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Abstract

An interweaving relation is a Markovian similarity-type relation between two Markov chains intro-
ducing a warming-up time after which their time-marginal distributions can be tightly compared (for
different initial distributions). For non-transient Markov transition kernels on the same state space,
these relations are shown to be equivalent to the usual similarity relation. Some bounds are deduced
on corresponding warming-up times, when the eigenvalues are furthermore assumed to be real. When
the eigenvalues are non-negative, the same approach enables us to construct strong stationary times
for irreducible Markov chains through interweaving relations with model absorbed Markov chains, thus
extending a result due to Matthews in the reversible situation.
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1 Introduction
This paper investigates certain similarity-type relations between non-transient Markov kernels on the
same finite state space. The interest of these relations is to introduce a warming-up (random) time
after which the time-marginal distributions of corresponding Markov chains can be strongly related.
They will also enable us to revisit a result of Matthews [5] on strong stationary times associated to
reversible Markov chains and to extend it to the non-reversible setting, under the assumption that the
eigenvalues of its Markov kernel are non-negative.

Let us begin by recalling the kind of relations we are interested in.
On a finite set V with cardinal |V | ě 2, let be given two Markov transition matrices P and rP .
We say that a (Markov) intertwining relation from P to rP holds through the link Λ, which is

another Markov transition matrix on V , when

PΛ “ Λ rP (1)

(since here all the considered relations will be Markovian, from now on we drop the adjective “Markov”
for them). Intertwining relations have a long history starting with the seminal paper of Rogers and
Pitman [8]. The Markov kernels P and rP are sometimes called dual and primal, see e.g. Diaconis
and Fill [2].

When Λ is furthermore invertible, (1) is called a faithful intertwining relation from P to rP
through Λ.

We say that there is a bi-intertwining relation between P and rP , via the links Λ and rΛ, when
in addition to (1) we have

rP rΛ “ rΛP (2)

This relation is said to be a faithful bi-intertwining relation when furthermore Λ and rΛ are
invertible.

A bi-intertwining relation between P and rP , via the links Λ and rΛ, is said to be an interweaving
relation when there exists a probability distribution q “ pqnqnPZ` on Z` so that

ΛrΛ “
ÿ

nPZ`

qnP
n (3)

(note that the r.h.s. is necessarily convergent). This notion was introduced in [7], where q is seen as
the distribution of a warming-up time, independent of the underlying Markov chains, after which a
lot of convergence to equilibrium informations can be transferred from the primal chain to the dual
chain. This feature will appear again in Section 4 and 5 below, but in a slightly distorted way.

It is bi-interweaving relation, when there also exists a probability distribution rq “ prqnqnPZ` on
Z` so that

rΛΛ “
ÿ

nPZ`

rqn rP
n (4)

These relations, interweaving and bi-interweaving, are said to be faithful when Λ and rΛ are
invertible.

Remark 1 When there is both a faithful bi-intertwining relation between P and rP and an interweaving
relation (3), then (4) is necessarily satisfied with rq “ q, namely we also have a faithful bi-interweaving
relation. Indeed, from (3) we deduce

ΛrΛΛ “
ÿ

nPZ`

qnP
nΛ
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and via (1) we obtain

ΛrΛΛ “ Λ
ÿ

nPZ`

qn rP
n

It remains to multiply on the left by Λ´1 to get (4) with rq “ q. ˝

A bi-intertwining relation always holds between P and rP : it is sufficient to take Λ “ rπ (meaning
that all the rows of Λ coincide with rπ) and rΛ “ π, where π and rπ are invariant probability measures
for P and rP respectively (they always exists in the context of finite state space, but in general they
are not unique and their supports are not the whole state space V ).

It is proven in [6] that two non-transient Markov matrices P and rP are similar if and only if there
exists a faithful bi-intertwining relation between them (be careful, we changed the names given in
[6]: there, a link was necessarily invertible, bi-intertwining corresponded to mutual intertwining and
faithful bi-intertwining was called Markov-similarity). In fact the arguments of [6] contain an error
that can be corrected following the approach of Section 3 below, showing the above mentioned result
of [6] is indeed true.

In contrast with this result, we will show that non-transience and similarity of P and rP are not
sufficient to ensure the existence of a faithful-bi-intertwining relation between them. To give a natural
necessary and sufficient for the existence of such a relation for non-transient kernels, denote by C1,
C2, ..., C` (respectively rC1, rC2, ..., rC`) the irreducible classes of P (resp. rP ). They are in the same
number ` P N, because this is the (geometric and algebraic) multiplicity of the eigenvalue 1. For all
l P J`K B t1, 2, ..., `u, denote PCl (resp. rP

rCl
) the restriction of P (resp. rP ) to Cl (resp. rCl). Note that

these matrices are Markovian and irreducible.
Our first contribution here prove the following characterisation of faithful bi-interweaving relations:

Theorem 2 There exists a faithful bi-interweaving relation between P and rP if and only if there exists
a permutation σ P S` and a probability q on Z` such that for any l P J`K, |Cl| “ | rCσplq| and there is
a faithful bi-interweaving relation between PCl and rP

rCσplq
with the same probability rq “ q. It can

furthermore be imposed that q has a finite support.

Thus faithful bi-interweaving relations give a more accurate account of the geometry of non-
transient Markov matrices than faithful bi-intertwining relations. As seen in [6], the case of transient
Markov matrices is more complicated and will not be considered here.

Theorem 2 also enables us to give an example of Markov matrices P and rP satisfying a faithful
bi-intertwining relation but no faithful bi-interweaving relation:

Example 3 Consider on V B J4K,

P B

¨

˚

˚

˝

1 0 0 0
0 1{3 1{3 1{3
0 1{3 1{3 1{3
0 1{3 1{3 1{3

˛

‹

‹

‚

and rP B

¨

˚

˚

˝

1{2 1{2 0 0
1{2 1{2 0 0
0 0 1{2 1{2
0 0 1{2 1{2

˛

‹

‹

‚

Both matrices are non-transient: for P the state space can be decomposed into the union of
the irreducible classes which are C1 B t1u and C2 B t2, 3, 4u, and for rP the irreducible classes are
rC1 B t1, 2u and rC2 B t3, 4u. The common spectrum of P and rP corresponds to the eigenvalues 1
with multiplicity 2 and 0 with multiplicity 2. To check it, write

P “

ˆ

1 0
0 J3

˙

and rP “

ˆ

J2 0
0 J2

˙

where for any n P N, Jn is the nˆn matrix whose entries are all equal to 1{n. Note that for n ě 2, the
spectrum of Jn is 1 with multiplicity 1 (the corresponding eigenspace is the space of constant vectors)
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and 0 with multiplicity n´ 1 (the corresponding eigenspace is the space of vectors whose entries sum
up to 0).

Since P and rP are non-transient and similar, we deduce from [6] the existence of a faithful bi-
intertwining relation between P and rP . Nevertheless it is impossible to find a permutation σ P S2

such that the condition of Theorem 2 is satisfied, so there is no faithful bi-intertwining relation between
P and rP .

˝

The situation where both P and rP are irreducible, in addition to the assumptions of Theorem 2
will play an important role in its proof. It also enables us to be more precise about the possible
restrictions on the size of the support of q:

Proposition 4 Assume that P and rP are irreducible and similar. Then there exists a faithful bi-
interweaving relation between them, with equal probability distribution q “ rq whose support contains at
most d` 1 points, where d is the common period of P and rP . Thus when P is aperiodic, there exists a
faithful bi-interweaving relation between P and rP with q “ rq having a support with at most two points.
When in addition of aperiodicity, we assume that none of the eigenvalues of P vanishes, then there
exists a faithful bi-interweaving relation between P and rP with q “ rq a Dirac mass.

An example of bound on the support of q will be given at the end of Section 3, at least when all
the eigenvalues of P are real. Nevertheless this bound is certainly too universal to be relevant and it
can probably be improved in particular situations, as the steps of its proof are sometimes quite coarse.
For instance it could not be applied in the following degenerate situation.

The arguments of the proof of this result can be adapted to recover the following result due to
Matthews [5]. Let P be an irreducible Markov kernel on V whose invariant probability is denoted π.
It is unique and its support is V . Assume that π is reversible for P , so that P seen as an operator on
L2pπq is symmetric and thus diagonalisable. Denote its eigenvalues (with multiplicities) by

1 “ θ1 ą θ2 ě θ3 ě ¨ ¨ ¨ ě θ|V | ě ´1 (5)

where the strict inequality comes from irreducibility. Let pϕkqkPJ|V |K be an orthonormal basis of L2pπq
consisting of corresponding eigenvectors, where the orthogonality is possible due to reversibility.

Let X B pXpnqqnPZ` be a Markov chain admitting P for transition kernel. Recall that a strong
stationary time for X is a finite stopping time τ (with respect to the filtration generated by X and
maybe some independent randomness) such that τ and Xτ are independent and Xτ is distributed
according to π. For any integers m ď n, we will denote Jm,nK B tm,m`1, ..., nu and we already used
previously the shortcut JnK B J1, nK for any n P N.

For the next result, assume that the eigenvalues in (5) are non-negative, i.e. θ|V | ě 0.
Let µ0 be the law of X0. For any n P Z`, consider the probability distribution rµ

pnq
0 on J|V |K given

by

@ k P J|V |K, rµ
pnq
0 pkq B

#

}ϕk}8|µ0rϕks|
Zpµ0,nq

θnk , if k ě 2

0 , if k “ 1
(6)

with

Zpµ0, nq B
ÿ

lPJ|V |Kzt1u

}ϕl}8|µ0rϕls|θ
n
l (7)

The definition (6) is not valid when Zpµ0, nq “ 0, namely when µ0rϕks “ πrϕks for all k P J|V |K, i.e.
µ0 “ π. In this situation we take rµ

pnq
0 B δ1, and formally the following result enables to recover that

0 is then a strong stationary time.
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Introduce the times

n0 B mintn P Z` : Zpµ0, nq ď 1u (8)

n̄0 B min

$

&

%

n P Z` :
trpPnq ´ 1

π^
“

1

π^

ÿ

kPJ2,|V |K

θnk ď 1

,

.

-

(9)

where π^ B mintπpxq : x P V u.
Consider pGkqkPJ2,|V |K a family of independent geometric random variables of respective parameters

pθkqkPJ2,|V |K, namely

@ k P J2, |V |K, @ j P N, PrGk “ js “ θj´1
k p1´ θkq (10)

Construct a random variable G taking values in Z` in the following way. First we sample an
element K from J|V |K according to rµ

pn0q

0 . If K “ 1 we take G B 0, and otherwise we take G B Gk.

Theorem 5 (Matthews [5]) Assume that P is irreducible, reversible and that its eigenvalues are all
non-negative. Then there exists a strong stationary time for X which is stochastically dominated by

n0 ` G (11)

(where the ratio vanishes when θk “ 0). This random variable is itself stochastically dominated by
n̄0 ` G2 ď

Q

lnp|V |{π^q
lnp1{θ2q

U

` G2, where r¨s is the usual ceiling function and G2 is a geometric random
variable of parameter θ2.

The statement of Matthews [5] is slightly different, nevertheless both formulations are strongly
related. In particular, instead of assuming that the eigenvalues of P are non-negative, Matthews [5]
stated his result for the Markov kernel P 2, whose eigenvalues are indeed non-negative. Furthermore,
as in Matthews [5], we are going to check that the above estimate can be quite sharp as it enables
to recover the upper bound in the cut-off satisfied by the random walk on the hypercube of high
dimension, see Example 14 in Section 4.

Our second goal here is to extend Theorem 5 in Theorem 17 of Section 5, by removing the assump-
tion of reversibility, up to introducing in the bounds a factor including the condition number of the
Gramian matrix associated to the (generalized) eigenvectors.

The plan of the paper is as follows. In the next section we show Proposition 4 under the additional
assumption that both P and rP are reversible, as this situation allows for a pedagogical exposure of
the main arguments. The full Proposition 4 and Theorem 2 are proven in Section 3. Section 4 adapts
the arguments of Section 2 to recover Theorem 5. The underlying idea is to replace rP by a very simple
absorbed Markov kernel, serving as a “model”. The random variable G comes from this model, while
the first term of (11) corresponds to a warming-up time between P and this model. This approach is
extended in Section 5, taking into account the arguments of the proof of Proposition 4, to remove the
reversibility assumption. The final section extend these results to the continuous framework.

Acknowledgments: I would especially like to thank Persi Diaconis for his complaints
about a first version of this paper containing no example. It has led to an improved version of Theorem
5, enabling to treat the added Example 14.

2 The reversible case
Here for the sake of clarity, we show Proposition 4 under the simplifying assumption that both P and
rP are reversible. The proof takes up the arguments of [6] for intertwining and modifies them to deal
with interweaving.

