
HAL Id: hal-04525404
https://hal.science/hal-04525404v1

Preprint submitted on 28 Mar 2024 (v1), last revised 4 Nov 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reverse Stackelberg Model for Demand Response in
Local Energy Markets

Juan Sepúlveda, Luce Brotcorne, Hélène Le Cadre

To cite this version:
Juan Sepúlveda, Luce Brotcorne, Hélène Le Cadre. A Reverse Stackelberg Model for Demand Re-
sponse in Local Energy Markets. 2024. �hal-04525404v1�

https://hal.science/hal-04525404v1
https://hal.archives-ouvertes.fr


A Reverse Stackelberg Model for Demand Response in Local Energy
Markets ⋆

Juan Sepúlvedaa, Luce Brotcornea and Hélène Le Cadrea

aUniv. Lille, Inria, CNRS, Centrale Lille, UMR 9189 CRIStAL, Lille, F-59000, France

A R T I C L E I N F O
Keywords:
Time-of-use tariff
Pricing
Reverse Stackelberg Game
Bilevel optimization
Demand response
Local electricity markets
Reactive power

Abstract
In an era where renewable energy resources are increasingly integrated into our power systems, and
consumer-centric approaches gain traction, local energy markets emerge as a pivotal mechanism for
empowering prosumers. This paper presents a novel bilevel optimization model that uniquely blends
the dynamics of peer–to–peer energy markets with the physical realities of power distribution networks.
The innovation steems from introducing a tariff design approach based on affine functions to shape
prosumer behavior towards operationally efficient and secure energy exchanges. This is critical as previous
market designs often overlooked the physical constraints of power flows, leading to potential risks in
voltage regulation and economic efficiency. The lower level of the model encapsulates the interactions
among prosumers in a generalized Nash equilibrium problem (GNEP), modeling active and reactive
power injections of prosumers. The upper level, representing the role of the distribution system operator,
strategically computes tariffs to steer the market to an operationally efficient equilibrium. The paper relies
on the classical Nikaido–Isoda (NI) reformulation to characterize the GNEP, a key aspect in leveraging
a proof of strong stability of the lower–level solution. Computational experiments on various IEEE
test feeder instances reveal the model’s capacity to efficiently align prosumer behavior with operational
objectives, utilizing only the tariff information, thereby simplifying the decision-making process in
complex distribution systems.

1. Introduction
The energy transition represents a path toward reshaping

the global energy sector from its fossil–fuel foundations to
a carbon–neutral state by the latter half of this century. This
journey demands transformative shifts within power systems,
particularly at the distribution level. One central aspect involves
the widespread adoption of distributed energy resources such
as renewable generators, storage systems, adaptable loads, and
electric vehicles. Simultaneously, future regulations are ex-
pected to pivot towards a consumer–centric model, leveraging
local electricity markets and empowering the prosumers to
actively manage their energy assets.

While the potential benefits of this transition are substan-
tial, it also presents notable challenges. The uncertain and fast–
changing nature of renewable resources, coupled with the au-
tonomy of prosumers, may compromise the efficient and secure
operation of the distribution network. To address this concern,
the distribution system operators (DSOs) could potentially
implement strategies to steer the behavior of prosumers. We
believe these strategies must go beyond the control of energy
usage patterns and extend to reactive power injections as well
as participation in local electricity markets, therefore extending
the notion of demand–side management.

The objective of the work is to design an incentive policy
in the form of a tariff function to promote prosumer behavior
that is both operationally safe and economically efficient. The
tariff applied to each prosumer is a function of its net active and
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reactive power output, thereby being a price signal that acts on
local variables of the system. The tariff design problem consid-
ers two classes of decision–makers: (i) the DSO whose interest
is to achieve efficient and secure operation of the distribution
network, and (ii) the prosumers, selfishly participating in a
peer–to–peer market, agnostic of the global system operation.
Naturally, we adopt a Stackelberg game setting in which the
DSO is the leader (upper level) and the prosumers are the
followers (lower level). The main research questions revolve
around evaluating the performance of the proposed tariff design
specially when compared against conventional constant tariffs.

Recent studies have increasingly explored tariff design as
a method for demand–side management, capitalizing on the
responsiveness of prosumers to price signals. These approaches
are often based on Stackelberg games and bilevel optimization
to reflect the complex interplay between the different classes
of decision makers involved. Notably, Schittekatte et al. (2018)
pioneered the use of a best–response algorithm to achieve a
Stackelberg equilibrium between the DSO and the prosumers, a
methodology that was expanded by Hoarau and Perez (2019) to
encompass electromobility considerations. Pricing techniques
based on bilevel optimization have been proposed in the works
Askeland et al. (2020, 2021) and Anjos et al. (2021). In an in-
novative approach, Aussel et al. (2020) developed a customized
solution concept for a single–leader multi–follower trilevel
problem, considering energy price and quantity as prosumers
variables. Similarly, the authors in Tushar et al. (2014) exam-
ined a single–leader multi–follower Stackelberg game where
the prosumers were modeled by a generalized Nash equilibrium
problem. While Maharjan et al. (2016) applied an iterative
approach for a multi–leader multi–follower Stackelberg game.

The works mentioned above reveal gaps in incorporating
the impact of prosumers’ actions on physical variables such
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as voltage levels, congestion, and reactive power injections.
The integration of distributed energy resources (DERs) and the
decentralization of power grids have brought to the forefront
the critical role of reactive power support Dall’Anese et al.
(2015). DERs are increasingly recognized for their potential
to provide reactive power, a capability that is essential for
the efficient operation of networks leveraging these resources.
Recent literature, including studies like Potter et al. (2023),
Bozionek et al. (2022), and Wolgast et al. (2022) underscores
the growing emphasis on creating reactive power markets
and tariffs designed to address reactive power contributions.
We highlight works like Pediaditis et al. (2021), which aim
to incorporate physical aspects such as flow constraints and
reactive power injection as part of the tariff design problem
while considering a peer–to–peer market of energy, illustrating
a move towards more comprehensive solutions.

Current literature in tariff design remains in the scope
of classical approaches such as Labbé et al. (1998), where
the tariff is synthesized as a constant coefficient of a linear
expression in the objective function of the prosumers, thereby
introducing a linear cost expression. While recognizing state–
of–the–art information systems and local energy management
technologies Jin et al. (2017). These advancements allow for
a reevaluation of conventional assumptions about the intelligi-
bility of tariffs, as the ones in Labbé et al. (1998) and Pediaditis
et al. (2021).

As a result, we move beyond constant tariffs based on
discrete levels, opting for tariff coefficients that are seen by
the prosumers as affine functions of their decision variables.
Despite this increased complexity, the focus on simplicity is
concretized by ensuring that the decision–making model ad-
dressed by prosumers is convex and computationally tractable.
This approach finds its origins in works like Zheng and Basar
(1982) and is based on the control–theoretic view of incentives
presented in Ho et al. (1980). There, under a Stackelberg game
setting, the leader calculates optimal cost terms on the objective
function of the follower by means of announcing its own
reaction function in advance—in our case, a tariff function—
thereby called reverse Stackelberg game Groot et al. (2016).
Although the finer distinctions within the definitions of the
game–theoretic framework are discussed in greater detail in
Ho et al. (1981), in the end, the computation of solutions boils
down to solving a mathematical program with equilibrium
constraints (MPECs).

The MPECs are a class of problems, of which bilevel opti-
mization is a special case, that allows for modeling two layers
of decision–making, in which an equilibrium problem (the
lower–level problem) is nested into an optimization problem
(the upper–level problem); see Luo et al. (1996). They have
been applied in tariff design and taxation through modeling
single–leader multiple–follower games Hart et al. (2021). The
formulation of these programs involves the integration of com-
plementarity conditions into optimization models, enabling
the detailed analysis of single–leader multi–follower interac-
tions in competitive markets Raghunathan and Biegler (2003);
Flegel and Kanzow (2005); Ye (2005).

Different notions of equilibrium might be chosen to rep-
resent the lower–level problem of a MPEC. We focus on the
generalized Nash equilibrium problem (GNEP) for its ability
to represent a peer–to–peer energy market equilibrium, as done
in Le Cadre et al. (2020). This solution concept extends that of
the classical Nash equilibrium problem, representing the equi-
librium of multiple optimization problems coupled through
their objective functions and feasibility sets; detailed reviews
can be found in Facchinei and Kanzow (2007) and Fischer
et al. (2014). Jointly–convex GNEPs appear as an important
family of problems for which there are well–known and useful
reformulations: (i) the KKT reformulation, in the case standard
constraint qualifications are met, and (ii) the Nikaido–Isoda
reformulation; both reformulations are detailed in Facchinei
and Kanzow (2007). The Nikaido–Isoda reformulation links
jointly convex GNEPs and traditional optimization problems,
allowing the analysis of GNEPs at the lower–level of MPECs
as parametric optimization problems. Consequently, this allows
the application of the notion of stability in parametric opti-
mization, as developed in Dempe (2002), whose importance
in an application context has been highlighted in Caruso et al.
(2020).

Our paper pioneers the application of reverse Stackelberg
games to demand response in power distribution systems, ex-
ploring the dynamics of peer-to-peer markets alongside voltage
and reactive power management. We address this through a
bilevel programming framework with second-order conic con-
straints that uniquely overcomes the common issue of non–
uniqueness in lower–level solutions. Notably, our research is
the first within the domain of electricity market demand re-
sponse to offer a proof of stability for the solutions. Our main
contributions are:

1. The development of an inclusive demand-response
model that integrates a peer-to-peer market, battery
operations, and the AC power flow within the
distribution network to ensure both security and
efficiency.

2. A strong stability proof of the solution, based on the
Nikaido–Isoda reformulation of the lower–level gener-
alized Nash equilibrium problem (GNEP).

Together, these contributions significantly advance demand
response strategies, enhancing the functionality and efficiency
of local energy markets.

