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Abstract: This study presents a relative localization estimation method for a group of low-cost
underwater drones (l-UD), which only uses visual feedback provided by an on-board camera and
IMU data. It aims to design a distributed controller for a group of robots to reach a specific shape.
This controller is based on a leader–follower architecture. The main contribution is to determine
the relative position between the l-UD without using digital communication and sonar positioning
methods. In addition, the proposed implementation of the EKF to fuse the vision data and the IMU
data improves the prediction capability in cases where the robot is out of view of the camera. This
approach allows the study and testing of distributed control algorithms for low-cost underwater
drones. Finally, three robot operating system (ROS) platform-based BlueROVs are used in an
experiment in a near-realistic environment. The experimental validation of the approach has been
obtained by investigating different scenarios.

Keywords: low-cost underwater drones; coordinated formation control; robot operating system;
vision-based navigation; relative localization estimation; extended Kalman filter (EKF)

1. Introduction

In recent years, the systems and control community has been actively researching
distributed coordination of various vehicles, such as unmanned aerial vehicles (UAV),
unmanned ground vehicles (UGV), and unmanned underwater vehicles (UUV). In order to
achieve a cooperative group performance, the distributed approach has several benefits,
particularly with regard to low operational costs, fewer system requirements, high robust-
ness, strong adaptivity, and flexible scalability. In general, distributed coordination research
has three main problems: (i) distributed tracking control, (ii) navigation and localization,
and (iii) the ability to deploy and test on real robots.

(i) Distributed tracking control: The objective of designing a distributed controller
for a group of autonomous vehicles is to help them make decisions by themselves in a
coordinated group task. Here, coordination refers to the close relationship between all
vehicles in the group, where information sharing plays a central role. This past decade has
seen intense research on distributed control of multi-robots under different aspects, such as
consensus over switching network topology [1,2], consensus with delays [1,3,4], optimal
consensus [5,6] sampled-data consensus, adaptive consensus [7], quantized consensus,
second-order consensus [8], the consensus of generic linear agents [9,10], and consensus
with multiple leaders [11]. Furthermore, under conditions of constrained radio waves,
leading to limited information sharing (especially in underwater conditions), the design
of distributed control algorithms has many challenges. Interested readers are referred
to survey papers [12,13] for excellent reviews of the progress made before 2017 in the
multi-agent coordination problem. In our previous research [14], we also demonstrated
and simulated on ROS/Gazebo a complete control architecture for a group of AUVs that

Sensors 2023, 23, 3028. https://doi.org/10.3390/s23063028 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063028
https://doi.org/10.3390/s23063028
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9621-9266
https://orcid.org/0000-0002-2099-1150
https://doi.org/10.3390/s23063028
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063028?type=check_update&version=3


Sensors 2023, 23, 3028 2 of 17

can maintain formation, as well as avoid collisions and change the distance among them
when crossing narrow areas.

(ii) Navigation and Localization: This is a challenging problem in the development
of autonomous vehicles. Navigation is to guide the robot from one point to another. Lo-
calization is how well the drone localizes itself within a map or with another robot. In
particular, the problem of underwater navigation and localization is even more challenging.
In [15], a review of an AUV navigation and localization method was presented. These meth-
ods can be divided into three categories: inertial/dead reckoning, acoustic transponders
and modems, and geophysical. Most recently, in [16], a robot swarm relative localization
method was studied, and in [17], a review of localization, navigation, and communication
of UUVs for collaborative missions is presented. In [18], the fusion of an inertial sensor
and a vision is introduced. The inertial sensor has six degrees of freedom (6-DoF): 3-axis of
an accelerometer and the 3-axis of a gyroscope. The goal is to determine a low-cost and
accurate position for an autonomous mobile robot. In [19], the research is focused on the
tracking of an AUV with three light beacons to transmit their IDs using a wide FOV camera
on a leader AUV. If three light beacons are captured on the image, it allows for estimating
the target AUV’s pose with respect to the camera. The distance between the AUVs was
estimated by using the geometry of the relative positions of the beacons on the image
and the beacon’s location on the target AUV. In [20], the relative localization of mobile
robots based on multiple ultra-wideband ranging measurements was studied and applied
to a group of ground mobile robots. In addition, there is a technique being researched
and developed called SLAM (simultaneous localization and mapping). This technique
is the process by which an autonomous robot constructs a map of its environment and
simultaneously locates itself in this environment. Some of the most popular categories of
SLAM approaches are EKF-SLAM [22? ], FastSLAM [23], and GraphSLAM [? ]. However,
these methods also require a high number of sensors with high costs as well as the high
computing power of embedded systems.