More precisely, our purpose is to show the following result:
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Proposition 6 Assume that P and rP are similar and that P and rP are irreducible and reversible.
Then there exists a faithful bi-interweaving relation between them, with q “ rq whose support contains
at most three points. When P is aperiodic (and by consequence rP too), we can find such a relation
with q “ rq whose support contains at most two points. When in addition to aperiodicity, none of the
common eigenvalues of P and rP vanishes, we can furthermore impose that q “ rq is a Dirac mass.

Before coming to the proof of this proposition, we modify the arguments of Lemma 6 in [6] to
construct more general invertible links Λ and rΛ from V to V for a faithful bi-intertwining relation
between P and rP , than those considered there.

Since P is irreducible and reversible, as before the statement of Theorem 5, we denote π, 1 “
θ1 ą θ2 ě θ3 ě ¨ ¨ ¨ ě θ|V | ě ´1 and pϕkqkPJ|V |K, respectively, the invariant probability, the ordered
eigenvalues and a corresponding orthonormal basis of L2pπq of eigenvectors.

The same holds for rP with the same eigenvalues. We denote prϕkqkPJ|V |K a corresponding orthonor-
mal basis of L2prπq of eigenvectors, where rπ is the reversible probability of rP . Without loss of generality,
we assume that ϕ1 “ rϕ1 “ 1 (the function always taking the value 1).

To any sequence b B pbkqkPJ2,|V |K of real numbers, associate the operator Ab defined by

@ k P J|V |K, Abrrϕks B

"

bkϕk , if k ě 2
0 , if k “ 1

(12)

Symmetrically, to any sequence rb B prbkqkPJ2,|V |K of real numbers, associate the operator rA
rb
defined

by

@ k P J|V |K, rA
rb
rϕks B

"

rbk rϕk , if k ě 2
0 , if k “ 1

Here are the corresponding matrices:

Lemma 7 We have for any x, y P V ,

Abpx, yq “
ÿ

kě2

bkϕkpxqrϕkpyqrπpyq

rA
rb
px, yq “

ÿ

kě2

rbk rϕkpxqϕkpyqπpyq

It follows that

|Abpx, yq| ď

d

rπpyq

πpxq
max

kPJ2,|V |K
|bk| ď

1
?
π^rπ^

max
kPJ2,|V |K

|bk|rπpyq

| rA
rb
px, yq| ď

d

πpyq

rπpxq
max

kPJ2,|V |K
|rbk| ď

1
?
π^rπ^

max
kPJ2,|V |K

|rbk|πpyq

where

π^ B min
xPV

πpxq

rπ^ B min
xPV

rπpxq

Proof
For any b B pbkqkPJ2,|V |K P RJ2,|V |K, introduce the matrix A1b whose entries are given by

@ x, y P V, A1bpx, yq B
ÿ

kě2

bkϕkpxqrϕkpyqrπpyq

6



To show that A1b is the matrix associated to the operator Ab, it is sufficient to check that for any
l P J|V |K,

@ x P V,
ÿ

yPV

A1bpx, yqrϕlpyq “ blϕlpxq

with the convention that b1 “ 0.
By definition of A1b, we compute

ÿ

yPV

A1bpx, yqrϕlpyq “
ÿ

kě2

bkϕkpxqrπrrϕk rϕls

“ blϕlpxq

by orthonormality of the basis prϕkqkPJ|V |K in L2prπq.
This shows the first announced equality.
The second equality is obtained by symmetry, exchanging the roles of P and rP .
To prove the bounds, for any y P V , introduce the following decomposition of the indicator function

1y of y in the basis prϕkqkPJ|V |K:

1yp¨q “
ÿ

kPJ|V |K

rαkpyqrϕk (13)

where by orthonormality, the coefficients prαkpyqqkPJ|V |K are given by

rαkpyq “ rπr1y rϕks “ rπpyqrϕkpyq

Applying (13) at the point y, we get

1 “ 1ypyq

“
ÿ

kPJ|V |K

rαkpyqrϕkpyq

“
ÿ

kPJ|V |K

rϕ2
kpyqrπpyq

“ rπpyq ` rπpyq
ÿ

kPJ2,|V |K

rϕ2
kpyq

so that
ÿ

kPJ2,|V |K

rϕ2
kpyq “

1

rπpyq
´ 1

ď
1

rπpyq

Similarly, we get
ÿ

kPJ2,|V |K

ϕ2
kpxq ď

1

πpxq
(14)

Cauchy-Schwartz inequality now leads to

|Abpx, yq| ď max
kPJ2,|V |K

|bk|
ÿ

kě2

|ϕkpxq||rϕkpyq|rπpyq

ď max
kPJ2,|V |K

|bk|

d

ÿ

kě2

ϕ2
kpxq

d

ÿ

kě2

rϕ2
kpyqrπpyq

7



ď max
kPJ2,|V |K

|bk|
1

a

πpxqrπpyq
rπpyq

and thus to the first announced bounds.
The second ones follow by symmetry. �

We are interested in the operator

Λb B rπ `Ab (15)

where again rπ is interpreted as the matrix whose rows are all equal to the probability rπ. We check
that

@ k P J|V |K, Λbrrϕks B

"

bkϕk , if k ě 2
ϕ1 , if k “ 1

due to the fact that for k P J2, |V |K, we have rπrrϕks “ rπrrϕ1 rϕks “ 0 by orthogonality.
It implies the intertwining relation PΛb “ Λb rP and Λb is invertible as soon as all the entries of b

are non-zero.
From the relation Λbr1s “ Λbrrϕ1s “ ϕ1 “ 1, it appears that the row sums of Λb are all equal to 1.
Furthermore, all the entries of Λb will be non-negative as soon as

@ x, y P V, rπpyq ´ |Abpx, yq| ě 0

From Lemma 7, this is true when

max
kPJ2,|V |K

|bk| ď
a

π^rπ^ (16)

Since similar arguments are valid for rΛ
rb
B π ` rA

rb
, we get a faithful bi-intertwining relation

between P and rP , with Λb and rΛ
rb
as links, by choosing any b and rb with coordinates belonging to

r´
?
π^rπ^,

?
π^rπ^szt0u.

With these preliminaries in hand, we can now come to the

Proof of Proposition 6
We use the links Λb and rΛ

rb
defined above and look for conditions on b and rb so that (3) and (4) are

satisfied with a probability q “ rq with minimal support.
Let us first assume that P is aperiodic, which is equivalent to the fact that in (5), we have θ|V | ą ´1.
Concerning (3), we have on one hand,

@ k P J|V |K, ΛbrΛrb
rϕks “

"

ϕ1 , if k “ 1
rbkbkϕk , if k ě 2

and on the other hand, for a given probability q B pqnqnPZ` ,

@ k P J|V |K,
ÿ

nPZ`

qnP
nrϕks “

ÿ

nPZ`

qnθ
n
kϕk

Note that for k “ 1, we have

ΛbrΛrb
rϕ1s “

ÿ

nPZ`

qnP
nrϕ1s

since both terms are equal to 1.
Thus the desired equality (3) is equivalent to

@ k P J2, |V |K,
ÿ

nPZ`

qnθ
n
k “ rbkbk (17)
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As alluded to at the end of the proposition, let us look for a probability q “ δn0 , the Dirac mass
at some n0 P Z`. The above condition then writes

@ k P J2, |V |K, θn0
k “ rbkbk

Consider ζ B maxt|θk| : k P J2, |V |Ku, we have ζ P r0, 1q by irreducibility, reversibility and
aperiodicity. It follows that if we take

n0 B 1`

Z

lnpπ^rπ^q

lnpζq

^

(note that both logarithms in the integer part t¨u are negative, since π^, rπ^ ă 1{2, as |V | ě 2), then
(16) is satisfied as soon as we take

@ k P J2, |V |K, bk B
b

|θn0
k |

@ k P J2, |V |K, rbk B
b

|θn0
k |signpθn0

k q

where signp¨q is the sign mapping (with e.g. the convention that signp0q “ 1).
Furthermore, when none of the eigenvalues θk, for k P J2, |V |K, vanishes, the entries of b and rb are

non-zero, so we get the wanted faithful interweaving relation (3) with the links Λb and rΛ
rb
, and q a

Dirac mass.
To get the wanted faithful bi-interweaving relation, with rq “ q a Dirac mass, we can proceed

similarly, since we deduce from (4) the same equations for rq as for q due to the isospectrality of P and
rP , or we just rely on Remark 1.

When some of the eigenvalues θk, for k P J2, |V |K, vanish, we rather consider a probability of the
form

q B
π^rπ^

2
δ0 `

ˆ

1´
π^rπ^

2

˙

δn1 (18)

with

n1 B 1`

Z

lnpπ^rπ^{4q

lnpζq

^

(19)

Indeed, defining for any θ in the complex unit disk,

Qpθq B
ÿ

nPZ`

qnθ
n (20)

“
π^rπ^

2
`

ˆ

1´
π^rπ^

2

˙

θn1

we get for any k P J2, |V |K,

π^rπ^
2

´ ζn1 ď Qpθkq ď
π^rπ^

2
` ζn1

By choice of n1, these bounds imply

π^rπ^
2

´
π^rπ^

4
ď Qpθkq ď

π^rπ^
2

`
π^rπ^

4

i.e.

π^rπ^
4

ď Qpθkq ď 3
π^rπ^

4
(21)

9



Thus considering

@ k P J2, |V |K, bk “ rbk B
a

|Qpθkq| (22)

we get the wanted faithful interweaving relation (3) with the links Λb and rΛ
rb
.

Again, Remark 1 provides the wanted faithful bi-interweaving relation, with rq “ q supported by
two points.

Let us now come to the situation where P is periodic, so that in (5) we have θ|V |´1 ą θ|V | “ ´1.
Indeed, under the irreducibility and reversibility assumptions, the aperiodicity is equivalent to the
existence of a (necessarily unique) eigenvalue ´1, that is why both P and rP are aperiodic together,
when they have the same spectrum.

The previous considerations are still valid: it is sufficient to find b, rb and q (with rq “ q), so that
(17) holds with (16) and

min
kPJ2,|V |K

|bk| ą 0 (23)

The only difference with the above arguments comes from k “ |V | in (17), namely
ÿ

nPZ`

qnp´1qn “ rbkbk

It leads us to replace (18) by

q B
π^rπ^

2
δ0 `

ˆ

1´
π^rπ^

2

˙

δn1 ` δn1`1

2

with n1 still given by (19).
Indeed, (21) is still true for k P J2, |V | ´ 1K. For k “ |V |, we get Qpθ|V |q “ π^rπ^{2. Thus taking

again (22), we get (17) satisfied with (16) and (23). Furthermore the support of q “ rq only contains
the three points 0, n1 and n1 ` 1. �

3 The general case
Our purpose here is to show Proposition 4 and Theorem 2. Proposition 4 is the transposition to
interweaving relations of Lemma 7 in [6] for intertwining relations. Unfortunately the proof of the
latter is wrong, so we are to present new arguments that enable us to correct it.

Before coming to the proof of Proposition 4, we need some reminders from complex linear algebra.
Recall that seen as a complex matrix, P is similar to a block matrix, whose blocks are of Jordan
types pθ1, γ1q, pθ2, γ2q, ..., pθr, γrq, where θ1, θ2, ..., θr P C are the eigenvalues of P (with geometric
multiplicities) and r P N, γ1, γ2, ..., γr P N satisfy γ1 ` γ2 ` ¨ ¨ ¨ ` γr “ |V |. Recall that a Jordan block
of type pθ, nq is a nˆn matrix whose diagonal entries are equal to θ, whose first above diagonal entries
are equal to 1 and whose other entries vanish. The set tpθk, γkq : k P JrKu is a characteristic invariant
for the complex similarity class of P and will be called the characteristic set of P . It is characterised
by the existence of a complex basis pϕpk,lqqpk,lqPS of CV , where S B tpk, lq : k P JrK and l P JγkKu, such
that

@ pk, lq P S, P rϕpk,lqs “ θkϕpk,lq ` ϕpk,l´1q (24)

where by convention, ϕpk,0q “ 0 for all k P JrK.
But for our purpose, it is more advantageous to work with real functions. So let us decompose

S “ Sr \ Si

10



with

Sr B tpk, lq P S : θk P Ru
Si B tpk, lq P S : θk R Ru

There exists an involution of Si, denoted Si Q pk, lq ÞÑ pk̄, l̄q such that

@ pk, lq P Si, θk̄ “ θ̄k and γk̄ “ γk

Let Ri Ă Si be such that Ri Q pk, lq ÞÑ pk̄, l̄q P SizRi is a bijection. Consider Ci B Ri ˆ t0, 1u and
define

C B Sr \ Ci

We can find a basis pψcqcPC of RV such that

@ pk, lq P Sr, P rψpk,lqs “ θkψpk,lq ` ψpk,l´1q (25)

(again with the convention ψpk,0q “ 0 for all pk, 1q P Sr), and

@ pk, lq P Ri,

#

P rψpk,l,0qs “ θk,rψpk,l,0q ´ θk,iψpk,l,1q ` ψpk,l´1,0q

P rψpk,l,1qs “ θk,iψpk,l,0q ` θk,rψpk,l,1q ` ψpk,l´1,1q

(26)

where θk,r and θk,i are respectively the real and imaginary parts of θk (and ψpk,0,0q “ ψpk,0,1q “ 0 for
all pk, 1q P Ri).

