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Abstract

An interweaving relation is a Markovian similarity-type relation between two Markov chains intro-
ducing a warming-up time after which their time-marginal distributions can be tightly compared (for
different initial distributions). For non-transient Markov transition kernels on the same state space,
these relations are shown to be equivalent to the usual similarity relation. Some bounds are deduced
on corresponding warming-up times, when the eigenvalues are furthermore assumed to be real. When
the eigenvalues are non-negative, the same approach enables us to construct strong stationary times
for irreducible Markov chains through interweaving relations with model absorbed Markov chains, thus
extending a result due to Matthews in the reversible situation.
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1 Introduction

This paper investigates certain similarity-type relations between non-transient Markov kernels on the
same finite state space. The interest of these relations is to introduce a warming-up (random) time
after which the time-marginal distributions of corresponding Markov chains can be strongly related.
They will also enable us to revisit a result of Matthews [5| on strong stationary times associated to
reversible Markov chains and to extend it to the non-reversible setting, under the assumption that the
eigenvalues of its Markov kernel are non-negative.

Let us begin by recalling the kind of relations we are interested in.

On a finite set V' with cardinal |V| > 2, let be given two Markov transition matrices P and P.
We say that a (Markov) intertwining relation from P to P holds through the link A, which is
another Markov transition matrix on V', when

PA = AP (1)

(since here all the considered relations will be Markovian, from now on we drop the adjective “Markov”
for them). Intertwining relations have a long history starting with the seminal paper of Rogers and
Pitman [8]. The Markov kernels P and P are sometimes called dual and primal, see e.g. Diaconis
and Fill [2].

When A is furthermore invertible, (1) is called a faithful intertwining relation from P to P
through A.

We say that there is a bi-intertwining relation between P and ﬁ, via the links A and /NX, when
in addition to (1) we have

PA = AP (2)

This relation is said to be a faithful bi-intertwining relation when furthermore A and A are
invertible.

A bi-intertwining relation between P and ]3, via the links A and 1~X, is said to be an interweaving
relation when there exists a probability distribution ¢ = (¢n)nez, on Z, so that

AN = ) g P (3)

n€Z+

(note that the r.h.s. is necessarily convergent). This notion was introduced in [7]|, where ¢ is seen as
the distribution of a warming-up time, independent of the underlying Markov chains, after which a
lot of convergence to equilibrium informations can be transferred from the primal chain to the dual
chain. This feature will appear again in Section 4 and 5 below, but in a slightly distorted way.

It is bi-interweaving relation, when there also exists a probability distribution ¢ = (Gn)nez, on
Z4 so that

AN = ) g P (4)

n€Z+

These relations, interweaving and bi-interweaving, are said to be faithful when A and A are
invertible.

Remark 1 When there is both a faithful bi-intertwining relation between P and P and an interweaving
relation (3), then (4) is necessarily satisfied with ¢ = ¢, namely we also have a faithful bi-interweaving
relation. Indeed, from (3) we deduce

AA = ) g PA

HEZ+



and via (1) we obtain

AA = A D g Pm

TLEZ+

It remains to multiply on the left by A=! to get (4) with § = q. o

A bi-intertwining relation always holds between P and P: it is sufficient to take A = % (meaning
that all the rows of A coincide with 7) and A= 7, where m and 7 are invariant probability measures
for P and P respectively (they always exists in the context of finite state space, but in general they
are not unique and their supports are not the whole state space V).

It is proven in [6] that two non-transient Markov matrices P and P are similar if and only if there
exists a faithful bi-intertwining relation between them (be careful, we changed the names given in
[6]: there, a link was necessarily invertible, bi-intertwining corresponded to mutual intertwining and
faithful bi-intertwining was called Markov-similarity). In fact the arguments of [6] contain an error
that can be corrected following the approach of Section 3 below, showing the above mentioned result
of [6] is indeed true.

In contrast with this result, we will show that non-transience and similarity of P and P are not
sufficient to ensure the existence of a faithful-bi-intertwining relation between them. To give a natural
necessary and sufficient for the existence of such a relation for non-transient kernels, denote by Cf,
Cy, ..., Cy (respectively 6’1, C~'2, ey 6'@) the irreducible classes of P (resp. f’) They are in the same
number ¢ € N, because this is the (geometric and algebraic) multiplicity of the eigenvalue 1. For all
le [l :={1,2,..,¢}, denote Pg, (resp. ]5&) the restriction of P (resp. P) to C; (resp. C;). Note that
these matrices are Markovian and irreducible.