The rest of the paper is organized as follows: Section 2 de-
tails the decision–making models for the DSO and prosumers,
using a GNEP to model the peer–to–peer market. Moving
forward, Section 3 is dedicated to establishing the stability
of our proposed solution, profiting from the Nikaido–Isoda
reformulation of the lower–level GNEP. Section 4 showcases
our numerical findings on instances built on top of standard
IEEE distribution grids, illustrating the practicality and effec-
tiveness of our approach. Lastly, Section 5 concludes the paper,
summarizing our contributions and suggesting directions for
future research.
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Notation
Boldface letters are used for matrices and vectors, (⋅)⊺ for

transposition, and | ⋅ | denotes the absolute value of a number
or the cardinality of a set. Let 𝐀 be a matrix, ||𝐀||F and ||𝐀||2denote the Frobenius norm and the 2–norm, respectively.

Let  be the set of players of a game; we use classical
game theoretic notation to define 𝐳−𝑖 ∶= (𝐳𝑗)𝑗∈⧵{𝑖}, i.e., a
vector stacking the entries of 𝐳 that correspond to all players
except 𝑖.
Nomenclature
Sets and set–valued maps
 0 Set of prosumers including the slack prosumer

( 0 =  ∪ {0}).
 Set of prosumers.
 Set of time steps.
𝑖 Feasible generator dispatch set of prosumer 𝑖.
Ω𝑖(⋅) Feasibility set of prosumer 𝑖. Ω𝑖 ∶ ℝ| |−𝑛𝑖 ⇉ ℝ𝑛𝑖 .
Parameters
𝐁 Incidence matrix associating prosumers to corre-

sponding buses.
𝐇 Matrix of linear coefficients associating bus injec-

tions to voltage magnitudes.
�̃� Matrix of linear coefficients associating prosumer

injections to voltage magnitudes.
𝐡 Power flow affine model intercept.
𝐑 Matrix of resistive linear coefficients of the LinDis-

tFlow model.
𝐗 Matrix of reactive linear coefficients of the LinDis-

tFlow model.
𝐸𝑖 Connection capacity of prosumer 𝑖.
𝑐𝑘𝑖𝑗 Bilateral energy trade price from prosumer 𝑖 to 𝑗 at

time step 𝑘 ∈ , for (𝑖, 𝑗) ∈  .
�̂�𝑖, �̌�𝑖 Upper and lower limits of the squared voltage

magnitude at bus 𝑖 ∈ , respectively.
�̂�G,𝑖 Distributed generator capacity of prosumer 𝑖 ∈  .
�̂�𝑘G,𝑖 Maximum available active power for the

distributed generator of prosumer 𝑖 at time step 𝑘.
�̌�G,𝑖 Minimum power factor of prosumer 𝑖.
𝜂B,𝑖 Square root of the battery’s round trip efficiency of

prosumer 𝑖.
𝜂G,𝑖 Loss coefficient of the distributed generator of

prosumer 𝑖.
�̂�B,𝑖 Capacity of the battery of prosumer 𝑖.
�̂�B,𝑖 Nominal power of the battery of prosumer 𝑖.
𝑛𝑖 Number of decision variables of prosumer 𝑖.

Leader variables
𝐱 Vector of leader variables stacking the tariff func-

tion coefficients 𝐱 ∶= (𝚽𝐤
𝐢 ,𝝓

𝑘
𝑖 )𝑖∈ ,𝑘∈.

𝚽𝑘
𝑖 Matrix in ℝ2×2 representing the affine coefficients

of the tariff function assigned to prosumer 𝑖 at time
step 𝑘.

𝝓𝑘𝑖 Vector in ℝ2 representing the constant coefficients
of the tariff function assigned to prosumer 𝑖 at time
step 𝑘.

𝜸𝑘𝑖 Affine function of tariff coefficients such that
𝜸𝑘𝑖 (𝐮

𝑘
𝑖 ) = 𝚽𝑘

𝑖 𝐮
𝑘
𝑖 + 𝜙

𝑘
𝑖 .

Followers variables
𝐮𝑘𝑖 Vector of variables of prosumer 𝑖 at time step 𝑘.
𝑝𝑘𝑖 Net active power injection of prosumer 𝑖 at time

step 𝑘.
𝑞𝑘𝑖 Net reactive power injection of prosumer 𝑖 at time

step 𝑘.
𝑝𝑘G,𝑖 Active power generated by prosumer 𝑖 at time step

𝑘.
𝑞𝑘G,𝑖 Reactive power generated by prosumer 𝑖 at time

step 𝑘.
𝑝𝑘E,𝑖𝑗 Energy offered by prosumer 𝑖 to prosumer 𝑗 at time

step 𝑘.

2. Problem formulation
The proposed Stackelberg model involves two distinct

types of agents: (i) prosumers and (ii) the DSO. Prosumers
participate in a peer–to–peer market, where their interactions
are driven by self–interest, potentially causing adverse effects
on the physical integrity of the underlying electrical grid. To
address this challenge, we consider a DSO with the capability
to enforce economic incentives aimed at enhancing the grid’s
operational performance.

Let ( 0, ) be a symmetric simple directed graph mod-
eling the financial network, where  0 ∶=  ∪ {0},  is
the set of prosumers, and  is the set of edges representing
possible peer–to–peer interactions. We define prosumer 0 as a
slack prosumer representing the external grid at the substation.
As usual, the distribution network is a directed rooted tree with
0 being the set of nodes (buses). The substation node (root)
is labeled as 0, and  ∶= 0 ⧵ {0}, where  is the set of buses
that may host prosumers. We define a map 𝑖 ↦ 𝐴𝑖, from  to
0 that returns the parent of each node.

The link between the market network and the electrical grid
is illustrated in Figure 1. Each prosumer is connected to exactly
one bus. We define a mapping 𝐵 ∶  0 → 0 that assigns the
hosting bus to each prosumer, thereby 𝐵(2) = 1 in the example
shown in Figure 1. The slack prosumer (external grid) is always
connected to the substation bus; therefore, 𝐵(0) = 0 is always
true.

In the following sections, we will outline the models that
capture the decision–making processes of the two classes of
players: the prosumer and the DSO.
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Figure 1: The financial network and the supporting electrical grid.

Figure 2: Distributed generator capacity set (depicted in purple)
for different operating modes in the active/reactive power plane.

2.1. The prosumer model
Each prosumer owns and manages a single photovoltaic

generator and a single battery, and may buy or sell energy
in a peer–to–peer fashion with its neighbors in ( , ). The
prosumer schedules its decisions in order to maximize their
utility function. To do that, each prosumer solves a dynamic
optimization problem over a finite horizon with time step
indices 𝑘 ∈  ∶= {1, ..., 𝐾}.

To begin, we establish a model for the production capacity
of individual prosumers. In this context, we assume that each
prosumer possesses a photovoltaic distributed generator, with
𝑝𝑘G,𝑖 and 𝑞𝑘G,𝑖 representing the active and reactive power output
of prosumer 𝑖 ∈  at time step 𝑘 ∈ . The feasible dispatch
set in the active and reactive power space is modeled as follows

𝑘𝑖 ∶= {(𝑝G,𝑖, 𝑞G,𝑖) ∈ ℝ2 ∶ (1a)
�̌�𝑘G,𝑖 ≤ 𝑝G,𝑖 ≤ �̂�𝑘G,𝑖 (1b)
𝑝2G,𝑖 + 𝑞

2
G,𝑖 ≤ 𝑠2G,𝑖 (1c)

𝑞G,𝑖 ≤ �̌�𝑖𝑝G,𝑖} (1d)
The definition provided in (1) comprehensively

encompasses various standard operating modes, as detailed in
Dall’Anese et al. (2015). These modes are illustrated in Figure
2, each corresponding to distinct selections of the parameters
�̌�𝑘G,𝑖 and 𝜃𝑖. Specifically, the modes include the Maximum
Power Point (MPP), Reactive Power Control (RPC), Active
Power Control (APC), and Optimal Inverter Dispatch (OID).

Apart from the distributed generator, each prosumer owns a
battery, modeled as a 1–dimensional dynamic system such that
the state of charge 𝑠𝑘B,𝑖 satisfies

𝑠𝑘B,𝑖 = 𝑠𝑘−1B,𝑖 + 𝜂B,𝑖𝑝+,𝑘B,𝑖 −
1
𝜂B,𝑖

𝑝−,𝑘B,𝑖 , ∀𝑘 ∈  (2)

where 𝑝𝑘B,𝑖 = 𝑝+,𝑘B,𝑖 − 𝑝
−,𝑘
B,𝑖 is the energy absorbed by the battery

of prosumer 𝑖, over time step 𝑘, and 𝑝+,𝑘B,𝑖 ≥ 0 and 𝑝−,𝑘B,𝑖 ≥ 0 are
auxiliary variables that help modeling the battery energy losses
in the charging and discharging cycle. The positive parameter
𝜂B,𝑖 is the square root of the round cycle battery efficiency. In
addition, we impose the following capacity bounds

0 ≤ 𝑠𝑘B,𝑖 ≤ �̂�B,𝑖, ∀𝑘 ∈  (3)
−�̂�B,𝑖 ≤ 𝑝𝑘B,𝑖 ≤ �̂�B,𝑖, ∀𝑘 ∈  (4)

Having defined the models for the distributed generator
and battery, we now delve into the elements that shape the
preferences of prosumers. We assume there are three com-
ponents: (i) the tariff/incentive cost terms, (ii) the income
obtained via peer–to–peer exchanges, and (iii) the distributed
generator losses. Combining the three components results in
the following prosumer disutility function

𝐽F,𝑖(𝑇 (⋅),𝐮𝑖,𝐮−𝑖) =
∑

𝑘∈

(

𝑇 𝑘𝑖 (𝑝
𝑘
𝑖 , 𝑞

𝑘
𝑖 )

−𝑈𝑘
𝑖

(

𝐩𝑘E,𝑖, (𝑝
𝑘
E,𝑗𝑖)𝑗∈ 0

𝑖

)

+ 𝑙𝑘𝑖 (𝑝
𝑘
G,𝑖, 𝑞

𝑘
G,𝑖)

)

(5)

where 𝐮𝑘𝑖 ∶=
(

𝑝𝑘𝑖 , 𝑞
𝑘
𝑖 , 𝑝

𝑘
G,𝑖, 𝑞

𝑘
G,𝑖, 𝑝

+,𝑘
B,𝑖 , 𝑝

−,𝑘
B,𝑖 , 𝑠

𝑘
B,𝑖,𝐩

𝑘
E,𝑖
)

comprises
the decision variables of prosumer 𝑖 ∈  at time step 𝑘 ∈ ,
with 𝐩𝑘E,𝑖 ∶=

(

𝑝𝑘E,0𝑖, (𝑝
𝑘
E,𝑖𝑗)𝑗∈ 0

𝑖

)

. The function 𝑇 𝑘𝑖 (⋅) is the
tariff/incentive function, 𝑈𝑘

𝑖 (⋅) characterizes the gain obtained
in the peer–to–peer market, and 𝑙𝑘𝑖 (⋅) is the distributed generator
losses. Note that minimizing the disutility function (5) is the
same as maximizing the utility.