Note that (26) is equivalent to

@ pk, lq P Ri, P rψpk,lqs “ θkψpk,lq ` ψpk,l´1q (27)

where ψpk,lq P CV is given by

@ pk, lq P Ri, ψpk,lq B ψpk,l,0q ` iψpk,l,1q (28)

Observe that the conjugate functions ψ̄pk,lq, for pk, lq P Ri, play the same role for θ̄k: P rψ̄pk,lqs “
θ̄kψ̄pk,lq ` ψ̄pk,l´1q. An example of basis pϕpk,lqqpk,lqPS satisfying (24) is given by

@ pk, lq P S, ϕpk,lq B

"

ψpk,lq , if pk, lq P Sr \Ri

ψ̄pk̄,l̄q , if pk, lq P SizRi

Such a basis pψcqcPC will be said to be adapted to P .
These linear algebra considerations are valid for any real matrix P , let us now specify what can

be said in addition for irreducible transition matrices. By irreducibility of P , 1 is an eigenvalue of
multiplicity 1, so we can assume that pθ1, γ1q “ p1, 1q and ψp1,1q “ 1. The irreducibility assumption
also implies there is a unique invariant probability π for P and it gives a positive weight to every
point of V . It can be assumed that all the eigenvectors ψc, for c P C are normalized in L2pπq, but in
general they will not be orthogonal. The only orthogonality property is that of ψp1,1q with the ψc, for
c P Cztp1, 1qu, namely

@ c P Cztp1, 1qu, πrψcs “ 0 (29)

Indeed, for any k P J2, rK such that pk, 1q P Sr \ Ri, we have P rψpk,1qs “ θkψpk,1q with θk “ 1
(where ψpk,lq is given by (28) for pk, 1q P Ri). Integrating the previous relation with respect to π, we
obtain due to the invariance of π,

πrψpk,1qs “ θkπrψpk,1qs

11



so that πrψpk,1qs “ 0 (for pk, 1q P Ri, this equality means that both πrψpk,l,0qs “ 0 and πrψpk,l,1qs “ 0).
Next we show that

πrψpk,lqs “ 0 (30)

by iteration on l, where k P J2, rK is fixed as above. If (30) is true for some l P Jγk´1K, then integrating
with respect to π the relation

P rψpk,l`1qs “ θkψpk,l`1q ` ψpk,lq (31)

we get p1´ θkqπrψpk,l`1qs “ 0, namely (30) with l replaced by l ` 1.
Let p rψcqcPC be a basis adapted to rP , with the same characteristic set tpθk, γkq : k P JrKu as P and

the same index set C.
The next step is to construct the analogue of the operator Ab given in (12), for any family b B

pbcqcPCztp1,1qu of real numbers. We cannot proceed directly as in (12), i.e. define Abr rψcs B bcψc for all
c P Cztp1, 1qu, because it would not be compatible with the commutation relation

PAb “ Ab rP (32)

Indeed applying the latter relation to rψpk,lq with pk, lq P Sr\Riztp1, 1qu, we should have the equality

bpk,lqP rψpk,lqs “ Abrθk rψpk,lq ` rψpk,l´1qs

namely

bpk,lqpθkψpk,lq ` ψpk,l´1qq “ bpk,lqθkψpk,lq ` bpk,l´1qψpk,l´1q

which implies that bpk,lq “ bpk,l´1q as soon as l ě 2. But this equality leads to restrictive choices of b
which are not in line with our purpose.

Fix the family b B pbcqcPCztp1,1qu of real numbers.
We start by constructing Ab on the vector space generated by p rψpk,lqqpk,lqPSrztp1,1qu. Define for any

pk, lq P Srztp1, 1qu,

Abr rψpk,lqs B
ÿ

jPJlK

bpk,l´j`1qψpk,jq (33)

On the vector space generated by p rψcqcPCi , we have to be more careful. By analogy with (33), we
would like to define for any pk, lq P Ri,

Abr rψpk,lqs B
ÿ

jPJlK

bpk,l´j`1qψpk,jq

with ψpk,lq is given by (28) and where

@ j P JγkK, bpk,jq B bpk,j,0q ` i bpk,j,1q (34)

In “real” terms, this amounts to taking for any pk, lq P Ri

Abr rψpk,l,0qs B
ÿ

jPJlK

bpk,l´j`1,0qψpk,j,0q ´ bpk,l´j`1,1qψpk,j,1q

Abr rψpk,l,1qs B
ÿ

jPJlK

bpk,l´j`1,1qψpk,j,0q ` bpk,l´j`1,0qψpk,j,1q

It remains to define Ab on ψp1,1q. We just take Abrψp1,1qs “ 0.

12



Lemma 8 The operator Ab constructed above satisfies (32).

Proof
It is sufficient to check that

@ c P C, PAbr rψcs “ Ab rP r rψcs (35)

For c “ p1, 1q, this equality holds since both sides vanish, due to the fact that 1 “ rP r1s.
We consider next the case e “ pk, lq P Srztp1, 1qu. We compute on one hand,

PAbr rψk,ls “ P

»

–

ÿ

jPJlK

bpk,l´j`1qψpk,jq

fi

fl

“
ÿ

jPJlK

bpk,l´j`1qP rψpk,jqs

“
ÿ

jPJlK

bpk,l´j`1qpθkψpk,jq ` ψpk,j´1qq

“ θk
ÿ

jPJlK

bpk,l´j`1qψpk,jq `
ÿ

jPJl´1K

bpk,l´jqψpk,jq (36)

and on the other hand,

Ab rP r rψpk,lqs “ Abrθk rψpk,lq ` rψpk,l´1qs

“ θk
ÿ

jPJlK

bpk,l´j`1qψpk,jq `
ÿ

jPJl´1K

bk,l´1´j`1ψpk,jq

which coincides with (36).
Let us now check (35) for c P Ci. Note that the above computations are equally valid for ψpk,lq

defined in (28), with pk, lq P Ri. Namely, we have

PAbr rψpk,l,0q ` i rψpk,l,1qs “ Ab rP r rψpk,l,0q ` i rψpk,l,1qs

Since PAbr rψpk,l,0qs, PAbr rψpk,l,1qs, Ab rP r rψpk,l,0q and Ab rP r rψpk,l,1qs are vectors with real entries, we
deduce

PAbr rψpk,l,0qs “ Ab rP r rψpk,l,0qs

PAbr rψpk,l,1qs “ Ab rP r rψpk,l,1qs

These identities are valid for all pk, lq P Ri, so that (35) is satisfied for all c P Ci. �

Writing Ab in the bases pψcqcPC and p rψcqcPC , we see that

lim
bÑ0

Ab “ 0 (37)

Introduce

R B pSr \Riqztp1, 1qu (38)

Taking into account the definition (34), we can see b P RCztp1,1qu as the element pbpk,lqqpk,lqPR P
RSrztp0,0qu ˆ CRi . From (37) we can find η ą 0 so that for any b B pbpk,lqqpk,lqPR,

maxt|bpk,lq| : pk, lq P Ru ď η ñ maxt|Abpx, yq|{rπpyq : x, y P V u ď 1 (39)

13



A more quantitative description of η ą 0, in the spirit of Lemma 7, will be given in Lemma 11 at
the end of this section, under the assumption that all the eigenvalues are real. It is not needed in the
proofs of Proposition 4 and Theorem 2, which are rather qualitative as long as no bound is asked on
the support of q (i.e. not only on its cardinal).

Introduce

B B
!

b P RSrztp1,1qu ˆ CRi : maxt|bpk,lq| : pk, lq P Ru ď η
)

(40)

For b P B, we consider the operator Λb given as in (15) by

Λb B rπ `Ab (41)

where again rπ is interpreted as the matrix whose rows are all equal to the probability rπ.
Taking into account that Prπ “ rπ rP “ rπ and Lemma 8, we get the intertwining relation PΛb “ Λb rP .

From the relation Λbr1s “ Λbr rψp1,1qs “ ψp1,1q “ 1, it appears that the row sums of Λb are all equal to
1. Furthermore, all the entries of Λb will be non-negative as soon as

@ x, y P V, rπpyq ´ |Abpx, yq| ě 0

which is satisfied by definition of B, see (39) and (40).
Thus Λb is a Markov kernel for b P B. In general it is not invertible, for instance for b “ 0.

Introduce

C B
 

b P B : mint|bpk,1q| : k P Ku ą 0
(

(42)

where

K B tk P JrK : pk, 1q P Ru (43)

Its interest is:

Lemma 9 The operator Λb is invertible for b P C.

Proof
Expressed in the bases p rψpk,lqqpk,lqPtp1,1qu\R and pψpk,lqqpk,lqPtp1,1qu\R the matrix of Λb is block-diagonal.
The block-matrix associated to p1, 1q is just 1. For k P K, the block matrix associated to the Jordan
block pk, γkq is the Toeplitz matrix

Tk B

¨

˚

˚

˚

˚

˚

˚

˚

˝

bk,1 bk,2 bk,3 ¨ ¨ ¨ bk,γk

0 bk,1 bk,2
. . . bk,γk´1

0 0 bk,1
. . . bk,γk´2

...
. . . . . . . . .

...
0 0 0 ¨ ¨ ¨ bk,1

˛

‹

‹

‹

‹

‹

‹

‹

‚

(44)

whose entries are real numbers if k P Sr, but some of the entries may be complex numbers which are
not real for k P Ri. Whatever the case, this matrix is invertible if and only if bk,1 ‰ 0. Thus in view
of its definition (42), C exactly consists of the elements b P B such that Λb is invertible. �

Since similar arguments are valid for rΛ
rb
B π ` rA

rb
with similar definitions, we get a strong bi-

intertwining relation between P and rP , with Λb and rΛ
rb
as links, by choosing any b P C and rb P rC.

This shows the validity of the statement of Lemma 7 in [6], although its proof is erroneous.
With these preliminaries in hand, we can now come to the
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Proof of Proposition 4
As for Proposition 6, we first compute both ΛbrΛrb

and QpP q for given b P C, rb P rC and probability q
with a finite support on Z`, where Q is the associated polynomial defined in (20).

Expressed in the basis pψpk,lqqpk,lqPtp1,1qu\R (and in the intermediate basis p rψpk,lqqpk,lqPtp1,1qu\R for
the product ΛbrΛrb

), both ΛbrΛrb
and QpP q have a block diagonal structure.

Note there is no problem for the one-dimensional Jordan block associated to θ1 “ 1: we have

ΛbrΛrb
r1s “ 1 “ QpP qr1s

whatever the choice of b P C, rb P rC and of the probability q.
Let us now fix k P K and consider the block matrices associated to the Jordan block pk, γkq.
‚ For ΛbrΛrb

, the γk ˆ γk-block is Tk rTk, where rTk is defined as in (44), but with respect to rb. Note
that Tk rTk is a upper diagonal Toeplitz matrix determined by its first row which is the vector

¨

˝

ÿ

jPJlK

bpk,jqrbpk,γk´j`1q

˛

‚

lPJγkK

(45)

‚ For any n P Z`, the γk ˆ γk-block of Pn is

pθkIk `Nkq
n “

ÿ

mPJn´γk`1,nK

ˆ

n

m

˙

θmk N
n´m
k (46)

where Ik is the γk ˆ γk identity matrix and Nk is the matrix whose first upper diagonal consists of
1’s and the other entries vanish (i.e. θkIk ` Nk is the usual γk ˆ γk Jordan block associated to the
eigenvalue θk). In (46), we took into account that Nγk

k “ 0.
The matrix in (46) is also upper diagonal Toeplitz and is determined by its first row which is the

vector
ˆˆ

n

l ´ 1

˙

θn´l`1
k

˙

lPJγkK
(47)

(for n “ 0, by convention this vector is p1, 0, 0, ¨ ¨ ¨ , 0q).
Thus (3) is satisfied with q the Dirac mass at n P Z`, if and only if (45) and (47) coincide. We get

the system of equations in pbpk,lqqlPJγkK and prbpk,lqqlPJγkK:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rbpk,1qbpk,1q “ θnk

rbpk,1qbpk,2q `rbpk,2qbpk,1q “ nθn´1
k

rbpk,1qbpk,3q `rbpk,2qbpk,2q `rbpk,3qbpk,1q “
npn´1q

2 θn´2
k

...

(48)

Let us consider the case where |θk| P p0, 1q. Introduce the polar decomposition θk “ ρke
iαk ,

with ρk P p0, 1q and αk P r0, 2πq. We look for a solution of the form bpk,lq “ ρ
n{2´l`1
k βpk,lq and

rbpk,lq “ ρ
n{2´l`1
k for l P JγkK, so we get the system of equations in pβpk,lqqlPJγkK:

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

βpk,1q “ einαk

βpk,2q ` βpk,1q “ neipn´1qαk

βpk,3q ` βpk,2q ` βpk,1q “
npn´1q

2 eipn´2qαk

...