Our first contribution here prove the following characterisation of faithful bi-interweaving relations:

Theorem 2 There exists a faithful bi-interweaving relation between P and P if and only if there exists
a permutation o € Sy and a probability q on Z, such that for any I € [{], |Ci| = |C,q)| and there is
a faithful bi-interweaving relation between Pc, and ﬁé’ " with the same probability ¢ = q. It can

furthermore be imposed that q has a finite support.

Thus faithful bi-interweaving relations give a more accurate account of the geometry of non-
transient Markov matrices than faithful bi-intertwining relations. As seen in [6], the case of transient
Markov matrices is more complicated and will not be considered here.

Theorem 2 also enables us to give an example of Markov matrices P and P satisfying a faithful
bi-intertwining relation but no faithful bi-interweaving relation:

Example 3 Consider on V = [4],

1 0 0 0 12 1/2 0 0
o 1313 13 ~ 1212 0 o0
P 013 13 13| ™ =1 0 0 12 1p
0 1/3 1/3 1/3 0 0 1/2 1/2

Both matrices are non-transient: for P the state space can be decomposed into the union of

the irreducible classes which are Cy = {1} and Cy := {2, 3,4}, and for P the irreducible classes are

Cy = {1,2} and Cy = {3,4}. The common spectrum of P and P corresponds to the eigenvalues 1
with multiplicity 2 and 0 with multiplicity 2. To check it, write

1 0 ~ Jo 0
P = d P =
( 0 Js > - < 0 s )
where for any n € N, J, is the n x n matrix whose entries are all equal to 1/n. Note that for n > 2, the
spectrum of J, is 1 with multiplicity 1 (the corresponding eigenspace is the space of constant vectors)



and 0 with multiplicity n — 1 (the corresponding eigenspace is the space of vectors whose entries sum
up to 0).

Since P and P are non-transient and similar, we deduce from [6] the existence of a faithful bi-
intertwining relation between P and P. Nevertheless it is impossible to find a permutation o € Sy
such that the condition of Theorem 2 is satisfied, so there is no faithful bi-intertwining relation between
P and P.

The situation where both P and P are irreducible, in addition to the assumptions of Theorem 2
will play an important role in its proof. It also enables us to be more precise about the possible
restrictions on the size of the support of ¢:

Proposition 4 Assume that P and P are irreducible and similar. Then there exists a faithful bi-
interweaving relation between them, with equal probability distribution ¢ = q whose support contains at
most d+ 1 points, where d is the common period of P and P. Thus when P is aperiodic, there exists a
faithful bi-interweaving relation between P and P with q = ¢ having a support with at most two points.
When in addition of aperiodicity, we assume that none of the eigenvalues of P vanishes, then there
exists a faithful bi-interweaving relation between P and P with q = ¢ a Dirac mass.

An example of bound on the support of ¢ will be given at the end of Section 3, at least when all
the eigenvalues of P are real. Nevertheless this bound is certainly too universal to be relevant and it
can probably be improved in particular situations, as the steps of its proof are sometimes quite coarse.
For instance it could not be applied in the following degenerate situation.

The arguments of the proof of this result can be adapted to recover the following result due to
Matthews [5]. Let P be an irreducible Markov kernel on V' whose invariant probability is denoted 7.
It is unique and its support is V. Assume that 7 is reversible for P, so that P seen as an operator on
L2(r) is symmetric and thus diagonalisable. Denote its eigenvalues (with multiplicities) by

l=01>02203>---=20y =1 (5)

where the strict inequality comes from irreducibility. Let () ke[[v|] Pe an orthonormal basis of L2(r)
consisting of corresponding eigenvectors, where the orthogonality is possible due to reversibility.

Let X = (X(n))nez, be a Markov chain admitting P for transition kernel. Recall that a strong
stationary time for X is a finite stopping time 7 (with respect to the filtration generated by X and
maybe some independent randomness) such that 7 and X, are independent and X, is distributed
according to 7. For any integers m < n, we will denote [m,n] := {m,m+1,...,n} and we already used
previously the shortcut [n] = [1,n] for any n € N.

For the next result, assume that the eigenvalues in (5) are non-negative, i.e. 6y = 0.

Let pp be the law of Xy. For any n € Z,, consider the probability distribution ﬁ(()n) on [|V]] given
by

[0l oo 1120 [2]| )
~(n 307”071 , if k > 2
v ke [IVI], ,u((] )(k) = Z(pon) Uk | -
0 Jif k=1
with
Z(po,n) = >, leilolmolelof )
E[IVIIN1}

The definition (6) is not valid when Z(up,n) = 0, namely when po[¢r] = 7[¢x] for all k € [|V]], ie.
o = m. In this situation we take ﬁén) := 01, and formally the following result enables to recover that

0 is then a strong stationary time.



