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Abstract—The efficient coordination of soccer robots is a
complex topic because there are numerous possible scenarios
in the game, and the state of the robots can change rapidly. It
requires the robot to be able to analyze and make decisions
in a short time. In this article, we first use Dec-POMDP to
describe the actions and states of the soccer robot team. Secondly,
we introduce a probabilistic approach so that the robots can
quickly make decisions corresponding to specific situations. More
specifically, we present a method for calculating and evaluating
the expected points corresponding to each particular action for
each robot. The robots then choose the actions with the highest
expected points. Finally, we have developed a simulator based
on the digital twin approach to verify the proposed strategies
on simulation models and implement these strategies rapidly on
real robots.

Index Terms—Dec-POMDP, coordinated decision-making,
multi-agent teams, RoboCup Soccer.

I. INTRODUCTION

In recent years, there has been considerable interest in
coordinated robots. One of the research problems is that robots
have to make their own decisions in a limited time based on
information received from the environment. One case study is
a collaborative robot soccer competition called RoboCup [1].
The initial mission was to create a team of robots capable of
winning against the human champions of the Football World
Cup in 2050. In this case, the situation change in the game
(i.e., environmental change) combined with robot strategies
(i.e., attack or defense) is studied. Robots must make their own
decisions as quickly as possible and in real-time. Currently,
there are several main research directions for solving this
problem, such as:

Q-Learning is a popular reinforcement learning algorithm
that can be applied to coordinate multiple robots effectively.
Using Q-learning, the robots can learn from their interactions
with the environment and each other to make informed deci-
sions. In [2], the team’s performance in playing is enhanced
by using modular Q-learning. A mediator module is employed
to select the most appropriate action for a robot, considering
the Q-value from each learning module. The mediator takes
into account state information like the distance between the
ball and the robot, as well as the angle between the robot’s
heading and the desired angle, along with the Q-value. In [3], a
fundamentally different approach is proposed, namely Hyper-
Q Learning, in which values of mixed strategies rather than

base actions are learned, and in which other agents’ strategies
are estimated from observed actions via Bayesian inference.
In [4], they proposed a self-learning cooperative strategy for a
robot soccer game by using an adaptive Q-learning method
which is modified from the traditional Q-learning and the
fuzzy method.

Multi Q-Learning enables the robots to create a shared
understanding of the environment and learn the best actions
to take in various situations in multi-robot coordination. Each
robot maintains its Q-table, which helps it determine the most
appropriate action based on its current state and the collective
knowledge of the team. In [5], they present a new algorithm
called multi-Q-learning to attempt to overcome the instability
seen in Q-learning. Their results show that in most cases, Multi
Q-learning outperforms Q-learning, achieving average returns
up to 2.5 times higher than Q-learning and having a standard
deviation of state values as low as 0.58.

Deep Q-Learning is a powerful technique used to coor-
dinate multiple robots efficiently. By employing deep neural
networks, the robots can learn complex strategies and make
better decisions in dynamic and unpredictable environments.
In the context of multi-robot coordination, each robot main-
tains a Deep Q-network (DQN) that takes in environmental
observations and outputs Q-values for different actions. These
Q-values represent the expected rewards for taking specific ac-
tions in specific states. In [6], they seek to employ a renowned
reinforcement learning algorithm, the Deep Q-Network, in the
AI Soccer game in their endeavor to enhance performance. AI
Soccer is a captivating 5vs5 robot soccer competition where
each participant devises an algorithm to control five robots in
their team, aiming to outmaneuver the opposing participant.

Deep Reinforcement Learning (DRL) is a cutting-edge
approach used to coordinate multiple robots seamlessly. By
leveraging deep neural networks, DRL enables the robots to
learn complex behaviors and strategies in dynamic environ-
ments. Each robot is equipped with a deep reinforcement
learning agent in the context of multi-robot coordination.
These agents interact with the environment and receive feed-
back in the form of rewards based on their actions. By
maximizing the cumulative rewards over time, the robots learn
optimal coordination policies. In [7], DRL was applied to low-
cost humanoid robots, instructing them in 1v1 soccer play.