(49)
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which admits a unique solution. Note that if k P Sr, then αk P t0, πu and the solution pβpk,lqqlPJγkK is
real valued. Otherwise for k P Si, recall that pβpk,lqqlPJγkK has to be decomposed as in (34) to provide
for the desired real coefficients pβpk,l,0qqlPJγkK and pβpk,l,1qqlPJγkK. Furthermore an immediate iteration
proves that

@ l P JγkK, |βpk,lq| ď
ÿ

jPJl´1K

ˆ

n

j

˙

and it follows that

maxt|bpk,lq| _ |rbpk,lq| : l P JγkKu ď
ÿ

jPJγk´1K

ˆ

n

j

˙

ρ
n{2´γk`1
k (50)

Note that the r.h.s. goes to zero as n goes to infinity. We can thus find n0pkq P Z` large enough
so that for n ě n0pkq we have

maxt|bpk,lq| _ |rbpk,lq| : l P JγkKu ď η

Note furthermore that bpk,1q ‰ 0 and rbpk,1q ‰ 0.
It follows that if the eigenvalues θk, for k P K (or equivalently for k P J2, rK), do not vanish and

have modulus strictly less than one, then we can find b P C and rb P rC so that ΛbrΛrb
“ Pn0 with

n0 B maxtn0pkq : k P Ku. This exactly corresponds to the situation where P is aperiodic and does
not admit zero as eigenvalue. Thus the last assertion of the proposition is shown.

Concerning the last-but-one (and not deducing it from the first one, to be more pedagogical), when
P is aperiodic, we still have that all the eigenvalues, except θ1 “ 1, have a modulus strictly smaller
than 1, but some of the eigenvalues can be zero. Consider k0 P K such that θk0 “ 0. Solving (48),
we end up with either bpk0,1q “ 0 or rbpk0,1q “ 0, which is not convenient for our purpose. So as in the
proof of Proposition 6, we rather look for q of the form ζnδ0 ` p1´ ζ

nqδn, where we take again

ζ B maxt|θk| : k P J2, rKu (51)

Then for any k P K, (48) transforms into
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rbpk,1qbpk,1q “ ζn ` p1´ ζnqθnk

rbpk,1qbpk,2q `rbpk,2qbpk,1q “ p1´ ζnqnθn´1
k

rbpk,1qbpk,3q `rbpk,2qbpk,2q `rbpk,3qbpk,1q “ p1´ ζnqnpn´1q
2 θn´2

k

...

This system can be solved as before, in particular with

rbpk,1q “ |ζn ` p1´ ζnqθnk |
1{p2nq

‰ 0

bpk,1q “ rbpk,1q
ζn ` p1´ ζnqθnk
ˇ

ˇζn ` p1´ ζnqθnk
ˇ

ˇ

‰ 0

and similarly to (50) we get

maxt|bpk,lq| _ |rbpk,lq| : l P JγkKu ď
ÿ

jPJγk´1K

ˆ

n

j

˙

ζn{2´γk`1 (52)

Since the r.h.s. converges to zero as n goes to infinity, we end up with the conclusion that we can
find b P C, rb P rC and essentially the same n0 as above so that ΛbrΛrb

“ ζn0 ` p1´ ζn0qPn0 .
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We now come to the case where some of the eigenvalues of P outside θ1 have modulus 1. It is
well-known that for a irreducible transition matrix, there exists d P N called the period such that the
eigenvalues of modulus 1 are of the form ei2πm{d for m P J0, d´1K and each of the latter have geometric
multiplicity 1.

In this situation, we consider the probability

q B ζn0δ0 ` p1´ ζ
n0q

δn0 ` δn0`1 ` ¨ ¨ ¨ ` δn0`d´1

d

where now

ζ B maxt|θk| : k P Ku (53)

with

K B tk P J2, rK and |θk| ă 1u (54)

and as above

n0 B min

$

&

%

n P Z` : @ k P K,
ÿ

jPJγk´1K

ˆ

n

j

˙

|θk|
n{2´γk`1 ď η

,

.

-

(55)

ď min

"

n P Z` : Γ

ˆ

n

Γ´ 1

˙

ζn{2´Γ`1 ď η

*

(56)

where Γ B maxtγk : k P JrKu is the largest dimension of the Jordan blocks.
Our goal is to find b P C and rb P rC such that for any k P K,
$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

rbpk,1qbpk,1q “ ζn0 ` p1´ ζn0qθn0
k

1` θk ` ¨ ¨ ¨ ` θ
d´1
k

d

rbpk,1qbpk,2q `rbpk,2qbpk,1q “ p1´ ζn0qn0θ
n0´1
k

1` θk ` ¨ ¨ ¨ ` θ
d´1
k

d

rbpk,1qbpk,3q `rbpk,2qbpk,2q `rbpk,3qbpk,1q “ p1´ ζn0q
n0pn0 ´ 1q

2
θn0´2
k

1` θk ` ¨ ¨ ¨ ` θ
d´1
k

d
...

(57)

Note that if k P K is such that θk is an eigenvalue of modulus equal to 1, i.e. of the form ei2πm{d

with m P Jd´ 1K (recall that 1 R K, so that m “ 0 is not permitted), then

1` θk ` ¨ ¨ ¨ ` θ
d´1
k “

1´ ei2πm

1´ ei2πm{d

“ 0

so that the above system (57) reduces to
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rbpk,1qbpk,1q “ ζn0

rbpk,1qbpk,2q `rbpk,2qbpk,1q “ 0

rbpk,1qbpk,3q `rbpk,2qbpk,2q `rbpk,3qbpk,1q “ 0

...

which can be solved by taking rbpk,1q “ bpk,1q “ ζn0{2 and rbpk,lq “ bpk,lq “ 0 for all l P J2, γkK.
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For the k P K such that |θk| ă 1, we can proceed as before, taking into account that
ˇ

ˇ

ˇ

ˇ

ˇ

1` θk ` ¨ ¨ ¨ ` θ
d´1
k

d

ˇ

ˇ

ˇ

ˇ

ˇ

ď 1

to construct b P C and rb P rC solving (57) and such that (52) holds (with (53) instead of (51)).
To sum up, we have constructed a strong bi-intertwining relation between P and rP with a corre-

sponding interweaving relation from P to rP , so we get a strong bi-interweaving relation between P
and rP with rq “ q as above according to Remark 1. �

We can now proceed to the

Proof of Theorem 2
The reverse implication is obvious: assume that σ P S`, the probability q on Z` and the invertible
links Λl (from Cl to rCσplq) and rΛl (from rCσplq to Cl), for l P J`K, are such that for any l P J`K, we have

$

’

’

&

’

’

%

PClΛl “ Λl rP rCσplq

rP
rCσplq

rΛl “ rΛlPCl

ΛlrΛl “
ř

nPZ` qnP
n
Cl

(58)

(the corresponding relation (4) with rq “ q is a consequence of Remark 1).
Consider Σ a permutation of V such that ΣpClq “ rCσplq for all l P J`K. Identify Σ with its V ˆ V

matrix p1y“σpxqqpx,yqPVˆV . Replacing rP by Σ rPΣ´1 (which amounts to “rename” the elements of V for
rP ), we can assume that Cl “ rCσplq for all l P J`K. Ordering appropriately the elements of V , we have

P “

¨

˚

˚

˚

˚

˝

PC1 0 ¨ ¨ ¨ 0

0 PC2

. . . 0
...

. . . . . .
...

0 0 ¨ ¨ ¨ PC`

˛

‹

‹

‹

‹

‚

and rP “

¨

˚

˚

˚

˚

˝

rPC1 0 ¨ ¨ ¨ 0

0 rPC2

. . . 0
...

. . . . . .
...

0 0 ¨ ¨ ¨ rPC`

˛

‹

‹

‹

‹

‚

(59)

It remains to define the invertible links

Λ B

¨

˚

˚

˚

˚

˝

Λ1 0 ¨ ¨ ¨ 0

0 Λ2
. . . 0

...
. . . . . .

...
0 0 ¨ ¨ ¨ Λ`

˛

‹

‹

‹

‹

‚

and rΛ B

¨

˚

˚

˚

˚

˝

rΛ1 0 ¨ ¨ ¨ 0

0 rΛ2
. . . 0

...
. . . . . .

...
0 0 ¨ ¨ ¨ rΛ`

˛

‹

‹

‹

‹

‚

(60)

to get a strong bi-interweaving relation between P and rP associated to the probability rq “ q.

Conversely assume a strong bi-interweaving relation between P and rP holds with respect to some
invertible links Λ, rΛ and to the probability rq “ q.

Denote E and rE the eigenspaces associated to the eigenvalue 1 respectively for P and rP . From the
intertwining relation PΛ “ Λ rP , we deduce that Λp rEq Ă E and in fact Λp rEq “ E since Λ is invertible
and dimpEq “ dimp rEq by similarity of P and rP . As a vector space, E (resp. rE) is generated by
the indicator functions 1Cl (resp. 1 rCl

), for l P J`K. Thus there exists matrices M B pMk,lqk,lPJ`K and
ĂM B pĂMk,lqk,lPJ`K so that for any l P J`K,

Λr1
rCl
s “

ÿ

kPJ`K

Mk,l1Ck
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rΛr1Cls “
ÿ

kPJ`K

ĂMk,l1 rCk

From the fact that Λ and rΛ are Markov matrices, we deduce that M and ĂM are Markov matrices
too. We also get for any l P J`K,

ΛrΛr1Cls “
ÿ

kPJ`K

pMĂMqk,l1Ck

but from the interweaving relation, we have

ΛrΛr1Cls “
ÿ

nPZ`

qnP
nr1Cls

“
ÿ

nPZ`

qn1Cl

“ 1Cl

We deduce that MĂM is the identity matrix. Since both M and ĂM are Markov matrices, this is
only possible, see Lemma 10 below, if there exists a permutation σ P S` such that M and ĂM are the
matrices respectively associated to σ and σ´1:

@ k, l P J`K,

#

Mk,l “ 1l“σpkq

ĂMk,l “ 1k“σplq
(61)

For any l P J`K, the relation rΛr1Cls “ 1
rCσplq

and the invertibility of Λ, imply |Cl| “ | rCσplq|. Define

Λl the Cl ˆ rCσplq restriction of Λ, which is a Markov transition matrix from Cl to rCσplq. Similarly,
let rΛl be the rCσplq ˆ Cl restriction of rΛ. Up to the renaming transformations considered in the first
part of this proof, we can assume that for any l P J`K, rCσplq “ Cl and that both (59) and (60) hold.
Expressing the bi-intertwining relation between P and rP in this block-diagonal matrix form, we get
the validity of (58) (with rCσplq replaced by Cl), which is the desired result.

The last assertion of Theorem 2 comes from the constructions of the probabilities q in the irreducible
case. They can be made compatible for the PCl and rP

rCσplq
, for l P J`K, by considering a probability

q “ εδ0`p1´εqUJn,n`d´1K, where UJn,n`d´1K is the uniform distribution on Jn, n`d´1K, with ε P p0, 1q
small enough, n P Z` large enough, and d the least common multiple of the periods of the PCl . �

In the above proof we needed the following well-known result, given for completeness.

Lemma 10 Assume that M and ĂM are two Markov matrices on J`K such that ĂM is the inverse of
M . Then there exists a permutation σ P S` of the state space such that (10) holds.

Proof
It is sufficient to show that for any k P J`K, there exist a unique l P J`K such that Mpk, lq ą 0. Indeed,
then we haveMpk, lq “ 1 and we define σpkq B l. The mapping σ constructed in this way is necessarily
a permutation, otherwise M would not be invertible.

So by contradiction, assume there exist k P J`K as well as l1 ‰ l2 P J`K with Mpk, l1q ą 0 and
Mpk, l2q ą 0. Since

ÿ

lPJ`K

Mpk, lqĂMpl, kq “ 1

we deduce that we must have ĂMpl1, kq “ 1 “ ĂMpl2, kq “ 1, otherwise the sum in the l.h.s. would
be strictly less than 1. It follows that the row ĂMpl1, ¨q and ĂMpl2, ¨q are the Dirac mass at k and in
particular we have ĂMpl1, ¨q “ ĂMpl2, ¨q, in contradiction with the fact that ĂM is invertible. �
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As promised after (39), let us present an estimate on the quantity η introduced there, under the
assumption that all the eigenvalues are real. An investigation of the general case should be possible in
a similar fashion, but we refrain from entering the corresponding more involved calculations. Indeed,
they will not serve as an inspiring guide in Section 5, where only non-negative eigenvalues will be
considered. Nevertheless, at the end of this section we will deduce an example of bounds that can
given on the support of q in Proposition 4, namely on the warming-up time to pass from P to rP and
conversely, when all the eigenvalues are assumed to be real.