Introduce the times

no = min{n€Zy : Z(up,n) <1} (8)
tr(P™) — 1 1
g = min neZJr:&:— Z g <1 9)
A A
kel2,| V]

where 7, = min{r(z) : z € V}.
Consider (G,)kef2,|v|] @ family of independent geometric random variables of respective parameters
(Ok ) kef2,|v|), namely

Vke[2|V|,VjieN, P[Gp=j] = 6'1-6) (10)

Construct a random variable G taking values in Z, in the following way. First we sample an
element K from [|V|] according to ﬁéno). If K =1 we take G := 0, and otherwise we take G := G.

Theorem 5 (Matthews [5]) Assume that P is irreducible, reversible and that its eigenvalues are all
non-negative. Then there exists a strong stationary time for X which is stochastically dominated by

nog+§G (11)

(where the ratio vanishes when 0, = 0). This random variable is itself stochastically dominated by

ng + G < [%1 + Ga, where [-] is the usual ceiling function and Go is a geometric random

variable of parameter 5.

The statement of Matthews [5] is slightly different, nevertheless both formulations are strongly
related. In particular, instead of assuming that the eigenvalues of P are non-negative, Matthews [5]
stated his result for the Markov kernel P?, whose eigenvalues are indeed non-negative. Furthermore,
as in Matthews [5], we are going to check that the above estimate can be quite sharp as it enables
to recover the upper bound in the cut-off satisfied by the random walk on the hypercube of high
dimension, see Example 14 in Section 4.

Our second goal here is to extend Theorem 5 in Theorem 17 of Section 5, by removing the assump-
tion of reversibility, up to introducing in the bounds a factor including the condition number of the
Gramian matrix associated to the (generalized) eigenvectors.

The plan of the paper is as follows. In the next section we show Proposition 4 under the additional
assumption that both P and P are reversible, as this situation allows for a pedagogical exposure of
the main arguments. The full Proposition 4 and Theorem 2 are proven in Section 3. Section 4 adapts
the arguments of Section 2 to recover Theorem 5. The underlying idea is to replace P by a very simple
absorbed Markov kernel, serving as a “model”. The random variable G comes from this model, while
the first term of (11) corresponds to a warming-up time between P and this model. This approach is
extended in Section 5, taking into account the arguments of the proof of Proposition 4, to remove the
reversibility assumption. The final section extend these results to the continuous framework.

Acknowledgments: I would especially like to thank Persi Diaconis for his complaints
about a first version of this paper containing no example. It has led to an improved version of Theorem
5, enabling to treat the added Example 14.

2 The reversible case

Here for the sake of clarity, we show Proposition 4 under the simplifying assumption that both P and
P are reversible. The proof takes up the arguments of [6] for intertwining and modifies them to deal
with interweaving.

More precisely, our purpose is to show the following result:



Proposition 6 Assume that P and P are similar and that P and P are irreducible and reversible.
Then there exists a faithful bi-interweaving relation between them, with ¢ = q whose support contains
at most three points. When P is aperiodic (and by consequence P too), we can find such a relation
with ¢ = q whose support contains at most two points. When in addition to aperiodicity, none of the
common eigenvalues of P and P vanishes, we can furthermore impose that ¢ = ¢ is a Dirac mass.

Before coming to the proof of this proposition, we modify the arguments of Lemma 6 in [6] to
construct more general invertible links A and A from V to V for a faithful bi-intertwining relation
between P and 15, than those considered there.

Since P is irreducible and reversible, as before the statement of Theorem 5, we denote m, 1 =
01 > 02 =03 > =06y = —1and (pr)refv)), respectively, the invariant probability, the ordered
eigenvalues and a corresponding orthonormal basis of IL2(7) of eigenvectors.

The same holds for P with the same eigenvalues. We denote (@) ke[IV]] @ corresponding orthonor-

mal basis of IL?(7%) of eigenvectors, where 7 is the reversible probability of P. Without loss of generality,
we assume that ¢1 = @1 = 1 (the function always taking the value 1).
To any sequence b = (by) ke[2,|v[] of real numbers, associate the operator A defined by

~ b Jif k=2
vieIVIL  Adpl = { o REZT (12)

Symmetrically, to any sequence b= (Ek) ke[2,|v|] of real numbers, associate the operator ﬁg defined

by

~ b3, if k=2
vielVIL  Flad = { 0P HR2

Here are the corresponding matrices:

Lemma 7 We have for any x,y eV,

Ap(z,y) = ) bror(@)Br(y)F ()

f>2
A(z,y) = D bBr(@)en(y)m(y)
k=2
It follows that
Aol < 4|2 max b < max [l (y)