However, the limitation of the above methods require thou-



sands of training sessions for robots. Besides, there is also
a limitation in deploying these training models from the
simulation to the actual model. The main contributions of this
paper can be summarized as follows

• We introduce a decentralized strategy using a probabilis-
tic approach where robots can make their own decisions.
Compared with the centralized approach [8], [9], our
approach allows the robot to maximize its ability to adapt
to difficult conditions (such as limited communication).
To the author’s knowledge, in the RoboCup competition,
we were the first team to introduce this approach. Our
approach also allows real-time decision-making, without
requiring execution on high-performance hardware.

• We have additionally designed a simulator based on
the Digital Twin approach. This simulator enables us to
swiftly generate and assess algorithms for strategic coor-
dination among robots, which can then be directly applied
to real robots. A demonstration video can be found at the
following link https://youtu.be/YEpfklV8hRg.

The paper is organized as follows: Section 2 describes the
decentralized partially observable Markov decision Processes.
Section 3 discusses the decision-marking strategy for soccer
robots using a probabilistic approach. Section 4 presents a
Digital twin simulation software. Finally, section 5 provides
conclusions and future work.

II. DECENTRALIZED PARTIALLY-OBSERVABLE MARKOV
DECISION PROCESSES

Decentralized partially observable Markov decision pro-
cesses (Dec-POMDPs) are a generalization of both POMDPs
and MDPs [10], [11], [12], designed to handle multi-agent
environments.

A Dec-POMDP represents a team of agents that must
collaborate to accomplish a task by taking individual actions
based on their local observations across a series of time steps.
The agents share a common reward function that defines
their collective objective, but it is typically unknown during
execution. The execution is decentralized because each agent
must choose its own action at each time step without being
aware of the actions or observations of other agents. Moreover,
the problem is partially observable because although the
framework assumes the presence of a Markovian state at each
time step, the agents do not have access to it.

A Dec-POMDP is defined by a tuple ⟨S,A, T ,R,Ω, O⟩,
where S is a finite set of states, A is a finite set of actions
for each agent, T is a state transition probability function.
R is a reward function R : S ×A →R, that maps states and
joint actions to real numbers and is used to specify the agents’
goal, Ω is a finite set of observations for each agent, O is an
observation probability function.

III. DECISION-MAKING STRATEGY FOR SOCCER ROBOTS
USING A PROBABILISTIC APPROACH

In this article, we use Dec-POMDP to be able to describe
the whole relationship between the observed parameters of

each robot, and the actions. The strategy for the reward points
for each action depends on the specific situation.

The use of a Dec-POMDP approach in modeling a robot
football team can provide various advantages, such as:

• Coordination: To attain a shared goal, robots must col-
laborate effectively. Dec-POMDP provides a modeling
framework for capturing player interactions, allowing
them to synchronize their actions and work cohesively
towards a collective objective.

• Uncertainty: In a football robot game, numerous factors
come into play, including the strategies of the opposing
team and uncertainties in the game state. Dec-POMDP
offers a means to model and handle this uncertainty,
empowering the team to make decisions based on the
probabilities of various outcomes.

• Partial observability: Robots possess only limited infor-
mation about the game’s state, such as the ball’s location,
their opponents’ positions, and the current score. Dec-
POMDP can effectively model this partial observability,
allowing players to make decisions based on their own
observations and those of their teammates.

• Flexibility: The football robot game is a dynamic and
intricate challenge, demanding robots to adjust to ever-
changing situations on the field. Dec-POMDP can ef-
fectively model this adaptability, allowing the team to
modify its strategy in response to the evolving game
environment.

Assumption 1: The group of soccer robots operates in a
discrete time and the observed state of the system is discrete.
The assumption 1 is essential for creating and analyzing the
proposed model, and for designing control strategies that work
well with the discrete nature of the system. Such strategies may
differ from those used in continuous-time systems and require
specific mathematical techniques.

Assumption 2: In our present study, we assume that the
robots have a common set of observable information.
Through assumption 2, the robots share their individual ob-
servations via communication and therefore can maintain the
same internal state. We then can calculate the probability of
successful scoring of each robot at each time k.