We need the Gramian matrices

R B pπrϕpk,lqϕpk1,l1qsqpk,lq,pk1,l1qPS and rR B prπrrϕpk,lq rϕpk1,l1qsqpk,lq,pk1,l1qPS

where pϕpk,lqqpk,lqPS and prϕpk,lqqpk,lqPS are bases adapted to the spectral structure of P and rP respec-
tively.

These matrices are positive definite. Let υ_ ě υ^ ą 0 (respectively rυ_ ě rυ^ ą 0) be the largest
and the smallest eigenvalues of R (resp. rR).

Their interest comes from the following analogue of Lemma 7:

Lemma 11 We have for any x, y P V ,
ˇ

ˇ

ˇ

ˇ

Abpx, yq

rπpyq

ˇ

ˇ

ˇ

ˇ

ď Γ

c

υ_
rυ^

1
a

πpxqrπpyq
maxt|bpk,lq| : pk, lq P S0u

ˇ

ˇ

ˇ

ˇ

ˇ

rA
rb
px, yq

πpyq

ˇ

ˇ

ˇ

ˇ

ˇ

ď Γ

d

rυ_
υ^

1
a

πpxqrπpyq
maxt|rbpk,lq| : pk, lq P S0u

where S0 B Sztp1, 1qu.
In particular, in (39) we can take

η B
1

Γ

d

rυ^
υ_

a

π^rπ^

Proof
We adapt the proof of Lemma 7. The entries of the matrix associated to Ab are given by

@ x, y P V, Abpx, yq “ x1x, Abr1ysy

where x¨, ¨y is the usual scalar product in RV (recall that 1x and 1y are the indicators function of x
and y). Using integration with respect to π, this can be written

@ x, y P V, Abpx, yq “ π

„

1x

πpxq
Abr1ys



or equivalently

@ x, y P V,
Abpx, yq

rπpyq
“ π

„

1x

πpxq
Ab

„

1y

rπpyq



Introduce the following decompositions in the bases prϕpk,lqqpk,lqPS and pϕpk,lqqpk,lqPS :

1x

πpxq
p¨q “

ÿ

pk,lqPS

αpk,lqpxqϕpk,lqp¨q (62)

1y

rπpyq
p¨q “

ÿ

pk,lqPS

rαpk,lqpyqrϕpk,lqp¨q
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with some real coefficients αpxq B pαpk,lqpxqqpk,lqPS and rαpyq B prαpk,lqpyqqpk,lqPS .
We deduce

@ x, y P V,
Abpx, yq

rπpyq
“

ÿ

pk,lq,pk1,l1qPS

αpk,lqpxqrαpk1,l1qpyqπ
“

ϕpk,lqAbrrϕpk1,l1qs
‰

“
ÿ

pk,lq,pk1,l1qPS0

αpk,lqpxqrαpk1,l1qpyqπ
“

ϕpk,lqAbrrϕpk1,l1qs
‰

“
ÿ

pk,lq,pk1,l1qPS0

αpk,lqpxqrαpk1,l1qpyq
ÿ

jPJl1K

bpk1,l1´j`1qRpk,lq,pk1,jq

“
ÿ

pk,lq,pk1,jqPS0

αpk,lqpxqβpk1,jqpyqRpk,lq,pk1,jq (63)

where we took into account the orthogonality of ϕp1,1q with the other elements of the basis in the
second equality and where β0pyq B pβpk1,jqpyqqpk1,jqPS0

is defined by

@ pk1, jq P S0, βpk1,jqpyq B
ÿ

l1PJγk1K : jPJl1K

rαpk1,l1qpyqbpk1,l1´j`1q

Multiplying (62) by ϕpk1,l1q for any pk1, l1q P S and integrating with respect to π, we get

ϕpk1,l1qpxq “
ÿ

pk,lqPS

αpk,lqpxqRpk,lq,pk1,l1q

namely we have the vectorial equality

Rαpxq “ pϕpk1,l1qpxqqpk1,l1qPS “ ϕpxq

i.e.

αpxq “ R´1ϕpxq (64)

Note that we can write

R “

ˆ

1 0
0 R0

˙

(65)

with R0 B pRpk,lq,pk1,l1qqpk,lq,pk1,l1qPS0
. Furthermore, we have

R´1 “

ˆ

1 0

0 R´1
0

˙

(66)

From (64), we deduce αp1,1qpxq “ 1 and α0pxq “ R´1
0 ϕ0pxq, with α0pxq B pαpk,lqpxqqpk,lqPS0

and
ϕ0pxq B pϕpk,lqpxqqpk,lqPS0

.
Applying (62) at the point x, we get

1

πpxq
“

1xpxq

πpxq

“ 1` xα0pxq, ϕ0pxqy0
“ 1` xα0pxq, R0α0pxqy0

where x¨, ¨y0 is the usual scalar product on RS0 .
It follows that

1

πpxq
ě xα0pxq, R0α0pxqy0 (67)
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ě υ^ }α0pxq}
2
0

(since υ^ is also the smallest eigenvalue of R0).
Similarly, we have

1

rπpyq
ě rυ^ }rα0pxq}

2
0 (68)

Coming back to (63), the Cauchy-Schwartz’ inequality implies
ˇ

ˇ

ˇ

ˇ

Abpx, yq

rπpyq

ˇ

ˇ

ˇ

ˇ

ď }β0pyq}0 }R0α0pxq}0 (69)

Let us deal with the last factor:

}R0α0pxq}0 “

b

xR0α0pxq, R0α0pxqy0

“

c

A

a

R0α0pxq, R0

a

R0α0pxq
E

0

ď

c

υ_

A

a

R0α0pxq,
a

R0α0pxq
E

0

“

b

υ_ xα0pxq, R0α0pxqy0

ď

c

υ_
πpxq

(70)

On the other hand, we can bound the square of first factor of the r.h.s. of (69) by

}β0pyq}
2
0 “

ÿ

pk,jqPS0

β2
pk,jqpyq

“
ÿ

pk,jqPS0

¨

˝

ÿ

lPJγkK : jPJlK

rαpk,lqpyqbpk,l´jq

˛

‚

2

ď
ÿ

pk,jqPS0

ÿ

lPJγkK : jPJlK

rα2
pk,lqpyq

ÿ

l1PJγkK : jPJl1K

b2pk,l1´j`1q

ď max

$

&

%

ÿ

l1PJγk1K

b2pk1,l1q : k1 P JrK

,

.

-

ÿ

pk,jqPS0

ÿ

lPJγkK : jPJlK

rα2
pk,lqpyq

ď max
!

γk1b
2
pk1,l1q : pk1, l1q P S0

)

ÿ

pk,lqPS0

rα2
pk,lqpyq

ÿ

jPJlK

1

ď max
!

γk1b
2
pk1,l1q : pk1, l1q P S0

)

ÿ

pk,lqPS0

lrα2
pk,lqpyq

ď Γ max
!

γk1b
2
pk1,l1q : pk1, l1q P S0

)

ÿ

pk,lqPS0

rα2
pk,lqpyq

ď Γ2 max
!

b2pk1,l1q : pk1, l1q P S0

)

}rα0pyq}
2
0

ď Γ2 max
!

b2pk1,l1q : pk1, l1q P S0

) 1

rυ^rπpyq

according to (68). This leads to the first announced bound. The second bound is obtained by sym-
metry. The last assertion about η follows at once. �
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To finish this section, we give an application for bounding the support of q in Proposition 4, when
all the eigenvalues of P are real.

Coming back to (53), (54) and (55), it appears that the support of the constructed q is included
into J0, n0K. Taking into account (56), the bound

`

n
m

˘

ď nm

m! valid for all n,m P Z`, and Lemma 11,
we get n0 ď n̄0 with

n̄0 B min

#

n P Z` : @ k P K, nΓ´1ζn{2 ď
pΓ´ 1q!

Γ2

d

rυ^
υ_

a

π^rπ^ζ
Γ´1

+

4 Matthews result
Our purpose here is to show Theorem 5 of Matthews [5] by interpreting it as a degenerate version of
Proposition 4 where rP is an absorbed Markov chain.

Let P be an irreducible and reversible transition matrix on V and recall the notations introduced
before Theorem 5. We assume that the eigenvalues of P are non-negative.

Consider the state space rV B J|V |K endowed with the transition kernel rP defined by

@ k, l P rV , rP pk, lq B

$

’

’

’

’

’

&

’

’

’

’

’

%

1 , if k “ l “ 1

θk , if k “ l ě 2

1´ θk , if k ě 2 and l “ 1

0 , otherwise

The corresponding Markov chains are absorbed at 1. Since rP is lower diagonal, its eigenvalues are
given by the entries of the diagonal, namely are exactly those of P . Furthermore, for any k P J2, |V |K,
an eigenvector associated to θk for rP is rϕk B 1k. As usual we take rϕ1 “ 1.

We say that rP is a simple model for P .
Let X B pXpnqqnPZ` be a Markov chain as in Theorem 5, namely with transition matrix P and

initial distribution µ0, which is fixed from now on. Up to multiplying some of the eigenfunctions by
´1, we can assume that

@ k P J|V |K, µ0rϕks ě 0 (71)

(of course this is automatically satisfied for ϕ1 “ 1). In particular the quantity defined in (7) equals

Zpµ0, n0q “
ÿ

lPJ|V |Kzt1u

}ϕl}8µ0rϕlsθ
n0
l

where n0 is given by (8). As mentioned in the introduction, Zpµ0, n0q “ 0 if and only µ0 “ π, which
is also the only case where n0 “ 0. From now on we assume that Zpµ0, n0q ą 0.

Consider the V ˆ rV matrix Λ defined by

@ x P V, @ k P rV , Λpx, kq B

#

}ϕk}8ϕkpxq
Zpµ0,n0q

θn0
k , if k ě 2

0 , if k “ 1
(72)

Contrary to the previous sections, Λ is not a transition matrix, since some of its entries are negative.
Nevertheless it has two interesting properties. First we check that

µ0Λ “ rµ
pn0q

0 (73)

the probability on rV defined in (6) with n replaced by n0.
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Secondly, we have

@ k P J|V |K, Λrrϕks “

$

&

%

}ϕk}8θ
n0
k

Zpµ0,n0q
ϕk , if k ě 2

ϕ1 , if k “ 1
(74)

In contrast, we look for a “true” transition kernel rΛ from rV to V verifying the properties of the
following lemma.

Lemma 12 There exist a transition kernel rΛ from rV to V and a probability q B pqnqnPZ` on J0, n0K
such that (1) and (3) are satisfied.

Before proving Lemma 12, let us show how it implies Theorem 5:

Proof of Theorem 5
Consider rX B p rXpnqqnPZ` and Y B pY pnqqnPZ` , respectively a Markov chain with transition kernel
rP and rµ

pn0q

0 as initial distribution and a Markov chain with transition kernel P and ν0 B rµ
pn0q

0
rΛ as

initial distribution.
Due to (1) and ν0 “ rµ

pn0q

0
rΛ, Diaconis and Fill [2] provide a coupling of rX and Y such that we have

for any n P Z`,

Lp rXpJ0, nKq|Y q “ Lp rXpJ0, nKq|Y pJ0, nKqq (75)
LpY pnq| rXpJ0, nKqq “ rΛp rXpnq, ¨q (76)

(where the various Lp¨|¨q stand for conditional distributions).
From the first relation, we deduce that any stopping time relative to rX is also a stopping time

relative to Y . The second relation, which can be seen as a probabilistic version of (1), is still valid
when n is replaced by a stopping time for rX. It leads us to introduce the stopping time

rτ B inftn P Z` : rXpnq “ 1u

which is finite a.s., since 1´ θk ą 0 for any k P J2, |V |K.
From (1) and the fact that 1 is absorbing for rX, we deduce that rΛp1, ¨q is invariant for P , namely

rΛp1, ¨q “ π. It follows that Y prτq is distributed according to π “ rΛp rXprτq, ¨q. Furthermore, from
LpY prτq| rXpJ0, rτKqq “ rΛp rXprτq, ¨q “ π, we deduce that Y prτq is independent from rτ , since rτ is measurable
with respect to rXpJ0, rτKq (and maybe to some additional independent randomness). Thus rτ is a strong
stationary time for Y . For more details about these classical assertions, see Diaconis and Fill [2].

The extreme simplicity of rP shows that rτ is distributed as the random variable G described above
the statement of Theorem 5.

Consider pτ a time independent from X and distributed according to the probability q appearing
in Lemma 12.