The profit from peer–to–peer energy transactions can be
expressed as follows:

𝑈𝑘
𝑖

(

𝐩𝑘E,𝑖, (𝑝
𝑘
E,𝑗𝑖)𝑗∈ 0

𝑖

)

∶=
∑

𝑗∈ 0
𝑖

𝑐𝑘𝑖𝑗𝑝
𝑘
E,𝑖𝑗 − 𝑐

𝑘
𝑗𝑖𝑝

𝑘
E,𝑗𝑖 (6)

where 𝑐𝑘𝑖𝑗 is the price of energy sold from prosumer 𝑖 to
prosumer 𝑗 at time step 𝑘, 𝑝𝑘E,𝑖𝑗 ≥ 0 represents the amount of
energy that prosumer 𝑖 is willing to offer to prosumer 𝑗. Hence,
the actual energy transfer from 𝑖 to 𝑗, is given by

Δ𝑝𝑘E,𝑖𝑗 = 𝑝𝑘E,𝑖𝑗 − 𝑝
𝑘
E,𝑗𝑖, ∀𝑗 ∈  0

𝑖 (7)
which is a joint decision between prosumer 𝑖 and prosumer 𝑗.
Note that the sign constraint forcing 𝑝𝑘E,𝑖𝑗 to be non–negative
allows modeling the difference between buying and selling
price associated with the transfer Δ𝑝𝑘E,𝑖𝑗 .We introduce a 1–norm regularization term that accounts
for the losses of the photovoltaic generator. It is defined as

𝑙𝑘𝑖 (𝑝
𝑘
G,𝑖, 𝑞

𝑘
G,𝑖) ∶= 𝜂G,𝑖

(

𝑝𝑘G,𝑖 + |𝑞𝑘G,𝑖|
)

, ∀(𝑖, 𝑘) ∈  × (8)
This captures the preference of prosumers in favor of not
dispatching active or reactive power unless it benefits
them, whether through incentives, market conditions, or
self-consumption.
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In the following, we present the optimization problem to be
solved by each prosumer

min
𝐮𝑖

𝐽F,𝑖
(

𝑇 (⋅),𝐮𝑖,𝐮−𝑖
) (9a)

s.t. 𝑝𝑘𝑖 =
∑

𝑗∈ 0
𝑖

(

𝑝𝑘E,𝑖𝑗 − 𝑝
𝑘
E,𝑗𝑖

)

, ∀𝑘 ∈  (𝜇𝑘𝑖 ) (9b)

𝑝𝑘𝑖 = 𝑝𝑘G,𝑖 − 𝑝
𝑘
B,𝑖 − 𝑝

𝑘
D,𝑖, ∀𝑘 ∈  (𝜈𝑘P,𝑖) (9c)

𝑞𝑘𝑖 = 𝑞𝑘G,𝑖 − 𝑞
𝑘
D,𝑖, ∀𝑘 ∈  (𝜈𝑘Q,𝑖) (9d)

𝑠𝑘B,𝑖 = 𝑠𝑘−1B,𝑖 + 𝜂B,𝑖𝑝+,𝑘B,𝑖 −
𝑝−,𝑘B,𝑖
𝜂B,𝑖

, ∀𝑘 ∈  (𝜈𝑘B,𝑖) (9e)
(𝑝𝑘G,𝑖, 𝑞

𝑘
G,𝑖) ∈ 𝑘𝑖 , ∀𝑘 ∈  (𝝀𝑘G,𝑖) (9f)

0 ≤ 𝑠𝑘B,𝑖 ≤ �̂�B,𝑖, ∀𝑘 ∈  (𝜆𝑘SL,𝑖, 𝜆
𝑘
SU,𝑖) (9g)

0 ≤ 𝑝+,𝑘B,𝑖 ≤ �̂�B,𝑖, ∀𝑘 ∈  (𝜆+,𝑘BL,𝑖, 𝜆
+,𝑘
BU,𝑖) (9h)

0 ≤ 𝑝−,𝑘B,𝑖 ≤ �̂�B,𝑖, ∀𝑘 ∈  (𝜆−,𝑘BL,𝑖, 𝜆
−,𝑘
BU,𝑖) (9i)

0 ≤ 𝑝𝑘E,𝑖𝑗 , ∀(𝑗, 𝑘) ∈  0
𝑖 × (𝜆𝑘EL,𝑖𝑗) (9j)

where (9b) represents the balance between the net active power
injection and the peer–to–peer market trade, constraints (9c)
and (9d) are the active and reactive power balance with param-
eters 𝑝𝑘D,𝑖 and 𝑞𝑘D,𝑖 representing the active and reactive power
demand, respectively. The dynamics of the battery are modeled
via (9e), with capacity constraints (9g), (9h), and (9i). Finally,
the sign constraints imposed on the bilateral offers are enforced
through (9j).

The computational complexity of (9) drastically depends
on the selected 𝑇 (⋅). If 𝑇 (⋅) is a convex quadratic function,
problem (9) forms a convex quadratic program with second–
order cone constraints.
Remark 1. 𝑝𝑘E,0𝑖 is a decision variable of prosumer 𝑖 repre-
senting the energy they are willing to buy from the DSO (slack
prosumer indexed by 0) at time step 𝑘. Therefore the energy
transfer Δ𝑝𝑘E,𝑖0 = 𝑝𝑘E,𝑖0 − 𝑝𝑘E,0𝑖 is a decision of prosumer 𝑖.
In fact, we could replace (𝑝𝑘E,𝑖0 − 𝑝𝑘E,0𝑖) by Δ𝑝𝑘E,𝑖0 whenever
it appears in problem (9). As a consequence, we have that
if 𝑇 is convex, then (9) is always feasible because prosumer
can always satisfy their power consumption needs as Δ𝑝𝑘E,𝑖0 is
assumed unbounded.

2.2. The peer–to–peer market model
The objective of this section is to leverage a model for

the peer–to–peer market equilibrium. We consider two relevant
classes of market designs: with and without a local market
operator (LMO). The corresponding solution concepts repre-
senting the output of the market in each of the cases mentioned
above are: (i) generalized Nash equilibria (GNEs) Facchinei
and Kanzow (2007) and (ii) welfare optima. In the following
paragraphs, we characterize the two solution concepts. Then, in
Appendix A, we establish explicit connections between them in
terms of dual variables and parameters of the prosumer model.

2.2.1. The set of GNEs
We assume that if there is no LMO in place and prosumers

are free to trade with each other, then the set of market equi-
libria is characterized by the GNEs. In the context of this
work, a GNE is a solution where no prosumer can improve
their objective function by unilaterally changing their deci-
sion, given the decisions of all other prosumers. Prosumers
behave selfishly and independently, minimizing their objective
function under local and coupling constraints, based on (10).
It extends the classical Nash equilibrium by also considering
coupling constraints between the players.

The optimization problem (9) is coupled to the decision
making of the other prosumers by the objective function (9a)
and constraints (9b), since 𝐩E,𝑗𝑖, with 𝑗 ∈ 𝑖, is a vector of pa-
rameters in prosumer 𝑖’s decision problem, and simultaneously
a vector of variables for prosumer 𝑗. We explicitly denote the
coupling between the optimization problems by writing (9) in
compact form as

min
𝐮F,𝑖∈ΩF,𝑖(𝐮F,−𝑖)

𝐽F,𝑖(𝑇𝑖(⋅),𝐮F,𝑖,𝐮F,−𝑖) (10)

where 𝐮F,𝑖 ∶= (𝐮𝑘F,𝑖)𝑘∈ is the action profile of prosumer 𝑖
over the whole planning horizon, and ΩF,𝑖(⋅) is a point–to–set
mapping—also referred to as set–valued map (see (Rockafellar
and Wets, 1998, Chapter 5)),—representing the feasible set of
prosumer 𝑖 as a function of the action profiles of the other
prosumers.

More precisely, consider a game with a set  of players,
and the tuple (ΩF,𝑖, 𝐽F,𝑖, 𝑇𝑖)𝑖∈ as the data.
Definition 1. The set of GNEs, denoted by (𝑇 ), is the set of
elements 𝐮 ∈ Π𝑖∈ℝ𝑛𝑖 such that

𝐮𝑖 ∈ argmin
𝐮𝑖∈Ω𝑖(𝐮−𝑖)

𝐽F,𝑖(𝑇𝑖(⋅),𝐮𝑖,𝐮−𝑖), ∀𝑖 ∈  (11)

The concept of GNEs is also referred to as pseudo–Nash
equilibria; see Harker (1991). In our case, the set (𝑇 ) can be
interpreted as modeling the behavior of prosumers uncoordi-
nately making bilateral contracts of energy, subject to tariff 𝑇 .
The fundamental task of this work is to design 𝑇 such that all
elements in (𝑇 ) represent operationally secure and efficient
action profiles. A representation of (𝑇 ) in terms of a system
of equations is studied in Appendix A for convex quadratic 𝑇 .
2.2.2. The set of welfare optima

On the other hand, when there is a market clearing mech-
anism driving the system to an economically efficient equi-
librium, i.e., one that maximizes the social welfare of all
prosumers or, equivalently, minimizes the total disutility. The
following definition captures the corresponding solution con-
cept
Definition 2. The set of economically efficient market outputs,
denoted by (𝑇 ), is the set of elements 𝐮 ∈ Π𝑖∈ℝ𝑛𝑖 such that

𝐮 ∈ argmin
𝐮∈Ω

∑

𝑖∈
𝐽F,𝑖(𝑇𝑖(⋅),𝐮𝑖,𝐮−𝑖) (12)
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...