In this study, we have not chosen a policy associated with
Bellman’s equation [13] because it seemed more complex to
implement in real-time, and we have proposed the expected
point Qai,j(k) for each robot j corresponding to each action
ai, which is defined as follows

Qai,j (k) = R (s(k), a(k))× P (s(k), a(k)) (1)

where R(s(k), a(k)) is the reward for each action of a robot.
The reward depends on the following criteria:

• The robot’s ability to score goals.
• Its approach to the opposing goal.
• Its role in augmenting the defense against the opponents’

goal.
• The strategic choices made by the coach when the robot

team is required to emphasize offensive or defensive
maneuvers.

https://youtu.be/YEpfklV8hRg


P(s(k), a(k)) represents the probability of a goal being scored
by each robot and is contingent upon the following factors:

• The robot’s positioning relative to the ball.
• The likelihood of encountering contact with opponents,

other robots, and the ball.
• The orientation of the robot with respect to the direction

of the ball (greater alignment results in faster movement).
• The convenience of the robot’s positioning for scoring.
To provide a more detailed explanation of the above compo-

nents for constructing the probability P(s(k), a(k)), we define
a few component probabilities P1(k), P2(k), P3(k), P4(k),
P5(k), as follows:
P1(k) is the probability of avoiding interception of the ball

by the opposing robot if the robot with the ball passes the ball
to the other robots in the team. To do this, let tint be the shortest
time taken by the opposing robot to reach the ball’s trajectory
when the robot passes the ball, and ti,j is the time taken for
the ball to pass from the passing robot i to the receiving robot
j (see Figure 1).
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Fig. 1. Illustrating Component Probabilities to Aid Robots in Decision-
Making

P1(k) is defined as

P1(k) =


1 if tint ≥ 2ti,j

0 if tint ≤ ti,j
tint − ti,j

ti,j
if ti,j < tint < 2ti,j

(2)

P2(k) is the probability of scoring a goal for each robot.
This probability depends on the angle between the robot’s
position and the opponent’s goal. Let di be the distance
corresponding to the robot’s free view of the goal, D is the
length of the goal (see figure 1), P2 is defined as

P2(k) =

{
1 if di = D

di/D if di < D
(3)

P3(k) is the probability of the robot reaching the highest
potential scoring position. Depending on the coach’s strategy,
a number of potential scoring positions can be predetermined.

Therefore, probability P3(k) represents the possibility of
which robot in the team is able to move to that location the
fastest. Let ddes

i be the distance of robot i to the potential
scoring position (see Figure 1). Then, P3(k) is defined as
follows

P3(k) =


1 if di = min(ddes

i |i = 1...5)

0 if di = max(ddes
i |i = 1...5)

di − dmin

dmax − dmin
if dmin < di < dmax

(4)

P4(k) is the probability, that the robot has not been in-
tercepted by the opposing robot during its movement. This
probability represents the robot’s ability to move towards the
ball position (in case of defense or ball search) or it may also
move towards a potential goal position. It is similar to the
calculation of probability P1(k). Let troboti be the expected
movement time of the robot i, tint is the shortest time the
opposing robot may intercept on the movement trajectory.
Consequently, the probability P4(k) is defined as follows

P4(k) =


1 if tint ≥ 2troboti

0 if tint ≤ troboti

tint − troboti

troboti

if troboti < tint < 2troboti

(5)

P5(k) is the probability of the robot with the highest ability
to reach the ball (the fastest in this study). This probability is
calculated as a function of the distance between robot i and
the ball dballi and is not constrained by opposing robots at the
time of calculation. This probability is calculated as follows

P5(k) =


1 if di = min(dball

i |i = 1...5)

0 if di = max(dball
i |i = 1...5)

di − dmin

dmax − dmin
if dmin < di < dmax

(6)

Based on the component probabilities mentioned in the
above definition and the equation 1. We then construct a
method for calculating Qaj ,i(k) points that correspond to the
appropriate actions aj for robot i at time k. The list of actions
is defined as a table I. In this study, the method is built based
on experiments on soccer matches and the coach’s strategies.

• PlayingAction.Assist (a2)

Qa2,i(k) = Ra2
(k)× [(0.2P1(k))+P2(k)+P3(k)] (7)

• PlayingAction.MovingWithBall (a3)

Qa3,i(k) = Ra3
(k)× [P3(k)+P4(k)+P5(k)] (8)

• PlayingAction.TrytoCatchBall (a4)

Qa4,i(k) = Ra4(k)× P5(k) (9)

• PlayingAction.TrytoPass (a5)

Qa5,i(k) = Ra5(k)×[P1(k)+P3(k)+P4(k)] (10)