(iii) Experimental and numerical investigation: Actual experiments still have many
parameters that are not predefined by the simulation. In addition, there are limitations in
both technology and cost-effectiveness, especially for autonomous underwater vehicles.
In [25], the problem of pipeline following for AUVs was studied by using a monocular
camera. In [26], a robust multi-robot convoying approach that relies on visual detection
of the leading agent was presented, thus enabling target following in unstructured 3D
environments. Moreover, an approach that uses vision and a convolutional neural network
for an autonomous underwater vehicle to avoid collisions while observing objects was
studied in [27]. In addition, the EC MORPH project [28,29] also studied formation control
and tested it on real robot models which were equipped with an ultra-short baseline (USBL)
and an underwater acoustic communication system.

Motivated by using low-cost underwater drones with low-cost sensors in the condition
of limitation of communication and localization, this study:

• Proposed an effective prototype using four LEDs for the low-cost underwater drones
to be able to determine the relative position between robots and an experimental
evaluation of the algorithms for the low-cost underwater drones, which has not yet
been investigated to the authors’ knowledge.

• Proposed to use an EKF to estimate the position of the underwater vehicle follower-
leader in case the robot is out of view of the camera. Compared with [30], the dynamic
adaptive Kalman filter was used to navigate a group of AUVs in cases with and
without GNSS. We implemented EKF for underwater vehicles and used only vision
and IMU data. The use of cameras is low cost compared to positioning methods using
sonar technology, which according to article [15], costs thousands to hundreds of
thousands of dollars.

• Tested coordination control algorithms (i.e., formation control) in real environment
conditions.



Sensors 2023, 23, 3028 3 of 17

Figure 1 introduces the test scenario in this paper. In this case, we used three low-cost
robots, in which it is assumed that a leader robot can be controlled to follow a given
trajectory, and two follower robots automatically move to form a formation and follow the
leader robot.

RO
V

Paper focus and implementation

RO
V

RO
V

RO
V

RO
V

Figure 1. Proposal of the concept of a group of l-UDs.

2. Related Work
2.1. Low-Cost Underwater Drone Modeling

The equation of the dynamics of the low-cost underwater drone i can be remodeled
into a state space model of the form:

ẋi = Aixi + Bi[τhi + fi(xi) + wi(t)] (1)

where xi ∈ R6 is the state vector of the robot i;
fi(xi) ∈ R3 is the unknown uncertainty of the robot;
wi(t) ∈ R3 represents the corresponding unknown disturbance;
Ai ∈ R6×6 and Bi ∈ R6×3 are known matrices and (Ai, Bi) is assumed to be stabilizable.

According to [31], a local feedback controller is chosen:

τhi = Krxi + ui (2)

so that A + BKr is to Hurwitz. ui ∈ R3 is the control input.

2.2. Formation Tracking Control

We have chosen the leader and follower architecture to implement the formation
tracking control for underwater vehicles with low-cost criteria. In this case, the model of
the leader robot is as follows:

ẋL = ALxL + BLr(xL, t) (3)

where xL ∈ R6 represents the state of the reference robot and r(xL, t) ∈ R3 represents a
reference input. AL ∈ R6×6 and BL ∈ R6×3 are known matrices of the reference robot.
The reference model can be considered as a virtual leader in the group, and it generates a
desired trajectory for the whole group to follow.

To control the formation, we defined an auxiliary variable vector, which is a relative
position tracking error ei ∈ R6 for l-ROV i, as

ei = ∑
j∈Ni

aij
(
xi − δi −

(
xj − δj

))
+ aiL(xi − δi − xL) (4)
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where δi− δj∀i 6= j, indicates the desired formation between robots (see Figure 2), aij and aiL

demonstrate connectivity between robots, and xL ∈ R6 represents the state of the reference
robot, which is defined in Equation (3).