Figure 3: Electric branch associated with bus 𝑖 ∈ .

We can interpret (12) as representing the decision–making of
all prosumers jointly minimizing the total disutility.
Remark 2. It is natural to ask if there exist conditions under
which individual prosumers, if acting selfishly, might want to
deviate from (𝑇 ). This is the same as asking if there exists
an instance of the problem for which 𝑢𝐹 ∈ (𝑇 ) ⧵ (𝑇 ).
Similarly, we may pose questions regarding the reciprocal
difference(𝑇 )⧵(𝑇 ), i.e., if there exists an output of a market
without LMO that is not economically efficient. Following a
similar framework as in Le Cadre et al. (2020), in Appendix A,
we derive explicit expressions characterizing the relationship
between  ,  in terms of dual variables and parameters of
(9).
2.3. The effect of prosumers on the electrical grid

This section focuses on modeling the impact of prosumers’
behavior on the operation of the distribution system. Specifi-
cally, we aim to establish the relationship between the net active
and reactive power injected by prosumers and the resulting
changes in voltage levels and system losses. We drop the
time–step indices unless said otherwise because all relations
presented here are static.

The optimal power flow (OPF) model is a non–convex
quadratically constrained quadratic problem (QCQP) which
is NP–Hard in general. Because of the difficulty of solving
the OPF, several approximations have been made. Between
them, convex relaxations are of the families: SDP, SOCP, and
linear; see Low (2014a). SDP relaxations present the diffi-
culty of extracting solutions if the rank constraint is not met.
SOCP relaxations are not exact when voltage upper bound
constraints are active Low (2014b). Therefore, we believe
linear approximations are better suited for situations with high
penetration of renewable energy resources since the system
is exposed to overvoltage conditions. Among the linear OPF
models, we highlight the linear OPF model presented in Coffrin
and Van Hentenryck (2014), the two models for unbalanced
networks presented in Bernstein et al. (2018), and the widely
referenced LinDistFlow model proposed in Baran and Wu
(1989). In the proposed work, we adopt the LinDistFlow model
which is detailed in the following.

For each bus 𝑖 ∈ , the following equations hold
𝑃𝑖 =

∑

𝑗∈𝑖

𝑃𝑗 − 𝑃𝑖 (13a)

�̃�𝑖 =
∑

𝑗∈𝑖

�̃�𝑗 − �̃�𝑖 (13b)

𝑣𝐴𝑖 = 𝑣𝑖 − 2𝑟𝑖𝑃𝑖 − 2�̃�𝑖�̃�𝑖 (13c)

Here, 𝑃𝑖 and �̃�𝑖 represent the active and reactive power flows,
respectively, on the upstream branch of bus 𝑖 ∈ , measured in
the downstream direction. The parameters 𝑟𝑖 and �̃�𝑖 denote the
resistance and reactance of that branch, while 𝑣𝑖 corresponds
to the square of the voltage magnitude at bus 𝑖 ∈ . The set 𝑖represents the set of successor buses connected to 𝑖. A summary
of the notation is provided in Figure 3. The LinDistFlow is
limited to radial (tree graph) networks with balanced voltage
and currents. If the reader requires a linear model capturing
a more general setting, such as unbalanced and/or non–radial
networks, they may refer to the first–order Taylor linearization
in Bernstein et al. (2018).

To calculate the system losses, define matrices
�̃� ∈ ℝ||×|| and �̃� ∈ ℝ||×|| with coefficients

�̃�𝑖𝑗 ∶=
∑

𝑘∈(𝑖)∩(𝑗)
𝑟𝑘, �̃�𝑗𝑖 ∶=

∑

𝑘∈(𝑖)∩(𝑗)
�̃�𝑘 (14)

where (𝑖) is the set of lines between bus 𝑖 and the slack bus
0, including 𝑖. Both �̃� and �̃� are positive definite matrices, and
the losses of the system can be expressed as a convex quadratic
function

𝐿(�̃�, �̃�) = �̃�⊺�̃��̃�𝑘 + �̃�⊺�̃��̃� (15)
The operational security constraints are voltage magnitude

bounds at each bus. Recall that in (13), our proxy for the voltage
magnitudes are the voltage magnitudes squared. Therefore, we
express the security constraints limits as the following linear
constraints

�̌�2𝑖 ≤ 𝑣𝑖 ≤ �̂�2𝑖 , ∀𝑖 ∈  (16)
Now, it is necessary to translate the previous expressions

into prosumer related–quantities. The correspondence between
prosumers and buses can be described by a relation  × →

{0, 1}, represented by the incidence matrix 𝐁 ∈ {0, 1}||×| |,
such that

𝐵𝑖𝑗 ∶=

{

1 , if prosumer 𝑗 is connected to bus i
0 , otherwise (17)

Let us consider again the time step indices and obtain the volt-
age magnitude and losses in terms of the prosumers’ injections.
Recall that 𝐩𝑘 ∶= (𝑝𝑘𝑖 )𝑖∈ and 𝐪𝑘 ∶= (𝑞𝑘𝑖 )𝑖∈ , for all 𝑘 ∈ ,
and aggregate the effect of prosumers by bus by applying the
following transformation based on (17)

�̃�𝑘 = 𝐁𝐩𝑘 (18a)
�̃�𝑘 = 𝐁𝐪𝑘 (18b)

Such that
𝐑 ∶= 𝐁⊺�̃�𝐁 (19a)
𝐗 ∶= 𝐁⊺�̃�𝐁 (19b)

The linear transformation 𝐁 preserves positive definiteness;
therefore, again, we obtain a convex quadratic function for the
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system losses in terms of the prosumers’ active and reactive
power injections

𝐿(𝐩𝑘,𝐪𝑘) = 𝐩𝑘𝐑𝐩𝑘 + 𝐪𝑘𝐑𝐪𝑘 (20)
We further compactify notation by defining 𝐇 = (𝐑⊺,𝐗⊺) to
obtain a linear relation between squared voltage magnitude and
the net active and reactive power injections made by prosumers

𝒗𝑘 = 𝐇
(

𝐩𝑘
𝐪𝑘

)

+ 𝟏 (21)

Finally, recall that at the substation (bus 0), the distribution
network is connected to an external grid (transmission system).
We may express the net systemic power output export as the
concave function

𝑃 (𝐩𝑘,𝐪𝑘) = 𝟏⊺𝐩𝑘 − 𝐿(𝐩𝑘,𝐪𝑘), (22)
interpreted as the difference between the total amount of energy
produced within the distribution network and the losses.
2.4. The incentive design problem

In this section, we will leverage a reverse Stackelberg
model to determine the incentive functions 𝑇 𝑘𝑖 (⋅), for each pair
(𝑖, 𝑘) ∈  ×. We refer to it as the incentive design problem,
which is to be solved assuming global knowledge of the param-
eters that characterize the electrical grid and the prosumers.
The objective is to drive the behavior of prosumers towards
maximizing a predefined operational performance metric con-
sidering security constraints. We interpret the incentive terms
𝑇 𝑘𝑖 (𝑝

𝑘
𝑖 , 𝑞

𝑘
𝑖 ) as a local perturbation on the utility function of

each prosumer. We refer to them as “local” because the domain
corresponds to the decisions of only prosumer 𝑖. Ultimately, we
expect optimal global operation to emerge by locally perturbing
the utility functions of the players.

The objective function of the regulatory entity (the leader)
is an operational performance metric. For simplicity of exposi-
tion, we define it as the total exported active power

𝐽L(𝐩,𝐪) ∶=
∑

𝑘∈
𝑃 (𝐩𝑘,𝐪𝑘) (23)

which is a strictly concave quadratic function to be maximized.
It is worth noting that the leader’s objective function solely

relies on the variables 𝐩 and 𝐪. Therefore, the applied incentive
is specifically targeted toward these variables. For computa-
tional tractability reasons, we restrict ourselves to a parametric
family of functions on (𝐩,𝐪), such that

𝑇 𝑘𝑖 (𝑝, 𝑞) ∶= 𝛾𝑘𝑖 (𝑝, 𝑞)
⊺
(

𝑝
𝑞

)

(24)

where 𝛾𝑘𝑖 ∶ ℝ2 → ℝ2 is a semidefinite positive affine
transformation. To be more precise, we state that 𝛾𝑘𝑖 ∈  for
all (𝑖, 𝑘) ∈  × iff. there exist coefficients 𝚽𝑘

𝑖 ∈ ℝ2×2 and
𝝓𝑘𝑖 , such that 𝚽𝑘

𝑖 = 𝚽𝑘⊺
𝑖 ⪰ 0 and

𝜸𝑘𝑖 (𝑝, 𝑞) =
1
2
𝚽𝑘
𝑖

(

𝑝
𝑞

)

+ 𝝓𝑘𝑖 (25)

where

𝚽𝑘
𝑖 ∶=

(

Φ𝑘
𝑝𝑝,𝑖 Φ𝑘

𝑝𝑞,𝑖
Φ𝑘
𝑝𝑞,𝑖 Φ𝑘

𝑞𝑞,𝑖

)

, 𝝓𝑘𝑖 ∶=

(

𝜙𝑘𝑝,𝑖
𝜙𝑘𝑞,𝑖

)

are the incentive function coefficients meant to be determined
by the DSO. Hence, a tuple (𝚽,𝝓) uniquely determines the
incentive function 𝜸.