Action
a1 Stopped Stop all robot activities
a2 Assist Move closer to support teammates who have the ball
a3 MovingWithBall Robot tries to move with the ball
a4 TryToCatchBall Try to get the ball from the opponent robot
a5 TryToPassBall Try to pass on to teammates
a6 TryToShoot Try to kick the ball into a goal positions
a7 TryToDribble Try to dribble, don’t hold the ball for more than 10 seconds
a8 Defend Robots do not have the ball and try to defend
a9 GoalKeeping Special action for robot as goalkeeper

TABLE I
LIST OF POSSIBLE ACTIONS (TO BE EXPANDED OR REDUCED)

• PlayingAction.TrytoShoot (a6)

Qa6,i(k) = Ra6
(k)× [P1(k) + P4(k)] (11)

• PlayingAction.TrytoDribble (a7)

Qa7,i(k) = Ra7
(k)× P1(k) (12)

• PlaygingAction.Defend (a8)

Qa8,i(k) = Ra8(k)× [P2(k) + P4(k)] (13)

• PlayingAction.GoalKeeping (a9)

Qa9,i(k) = 1 (14)

Assumption 3: All Qaj ,i computations for each robot will
be synchronous at each iteration k.
The assumption 3 to ensure synchronization in calculating
Qaj ,i points for each robot’s action is identical.

Our objective is to let the robots decide their best action ac-
cording to team rules (such as one player maximum contesting
a ball) and according to the other potential robot actions.

Assumption 4: if p1,i is the position of robot i of team 1,
p2,j is the position of robot j of team 2, pb is the position of
the ball, we assume that if pi,j = pb, which proves that robot
j of the team i has the ball.

By using the approach that gives the highest score based on
the probability of success for each specific action, each robot
can quickly make decisions based on real time. Details are
presented in algorithm 1.

Moreover, this approach does not require high computing
power for each robot. It is essential to note that the coefficients
in the above formulas have been chosen through simulations
on our software and tested with real robots. These coefficients
can be adjusted based on the coach’s offensive or defensive
strategies.

IV. A PROPOSED DIGITAL TWIN SIMULATOR

A. Proposed a simulator tool based on Digital twin approach

This software is a crucial tool in the simulation and analysis
of robotic systems, facilitating rapid algorithm development
and strategic coordination testing. Divided into three distinct
components, this software exploits the power of high-level
control, low-level control, and dynamic modeling to reproduce
real-world scenarios (see Figure 2).

Algorithm 1: Calculating and evaluating the reward
points for each action
Input: position of robots, position of ball
while match is ON do

determine playing situation: ATTACK, DEFENSE;
build a list of possible actions for all teammates
(PlayingAction) aj , j = 1...9;

compute Q-Table for all actions of any teammates;
Qaj ,i(k) = Raj

(k)× Paj
(k) ;

determine best playing action:
a∗i,j ← maxai,j{Qi,j : j = 1 . . . , 9; i = 1 . . . , 5};

trigger action ;
end

• High-level control: The high-level control component is
designed to develop algorithms and strategies indepen-
dent of specific robot hardware configurations. It consists
of the main blocks Perception Manager, Local World
Map, Strategy Manager, Trajectory planner, IMU Pro-
cessor, and Kalman Filter. These algorithms are executed
on industrial computers, providing the flexibility to refine
and optimize robotic behaviors without being constrained
by the underlying hardware. This software feature enables
us to focus on the decision-making and intelligence
aspects of robot control, helping to increase adaptability
and innovation.

• Low-level control: On the other hand, the low-level
control part of the software explores the subtleties of
robot hardware configurations, such as actuator size and
allocations. Custom algorithms are created to correspond
to real-world robotic configurations, guaranteeing precise
and efficient control of physical systems. These spe-
cialized algorithms are deployed on 32-bit processors,
adapting perfectly to the practical requirements of robotic
systems. This allows us to optimize the software for
specific robot designs, maximizing their performance in
real-world scenarios.