Figure 2. Illustration of a robot moving to make a formation. The dashed red line indicates that there
is no information sharing between the two follower robots.

A distributed adaptive training tracking control was then designed based on the
consensus tracking protocol and the feedback linearization technique, which is given by:

uiFC = ciKei (5)

where K ∈ R3×6 is the return control gain and ci ∈ R is the updated weight. Readers can
find the details about formation tracking control in our previous research [14,32].

In the following experiment, we are concerned with determining the relative position
between the follower and the leader robot because each robot can only be equipped with one
camera. It is therefore able to detect the objects in front of it. This also leads to a limitation
in that the developed control algorithms can guarantee only the constant distance between
the follower robots and the leader robot but cannot guarantee the distance between the
follower robots. However, this might also be improved if the robots are equipped with four
cameras or a 360-degree camera.

2.3. Vision-Based Pose Estimation

In this section, we assume that a 3D model of the scene is available and can be
estimated online. The position must be estimated by knowing the correspondences between
the 2D measurements in the images and the 3D features of the model (see Figure 3).

l-UD

X

xFc

Fw

Twc

Figure 3. Rigid transformation cTw between the world image, Fw, and the camera image, Fc, and the
projection in perspective.
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Let us denote Fc as the camera frame and cTw as the transformation that defines the
position of Fw with respect to Fc.

cTw =

( cRw
ctw

03×1 1

)
(6)

where cRw and ctw are the rotation matrix and the translation vector defined by the camera
position in a global reference frame, respectively.

The projection in perspective, x̄v = (u, v, 1)>, from a point wX = (wX, wY, wZ, 1)> is
given by

x̄v = KΠcTw
wX (7)

where x̄v is the perspective projection of a point X and K is the matrix of intrinsic parameters
of the camera.

These parameters can be obtained by an offline calibration step. In addition,

Π =

 1 0 0 0
0 1 0 0
0 0 1 0

 (8)

We consider the image coordinates expressed in the normalized metric space

xv = K−1x̄v (9)

If we have N points wXi, i = 1..N whose coordinates are expressed in Fw are given
by wXi = (wXi, wYi, wZi, 1)>, the projection x̄vi = (xvi, yvi, 1)> of these points in the image
plane is then given by:

xvi = ΠcTw
wXi (10)

If we know the 2D–3D point correspondences, xvi, and wXi, the pose estimation cTw is
the solution of Equation (10). This inverse problem is known as the N-point perspective
problem or PnP problem (Perspective-n-point). The reader can find details in [33,34].

2.4. Theory of Extended KALMAN Filter

A non-linear dynamic system can be described as:

xn = fk f (xn−1) + wn−1 (11)

where xn is the robot’s system state (i.e., the 3D pose) at time n, fk f is a non-linear state
transition function, and wn−1 is the noise of the process, which is assumed to be normally
distributed. In addition, the form of the measures is

zn = h(xn) + vn (12)

The Kalman filter works in a predictive loop. Once initialized, the Kalman filter must
predict the state of the system at the next time step. In addition, the Kalman filter provides
the uncertainty of the prediction.

x̂n+1,n = Fx̂n,n + Gûn,n (13)

Pn+1,n = FPn,nFT + Q (14)

Once the measurement is obtained, the Kalman filter updates (or corrects the predic-
tion) the uncertainty of the current state. In addition, the Kalman filter predicts the next
states, and so on.

Kn = Pn,n−1H>
(

HPn,n−1H> + Rn

)−1
(15)

x̂n,n = x̂n,n−1 + Kn(zn − Hx̂n,n−1) (16)
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Pn,n = (I − KnH)Pn,n−1(I − Kn H)> + KnRnK>n (17)

Details of the Kalman filter variables can be found in Table 1.

Table 1. The standard notation used for the extended Kalman filter.

Notation Name Dimensions

x State vector nx × 1

z Output vector nz × 1

F State transition matrix nx × nx

u Input variable nu × 1

G Matrix control nx × nu

P Estimation of uncertainty nx × nx

Q Uncertainty on process noise nx × nx

R Uncertainty of measurements nz × nz

w Process noise vector nx × 1

v Measurement noise vector nz × 1

H Observation matrix nz × nx

K Kalman gain nx × nz

n Discrete time index –

Using EKF theory and the vision-based estimation presented above, combined with
our previous theoretical studies [14], we introduce the implementation of relative location
estimation for real robots in the next section.