VT A T n ke[2,V]]

)
~ 7(y) ~ 1
Az (x, < ovany bl < b
() \/ #(z) o ol < T e | bilm(v)

7(x) ke[2,|V]]

where
A = rxrél‘l/lw(x)
Ta = gélé_m’(x)
Proof

For any b := (bk)ke[[z,\vu] e RI2ZVII introduce the matrix A} whose entries are given by

Vax,yeV, A(z,y) = ] bror(2)@r(y)F(y)
=2



To show that Aj is the matrix associated to the operator A, it is sufficient to check that for any
Le [V,

veeV, ) Aeyal) = bal)

yeV
with the convention that by = 0.
By definition of Aj, we compute
DA Ey) = D) brow(@)F[ERPI]
yeV k=2

= boi(z)

by orthonormality of the basis (@r)kefv) in L2(%).

This shows the first announced equality.

The second equality is obtained by symmetry, exchanging the roles of P and P.

To prove the bounds, for any y € V', introduce the following decomposition of the indicator function
1, of y in the basis ((,Bk)ke[uvu]

1,() = > ek (13)
kel[V[]

where by orthonormality, the coefficients (i (y))rev|) are given by

~

ar(y) = 7[1y@e] = T(y)Pk(y)
Applying (13) at the point y, we get

1 = ]ly(y

)
= ) &)@k

kellVID

so that

> )

kel2,|V]]

Il
|
—

N

Similarly, we get

S ) < —— (14)

kelZ V1] m(2)

Cauchy-Schwartz inequality now leads to

A b
| Ap(, )] (e | k!élwk )|k ()7 ()

<  max |b 2(x 52 ()% (y
e ACNNEENDELY

A




1

max by ———=—=7(y)
ke[2,IV]] ()7 (y)
and thus to the first announced bounds.
The second ones follow by symmetry. [ ]
We are interested in the operator
Ay = T+ A4 (15)

where again 7 is interpreted as the matrix whose rows are all equal to the probability 7. We check
that

~ o bktpk s ifk>2
Vike [HV”]a Ab[@k] = { o1 ’ ifk=1

due to the fact that for k € [2, V], we have 7[J)| = 7[$1Pk] = 0 by orthogonality.
It implies the intertwining relation PAy = Ay P and Ay is invertible as soon as all the entries of b
are non-zero.
From the relation Ap[1] = Ap[@1] = ¢1 = 1, it appears that the row sums of Ay are all equal to 1.
Furthermore, all the entries of A will be non-negative as soon as

Va,yeV, T(y) — [Ap(z,y)] = 0

From Lemma 7, this is true when

max |bp| < A/ TATA (16)

kel2,[V]]

Since similar arguments are valid for INXE =7+ ‘ZE’ we get a faithful bi-intertwining relation
between P and ]3, with Ay and /Kg as links, by choosing any b and b with coordinates belonging to
[—VTAT A, VTATA\{0}.

With these preliminaries in hand, we can now come to the
Proof of Proposition 6

We use the links A; and /N\E defined above and look for conditions on b and b so that (3) and (4) are
satisfied with a probability ¢ = ¢ with minimal support.
Let us first assume that P is aperiodic, which is equivalent to the fact that in (5), we have Oy > —1.
Concerning (3), we have on one hand,

~ ©1 y ifk=1
Vk ApAs; = b
and on the other hand, for a given probability ¢ := (gn)nez, ,
VEke [HV|]]7 Z QnPn[SDk] = 2 Ok P

n€Z+ TL€Z+

Note that for k£ = 1, we have

Mhilen] = D) aP 1]

T'LGZ+

since both terms are equal to 1.
Thus the desired equality (3) is equivalent to

Vkel2 V], Dby = biby (17)

n€Z+



As alluded to at the end of the proposition, let us look for a probability ¢ = dy,, the Dirac mass
at some ng € Z. The above condition then writes

Vike |I27 |V|]]7 020 = gkbk

Consider ¢ = max{|0x| : k € [2,|V]]}, we have ¢ € [0,1) by irreducibility, reversibility and
aperiodicity. It follows that if we take

ng = 1+ {WJ

In(¢)

(note that both logarithms in the integer part |-| are negative, since 7., 7, < 1/2, as |V| = 2), then

(16) is satisfied as soon as we take
A/ 16k

A/ 105 [sign(6;°)

where sign(-) is the sign mapping (with e.g. the convention that sign(0) = 1).

Furthermore, when none of the eigenvalues 0, for k € [2, [V|], vanishes, the entries of b and b are
non-zero, so we get the wanted faithful interweaving relation (3) with the links A and ./NXg, and g a
Dirac mass.

