂− xT−2
K ||2

+τ2
0M

2||û− uT−2
K0

||2) + τ2
0M

2||û− uT−1
K0

||2
)

≤
(

1 + ε

γ2τ2
0K0

2

)T

||x̂− x0||2 + τ2
0M

2||û− u0||2
T∑

t=1

(
1 + ε

γ2τ2
0K0

2

)t

which is upper bounded by the result in (14).
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