We write the vector of tariff costs as a function of the vector
of control actions for each time step 𝑘 by stacking the entries
corresponding to each prosumer

𝑇 𝑘(𝐮𝑘) =
(

𝜸𝑘(𝐮𝑘
)⊺ 𝐮𝑘 (26)

Accordingly, we define the matrix �̃�𝑘 and vector �̃�𝑘 such that
𝜸𝑘(𝐮𝑘) = �̃�𝑘𝐮𝑘 + �̃�𝑘 (27)

Prosumers are assumed to behave rationally, solving prob-
lem (9) to minimize their disutility (maximize their profit). This
is the main driver for the proposed approach. To that end, some
design choices over the shape of functions 𝑇𝑖 should be put
in place so that (9) is simple enough for prosumers to solve.
First, the incentive cost term, 𝑇 𝑘𝑖 (𝑝𝑘𝑖 , 𝑞𝑘𝑖 ), is known in advance
to each prosumer, and it is a function of their own local active
and reactive power output. Second, 𝑇 𝑘𝑖 is a quadratic convex
function.

Operation performance metrics of distribution networks
ultimately capture the cost of operation. It might consider
Ohmic losses on electrical branches1, total exported energy,
voltage violations, line congestion, etc.
2.4.1. The reverse Stackelberg game model

Determining the incentive functions requires characteriz-
ing how they influence the behavior of prosumers and, ulti-
mately, the system’s operation. There is a need for a different
kind of equilibrium concept than the one utilized to model
the peer–to–peer market since the roles of the DSO and the
prosumers are not symmetric.

In the peer–to–peer market equilibrium model described in
Section 2.2, prosumers announced their strategies simultane-
ously. Here, the DSO has to announce the incentive functions
first and then let the prosumers react accordingly. To capture
this asymmetry, we rely on a particular case of Stackelberg
equilibrium described in the following paragraphs.

As in Ho et al. (1981), we acknowledge a difference be-
tween announcing a strategy and performing an action. It is
the order of announcing strategies rather than the order of
actions that distinguishes the leader from the follower. The
reverse Stackelberg equilibrium solution concept considers the
following timeline:

1. the leader announces their strategy
2. knowing the leader’s strategy, the followers choose their

action
1Lines and transformers.
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3. the action of the leader is determined based on their pre-
viously announced strategy as a function of the actions
of the followers

In the proposed model, the strategy of the leader is the
tariff function 𝛾(⋅), the action of the follower is the vector 𝐮
whose elements are the active and reactive power injections,
and the action of the leader is 𝛾(𝐮). The reverse Stackelberg
optimization problem is given as

“max
𝜸(⋅)

” 𝐽L(𝜸(⋅),𝐮) (28a)
s.t. 𝜸(⋅) ∈  (28b)

𝜸(⋅) ∈  (28c)
�̌� ≤ 𝐇𝐮𝑘 + 𝟏 ≤ �̂� ∀𝑘 ∈  (28d)
𝐮 ∈ (𝜸(⋅)) (28e)

where (28b) forces 𝛾(⋅) to belong to the family of semidefi-
nite positive affine functions from ℝ2 to ℝ𝟚, denoted by ,
constraint (28c) imposes the budget condition limiting the
action of the leader, constraint (28d) enforces the voltage levels,
and (28e) is the lower–level equilibrium problem. The quoted
max{⋅} operator is utilized to emphasize that (28) might be ill–
posed as the lower level problem might have a multiplicity of
solutions (28e), see Dempe and Dutta (2012). Uniqueness of
solutions in the space of active and reactive net power injection
is studied in Section 3.

Depending on the focus, the lower–level (28e) might be
replaced by

𝐮 ∈ (𝜸(⋅)) (29)
to solve the problem as if the market clearing mechanism
were efficient in the economic sense, i.e., if the equilibrium
maximizes the welfare or, equivalently, minimizes the total
disutility.
2.4.2. The incentive budget constraints

For each (𝑖, 𝑘) ∈  × , we assume that there is a
physical bound on 𝐰𝑘𝑖 ∶= (𝑝𝑘𝑖 , 𝑞

𝑘
𝑖 ) given by the prosumer–to–

grid connection capacity, which takes the form
||𝐰𝑘𝑖 ||2 ≤ 𝐸𝑖 (30)

where 𝐸𝑖 is the connection capacity measured in the same
physical units of apparent power, i.e. per unit or volt–ampere
(VA) units. Therefore, we restrict (𝚽𝑘

𝑖 ,𝝓
𝑘
𝑖 ) so that we ensure

that for any 𝐰𝑘𝑖 satisfying (30), the incentive cost terms are
bounded. More precisely, we impose the following budget
condition

(𝚽𝑘
𝑖 ,𝝓

𝑘
𝑖 ) ∈ 𝑖, ∀(𝑖, 𝑘) ∈  × (31)

such that
𝑘
𝑖 ∶=

{

(𝚽𝑘
𝑖 ,𝝓

𝑘
𝑖 ) ∈ 𝕊2 ×ℝ2 |

|

|

∀𝐰𝑘𝑖 ∈ ℝ2 ∶ ||𝐰𝑘𝑖 ||2 ≤ 𝐸𝑖,

−𝑀𝑘
𝑖 ≤ (𝐰𝑘𝑖 )

⊺𝚽𝐰𝑘𝑖 + 𝝓⊺𝐰𝑘𝑖 ≤𝑀𝑘
𝑖 }

(32)
where 𝕊2 is the set of symmetric positive semidefinite matrices
of size 2.

Proposition 1. For each (𝑖, 𝑘) ∈  ×, if (𝚽𝑘
𝑖 ,𝝓

𝑘
𝑖 ) satisfies

𝐸𝑖||𝚽𝑘
𝑖 ||F + ||𝝓𝑘𝑖 ||2 ≤

𝑀𝑖
𝐸𝑖
, (33)

then (𝚽𝑘
𝑖 ,𝝓

𝑘
𝑖 ) ∈ 𝑖.

PROOF. For simplicity of notation, ignore the indices 𝑖 and 𝑘.
We write (33) as

𝐸||𝚽||F + ||𝝓||2 ≤
𝑀
𝐸

Recall that the Frobenius norm is an upper bound on the matrix
2–norm. Then,

𝐸2
||𝚽||2 + 𝐸||𝝓||2 ≤𝑀

The connection capacity condition (30) states that𝐸 is an upper
bound on ||𝐰||2, therefore the following is true

||𝐰||22||𝚽||2 + ||𝝓||2||𝐰||2 ≤𝑀

Then, we apply the the Cauchy–Schwarz inequality to obtain
||𝐰||2||𝚽𝐰||2 + ||𝝓||2||𝐰||2 ≤𝑀

followed by
||𝐰⊺𝚽𝐰 + 𝝓⊺𝐰||2 ≤𝑀

Consequently,
−𝑀 ≤ 𝐰⊺𝚽𝐰 + 𝝓⊺𝐰 ≤𝑀

□

Problem (28) can be more explicitly written such that 𝛾(⋅)
is parameterized in terms of the coefficients (𝚽,𝝓).

Problem (28) can be more explicitly written such that 𝛾(⋅)
is parameterized in terms of the coefficients (𝚽,𝝓).

The formulation of Problem (28) can be further refined
by explicitly parameterizing 𝛾(⋅) in terms of the coefficients
(𝚽,𝝓).

max
𝚽,𝝓

𝐽L(𝚽,𝝓,𝐮) (34a)
s.t. Φ𝑘

𝑝𝑝,𝑖 + Φ𝑘
𝑞𝑞,𝑖 ≥ 0 ∀(𝑖, 𝑘) ∈  ×

(34b)
(Φ𝑘

𝑝𝑞,𝑖)
2 ≤ Φ𝑘

𝑝𝑝,𝑖Φ
𝑘
𝑞𝑞,𝑖 ∀(𝑖, 𝑘) ∈  ×

(34c)
𝐸𝑖||𝚽𝑘

𝑖 ||F + ||𝝓𝑘𝑖 ||2 ≤
𝑀𝑖
𝐸𝑖

∀(𝑖, 𝑘) ∈  ×

(34d)
�̌� ≤ 𝐇𝑘𝐮𝑘 + 𝐡𝑘 ≤ �̂� ∀𝑘 ∈ 

(34e)
𝐮 ∈ (𝚽,𝝓) (34f)

where the objective function (34a) is concave quadratic, con-
straints (34b) and (34b) ensure that each matrix 𝚽𝑘

𝑖 ∈ ℝ2×2
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is positive semidefinite, equation (34d) represents the budget
conditions, (34e) are the voltage limits, and (34f) models
the lower–level. Note that the complexities of problem (28)
arise primarily from (34f), as it would otherwise be a simpler
second-order conic problem.

The problem can be further compactly written as
𝛾(⋅) ∈ argmin

𝛾(⋅) ∈Γ(𝐮)
𝐽𝐿(𝛾(⋅),𝐮) (35a)

𝐮𝑖 ∈ argmin
�̃�𝑖∈Ω𝐹 ,𝑖(𝐮−𝑖)

𝐽𝐹 (𝜸𝑖(⋅), �̃�𝑖,𝐮−𝑖), ∀𝑖 ∈  (35b)

3. Properties
In this section, our concern is to study how the lower–level

equilibrium might respond to perturbations in the parameters
defining the objective function of prosumers. Specifically, our
concern is on studying stability in the sense of Dempe (2002)
for the lower level as a parametric optimization problem. First,
we show that the GNEP can be reformulated as an optimiza-
tion problem, classically known as the Nikaido–Isoda (NI)
reformulation, see Facchinei and Kanzow (2007). Then we
show that the set of solutions to the GNEP, (𝑇 ), is strongly
stable towards perturbations in the parameters that define it
by proving that the NI reformulation is strongly stable. As
corollaries, we leverage guarantees of uniqueness of solutions
in the net active and reactive power output space.
Definition 3. (Jointly convex GNEP) We say that (11) is a
jointly convex GNEP if, for every prosumer 𝑖 ∈  and every
𝐮−𝑖, the objective function 𝐽𝐹 (𝑇 (⋅), ⋅,𝐮−𝑖) is convex, the set
Ω𝑖(𝐮−𝑖) is closed and convex, and for some closed convex
Ω ⊂ ℝ𝑛 and all 𝑖 ∈  we have

Ω𝑖(𝐮−𝑖) =
{

𝐮𝑖 ∈ ℝ𝑛𝑖 |
|

(𝐮𝑖,𝐮−𝑖) ∈ Ω
}

As remarked in Facchinei and Kanzow (2007), if the feasible
set of each player of a GNEP is described by inequalities
and if all the shared constraints, i.e., the ones that involve
variables from more than one player are the same for every
player involved in the constraint, then the GNEP in question
is a jointly convex GNEP. By this remark, it is clear that the
GNEP in (11) is jointly convex. By the discussion above we
derive the following result
Lemma 1. The game defined in (11) is a jointly convex GNEP.