To get the wanted faithful bi-interweaving relation, with ¢ = ¢ a Dirac mass, we can proceed
similarly, since we deduce from (4) the same equations for g as for ¢ due to the isospectrality of P and
15, or we just rely on Remark 1.

Vke [[2a|VH]7 bk

VEee[2,[VIl, b

When some of the eigenvalues 6y, for k € [2,|V]], vanish, we rather consider a probability of the
form

TAT A TAT A
¢ = 50+<1— ; >5n1 (18)
with
In(mA7 A /4)
=1 _— 1
mo= 1 [P 19

Indeed, defining for any 6 in the complex unit disk,

Q) = > qub” (20)

TLEZ+

TAT A TAT A
= 1_ 0”1
(-5

we get for any k € [2, |V]],

TAT A

2

" < Q) < +¢™

By choice of ni, these bounds imply

7TA7~T/\ 7T,\7~T,\ ﬂ-/\%/\ 7T,\7~T,\

— < <
5 1 Q(0) 5 Ty
i.e.
TR < Qo) < 3T (21)



Thus considering
Ve[|V, b = b = /[Q(0h)] (22)

we get the wanted faithful interweaving relation (3) with the links Ay and /NXE.
Again, Remark 1 provides the wanted faithful bi-interweaving relation, with § = g supported by
two points.

Let us now come to the situation where P is periodic, so that in (5) we have 6y/_; > 0y = —1.
Indeed, under the irreducibility and reversibility assumptions, the aperiodicity is equivalent to the
existence of a (necessarily unique) eigenvalue —1, that is why both P and P are aperiodic together,
when they have the same spectrum.

The previous considerations are still valid: it is sufficient to find b, b and q (with ¢ = q), so that
(17) holds with (16) and

i b > 0 93
wpim 1ol (23)

The only difference with the above arguments comes from &k = [V in (17), namely

2 @(-1)" = biby

nely
It leads us to replace (18) by
TAT A TATA\ Ony + 0p +1
= ) 1— ! !
7 y 07 ( 2 ) 2

with np still given by (19).

Indeed, (21) is still true for k € [2,[V]—1]. For k = |V|, we get Q(0]|) = A7 /2. Thus taking
again (22), we get (17) satisfied with (16) and (23). Furthermore the support of ¢ = ¢ only contains
the three points 0,71 and n; + 1. |

3 The general case

Our purpose here is to show Proposition 4 and Theorem 2. Proposition 4 is the transposition to
interweaving relations of Lemma 7 in [6] for intertwining relations. Unfortunately the proof of the
latter is wrong, so we are to present new arguments that enable us to correct it.

Before coming to the proof of Proposition 4, we need some reminders from complex linear algebra.
Recall that seen as a complex matrix, P is similar to a block matrix, whose blocks are of Jordan
types (01,7m), (02,72), ..., (6r,7), where 01,05, ...,0, € C are the eigenvalues of P (with geometric
multiplicities) and r € N, 71,2, ..., 7 € N satisfy 41 + v2 + - - - + v = |V|. Recall that a Jordan block
of type (6,n) is a n x n matrix whose diagonal entries are equal to 8, whose first above diagonal entries
are equal to 1 and whose other entries vanish. The set {(0,vx) : k € [r]} is a characteristic invariant
for the complex similarity class of P and will be called the characteristic set of P. It is characterised
by the existence of a complex basis (¢ 1)) (kpes of C¥', where S = {(k,1) : k € [r] and [ € []}, such
that

v (k1) e S, Plowpn]l = Ok + Pri-1) (24)

where by convention, ¢ o) = 0 for all k € [r].
But for our purpose, it is more advantageous to work with real functions. So let us decompose

S = Sus

10



with

Sy {(k,1)e S : 6, e R}
Si = {(k)eS : 0,¢R)

There exists an involution of S;, denoted S; 3 (k, 1) — (k,I) such that

v (k1) € Si, 0 = 0, and Yo = Yk

Let R; = S; be such that R; 3 (k,1) — (k,l) € S;\R; is a bijection. Consider C; := R; x {0,1} and
define

c = Sr [ Ci
We can find a basis (1)ccc of RV such that

V(k,D)eS,  PlYwnl = Otduny + mi-1 (25)

(again with the convention ¥ gy = 0 for all (k,1) € S;), and

Ply = Op — O30 + Y-
Y (k1) € R;, { [Yw10)] kx¥(k,1,0) = YRV (k1) (k,1—1,0) (26)

where 0, and 6 ; are respectively the real and imaginary parts of 6, (and V(k,0,0) = Y(k,0,1) = 0 for
all (k,1) € Ry).
Note that (26) is equivalent to

V(k,)eRi,  Plepnl = Obry + V-1 (27)
where 9, 1y € CV is given by

V (k1) € Ry, Yy = Vo) T 10w (28)

~ Observe that the conjugate functions &(kyl), for (k,1) € R;, play the same role for : P[l/;(kyl)] =
Ok (k) + Y(k,—1)- An example of basis (o)) (k,es satisfying (24) is given by

(p(k’l) . { ¢(l_c,l_) ) f( ’ )E Si\Ri

Such a basis (1.).cc will be said to be adapted to P.