3. Implement Relative Positioning for l-UD Followers

In previous work, we introduced a control architecture [14]. It consists of four
components, which are the formation tracking control input, uiFC, the robust control
input, uiR, the neural network control input, uiNN , and the collision avoidance, uiCA (see
Figure 4). We evaluated and validated these proposals on the Gazebo simulator, assuming
that the underwater robots can localize and share information with other underwater robots.
However, this is challenging due to the limitation of underwater radio transmission in the
real environment. Therefore, we introduce an approach that uses a camera to determine
the relative position between the follower and the leader robot to experiment with the
complete process in this section.

This study is equivalent to the third round of the spiral model-based research method-
ology (see Figure 5). The first circle studies the simple simulation model and the sec-
ond circle studies the complete simulation model, which was introduced in the previous
study [32]. This third circle focuses on researching and testing control algorithms for
low-cost underwater UAV prototypes.

Inspired by previous works [33,35] for pose estimation in computer vision, we propose
the prototype of l-UD, which already has an HD USB camera with low-light performance
and low-cost sensors (IMU). We then equipped the leader l-UD with four high intensity
LEDs (see Figure 6). This equipment is built on the low-cost robot platform BlueROV [36],
which is open source to allow for extensive customization.
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Observations

Figure 4. A complete diagram of the control and observation components of the low-cost underwater
drone i.

Figure 5. Iterative research on low-cost underwater robot systems.

MCU

Internal
Barometer

3-DOF
Gyroscope

3-DOF
Accelerometer

3-DOF
Magnetometer

Raspberry
PI

Camera

BatteryJST-XH to USB

Current and
Voltage Sensing

Pressure
sensor

ESC
x6

Actuator
Motor

T200(x6)

GPSDVLAcoustic
modem

Workstation PC

x6 x6

+5VDC

Onboard Pixhawk

4 LEDs

//

Figure 6. Architecture of the electronic components of the BlueROV underwater robot with the
addition of four LEDs.
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Thanks to this equipment, the camera mounted on the follower l-UD is able to de-
termine the leader l-UD in the underwater environment under low light conditions. In
addition, we also placed these LEDs at a 10 cm depth inside plastic tubes to avoid light
dispersion in the underwater environment (see Figure 7).

Figure 7. Three l-UD BlueROVs for experimentation.

More precisely, the camera of the following robot detects four LEDs placed on the
robot leader and its position. Then, it determines the relative position of the camera with
respect to the center of gravity of these four LEDs. This also means determining the relative
position between the follower robot and the leader robot (see Figure 8).

Assumption 1. The assumption is that the speed of the robot leader is predefined and is within a
given range.

Assumption 2. The loss of position between the robot follower and the robot leader only occurs for
a limited time,4T.

By combining the relative position obtained by the camera with the signal measured
by the sensor via the EKF filter, we obtain the relative position between the l-UD follower
and the leader. The details on the use of the EKF are presented in Figure 9.

Figure 8. Determination of the relative position of four points using the camera.
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Figure 9. Architectural diagram of the process of fusing camera and IMU data using EKF.

The limitation of using low-cost cameras and underwater testing conditions may
result in the camera being unable to detect all four LEDs continuously. As a consequence,
the EKF can be used to predict the relative position between the follower robot and the
leader for a short period of time. In addition, compared to machine learning algorithms,
implementing EKF also allows us to take advantage of using an embedded system with
limited computing power.

4. Experiment Setup
4.1. Low-Cost Underwater Drone BlueROV with LED

To perform the experiment, we used the Lumen Subsea Light, which is a blindingly
bright LED light for use on ROVs and AUVs. The light outputs over 1500 lumens at
15 Watts and has a 135 degree beam angle for wide illumination in front of an ROV.
Moreover, this LED has a fully dimmable control using a PWM servo signal and simple
on–off control with no signal needed. In addition, while testing, we found that underwater
light scattering can reduce the detection efficiency of the camera. Therefore, we also placed
these LEDs in plastic tubes (with a length of 30 cm) to help the lights concentrate on one
point (see Figure 10).