First, we establish a classical result that bridges jointly
convex GNEPs and optimization problems
Lemma 2. If 𝑇𝑖 is convex for each 𝑖 ∈  , a vector 𝐮 is a
solution to (11) if and only if 𝐮 is a global minimum of the
optimization problem

min
𝐮

𝑉 (𝑇 ,𝐮) (36a)
s.t. 𝐮 ∈ Ω, (36b)

with zero objective function value, where

𝑉 (𝑇 ,𝐮) ∶= sup
𝐲∈Ω

𝜓(𝑇 ,𝐮, 𝐲) (37)

and

𝜓(𝑇 ,𝐮, 𝐲) ∶=
∑

𝑖∈

(

𝐽F,𝑖(𝑇𝑖,𝐮𝑖,𝐮−𝑖) − 𝐽F,𝑖(𝑇𝑖, 𝐲𝑖,𝐮−𝑖)
) (38)

Lemma 2 corresponds to the classical Nikaido–Isoda (NI)
reformulation in the case of jointly convex GNEPs, hence the
proof is omitted, see Facchinei and Kanzow (2007). The NI
reformulation is an important analytical tool that allows to
transform the equilibrium in (11) into an optimization problem.
Lemma 3. If 𝑇𝑖(⋅) is convex for each 𝑖 ∈  , problem (36) is
a convex optimization problem with polyhedral feasible set

PROOF. Note that the objective function of each follower can
be expressed as the sum

𝐽F(𝑇𝑖(⋅),𝐮𝑖,𝐮−𝑖) = ℎ𝑖(𝐮𝑖, 𝑇𝑖(⋅)) + 𝑔𝑖(𝐮−𝑖), ∀𝑖 ∈  (39)
with

ℎ𝑖(𝐮𝑖, 𝑇𝑖(⋅)) ∶=
∑

𝑘∈

(

𝑇 𝑘𝑖 (𝑝
𝑘
𝑖 , 𝑞

𝑘
𝑖 ) + 𝑙𝑖(𝑝

𝑘
G,𝑖, 𝑞

𝑘
G,𝑖)

)

and
𝑔𝑖(𝐮−𝑖) ∶=

∑

𝑘∈
𝑈𝑘
𝑖

(

𝐩E,𝑖𝑗 , (𝑝E,𝑖𝑗)𝑗∈ 0
𝑖

)

Then the NI–function becomes
𝜓(𝑇 (⋅),𝐮, 𝐲) =

∑

𝑖∈

(

ℎ𝑖(𝐮𝑖, 𝑇𝑖(⋅)) − ℎ𝑖(𝐲𝑖, 𝑇𝑖(⋅))
) (40)

For fixed 𝑇 (⋅), function 𝜓(𝑇 (⋅),𝐮, 𝐲) is convex in 𝐮, for all
𝐲 ∈ Ω, therefore 𝑉 (𝑇 (⋅),𝐮) is convex in 𝐮 as the supremum
operation in (37) preserves convexity. □

Theorem 1. If 𝑇 (⋅) is convex, the set of GNEs (𝑇 ) of (11) is
convex. Moreover, if 𝑇 (⋅) is strictly convex, the set of GNEs of
(11), (𝑇 ), is uniquely defined in (𝐩,𝐪).

PROOF. By Lemma 3, problem (36) is a convex optimization
problem. Therefore, the set of optimal solutions is a convex set.
By Lemma 2, the solution set of (36) corresponds to(𝑇 ) if the
objective value of (36) is zero at optimality. Therefore, to prove
Theorem 1, it suffices to prove that the optimal value of (36) is
zero for any given 𝑇 (⋅). For that, we express the NI-function as
in (40), and considering Ω is closed, the optimal value of (36)
can be written as

𝑉 ∗ = min
𝐮∈Ω

{

max
𝐲∈Ω

∑

𝑖∈

(

ℎ𝑖(𝐮𝑖, 𝑇𝑖(⋅)) − ℎ𝑖(𝐲𝑖, 𝑇𝑖(⋅))
)

}

(41)
which is zero. Therefore (𝑇 ) is convex.

If 𝑇 (⋅) is strictly convex, (40) is strictly convex with respect
to (𝐩,𝐪), therefore the NI reformulation (36) is unique in (𝐩,𝐪),
thus, by Lemma 2, so does the set (𝑇 ). □

The DSO exclusively considers the net active and reactive
power output, denoted as (𝐩,𝐪), as the operational perfor-
mance metrics hinge on these variables. Hence, our focus is
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on ensuring the robustness of the solution, specifically within
the (𝐩,𝐪)–space, against variations in lower–level model pa-
rameters. Thus, providing a robust stability guarantee in this
projected space suffices.

Expanding on this concept, it worth noting that the ob-
jective function (34a) and the coupling constraints (34e) in
the tariff design problem (34) solely depend on (𝐩,𝐪). Con-
sequently, establishing a uniqueness guarantee for (𝑇 (⋅)) in
(𝐩,𝐪) circumvents challenges associated with non-uniqueness
of solutions in mathematical programs with equilibrium con-
straints. This guarantee is easily attained using the tools we
have leveraged thus far.

To ensure robustness of the solution against parameter
variations in the lower–level problem, we extend our approach
beyond merely ensuring uniqueness to focus the notion of
stability. Our approach involves drawing upon the concept of
strong stability for local solutions, as defined in Dempe (2002),
which we paraphrase as follows
Definition 4 (Dempe (2002)). A local solution (𝐱, 𝐲) of a
parametric optimization problem

min
𝐱

𝑓 (𝐱, 𝐲) (42a)
s.t. 𝑔(𝐱, 𝐲) ≤ 0 (42b)

is said to be strongly stable if there exist neighborhoods 𝛿(𝐲)
with 𝛿 > 0 of 𝐲 and 𝜖(𝐱) with 𝜖 > 0 of 𝐱, and a uniquely
determined continous vector–valued function 𝑥 ∶ 𝛿(𝐲) →
𝜖(𝐱) such that 𝑥(𝑦) is the unique local optimal solution of
problem (42) in 𝜖(𝐱) for all 𝑦 ∈ 𝛿(𝐲).

First, we introduce a projection operator. Let
𝐮 ∈ Ω represent a solution at the lower level, with
𝐮𝑘𝑖 ∶=

(

𝑝𝑘𝑖 , 𝑞
𝑘
𝑖 , 𝑝

𝑘
G,𝑖, 𝑞

𝑘
G,𝑖, 𝑝

+,𝑘
B,𝑖 , 𝑝

−,𝑘
B,𝑖 , 𝑠

𝑘
B,𝑖,𝐩

𝑘
E,𝑖
)

. We define
Π𝑝𝑞(𝐮

𝑘
𝑖 ) ∶= (𝑝𝑘𝑖 , 𝑞

𝑘
𝑖 ) and extend the notation to aggregate

variables, such that Π𝑝𝑞(𝐮) ∶= (𝐩,𝐪).

Proposition 2. If (𝚽,𝝓,𝐮) is an optimal solution to (34) and
𝐰 = Π𝑝𝑞(𝐮), then the projected solution (𝚽,𝝓,𝐰) is strongly
stable.

PROOF. From (41), 𝑉 (𝑇 (⋅),𝐮) can be written as
𝑉 (𝑇 (⋅),𝐮) =

∑

𝑖∈
ℎ𝑖(𝑇 (⋅),𝐮) + C (43)

where 𝐶 is constant with respect to 𝐮, given by

𝐶 ∶= max
𝐲∈Ω

{

−
∑

𝑖∈
ℎ𝑖(𝑇 (⋅), 𝐲)

}

thus, 𝑉 (𝑇 (⋅),𝐮) is differentialble in 𝐮. In fact, the partial hes-
sian matrix of the lagrangian function of the NI reformulation
(36) with respect to 𝐰 is a block–diagonal matrix

𝜕2𝐿
𝜕𝐰2

= diag
(

(

𝚽
𝑘
𝑖

)

𝑖∈ ,𝑘∈

)

Therefore 𝜕2𝐿
𝜕𝐰2 is positive definite because each block diagonal

element is positive definite as 𝜀 > 0; thus
(

𝚽,𝝓,𝐰
)

satis-
fies the strong sufficient optimality condition of second order
Dempe (2002). In addition, (36) satisfies the Mangasarian–
Fromowitz constraint qualification (MFCQ). Then, Proposition
2 follows directly from Theorem 4.4 in Dempe (2002). □

Proposition 2 stands as a robustness guarantee, ensuring
that the tariff solution remains reliable in the face of parameter
variations of the lower–level. Note that stability defined in this
sense implies uniqueness of the market output with respect to
(𝐩,𝐪).

Furthermore, the stability property not only applies for the
GNEP–based market setup. It remains true for both when the
market is modeled as a GNEP and when it is modeled as an
optimization problem that aims to minimize total disutility, as
presented in Definition 2. To see this, note that if 𝑇 (⋅) is strictly
convex, then (12) is a strictly convex problem with respect to
(𝐩,𝐪), and the same line of analysis developed in this section
can be applied. This implies that the stability condition we
have established is equally applicable to both managed and
unmanaged market designs, solidifying the versatility of the
proposed model.