These linear algebra considerations are valid for any real matrix P, let us now specify what can
be said in addition for irreducible transition matrices. By irreducibility of P, 1 is an eigenvalue of
multiplicity 1, so we can assume that (61,71) = (1,1) and ¢(;,;) = 1. The irreducibility assumption
also implies there is a unique invariant probability 7 for P and it gives a positive weight to every
point of V. It can be assumed that all the eigenvectors 1., for ¢ € C' are normalized in L?(r), but in
general they will not be orthogonal. The only orthogonality property is that of ¢ ;) with the ¢, for
ce C\{(1,1)}, namely

v (k1) € S, LI ;f (Z, ;) €S u R,

Vece C\{(l’ 1)}7 71-[1/)0] =0 (29)

Indeed, for any k € [2,7] such that (k,1) € Sy u Ri, we have P[] = Oxtp,1) with 0 + 1
(where 1) is given by (28) for (k,1) € R;). Integrating the previous relation with respect to m, we
obtain due to the invariance of ,

T[] = OmlYen]

11



so that 7t 1)] = 0 (for (k,1) € Ry, this equality means that both [ 4 0)] = 0 and 7[¢)1)] = 0).
Next we show that

mepnl = 0 (30)

by iteration on [, where k € [2,7] is fixed as above. If (30) is true for some [ € [y, —1], then integrating
with respect to 7 the relation

PlYgisn] = Okisr) + Y (31)

we get (1 — Op)T[Y(x141)] = 0, namely (30) with [ replaced by I + 1.

Let (¥¢)cec: be a basis adapted to P, with the same characteristic set {(65,7x) : k € [r]} as P and
the same index set C.

The next step is to construct the analogue of the operator Ay given in (12), for any family b :=
(be)eec((1,1)} of real numbers. We cannot proceed directly as in (12), i.e. define Ab[zzc] = betpe for all
ce C\{(1,1)}, because it would not be compatible with the commutation relation

PA, = AP (32)

Indeed applying the latter relation to J(k,l) with (k, 1) € S;uR;\{(1,1)}, we should have the equality

by Plogn] = A0k + Pi)]

namely

by Ok + Yri-1) = bk Pirs) + b1V (ri-1)

which implies that by, ;) = b(x;—1) as soon as [ > 2. But this equality leads to restrictive choices of b
which are not in line with our purpose.
Fix the family b := (bc)cecn((1,1)) of real numbers.

We start by constructing Ay on the vector space generated by (@Z(M))(k’l)e S:\{(1,1)}- Define for any

(k1) € S:\{(1, 1)},

Ab[TZ(k,l)] = Zb(k,lfjJrl)w(k,j) (33)
Jelll

On the vector space generated by (Jc)ceci , we have to be more careful. By analogy with (33), we
would like to define for any (k,[) € R;,

Aldwn] = D) bimjenbs)
el

with 1,5y is given by (28) and where
W ] [S [[’7]6]], b(k,j) = b(k,j,O) + ib(k,j,l) (34)

In “real” terms, this amounts to taking for any (k,l) € R;

Ab[ﬁz(k,uo)] = Z Ok, +1,0)(k.5.0) — O(ki—j+1,1) P (k.51
Jelll

Ap[an] = Z bik—j+1,1)V(k.5,0) T Ok i—j+1,0)V(k,j,1)
Jelll

It remains to define Ay, on v ;). We just take Ay[1p( 1)] = 0.

12



Lemma 8 The operator Ay constructed above satisfies (32).