Figure 10. Four LEDs equipped on the follower robot.

We carried out the tests in the experimental pool of the University of Toulon. The
dimensions are length×width× depth = 10 m× 3 m× 1.5 m (see Figure 11). The objective
of these experiments was to validate the algorithms that have been developed and simulated
on the Gazebo simulator, which was presented in our previous study [14]. The successful
testing of these algorithms on the Gazebo simulator assumes that the relative distances
between the robots can be obtained through different positioning methods. However, in the
actual test conditions in the laboratory, the use of the camera positioning method was the
most feasible. These experiments also demonstrated that the algorithms can operate in a
near-realistic environment (i.e., a fully open marine environment). The methods limitations
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are the camera’s ability to detect objects and the camera detecting the wrong object when
the robot is very close to the water surface due to the phenomenon of light reflection.

Figure 11. Testing of three robots forming a formation and moving according to the leading robot.
(a) description of the initial positions of the robots. (b,c) illustration of robot group movement.
(d) indicating the formation of the robots.

Figure 7 shows three l-UD BlueROVs, including one leader robot equipped with four
LEDs and two follower robots equipped with cameras. The cable visible in the image is
only for monitoring purposes, but there is no communication between robots. The size of
the four LEDs equipped on the leader of the robot is length × width = 0.42 m × 0.24 m.

4.2. Determination of the Function of the Real Distance and the Distance Measured by the Camera

Firstly, we would like to determine the actual distance and the distance measured with
the camera between the two robots. For this purpose, we placed two robots at different
fixed distances from 1.5 m to 8.5 m, respectively (see Figure 12). The distance of 8.5 m was
the maximum distance at which the camera is capable of detecting the four LEDs in our test
environment. Simultaneously, we also determined the distance measured by the camera.

By linearizing the obtained values (see Figure 13), we obtained a first-order function
between the actual distance and the distance obtained from the camera:

y = 20.207x + 0.2249 (18)

where x is the distance measured by the camera and y is the actual distance. The objective
of function (18) is to help correct between the real and measured distances.
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Figure 12. Determination of the real distance between two robots by using a camera.

Figure 13. Determination of the real distance function two robots by using a camera.

4.3. The Experiment with Three Robots

Secondly, the three robots were placed in an arbitrary position in the experimental
pool in the realized experimentation. However, they must fulfil the initial condition that
the robot leader must be in the visible area of the two cameras on the robot followers.
The robot follower detects four LEDs placed on the robot leader and then calculates the
relative position between the camera and the four LEDs. Without loss of generality, we
assume that the relative position between the robot follower and the robot leader is also
the relative position between the robot follower camera and the four LEDs mounted on the
robot leader.

The initial relative position between the BlueROV-1 tracking robot and the BlueROV
leader robot is (x, y) = (1.6 m, 0.5 m). The initial relative position between the BlueROV-2
follower robot and the BlueROV leader robot is (x, y) = (1.6 m, −0.5 m). The goal is that
the follower robots 1 and 2 should move automatically to ensure that the relative position
between them is equal to 1.2 m.
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Then, the leader robot moves along a given trajectory. In this case, it is controlled via a
joystick. However, it could also be possible to adopt a vision-based approach for the l-UD
leader, for example, a pipeline tracking application [25].

Simultaneously, the follower robots 1 and 2 must move and always ensure their
distances from the leader robot are equal to 1.2 m. During movement, the robot depths
were controlled by an appropriate PD control and built-in pressure sensor.

The objective is to maintain the l-UD BlueROV follower at a distance of 1.2 m be-
tween it and the l-UD BlueROV leader, and while the leader robot moves, the follower
robots need to follow the leader robot. Moreover, they still have to maintain a distance of
1.2 m from the leader robot. Figure 11a shows the initial position of the l-UD BlueROV.
Figure 11b shows the l-UD BlueROV tracking underwater robots moving in formation.
Figure 11c,d show the l-UD leader moving; simultaneously, the two follower robots follow
the leader robot and maintain a distance of 1.2 m.