We highlight that the NI reformulation is a valuable tool
for characterizing the stability of jointly convex GNEPs. Note
that by characterizing the stability of the solution of the NI
reformulation, we bypass the notions of stability in variational
systems such as Rockafellar (2023) which are commonly used
in more general variational systems when there is no optimiza-
tion problem reformulation at hand.

4. Numerical results
An instance of the problem comprises a distribution net-

work, the prosumers with their devices, and the financial grid.
For each instance, the computational experiments follow a
scheme in which the tariff is calculated by the DSO and passed
to the prosumers in a rolling horizon fashion2. In this case,
tariff functions for all prosumers are calculated considering a
planning horizon of 4 hours and applied only for 1 hour. We
run the experiments utilizing a 10–minute time step setting;
therefore, each instance of (34) to be solved has || = 6× 4 =
24 time steps.
4.1. A toy problem

This section is dedicated to leveraging a toy problem, with
the objective of gaining deeper insights into the proposed tariff
design and offering a tangible proof of concept. First, we show
how the DSO is able to induce safe operation by prompting
the voltage profiles to remain within nominal operation bounds.
Then, we establish the main differences between the proposed
approach and the conventional constant tariff, which involves
only bilinear terms between leader and follower variables.

The experimental setup for this toy problem involves a set
 = {1, 2, 3} of prosumers connected to a 4 bus electrical

2Also called receding horizon.
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grid where the set of buses is 0 = {0, 1, 2, 3}, with parent
buses 𝐴1 = 0, 𝐴2 = 1, and 𝐴3 = 0. The set of prosumers is
 = {1, 2, 3} such that 𝐁 = diag (1, 1, 1) as depicted in Figure
1. The distribution system corresponds to the IEEE 4–bus test
feeder IEEE (1991) which has been adapted to this setting by
balancing the line segments using Carson’s equation and Kron
reduction. Distributed loads have been converted into balanced
three–phase loads. The resistance of each electrical branch has
been increased so that the resistance to reactance ratio is exactly
2.3—a normal ratio in distribution systems.—In this case, each
prosumer model represents a group of actual prosumers. This
is because the IEEE 4–bus system is a simplified electrical
equivalent of a whole distribution system. Therefore, to analyze
the effect of the prosumers in the operation of the grid, it is
necessary to aggregate the effect of a large group of them.

The time series data for the problem is depicted in Figure 4.
On top is the maximum available solar power, and at the bottom
is the active power load. The signals have been obtained from
one–minute time series data from a set of individual homes
from the U.S. Austin region Pecan Street (2021). The time–
series have been upsampled, averaging the values over periods
of 10 minutes to accommodate them to the current time setting.
A constant power factor of 0.85 is considered; therefore, the
reactive power load is proportional to the active power load by
a constant factor of tan(cos−1(0.85)) ≈ 0.61.

Naturally, the high solar irradiance period occurs around
midday. During this period, there are high chances of violating
the upper voltage limit because the net active power injections
increase and 𝐑 in (19a) is a positive definite matrix that maps
the increment in power injection into an increment of voltage
magnitudes. Without the tariff incentive, the voltage magnitude
of electrical Node 2 would have been out of bounds. Figure 5
depicts the voltage profiles considering the tariff. Note that the
voltage profile gets flattened to remain within bounds during
the high irradiance interval. This is achieved by inducing the
active and reactive net power profiles shown in figures 6 and
8. A similar process occurs during the high–demand periods in
the evening, where voltages tend to lower, and they get flattened
as a result of the tariff to avoid a lower limit voltage violation.

In Figure 6, we observe that in time periods near midday,
the induced net power injection depicted in orange has less
noise than the blue line representing the maximum available net
active power. Recall that the tariff gets updated and passed to
the prosumers hourly. The red vertical lines show the moments
in which the tariff is recomputed and passed to the prosumers.
Notably, within these intervals, the net active power injection
maintains a near–constant level despite the underlying potential
for variation. This observation suggests a denoising effect
associated with the tariff updates, which likely contributes
to enhancing the predictability of the system’s operation—a
beneficial characteristic for operating the distribution network.
4.2. Experiments on larger instances

In evaluating our proposed method, we look at various
metrics and extend our tests to larger scenarios based on the
IEEE 4–bus and 34–bus systems. We adopt the same rolling
horizon approach as we did in the earlier section solving 168
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Figure 4: Time series data of maximum available power (top),
and active power load (bottom).
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Figure 5: Voltage magnitude per bus.

instances of the tariff design problem, one each hour over a
week. We considered the following performance metrics:

• Hourly Average Number of Voltage Violations per
Bus (NVV): This is the count of average voltage mag-
nitude deviations from the acceptable range per bus,
calculated over 10-minute intervals.

• Hourly Average Net Energy Export per Prosumer
(NEE) in kW: We measure the total energy exported to
the grid, divided by the evaluation period and the number
of prosumers.

• Hourly Average Distribution Grid Losses (DGL) in
kW: This represents the total resistive losses in the grid,
averaged over the evaluation period.

• Hourly Average Disutility per Prosumer (DPP) in $:
This is the sum of each prosumer’s disutility, averaged
over the time of the evaluation.

• Hourly Average Tariff Cost per Prosumer (TC) in
$: We accumulate the tariff costs from the prosumers’
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Figure 6: Net active power injection at maximum power point
(MPP) vs. the induced signal.
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Figure 7: Reactive power generation of prosumer 2.
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Figure 8: Reactive power generation of prosumer 2.

objective function over each period and then average it
out.

Upon examining the NVV and NEE columns in Table 1, a
comparison between the proposed approach and the constant
tariff policy reveals a notable observation. While both strate-
gies ensure the system operates safely (NVV = 0), the proposed
tariff design stands out by achieving this objective alongside
maintaining higher levels of net energy export (NEE). How-
ever, it is important to note that the proposed approach does
incur higher levels of ohmic losses. This can be attributed to the
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Figure 9: Cumulative probability density function objective func-
tion of the DSO, IEEE–4bus test feeder.

increased amounts of energy being exported, which naturally
leads to greater loss in the transmission process.

With the focus on operation performance, we did not con-
sider the tariff budget in the objective function of the leader.
Note that in Table 1, the TC metric changes signs from the
proposed tariff to the constant tariff. The results are likely to be
different if considering the budget upperbound𝑀𝑖 for 𝑖 ∈  in
the objective function of the leader, which can be done without
changing the structure of the problem.

While these metrics offer insights into different aspects of
performance, our primary focus is on minimizing the DSO’s
objective function, as it is indicative of the overall effectiveness
of our model. The graph in Figure 9 illustrates the cumulative
probability distribution of the DSO’s objective function values
across the three strategies we have put to the test.

5. Conclusions
In our research, we have successfully demonstrated the

efficacy of a reverse Stackelberg game approach to demand
response in power distribution networks. The proposed frame-
work positions the DSO as the leader with the ability to
impose a tariff function, to which the prosumers, interpreted as
followers, react. This framework also encompasses a peer–to–
peer market among the prosumers, modeled as a GNEP, and
takes into account both active and reactive power generation
and their effects on the network’s voltage levels. This compre-
hensive approach addresses a commonly neglected aspect in
current research, namely, the impact of market outcomes on
the operation of the distribution network.

The numerical experiments indicate a marked improvement
in maximizing the net power output and maintaining the volt-
age levels within safe margins, compared to the conventional
constant time–of–use tariff, particularly when perturbations in
the followers’ objective function parameters are introduced. To
understand the reason behind the effectiveness in the presence
of perturbations in the parameters of the lower–level, we pro-
vide theoretical results ensuring that the obtained solutions are
always strongly stable. Moreover, our method stands out in its
ability to denoise net active and reactive power injection of
prosumers, which is also attributed to the stability property
mentioned above. These findings underscore the potential of
our bilevel programming solution to not only streamline the
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Table 1
Mean value of selected performance metrics.

IEEE 4–bus test feeder IEEE 34–bus test feeder
NVV NEE DGL DPP TC NVV NEE DGL DPP TC

- (MW) (MW) ($) ($) - (MW) (MW) ($) ($)
Strategies

No tariff 0.087 0.351 0.028 -0.300 0. 0.101 0.118 0.089 -0.106 0.
Constant tariff 0. 0.218 0.022 - 0.119 0.088 0. 0.073 0.065 -0.030 0.078
Proposed 0. 0.339 0.027 -0.292 -0.022 0. 0.108 0.077 -0.126 -0.056

objective function of the DSO but also to bring consistency
and predictability to prosumer behavior, thereby reinforcing the
overall efficiency and reliability of local energy markets.

We highlight the application of the Nikaido–Isoda refor-
mulation to the lower–level GNEP to characterize the set of
GNEs. Looking forward, we believe this reformulation holds
significant potential for practical implementation, particularly
in solving Stackelberg games with a GNEP at the lower level
through a branch–and–cut strategy.

One limitation of the current approach is the assumption
of fixed and known peer–to–peer prices, which should be the
endogenous result of the bidding process among agents in a
local market platform. Future work should relax this assump-
tion, enabling a more dynamic and realistic modeling of price
mechanisms in these markets.

Another critical area for future investigation is the incorpo-
ration of inherent uncertainties, such as solar irradiance and
demand fluctuations, into our model. Addressing this right–
hand side uncertainty, particularly in the lower level of the
bilevel problem, is paramount. Drawing inspiration from robust
optimization methods successfully applied in voltage regula-
tion problems within active distribution networks, we propose
exploring these methods within bilevel robust optimization.
This approach can potentially enhance the resilience and ef-
ficacy of our model in the face of uncertainty.
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A. The KKT reformulation of the lower–level
In this section, we construct the KKT reformulation of

the lower–level GNEP (11). It is well known that if the opti-
mization problem of each player satisfies standard constraint
qualifications, solving the GNEP is equivalent to solving the
concatenation of the KKT systems of all players Facchinei and
Kanzow (2007). We start by constructing an inner polyhedral
approximation the feasible dispatch set of each DG (1), allow-
ing us to represent (9) as a polyhedron. In the case Ω(𝐮−𝑖) is
a polyhedron, no matter the choice of 𝐮−𝑖, and the objective
function of each prosumer is convex quadratic as long as 𝚽𝑘

𝑖 ⪰
0, the problem of each prosumer satisfies the so–called refined
Slater constraint qualification (RSCQ), presented as Theorem
28.2 in Rockafellar (1970). As a consequence, the stacked KKT
conditions of all followers become necessary and sufficient for
a solution 𝐮 to be a solution to (11), i.e., 𝐮 ∈ (𝑇 ).