Proof
It is sufficient to check that

VeeC,  PAfU] = AP[] (35)

~

For ¢ = (1,1), this equality holds since both sides vanish, due to the fact that 1 = P[1].
We consider next the case e = (k,[) € S;\{(1,1)}. We compute on one hand,

PAy[dry] = P Z bk i—j+1)V(k.j)
Jelil
= Z b i—j+ 1) PlY k)]
Jell]
= bka—i+n) Oh gy + Yk i-1)
Jell]
= Ok D bki—is )Yy + Dy bkt Yikg) (36)
jeli] jeli—1]

and on the other hand,

Ay P[]

Ab[HMZ(k,z) + J(k,l—l)]

O Z biki—j+1) (k) T Z bk 1—1—j+1% (1. 5)
Jell] Jjeli-1]

which coincides with (36).
Let us now check (35) for ¢ € Ci. Note that the above computations are equally valid for ;)
defined in (28), with (k,[) € R;. Namely, we have

PAb[IZ(k,z,O) + “Z(k,l,l)] = Abf’[iz(k,z,o) + i@Z(kz,l,l)]

Since PAb[qz(ka)], PAb[J(k7l71)], Abﬁ[J(k,l,O) and Abﬁ[zz(k,u)] are vectors with real entries, we
deduce

~

PAy[Y0] = Abﬁ[J(k,l,O)]

PAb[J(k,l,l)] = Abf)[J(k,l,l)]
These identities are valid for all (k,1) € Ri, so that (35) is satisfied for all ¢ € C. [
Writing A; in the bases (1.)cec and (lzc)cec, we see that

ll)i_ri%Ab = 0 (37)
Introduce
R = (SsuR)\{(1,1)} (38)

Taking into account the definition (34), we can see b € REMD} as the element (b(k1)) (k1)eR €
RSMO0)} 5 CRi. From (37) we can find 1 > 0 so that for any b := (Otk)) (k,))eR>

max{[bgy| : (k,1) € Ry <n = max{[Ay(z,y)|/7(y) : z,ye V} <1 (39)
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A more quantitative description of 1 > 0, in the spirit of Lemma 7, will be given in Lemma 11 at
the end of this section, under the assumption that all the eigenvalues are real. It is not needed in the
proofs of Proposition 4 and Theorem 2, which are rather qualitative as long as no bound is asked on
the support of ¢ (i.e. not only on its cardinal).

Introduce

B = {b e RSMLDY o ¢l max{|bg, | : (k,1) € R} < T]} (40)
For b € B, we consider the operator A, given as in (15) by
Ay = T+ A4 (41)

where again 7 is interpreted as the matrix whose rows are all equal to the probability 7.
Taking into account that P7 = 7P = 7 and Lemma 8, we get the intertwining relation PA, = ApP.

~

From the relation Ay[1] = Ap[th(1,1)] = ¥(1,1) = 1, it appears that the row sums of A, are all equal to
1. Furthermore, all the entries of A will be non-negative as soon as

which is satisfied by definition of B, see (39) and (40).
Thus Ay is a Markov kernel for b € B. In general it is not invertible, for instance for b = 0.
Introduce

C = {beB:min{lby | : ke K} >0} (42)
where
K = {ke]|r]: (k1)€e R} (43)
Its interest is:
Lemma 9 The operator Ay is invertible for b e C.

Proof

Expressed in the bases (@Z(k,l))(k,l)e{(l,l)}uR and (Y(x,1)) (k,)ef(1,1)}ur the matrix of Ay is block-diagonal.
The block-matrix associated to (1, 1) is just 1. For k € K, the block matrix associated to the Jordan
block (k,~x) is the Toeplitz matrix

b1 bro brz - brs,
0 b1 bra - bra—1
Tk = 0 0 bk,l c . bk,’Yk*2 (44)
0 0 0 - by

whose entries are real numbers if k € S;, but some of the entries may be complex numbers which are
not real for k € R;. Whatever the case, this matrix is invertible if and only if by ; # 0. Thus in view
of its definition (42), C exactly consists of the elements b € B such that A is invertible. |

Since similar arguments are valid for /NXE =7+ gg with similar definitions, we get a strong bi-

intertwining relation between P and ]5, with Ay and /N\g as links, by choosing any b € C and beC.
This shows the validity of the statement of Lemma 7 in [6], although its proof is erroneous.

With these preliminaries in hand, we can now come to the

14



Proof of Proposition 4

As for Proposition 6, we first compute both AJ\g and Q(P) for given b € C, beC and probability ¢
with a finite support on Z,, where @ is the associated polynomial defined in (20).

Expressed in the basis (k1)) (k0)ef(1,1)}ur (and in the intermediate basis (J(kl))(k’l)e{(l’l)}u}g for
the product Ab]\g), both AbINXE and Q(P) have a block diagonal structure.

Note there is no problem for the one-dimensional Jordan block associated to 61 = 1: we have

M1 = 1 = Q(P)[1]

whatever the choice of b € C, b e C and of the probability q.