From (73) and (3), we deduce that Y has the same law as pXppτ ` nqqnPZ` . It leads us to define
τ B pτ ` rτ , since we get that Xpτq is distributed according to π. To see that τ is a strong stationary
time for X, it remains to check that τ and Xpτq are independent. So let be given two functions
f : V Ñ R` and g : Z` Ñ R`. We compute

ErfpXτ qgpτqs “ ErfpY prτqqgppτ ` rτqs

“
ÿ

nPJ0,n0K

qnErfpY prτqqgpn` rτqs

“
ÿ

nPJ0,n0K

qnErfpY prτqqsErgpn` rτqs

“ ErfpY prτqqs
ÿ

nPJ0,n0K

qnErgpn` rτqs

24



“ ErfpY prτqqsErgpτqs
“ ErfpXpτqsErgpτqs

where in the third equality we used the independence of Y pτq and τ .
Since the support of q is included into J0, n0K, τ is stochastically dominated by n0 ` G, showing

the first assertion of Theorem 5.
For the second assertion, note that for any k P J2, |V |K, we have µ0rϕks ď }ϕk}8 ď 1{

?
π^ (use

either πrϕ2
ks “ 1 or (14)). We deducethat for any n P Z`,

Zpµ0, nq ď
1

π^

ÿ

kPJ2,|V |K

θnk

showing that n0 ď n̄0, where n̄0 is defined in (9).
Furthermore, since 0 ď θk ď θ2, we have for any n P Z`,

Zpµ0, nq ď
|V |

π^
θn2

so that

n̄0 ď min

"

n P Z` :
|V |

π^
θn2 ď 1

*

“

R

lnp|V |{π^q

lnp1{θ2q

V

Moreover, it is clear that G is stochastically dominated by a geometric random variable of parameter
θ2. �

Let us now come to the

Proof of Lemma 12
The calculations are inspired by those of Lemma 7.

Let be given a family rb B prbkqkPJ|V |K with rb1 “ 1. We look for an operator rΛ
rb
which is such that

@ l P J|V |K, rΛ
rb
rϕls “ rbl rϕl (77)

which ensures the commutativity property (1). Let us check that rΛ
rb
is a transition kernel for appro-

priate choices of rb.
The associated matrix prΛ

rb
pk, xqq

kPrV , xPV
is such that

@ k P rV , @ x P V,
rΛ
rb
pk, xq

πpxq
“

B

1k, rΛrb

„

1x

πpxq

F

where x¨, ¨y is the usual scalar product in RrV .
Let us decompose

1x

πpxq
p¨q “

ÿ

lPJ|V |K

αlpxqϕlp¨q (78)

with some real coefficients αpxq B pαlpxqqlPJ|V |K.
We deduce

@ k P rV , @ x P V,
rΛ
rb
pk, xq

πpxq
“

ÿ

lPJ|V |K

αlpxqrbl x1k, rϕly
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On one hand, we compute for any k, l P rV ,

x1k, rϕly “

"

1 , if l “ 1
δk,l , if l ě 2

where δk,l is the Kronecker symbol.
On the other hand, multiplying (78) by ϕj , for j P J|V |K and integrating with respect to π, we get

ϕjpxq “
ÿ

lPJ|V |K

αlpxqπrϕjϕls

“
ÿ

lPJ|V |K

αlpxqδj,l

“ αjpxq

Thus we get,

@ k P rV , @ x P V,
rΛ
rb
pk, xq

πpxq
“

#

α1pxqrb1 , if k “ 1

α1pxqrb1 ` αkpxqrbk , if k ě 2

“

"

1 , if k “ 1

1` ϕkpxqrbk , if k ě 2

We deduce that the entries of rΛ are non-negative if and only if

@ k P rV zt1u, @ x P V, 1` ϕkpxqrbk ě 0 (79)

In this case, rΛ
rb
is a transition kernel, since rΛ

rb
r1s “ rΛ

rb
rϕ1s “ rϕ1 “ 1.

A simple sufficient condition ensuring (79) is

@ k P rV zt1u, |rbk| ď
1

}ϕk}8
(80)

Let us compute ΛrΛ
rb
. From (74) and (77) we get

@ k P J|V |K, ΛrΛ
rb
rϕks “

$

&

%

rbk}ϕk}8θ
n0
k

Zpµ0,n0q
ϕk , if k ě 2

ϕ1 if, k “ 1
(81)

Thus (3) is satisfied if and only if

@ k P J|V |Kzt1u,
rbk }ϕk}8 θ

n0
k

Zpµ0, n0q
“

ÿ

nPZ`

qnθ
n
k

Considering the probability q “ δn0 leads to the choices

@ k P J|V |Kzt1u, rbk “
Zpµ0, n0q

}ϕk}8

Due to the definition (8) of n0, we get that (80) is satisfied (contrary to the proof of Proposition 6,
we do not need here that the entries of rb do not vanish).

Thus the Markov kernel rΛ “ rΛ
rb
and the probability q “ δn0 provide us with the desired properties.

�
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Remark 13 The definition of Λ in (72), or equivalently in (74), may seem arbitrary at first view. In
fact it corresponds to an implicit optimisation. To see it rather consider

@ x P V, @ k P rV , Λbpx, kq B
bk

Zpµ0, bq
ϕkpxq

with

Zpµ0, bq B
ÿ

lPJ|V |K

bkµ0rϕks

and where b B pbkqkPJ|V |K is an element of RJ|V |K
` with b1 “ 0.

Assume again that (71) is satisfied. Then (6) and (81) have respectively to be replaced by

@ k P J|V |K, rµ
pbq
0 pkq B

bkµ0rϕks

Zpµ0, bq

and

@ k P J|V |K, ΛbrΛrb
rϕks “

#

rbkbk
Zpµ0,bq

ϕk , if k ě 2

ϕ1 if, k “ 1

It follows that (3) is satisfied with q “ δn0 for some n0 P Z`, if and only if

@ k P J|V |Kzt1u, rbk “
Zpµ0, bqθ

n0
k

bk

We still want (80), so we should choose b so that to maximize the quantity

min

"

Zpµ0, bq }ϕk}8 θ
n0
k

bk
: k P J|V |Kzt1u

*

By 0-homogeneity in b of the above ratio, it amounts to take pbkqkPJ|V |Kzt1u proportional to the
vector p}ϕk}8 θ

n0
k qkPJ|V |Kzt1u, leading to (72). ˝

Let us check on the random walk on the discrete hypercube of high dimension that Theorem 5 can
be quite sharp. It is also the unique example of Matthews [5], in a slightly different version, since he
considers for transition kernel the square of the non-lazy transition kernel instead of the lazy kernel
as here.

Example 14 For N P N, consider the state space V B t´1, 1uN , endowed with the transition kernel
P of the associated lazy random walk:

@ x, x1 P V, P px, x1q B

$

’

’

&

’

’

%

1
2 , if x “ x1

1
2N , if x and x1 only differ at one coordinate

0 , otherwise

The uniform distribution π on V is reversible for P .
Denote by S the set of subsets of JNK and define for S P S, the mapping

ϕS B
ź

sPS

ξs

where the ξs for s P JNK are the natural coordinate mappings on t´1, 1uN .
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We compute that for any S P S,

P rϕSs “
N ´ |S|

N
ϕS

where |S| stands for the cardinal of S.
Thus pϕSqSPS is an orthonormal basis of L2pπq consisting of eigenvectors of P , whose associated

eigenvalues are the pθSqSPS B p1´ |S|{NqSPS . . The spectrum of P consists of the numbers k{N , for
k P J0, NK, with corresponding multiplicities

`

N
k

˘

. Note furthermore that each ϕS , with S P S, is only
taking values in t´1, 1u, so that }ϕS}8 “ 1. We restrict our attention to initial distributions µ0 that
are Dirac masses, so that we also get that |µ0rϕSs| “ 1.

It follows that the quantity defined in (7) is given by

Zpµ0, nq “
ÿ

SPSztHu

ˆ

N ´ |S|

N

˙n

“
ÿ

kPJNK

ˆ

N

k

˙ˆ

1´
k

N

˙n

For any χ ą 0, introduce npN,χq B N lnpN{χq. The following result gives a relatively precise
estimate on n0pNq defined in (8).

Lemma 15 Fix χ1 ă lnp2q ă χ2. For N large enough, we have

npN,χ1q ď n0pNq ď npN,χ2q

Sketch of proof
The arguments are quite standard, so we don’t give all the details.

For fixed χ ą 0 and k P N, we have as N goes to infinity
ˆ

1´
k

N

˙npN,χq

„ expp´k lnpN{χqq

Furthermore we have
ÿ

kPJNK

ˆ

N

k

˙

expp´k lnpN{χqq “
ÿ

kPJ0,NK

ˆ

N

k

˙

expp´k lnpN{χqq ´ 1

“ p1` expp´ lnpN{χqqN ´ 1

“

´

1`
χ

N

¯N
´ 1

ÑNÑ8 exppχq ´ 1

and this expression is strictly smaller (larger) than 1 for χ ă lnp2q (resp. χ ą lnp2q). �

Next we consider the random variable G appearing in Theorem 5. Let us show that it is roughly
of order N by computing its expectation (the second moment can be treated in the same way, giving
a similar estimate, in particular there is no concentration around the mean).

Recall that for any fixed S P S, the expectation of the geometric random variable GS (defined in
(10), with the index k replaced by S) is given by

ErGSs “
1

1´ θS

so

ErGs “
ÿ

SPSzt1u
rµ
pn0pNqq
0 pSqErGSs
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“
1

Zpµ0, n0pNqq

ÿ

SPSzt1u
θ
n0pNq
S

1

1´ θS

From the proof of Lemma 15, we deduce that as N goes to infinity

Zpµ0, n0pNqq „ 1

so that

ErGs „
ÿ

SPSzt1u
θ
n0pNq
S

1

1´ θS

“
ÿ

kPJNK

ˆ

N

k

˙ˆ

1´
k

N

˙n0pNq N

k

Define for any n P Z`,

F pN,nq B
ÿ

kPJNK

ˆ

N

k

˙ˆ

1´
k

N

˙n 1

k

which is a decreasing quantity with respect to n.
Similarly to Lemma 15, it can be shown that for any χ ą 0, we have for N large

F pN,npN,χqq “
ÿ

kPJNK

ˆ

N

k

˙

expp´k lnpN{χqq
1

k

„
ÿ

kPJNK

Nk

k!

χk

Nk

1

k

“
ÿ

kPJNK

χk

k!

1

k

i.e.

lim
NÑ8

F pN,npN,χqq “
ÿ

kPN

1

k

χk

k!

Taking into account Lemma 15 and the monotonicity of F in its second variable, we get

lim
NÑ8

ErGs
N

“
ÿ

kPN

1

k

lnp2qk

k!

Putting together these observations, we end up with a strong stationary time of order N lnpNq. It
is known, see Matthews [4] and Diaconis [1], Exemple 2 page 72 and Exercise 4 page 77, that N lnpNq
is the right order for the separation cut-off on the hypercube t´1, 1uN and the above considerations
provide a corresponding upper bound. It follows that the estimate of Theorem 5 is quite sharp for
this example.

˝
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5 Markov kernels with non-negative eigenvalues
Our purpose here is to extend Theorem 5 of Matthews [5] to all Markov kernels whose eigenvalues are
non-negative. In particular we will introduce degenerate models for them. It would be interesting to
extend the results presented here to any finite irreducible Markov kernel, but we are missing simple
models for negative and complex eigenvalues. We hope this challenge will trigger research in this
direction, as it also related to the understanding of transition kernel complex eigenvalues.

Let P be an irreducible transition matrix on V whose eigenvalues are non-negative. Recall the
notations introduced before (24), in particular the eigenvalues are given by

1 “ θ1 ą θ2 ě θ3 ě ¨ ¨ ¨ ě θr ě 0

Introduce the state space rV B S, the characteristic set of P , endowed with the transition kernel
rP defined by

@ pk, lq, pk1, l1q P rV , rP ppk, lq, pk1, l1qq B

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

1 , if pk, lq “ pk1, l1q “ p1, 1q

θk , if k “ k1 ě 2 and l “ l1

1´ θk , if k “ k1 ě 2 and l1 “ l ´ 1 ě 1

1´ θk , if k ě 2, l “ 1 and pk1, l1q “ p1, 1q

0 , otherwise

The associated graph looks like a star, with p1, 1q as central point to which are converging r ´ 1
rays of respective lengths γ2, ..., γr. The corresponding Markov chains are absorbed at p1, 1q.

By removing 1 ´ θk times the first row to the rows pk, 1q, pk, 2q, ..., pk, γkq, for any k P J2, rK, we
transform rP into a block diagonal matrix whose blocks are exactly the Jordan blocks of P . Thus P
and rP have the same characteristic set S.

For any pk, lq P rV , with k P J2, rK, a generalized eigenvector associated to θk for rP is rϕpk,lq B
1pk,lq, in the sense that

rP rrϕpk,lqs “ θk rϕpk,lq ` rϕpk,l´1q

where by convention, rϕpk,0q “ 0 for all k P J2, rK.
As usual we take rϕp1,1q “ 1.
We say again that rP is a simple model for P .
Let X B pXpnqqnPZ` be a Markov chain with transition matrix P and initial distribution µ0, which

is fixed from now on. We will need the following technical result replacing (71):

Lemma 16 The adapted basis pϕpk,lqqpk,lqPrV can be modified into another adapted basis pϕ1
pk,lqqpk,lqPrV

so that in addition to keeping ϕ1
p1,1q “ 1, we have

@ pk, lq P rV , µ0rϕ
1
pk,lqs ě 0

Proof
Fix k P J2, rK, we show by iteration on l P J1, γkK that we can change the generalized the family of
vectors pϕpk,jqqjPJlK into pϕ1

pk,jqqjPJlK, so that

@ j P JlK, µ0rϕ
1
pk,jqs ě 0

while keeping the relations

@ j P JlK, rP rϕ1pk,jqs “ θkϕ
1
pk,jq ` ϕ

1
pk,j´1q
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(with ϕ1
pk,0q “ 0).