It is also to be noted that it can guarantee only the distance between the follower robot
and the leader robot, but it can not ensure a constant distance between the follower robots.
Figures 14 and 15 show the distance between the follower robots 1 and 2 with the leader
robot. We see that these distances all converge to 1.2 m. This may prove that the follower
robots can keep a constant distance from the leader robot. The red line shows the distance
between the robot follower and the robot leader after using the EKF filter to combine the
vision and IMU values. The blue line shows the distance between the two robots when the
EKF filter is not used.

Figures 14 and 15 also indicate two peaks (blue lines) that indicate that the cameras
of the follower robot failed to detect the four LEDs placed on the leader robot. The
objective of using the EKF is to predict the relative position between the follower and
leader robots in this case. The numerical values of the EKF matrices can be found in [32,37].
The architecture of software components developed on the ROS platform can be seen in
Figure A1 of Appendix A.

Figure 14. Distance between BlueROV robot follower 1 and the BlueROV robot leader.
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Figure 15. Distance between BlueROV robot follower 2 and the BlueROV robot leader.

Figures 16 and 17 show the control signals of the robot followers 1 and 2. The robots
are controlled in the x (a blue line /ux/data) and y (a red line /uy/data) axes, respectively,
to change the distance between the follower and the leader robot. We can observe that
the rotation control signal /up/data of the robots (the light blue line) has a large change
because of the limitation of the accuracy of the sensors. However, these control signals can
also converge when the distance between the robots reaches the desired value.

Figure 16. 3-axis control signals for the BlueROV follower-1 robot. (The blue, red, and light blue
line represent the control signal on the x-axis and y-axis and the corresponding angle control signal,
respectively).
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Figure 17. 3-axis control signals for the BlueROV follower-2 robot. (The blue, red, and light blue line
represent the control signal on the x-axis and y-axis and the corresponding angle control signal, re-
spectively).

Figure 18 shows images of the two BlueROV follower underwater robots, which were
taken from the camera mounted on the leader robot.

Figure 19 shows images of the four LEDs detected on the leader robot from the
BlueROV follower 1 and 2.

Figure 18. Image of the two following robots as seen from the camera of the leading robot. (a) descrip-
tion of the initial position of the robots follower. (b–d) illustration of the movement of the follower
robots to make the formation.
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Figure 19. The two following robots look at the leading robot. (a,b) illustration of 4 LED detection by
robot follower 1 and 2, respectively.

5. Conclusions

In order to complete a general approach to the distributed control of a swarm of
low-cost underwater robots, which requires position information, we proposed a relative
localization approach based on the fusion of vision and IMU data. Our experiments show
that with three low-cost UAVs moving in the underwater environment, we are able to
achieve a formation. In addition, our approach presents a solution for localizing a team of
drones without digital communication and navigation sensors. The use of the EKF filter
fulfils the purpose of predicting the relative position between the follower robots and the
leader robot in cases where the follower robot’s camera fails to detect the four LEDs placed
on the leader robot (due to the environment or the robot being out of view of the camera).

In future work, robustness problems require further study to increase the accuracy.
The relative position obtained between the robots is completely due to the combination of
the camera and an IMU using an EKF filter. However, the use of the cameras to localize
underwater robots still presents many challenges in terms of accuracy, object detection (in
this case, four LEDs), and changes in light intensity of the underwater environment.
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Abbreviations
The following abbreviations are used in this manuscript:

AUV Autonomous underwater vehicle
EKF Extended Kalman filter
FOV Field of view
IMU Inertial measurement unit
LED Light-emitting diode
l-UD Low-cost underwater drone
PD Proportional derivative
ROV Remotely operated vehicle
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UAV Unmanned aerial vehicle
UGV Unmanned ground vehicles
UUV Unmanned underwater vehicles
PWM Pulse-width modulation
USBL Ultra-short baseline
GNSS Global navigation satellite systems

Appendix A

Figure A1 shows a structure of the ROS nodes for the follower robot i, where we have
developed additional nodes to be able to detect four LEDs of the l-UD leader, as well as
using an additional EKF. Thanks to the advantages of ROS, these components can be fully
reused or switched between the simulation model and the real model.

Figure A1. ROS node structure for a follower robot i with EKF nodes.

The reader can find details on the structure of the ROS nodes in our previous research [32].
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