• Modeling of robot kinematics: The third part of the
software focuses on dynamic kinematic modeling of
robots. Its main objective is to accelerate the testing
and evaluation of coordination strategies between several



robots. This component also exploits real-time data from
physical sensors, enabling a high degree of precision and
realistic simulation. By simulating the dynamic behaviors
of robots and integrating sensor data, it provides a pow-
erful insight into how their algorithms perform in diverse
and complex environments, helping to advance the field
of collaborative robotics.
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Fig. 2. An architectural design for soccer robot competition simulation
software

B. An example of action evaluation on a simulator
To be able to evaluate actions, we used a simulator, which is

shown above. The size of the simulation field is 23m× 15m.
The origin point O(0, 0) is chosen to coincide with the center
point of the field. The present scenario entails two football
teams, distinguishable by the red dot with a white circle;
the red dot white circle, and the red border outside (a red
team), respectively. In this example, the reward value Rai(k)
is predetermined. We fixed robot 5 as the goalkeeper.

The goal is to find the best action for a robot of a red
team. We then compute Q-Point for each action by using the
formulas 7, 8, 9, 10, 11, 12, 13, 14, respectively. Table II shows
an example of the Q-Point for each action corresponding to
each robot at time k. It can be seen that actions a5−4 (Try
to Pass Ball to robot 4) of robot 1, and a2 (Assist) of robot
2, 3, 4 have respectively the highest scores. This means that
these actions are highly selective.

Figure 3 shows an example of the state of the robots at time
k. Robot number 1 requires an appropriate action decision.

- Qaj ,1(k) Qaj ,2(k) Qaj ,3(k) Qaj ,4(k) Qaj ,5(k)

a1 0 0 0 0 0
a2 0 1.6 2.4 3.0 0
a3 3 0.8 0.6 1.4 0
a4 3 0 1.6 1 0

a5−1 0 0.2 1.2 1.5 0
a5−2 3 0 0 1.5 0
a5−3 1.5 0.2 1.2 1.5 0
a5−4 4.5 0.2 1.2 0 0
a5−5 0 0 0 0 0
a6 0 0 2 0 0
a7 0 0 0 0 0
a8 0 0.3 1.5 1.5 0
a9 0 0 0 0 1.0

TABLE II
AN EXAMPLE OF THE Q POINT FOR EVERY ACTION aj CORRESPONDS TO

EACH ROBOT i AT TIME k

Fig. 3. States of the robots on the field at time k (in the present state, Robot
1 needs to make a decision based on the Q-table’s value)

According to the values in table II, figure 4 shows that robot
1 tries to pass a ball to robot 4 at time k + 1, because robot
4 has the highest probability of scoring a goal.

Fig. 4. States of the robots on the field at time k + 1 (Robot 1 has decided
to Pass the ball to robot 4)

A demonstration video can be found at the following link
https://youtu.be/YEpfklV8hRg. We have introduced a variety
of scenarios in our simulation that require the robot to make
decisions using the component probabilities described above.

https://youtu.be/YEpfklV8hRg


C. Implement the strategy on real robots

We also implemented these strategies during the 2023
RoboCup competition in Bordeaux, France [14]. These robots
have length × width × height dimensions of 0.8m× 0.8m×
0.8m. It uses four omnidirectional wheels, enabling a robot
to maneuver in any direction. It is also equipped with a Lidar
sensor and four cameras to determine its position, other robots’
positions, and the ball’s position on the pitch. The robots
also have an on-board computer i7 - 10810 and a 32-bit
microprocessor control board (see Figure 5).

Fig. 5. Hardware architecture of the robot

Figure 6 shows an example of a robot that is required to
automatically make the decision to pass the ball to the robot
with the highest probability of scoring.

Fig. 6. An example of a robot making automatic action decisions

It is also helpful to note that, although the robots are able
to make decisions about passing the ball, the real positioning
errors of the robots actually affect their decision-making
ability.

V. CONCLUSION

This study presents a novel real-time strategy for selecting
specific actions for a team of soccer robots. The proposed
approach involves evaluating and assigning points to the
actions of each robot at each moment. The allocation of bonus

points considers the robots’ current state and the probability
of scoring a goal during the calculation process. Thanks to
these decentralized approaches, robots can make their own
decisions, potentially extending flexibility under complex con-
ditions.

In practical terms, when we tested these strategies on real
robots in the RoboCup competition, in some cases, the robots
could not decide to proceed because they had identical reward
points. The reason is due to the influence of positioning errors
of the robot and the ball in the field. Therefore, we aim to im-
prove the effectiveness of reward point methods for decision-
making in situations where the robot has limited information
on environmental parameters in future research. In addition, it
improves the decision-making ability of individual robots in
conditions characterized by environmental uncertainty.
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