For l “ 1, this is clear: if µ0rϕpk,1qs ě 0, we just take ϕ1
pk,1q B ϕpk,1q and otherwise we carry out

the replacement ϕ1
pk,1q B ´ϕpk,1q.

Assume the iteration is true for some l P JγkK with l ă γk. Let us change the family pϕ1
pk,jqqjPJl`1K,

with ϕ1
pk,l`1q B ϕpk,l`1q into pϕ2pk,jqqjPJl`1K with the desired property. Note that if µ0rϕ

1
pk,l`1qs ě 0,

it is sufficient to keep the same sequence: pϕ2
pk,jqqjPJl`1K B pϕ1

pk,jqqjPJl`1K. So let us assume that
µ0rϕ

1
pk,l`1qs ă 0.

We consider two cases.
‚ When for any j P JlK, µ0rϕ

1
pk,jqs “ 0 we just carry out the replacement pϕ2

pk,jqqjPJl`1K B

p´ϕ1
pk,jqqjPJl`1K.

‚ Otherwise consider the first m P JlK such that µ0rϕ
1
pk,mqs ą 0. For a ě 0 consider

pϕ2pk,jqqjPJl`1K B pϕ1pk,jq ` aϕ
1
pk,j`m´l´1qqjPJl`1K

(with the convention that for any u ď 0, ϕ1
pk,uq “ 0). We check that

@ j P Jl ` 1K, rP rϕ2pk,jqs “ θkϕ
2
pk,jq ` ϕ

2
pk,j´1q

so pϕ2
pk,jqqjPJl`1K still consists of generalized eigenvectors.

By the iteration assumption and since a ě 0, we have µ0rϕ
2
pk,jqs ě 0 for any j P JlK. Taking

furthermore a ě ´µ0rϕ
1
pk,l`1qs{µ0rϕ

1
pk,mqs ą 0, we also get µ0rϕ

2
pk,l`1qs ě 0 as wanted. �

From now on, we assume the adapted basis pϕpk,lqqpk,lqPrV satisfies

@ pk, lq P rV , µ0rϕpk,lqs ě 0

For any given b B pbkqkPJrK P R
JrK
` with b1 “ 0, we introduce the probability rµ

pbq
0 on rV via

@ pk, lq P rV , rµ
pbq
0 ppk, lqq B

bkµ0rϕpk,lqs

Zpµ0, bq
(82)

where the normalizing factor is given by

Zpµ0, bq B
ÿ

pk1,l1qPrV

bk1µ0rϕpk1,l1qs (83)

As in (65), consider S0 B Sztp1, 1qu and the Gramian matrix R0 defined by

@ pk1, l1q, pk2, l2q P rV0 R0ppk
1, l1q, pk2, l2qq B πrϕpk1,l1qϕpk2,l2qs

where π is the invariant probability associated to P .
Recall (see the sentence after (66)) that for any x P V , ϕ0pxq B pϕpk,lqpxqqpk,lqPS0

and define
α0pxq B pαpk,lqpxqqpk,lqPrV0 by α0pxq “ R´1

0 ϕ0pxq. Introduce the quantities

@ k P J2, rK, Bk B max

$

&

%

ÿ

lPJγkK

|αpk,lqpxq| : x P V

,

.

-

(84)

and consider for any n P Z`, the particular bpnq B pbpnqk q
kPrV

P RJV K
` given by

@ k P JrK, b
pnq
k B

"

Bkθ
n
k , if k ě 2

0 , otherwise
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Define

n0 B mintn ě 2Γ : Zpµ0, b
pnqq ď 1u (85)

where Γ is given after (56).
Recall the quantities υ^ ą 0 and υ_ ą 0 described before Lemma 11.
Define

n̄0 B p2Γq _

R

1

2 lnp1{θ2q
ln

ˆ

Γ|V |υ_
π2
^υ^

˙V

(recall that π^ B mintπpxq : x P V u).
Consider rX B p rXpnqqnPZ` a Markov chain with transition matrix rP and initial distribution rµ

pbq
0 .

Define

G B inftn P Z` : rXpnq “ p1, 1qu

The law of G is a mixture of convolutions of geometric law of parameters the eigenvalues of P .
Here is the generalization of Theorem 5 that we will prove here:

Theorem 17 Assume that P is irreducible and that its eigenvalues are all non-negative. Then there
exists a strong stationary time for X which is stochastically dominated by

n0 ` G (86)

This random variable is itself stochastically dominated by n̄0 `H2, where H2 is the convolution of
Γ independent geometric random variables of parameter θ2.

The arguments adapt the proof of Theorem 5, taking into account the considerations of Section 3,
in particular estimates such as those of Lemma 11.

Consider the V ˆ rV matrix Λb defined by

@ x P V, @ pk, lq P rV , Λbpx, pk, lqq B
bkϕpk,lqpxq

Zpµ0, bq
(87)

As in the previous section, Λb is not a transition matrix, since some of its entries are negative.
Nevertheless it has the same two interesting properties. First we have

µ0Λb “ rµ
pbq
0

the probability on rV defined in (82).
Secondly, we have

@ pk, lq P rV , Λbrrϕpk,lqs “

#

bk
Zpµ0,bq

ϕpk,lq , if k ě 2

ϕp1,1q , if pk, lq “ p1, 1q
(88)

Nevertheless, we look for a “true” transition kernel rΛ from rV to V verifying the properties of the
following lemma.

Lemma 18 There exist a transition kernel rΛ from rV to V and a probability q B pqnqnPZ` on J0, n0K
such that (1) and (3) are satisfied.
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Proof
The calculations are inspired by those of Lemma 7.

Let be given a real-valued family rb B prbpk,lqqpk,lqPrV with rbp1,1q “ 1. We look for an operator rΛ
rb

which is such that

@ pk, lq P rV , rΛ
rb
rϕpk,lqs “

ÿ

jPJlK

rbpk,l´j`1q rϕpk,jq (89)

which ensures the commutativity property (1), see Lemma 8. Let us check that rΛ
rb
is a transition

kernel for appropriate choices of rb.
The associated matrix prΛ

rb
ppk, lq, xqq

pk,lqPrV , xPV
is such that

@ pk, lq P rV , @ x P V,
rΛ
rb
ppk, lq, xq

πpxq
“

B

1pk,lq, rΛrb

„

1x

πpxq

F

where we recall that x¨, ¨y is the usual scalar product in RrV .
Let us decompose

1x

πpxq
“

ÿ

pk1,l1qPrV

αpk1,l1qpxqϕpk1,l1q

with some real coefficients αpxq B pαpk1,l1qpxqqpk1,l1qPrV .
We deduce

@ pk, lq P rV , @ x P V,
rΛ
rb
ppk, lq, xq

πpxq
“

ÿ

pk1,l1qPrV

ÿ

jPJl1K

αpk1,l1qpxqrbpk1,l1´j`1q

@

1pk,lq, rϕpk1,jq
D

We compute for any pk, lq, pk1, jq P rV ,

@

1pk,lq, rϕpk1,jq
D

“

#

1 , if pk1, jq “ p1, 1q

δpk,lq,pk1,jq , if pk1, jq P rV ztp1, 1qu

where δpk,lq,pk1,jq is the Kronecker symbol, now respectively to the couples pk, lq and pk1, jq.
It follows that for any pk, lq P rV and x P V ,

rΛ
rb
ppk, lq, xq

πpxq
“

#

αp1,1qpxqrbp1,1q , if pk, lq “ p1, 1q
αp1,1qpxqrbp1,1q `

ř

l1PJl,γkK αpk,l1qpxq
rbpk,l1´l`1q , if pk, lq P rV ztp1, 1qu

“

#

αp1,1qpxq , if pk, lq “ p1, 1q
αp1,1qpxq `

ř

l1PJl,γkK αpk,l1qpxq
rbpk,l1´l`1q , if pk, lq P rV ztp1, 1qu

Recall that the family of coefficients αpxq has been computed in (64), which is still valid here, with
R B pRppk1, l1q, pk2, l2qqq

pk1,l1q,pk2,l2qPrV
the Gramian matrix defined by

@ pk1, l1q, pk2, l2q P rV , Rppk1, l1q, pk2, l2qq B πrϕpk1,l1qϕpk2,l2qs

The link with the matrix R0 mentioned before the statement of Theorem 17 comes from (65). In
particular, as observed after (66), we have αp1,1qpxq “ 1. Thus we get,

rΛ
rb
ppk, lq, xq

πpxq
“

#

1 , if pk, lq “ p1, 1q
1`

ř

l1PJl,γkK αpk,l1qpxq
rbpk,l1´l`1q , if pk, lq P rV ztp1, 1qu
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We deduce that the entries of rΛ are non-negative if and only if

@ pk, lq P rV ztp1, 1qu, @ x P V,
ÿ

l1PJl,γkK

αpk,l1qpxqrbpk,l1´l`1q ě ´1 (90)

In this case, rΛ
rb
is a transition kernel, since rΛ

rb
r1s “ rΛ

rb
rϕp1,1qs “ rϕp1,1q “ 1.

A simple sufficient condition ensuring (90) is

@ pk, lq P rV ztp1, 1qu, |rbpk,lq| ď
1

Bk
(91)

where the Bk, for k P J2, rK are defined in (84).
Let us compute ΛbrΛrb

. From (88) and (89) we get

@ pk, lq P rV , ΛbrΛrb
rϕpk,lqs “

#

ř

jPJlK
bk

Zpµ0,bq
rbpk,l´j`1qϕpk,jq , if k ě 2

ϕp1,1q

Writing P in the adapted basis pϕpk,lqqpk,lqPrV , it appears that for any n P Z`, we have

@ pk, lq P rV , Pnrϕpk,lqs “
ÿ

jPJlK

ˆ

n

l ´ j

˙

θn`j´lk ϕpk,jq (92)

It follows that (3) is satisfied with Λ “ Λbpnq , rΛrb
and q “ δn, for some n P Z`, if and only if

@ pk, lq P rV ztp1, 1qu, @ j P JlK,
b
pnq
k

rbpk,l´j`1q

Zpµ0, bpnqq
“

ˆ

n

l ´ j

˙

θn`j´lk

or equivalently,

@ pk, lq P rV ztp1, 1qu,
b
pnq
k

rbpk,lq

Zpµ0, bpnqq
“

ˆ

n

l ´ 1

˙

θn`1´l
k (93)

at least for n ě Γ, otherwise if there exists k P J2, rK such that θk “ 0 the r.h.s. may not be defined.
For n ě Γ and k P J2, rK such that θk “ 0, both sides of (93) vanish, since bpnqk “ Bkθ

n
k “ 0.

For n ě Γ and k P J2, rK such that θk ą 0, (93) reduces to

rbpk,lq “
Zpµ0, b

pnqq

Bk

ˆ

n

l ´ 1

˙

θ1´l
k (94)

We are thus led to take (94) as definition of bpk,lq. Let us check that (91) is satisfied if we choose
n “ n0 given in (85), namely

@ pk, lq P rV ztp1, 1qu with θk ‰ 0,
Zpµ0, b

pn0qq

Bk

ˆ

n

l ´ 1

˙

θ1´l
k ď

1

Bk

i.e.

@ pk, lq P rV ztp1, 1qu with θk ‰ 0, Zpµ0, b
pn0qq

ˆ

n

l ´ 1

˙

θ1´l
k ď 1

Note that for n ě 2Γ, the l.h.s. is increasing in l (recall that 0 ă θk ď 1), so that we can restrict
our attention to l “ 1, namely

@ pk, lq P rV ztp1, 1qu with θk ‰ 0, Zpµ0, b
pn0qq ď 1
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which justifies the definition (85).
The Markov kernel rΛ “ rΛ

rb
and the probability q “ δn0 satisfy the desired properties. �

We can now come to the

Proof of Theorem 17
The first assertion is shown in exactly the same way as in the first part of the proof of Theorem 5, with
rX B p rXpnqqnPZ` and Y B pY pnqqnPZ` , Markov chains with transition kernels and initial distributions
respectively given by rP and rµ

pbq
0 and P and ν0 B rµ

pbq
0
rΛ.

Concerning the second assertion, note that for any x P V and k P J2, rK, the Cauchy-Schwartz
inequality implies

Bk “
ÿ

lPJγkK

|αpk,lqpxq|

ď
?
γk

d

ÿ

lPJγkK

α2
pk,lqpxq

ď
?

Γ
d

ÿ

pk1,l1qPrV ztp1,1qu

α2
pl1,k1qpxq

“
?