First, we construct a polyhedral inner approximation of
(1c) following Ben-Tal and Nemirovski (2001). Therefore,
replacing (1c) by the following set of inequalities for all 𝑗 =
0, ..., 𝑛SOC

−𝛼G,𝑖𝑗𝑝G − 𝛽G,𝑖𝑗 ≤ 𝑞G (44a)
𝛼G,𝑖𝑗𝑝G + 𝛽G,𝑖𝑗 ≥ 𝑞G (44b)

Where
𝛽G,𝑖𝑗 = 𝑞0𝐺,𝑖,𝑗 − 𝛼G,𝑖𝑗𝑝0𝐺,𝑖𝑗 (45)

𝛼G,𝑖𝑗 =
𝑞0𝐺,𝑖,𝑗+1 − 𝑞

0
𝐺,𝑖𝑗

𝑝0𝐺,𝑖,𝑗+1 − 𝑝
0
𝐺,𝑖𝑗

(46)

(

𝑝0𝐺,𝑖𝑗 , 𝑞
0
𝐺,𝑖𝑗

)

= 𝑠G,𝑖
(

sin
(

𝑗𝜋
4𝑛

)

, cos
(

𝑗𝜋
4𝑛

))

(47)

The KKT conditions of the GNEs are the system of equa-
tions (9b) to (9e), (48), and (49).

Similarly, we can leverage the KKT conditions for the
welfare equilibria; thereby, obtaining necessary and sufficient
conditions for (12). The KKT conditions for the welfare equi-
libria are the system of equations: (9b) to (9e), (48a) to (48g),
(48i), (49), and

− 𝜇𝑘𝑖 + 𝜇
𝑘
𝑗 − 𝜆

𝑘
EL,𝑖𝑗 = 0 ∀(𝑖, 𝑗, 𝑘) ∈  ×𝑖 ×

(50a)
𝜇𝑘𝑖 + 𝑐

𝑘
E,𝑖0 + 𝜆

𝑘
EL,𝑖0 = 0 ∀(𝑖, 𝑘) ∈  ×

(50b)
In other words, the KKT system of the welfare optimization
problem is the same as of the GNEs, except that (48h) have to
be replaced by (50).
Proposition 3. The following is a necessary condition for a
solution to (1) to be a solution to (2).

𝜆𝑘EL,𝑖𝑗 + 𝜆
𝑘
EL,𝑖𝑗 = 0 ∀(𝑖, 𝑗, 𝑘) ∈  ×𝑖 × (51)

PROOF. The financial network is a symmetric directed graph,
therefore if (𝑖, 𝑗) belongs to the edges, so do (𝑗, 𝑖). Then, from
(50a) we obtain

− 𝜇𝑘𝑗 + 𝜇
𝑘
𝑖 − 𝜆

𝑘
EL,𝑗𝑖 = 0 ∀(𝑖, 𝑗, 𝑘) ∈  ×𝑖 ×

(52)
Summing (50a) and (52), we obtain (51). □

Proposition 4. The following are sufficient conditions for a
GNE to be a Welfare equilibrium

𝜇𝑘𝑖 = 𝜇𝑘𝑗 (53a)
𝜆𝑘EL,𝑖𝑗 = 𝜆𝑘EL,𝑗𝑖 = 0 (53b)

PROOF. Reorder the terms in (53a) to obtain
𝜇𝑘𝑖 − 𝜇

𝑘
𝑗 = 0

Add a a zero–valued 𝜆𝑘EL,𝑖𝑗 on the left hand side to obtain
𝜇𝑘𝑖 − 𝜇

𝑘
𝑗 + 𝜆

𝑘
EL,𝑖𝑗 = 0

Thereby, we have arrived to (50a), hence the GNE is a welfare
equilibrium. □
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Stationarity conditions:

Φ𝑘
𝑝𝑝,𝑖𝑝

𝑘
𝑖 + Φ𝑘

𝑝𝑞,𝑖𝑞
𝑘
𝑖 + 𝜙

𝑘
𝑝,𝑖 + 𝜇

𝑘
𝑖 + 𝜈

𝑘
𝑃 ,𝑖 = 0 ∀(𝑖, 𝑘) ∈  × (48a)

Φ𝑘
𝑞𝑞,𝑖𝑞

𝑘
𝑖 + Φ𝑘

𝑝𝑞,𝑖𝑝
𝑘
𝑖 + 𝜙

𝑘
𝑞,𝑖 + 𝜈

𝑘
𝑄,𝑖 = 0 ∀(𝑖, 𝑘) ∈  × (48b)

𝜈𝑘P,𝑖 + 𝛼G,𝑖𝑗

∑

𝑗∈

(

𝜆𝑘GL,𝑖𝑗 + 𝜆
𝑘
GU,𝑖𝑗

)

= 0 ∀(𝑖, 𝑘) ∈  × (48c)

𝜈𝑘P,𝑖 − 𝛼G,𝑖𝑗

∑

𝑗∈

(

𝜆𝑘GU,𝑖𝑗 − 𝜆
𝑘
GL,𝑖𝑗

)

= 0 ∀(𝑖, 𝑘) ∈  × (48d)

𝜈𝑘P,𝑖 + 𝜂𝐵,𝑖𝜈
𝑘
B,𝑖 + 𝜆

+,𝑘
PBU,𝑖 − 𝜆

+,𝑘
PBL,𝑖 = 0 ∀(𝑖, 𝑘) ∈  × (48e)

𝜈𝑘P,𝑖 −
1
𝜂𝐵,𝑖

𝜈𝑘B,𝑖 + 𝜆
−,𝑘
PBU,𝑖 − 𝜆

−,𝑘
PBL,𝑖 = 0 ∀(𝑖, 𝑘) ∈  × (48f)

𝜈𝑘B,𝑖 − 𝜈
𝑘+1
B,𝑖 + 𝜆𝑘SBU,𝑖 − 𝜆

𝑘
SBL,𝑖 = 0 ∀(𝑖, 𝑘) ∈  ×′ (48g)

𝑐𝑘E,𝑖𝑗 + 𝜇
𝑘
𝑖 + 𝜆

𝑘
EL,𝑖𝑗 = 0 ∀(𝑖, 𝑗, 𝑘) ∈  × 0

𝑖 × (48h)
𝑐𝑘E,0𝑖 + 𝜇

𝑘
𝑖 − 𝜆

𝑘
EL,0𝑖 = 0 ∀(𝑖, 𝑘) ∈  × (48i)

Complementarity slackness conditions:

𝜆𝑘GL,𝑖𝑗 ≥ 0 ⊥ − 𝛼G,𝑖𝑗𝑝G − 𝛽G,𝑖𝑗 ≤ 𝑞G ∀(𝑖, 𝑗, 𝑘) ∈  ×𝑖 × (49a)
𝜆𝑘GU,𝑖𝑗 ≥ 0 ⊥ 𝛼G,𝑖𝑗𝑝G + 𝛽G,𝑖𝑗 ≥ 𝑞G ∀(𝑖, 𝑗, 𝑘) ∈  ×𝑖 × (49b)
𝜆𝑘SL,𝑖 ≥ 0 ⊥ 𝑠𝑘B,𝑖 ≥ 0 ∀(𝑖, 𝑘) ∈  × (49c)
𝜆𝑘SU,𝑖 ≥ 0 ⊥ 𝑠𝑘B,𝑖 ≤ �̂�B,𝑖 ∀(𝑖, 𝑘) ∈  × (49d)
𝜆+,𝑘PBL,𝑖 ≥ 0 ⊥ 𝑝+,𝑘B,𝑖 ≥ 0 ∀(𝑖, 𝑘) ∈  × (49e)
𝜆−,𝑘PBL,𝑖 ≥ 0 ⊥ 𝑝−,𝑘B,𝑖 ≥ 0 ∀(𝑖, 𝑘) ∈  × (49f)
𝜆+,𝑘PBU,𝑖 ≥ 0 ⊥ 𝑝+,𝑘B,𝑖 ≤ �̂�B,𝑖 ∀(𝑖, 𝑘) ∈  × (49g)
𝜆−,𝑘PBU,𝑖 ≥ 0 ⊥ 𝑝−,𝑘B,𝑖 ≤ �̂�B,𝑖 ∀(𝑖, 𝑘) ∈  × (49h)
𝜆𝑘EL,𝑖𝑗 ≥ 0 ⊥ 𝑝𝑘E,𝑖𝑗 ≥ 0 ∀(𝑖, 𝑗, 𝑘) ∈ 𝑖 ∈  0

𝑖 × 0
𝑖 × (49i)

Proposition 5. The following are sufficient conditions for a
GNE to be a Welfare equilibrium

𝑐𝑘E,𝑖𝑗 = 𝑐𝑘E,𝑗𝑖 (54a)
𝜆𝑘EL,𝑖𝑗 = 𝜆𝑘EL,𝑗𝑖 = 0 (54b)

PROOF. From (48h) and (54a) we have
𝜇𝑘𝑖 + 𝜆

𝑘
EL,𝑖𝑗 = 𝜇𝑘𝑗 + 𝜆

𝑘
EL,𝑗𝑖

Therefore
𝜇𝑘𝑖 = 𝜇𝑘𝑗

and by Proposition 4, the GNE is also a welfare equilibrium.
Propositions 3 to 5 characterize, to some extent, the two

classes of market designs considered in this work.
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