Γ }α0pxq}0

ď

d

Γ

πpxqυ^

ď

c

Γ

π^υ^

where (64) was taken into account.
It follows that for any n P Z`,

Zpµ0, b
pnqq ď

c

Γ

π^υ^
θn2

ÿ

pk,lqPrV ztp1,1qu

µ0rϕpk,lqs

To get an upper bound of Zpµ0, bq independently from µ0, also use the Cauchy-Schwartz inequality:
write

ÿ

pk,lqPrV ztp1,1qu

µ0rϕpk,lqs ď
a

|V |

g

f

f

f

eµ0

»

–

ÿ

pk,lqPrV ztp1,1qu

ϕ2
pk,lq

fi

fl

“
a

|V |

c

µ0

”

}ϕ0}
2
ı

“
a

|V |

c

µ0

”

}R0α0}
2
ı

where we used that ϕ0 “ Rα0, see the sentence after (66). Taking into account (70), we deduce
ÿ

pk,lqPrV ztp1,1qu

µ0rϕpk,lqs ď
a

|V |

c

υ_
π^

and by consequence

Zpµ0, b
pnqq ď

d

Γ|V |υ_
υ^

θn2
π^

(95)

This upper bound shows that n0 ď n̄0.
Moreover G is clearly stochastically dominated by H2, so the desired result follows. �
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6 On continuous time
Here we present how to adapt to the continuous time setting the previous discrete-time results.

Instead of transition kernels on the finite set V , we now work with Markov generators on V , namely
matrices L B pLpx, yqqx,yPV whose off-diagonal entries are non-negative and whose row sums vanish.
For such a matrix L, we can find a ě 0 and a transition kernel Qa such that L “ apQa ´ Iq, where I
is the V ˆ V identity matrix. This decomposition is not unique as there is one for any a ě a0, where

a0 B maxt|Lpx, xq| : x P V u

since for positive a ě a0, La `I is a Markov kernel (if a0 “ 0, then L “ 0 “ 0pQ0´Iq for any transition
kernel Q0).

Given two Markov generators L and rL, the notions of corresponding intertwining relation, faithful
intertwining relation, bi-intertwining relation and faithful bi-intertwining relation are defined exactly
as in the introduction for their transition kernel counterpart. We can even directly relate them: let
a ě 0 large enough so that we can write

L “ apQa ´ Iq and rL “ ap rQa ´ Iq (96)

where Qa and rQa are transition kernels. Then the above relations for L and rL are equivalent to the
same relations for Qa and rQa, with the same links Λ and rΛ.

The notion of interweaving relation has to be slightly modified, replacing (3) by the existence of a
probability q on R` such that

ΛrΛ “

ż

R`
expptLq qpdtq (97)

The notions of faithful interweaving, bi-interweaving, faithful bi-interweaving relations follow ac-
cordingly.

Nevertheless, it is no longer so easy to relate interweaving relations for L and rL and those for Qa
and rQa appearing in (96). So instead of trying to extend the discrete-time results to the continuous
time via writings such as (96), we go straight back to the proofs, as they are quite simple to adapt.
Below we present the continuous-time statements and we just mention the main modifications that
have to be brought to the proofs of their discrete-time counter-parts.

The analogue of Proposition 4 is:

Proposition 19 Assume that the Markov generators L and rL are irreducible and similar. Then there
exists a faithful bi-interweaving relation between them, with equal probability distribution q “ rq which
can be taken to be a Dirac mass.

The construction of the links is identical to that given in Section 3. With the notations de-
fined there, they are of the form Λb and rΛ

rb
for families of real numbers b B pbcqcPCztp1,1qu and

rb B prbcqcPCztp1,1qu belonging to the set B described in (40), using the number η defined in (39).
A first (little) difference pops up when we try to check (97), with q “ δt0 for some t0 ě 0, namely we
look for families b and rb such that

ΛbrΛrb
“ exppt0Lq

As in Section 3, we verify this equality on an adapted basis pϕpk,lqqpk,lqPS , i.e. such that

@ pk, lq P S, Lrϕpk,lqs “ ´λkϕpk,lq ` ϕpk,l´1q
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where by convention, ϕpk,0q “ 0 for all k P JrK. Note that we then have

@ pk, lq P S, exppt0Lqrϕpk,lqs “ expp´t0λkq

«

ϕpk,lq ` t0ϕpk,l´1q ` ¨ ¨ ¨ `
tl´1
0

pl ´ 1q!
ϕpk,1q

ff

(98)

It follows that, for any k P K (the set K was introduced in (43), using the set R defined in (38)),
(48) has to be replaced by the system of equations

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

rbpk,1qbpk,1q “ expp´t0λkq

rbpk,1qbpk,2q `rbpk,2qbpk,1q “ t0 expp´t0λkq

rbpk,1qbpk,3q `rbpk,2qbpk,2q `rbpk,3qbpk,1q “
t20
2 expp´t0λkq

...

(99)

Looking for a solution of the form bpk,lq “ expp´<pλkqt0{2qβpk,lq and rbpk,lq “ expp´<pλkqt0{2q for
l P JγkK, we end up with the following system replacing (49)

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

βpk,1q “ e´it0αk

βpk,2q ` βpk,1q “ t0e
´it0αk

βpk,3q ` βpk,2q ` βpk,1q “
t20
2 e
´it0αk

...

with αk “ =pλkq. This system admits a unique solution, which satisfies

@ l P JγkK, |βpk,lq| ď
ÿ

jPJl´1K

tj0
j!

and we get

maxt|bpk,lq| _ |rbpk,lq| : l P JγkKu ď
ÿ

jPJl´1K

tj0
j!

expp´t0<pλkq{2q

Since all the eigenvalues have a positive real part, except for the eigenvalue 0, it follows that for
t0 large enough, the constructed families b and rb solution of (99) belong to B. This ends the proof of
Proposition 19 with q “ rq “ δt0 . When all the eigenvalues are assumed to be real, it is possible to get
estimates on t0, as it was done at the end of Section 3.

For the equivalent of Theorem 2, consider L and rL two non-transient Markov generators. We
denote by C1, C2, ..., C` (respectively rC1, rC2, ..., rC`) the irreducible classes of L (resp. rL). They are
in the same number ` P N and they are also the irreducible classes of Qa and rQa appearing in (96).
For all l P J`K B t1, 2, ..., `u, denote LCl (resp. rL rCl

) the restriction of L (resp. rL) to Cl (resp. rCl). Note
that these matrices are irreducible Markov generators.

Theorem 20 There exists a faithful bi-interweaving relation between L and rL if and only if there
exists a permutation σ P S` and a probability q on R` such that for any l P J`K, |Cl| “ | rCσplq| and
there is a faithful bi-interweaving relation between LCl and rL

rCσplq
with the same probability rq “ q. It

can furthermore be imposed that q is a Dirac mass.
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The proof is identical to that of Theorem 2, since it mainly consists in manipulations of the links.
The last assertion comes from the fact that in Proposition 19, any Dirac mass δt0 with t0 large enough
is allowed, we can thus choose one common t0 for all the LCl and rL

rCσplq
for l P J`K.

For the analogue of Theorem 17, we need to introduce corresponding notations. Let L be an
irreducible Markov generator whose eigenvalues are real. They are necessarily non-positive, zero being
one of them with (algebraic) multiplicity 1. The eigenvalues of ´L are denoted

0 “ λ1 ă λ2 ď λ3 ď ¨ ¨ ¨ ď λr

and to each of the λk, k P JrK, is associated a Jordan block of size γk (so that γ1 “ 1 and
ř

kPJrK γk “
|V |). Consider S B tpk, lq : k P JrK, l P JγkKu and let pϕpk,lqqpk,lqPS be an adapted basis, namely
satisfying

@ pk, lq P S, Lrϕpk,lqs “ ´λkϕpk,lq ` ϕpk,l´1q

where by convention, ϕpk,0q “ 0 for all k P JrK. As usual, we assume that ϕp1,1q “ 1.
Let X B pXptqqtPR` be a Markov process with Markov generator L and initial distribution µ0,

which is fixed from now on. Lemma 16 is still valid so we assume that

@ pk, lq P S, µ0rϕpk,lqs ě 0

As in Section 5, we see S as a state space on which we introduce, for any given time t ě 0, the
probability rµ

ptq
0 given by

@ pk, lq P S, rµ
ptq
0 ppk, lqq B

#

Bk expp´λktqµ0rϕpk,lqs

Zpµ0,tq
, if k ě 2

0 , if pk, lq “ p1, 1q

where the quantities Bk, for k P J2, rK, are described in (84) (see also the preceding paragraph there)
and

Zpµ0, tq B
ÿ

pk,lqPSzt1,1qu

Bk expp´λktqµ0rϕpk,lqs (100)

In the sequel we will be interested in the particular time t0 defined via

t0 B mintt ě Γ : Zpµ0, tq ď 1u (101)

(where Γ is given after (56)).
We furthermore endow S with the simple model Markov generator rL given by

@ pk, lq ‰ pk1, l1q P S, rLppk, lq, pk1, l1qq B

$

’

’

&

’

’

%

λk , if k “ k1 ě 2 and l1 “ l ´ 1 ě 1

λk , if k ě 2, l “ 1 and pk1, l1q “ p1, 1q

0 , otherwise

Consider rX B p rXptqqtPR` a Markov process with generator rL and initial distribution rµ
pt0q
0 . It ends

up being absorbed at p1, 1q after following one of the r ´ 1 rays of the underlying graph. We denote
G the absorption time:

G B inftt P R` : rXptq “ p1, 1qu

whose law is a mixture of gamma distributions whose scale parameters are (some of) the 1{λk, for
k P J2, rK.

Recall the quantities υ^ ą 0 and υ_ ą 0 described before Lemma 11 and define

t̄0 B Γ_
1

λ2
ln

ˆ

Γ|V |υ_
π2
^υ^

˙

(102)

Here is the analogue of Theorem 17 for continuous time:
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Theorem 21 Assume that L is irreducible and that its eigenvalues are all real. Then there exists a
strong stationary time for X which is stochastically dominated by

t0 ` G

This random variable is itself stochastically dominated by t̄0`H2, where H2 is a gamma distribution
of shape Γ and scale 1{λ2.

The underlying discrete time considerations of Diaconis and Fill [2] (see the first part of the proof
of Theorem 5) have to be replaced by their continuous time analogues of Fill [3]. In addition, the
constructions from the adapted bases of the links Λb and rΛ

rb
follow the same patterns as in Section 5:

‚ The link Λb is defined as in (87), with

@ k P JrK, bk B

"

Bk expp´λkt0q , if k ě 2
1 , if k “ 1

(and Zpµ0, bq replaced by Zpµ0, t0q defined in (100)).
‚ For the link rΛ

rb
, (94) has to be replaced by

@ pk, lq P S,

#

Zpµ0,t0q
Bk

tl´1
0

pl´1q! expp´t0λkq , if k ě 2

1 , if pk, lq “ p1, 1q

The choice of t0 in (101) ensures us again that (91) is satisfied, taking into account that the mapping

JΓK Q l ÞÑ
tl´1
0

pl ´ 1q!

is increasing for t0 ě Γ.
Finally the last assertion of Theorem 21 is proven in exactly the same way as that of Theorem 17,

with (95) replaced by

@ t ě 0, Zpµ0, tq ď

d

Γ|V |υ_
υ^

expp´λ2tq

π^

which shows that t0 ď t̄0, where t̄0 is defined in (102).

References
[1] Persi Diaconis. Group representations in probability and statistics. Institute of Mathematical

Statistics Lecture Notes—Monograph Series, 11. Institute of Mathematical Statistics, Hayward,
CA, 1988.

[2] Persi Diaconis and James Allen Fill. Strong stationary times via a new form of duality. Ann.
Probab., 18(4):1483–1522, 1990.

[3] James Allen Fill. Strong stationary duality for continuous-time Markov chains. I. Theory. J.
Theoret. Probab., 5(1):45–70, 1992.

[4] Peter Matthews. Mixing rates for a random walk on the cube. SIAM J. Algebraic Discrete Methods,
8:746–752, 1987.

[5] Peter Matthews. Strong stationary times and eigenvalues. J. Appl. Probab., 29(1):228–233, 1992.

[6] Laurent Miclo. On the Markovian similarity. In Séminaire de Probabilités XLIX, volume 2215 of
Lecture Notes in Math., pages 375–403. Springer, Cham, 2018.

39



[7] Laurent Miclo and Pierre Patie. On interweaving relations. J. Funct. Anal., 280(3):54, 2021. Id/No
108816.

[8] L. Chris G. Rogers and Jim W. Pitman. Markov functions. Ann. Probab., 9(4):573–582, 1981.

miclo@math.cnrs.fr

Toulouse School of Economics,
1, Esplanade de l’université,
31080 Toulouse cedex 6, France.
Institut de Mathématiques de Toulouse,
Université Paul Sabatier, 118, route de Narbonne,
31062 Toulouse cedex 9, France.

40