Let us now fix k € K and consider the block matrices associated to the Jordan block (k, ).

e For Ab1~\5, the v x yx-block is Tk:fk:, where Tk is defined as in (44), but with respect to b. Note
that T3 Ty is a upper diagonal Toeplitz matrix determined by its first row which is the vector

Z () Dk - +1) (45)
el teln]

e For any n € Z, the v, x yi-block of P" is

D N (T (46)

me[n—y,+1,n]

where [j is the v, x 7 identity matrix and Nj is the matrix whose first upper diagonal consists of
1’s and the other entries vanish (i.e. Ol + N is the usual v, x 7, Jordan block associated to the
eigenvalue 6). In (46), we took into account that N* = 0.

The matrix in (46) is also upper diagonal Toeplitz and is determined by its first row which is the

<<l 7—1 1) ezlﬂ)zq[yk]] o

(for n = 0, by convention this vector is (1,0,0,---,0)).
Thus (3) is satisfied with ¢ the Dirac mass at n € Z, if and only if (45) and (47) coincide. We get

~

the system of equations in (bx1))iefy,] and (bk1))iefre]:

vector

-

biebny = Of
bieybik) + Dby = oyt

|3 b b n(n-1) pn—2 (48)
b n)biks) + b2 + bnbry = g0

Let us consider the case where |0x] € (0,1). Introduce the polar decomposition 0 = prpe'®*,
with p € (0,1) and ay € [0,27). We look for a solution of the form b, = pZ/Z_lHﬂ(k,l) and

g(k,l) - pz/2—l+1 for I € [yx], so we get the system of equations in (B 1))iefy,]:

/B(k,l) = elnok
ﬁ(k},Q) —+ B(k,l) — nei(n—l)ak
< n(n— i(n—2)a (49)
'B(k,3) + B(k,z) + ﬁ(kyl) = %6( 2)oy,
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which admits a unique solution. Note that if k € Sy, then oy € {0, 7} and the solution (B1))ie[y,] 18
real valued. Otherwise for k € S;, recall that (B, ))ic[y,] has to be decomposed as in (34) to provide
for the desired real coefficients (B(x,.0))ie[y,] and (B(,i,1))ie[y,]- Furthermore an immediate iteration
proves that

V1€ [, Bupl < D <n>

jeli—1) N
and it follows that
~ n n/2—
by v Bl lelul) < Y (.>p,/2 (50)
Jelve—1] J

Note that the r.h.s. goes to zero as n goes to infinity. We can thus find ng(k) € Z, large enough
so that for n = ng(k) we have

max{|bgp| v [bapl : L€ [w]} < 7

Note furthermore that b 1) # 0 and Z(k,l) # 0.

It follows that if the eigenvalues 6y, for k € K (or equivalently for k € [2,7]), do not vanish and
have modulus strictly less than one, then we can find b € C and b e C so that Abxg = P™ with
no = max{no(k) : k € K}. This exactly corresponds to the situation where P is aperiodic and does
not admit zero as eigenvalue. Thus the last assertion of the proposition is shown.

Concerning the last-but-one (and not deducing it from the first one, to be more pedagogical), when
P is aperiodic, we still have that all the eigenvalues, except 7 = 1, have a modulus strictly smaller
than 1, but some of the eigenvalues can be zero. Consider kg € K such that 6, = 0. Solving (48),
we end up with either b, 1) = 0 or Z(ko,l) = 0, which is not convenient for our purpose. So as in the
proof of Proposition 6, we rather look for ¢ of the form ("dp + (1 — (™)d,,, where we take again

¢ = max{|0k] : ke [2,r]} (51)

Then for any k € K, (48) transforms into

( bunybpy = ¢+ (1—CM)oF

benybieo) + beybayy = (1—C)nop!
{ . N N

bik,1)b(k,3) + O(k,2)0(k,2) + b3y = (1 C")n nlgn-2

\

This system can be solved as before, in particular with

by = I¢"+ @ —CMopYeM 2 0
~ A=y

b b 0

(k,1) ‘Cn 1_Cn)9n‘ #

and similarly to (50) we get

dlefwl < D) (?)g”/”k“ (52)

Jelve—1]

max{]b(k’l)\ v

Since the r.h.s. converges to zero as n goes to infinity, we end up with the conclusion that we can
find b€ C, b e C and essentially the same ng as above so that ApA; = ("0 + (1 —¢mo)ypmo,
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We now come to the case where some of the eigenvalues of P outside 6; have modulus 1. It is
well-known that for a irreducible transition matrix, there exists d € N called the period such that the
eigenvalues of modulus 1 are of the form €™/ for m e [0,d— 1] and each of the latter have geometric

multiplicity 1.
In this situation, we consider the probability

5710 + 57Lo+1 + e+ 5n0+d—1
d

q = ("6 +(1-¢")
where now
¢ = max{|0;| : ke K}
with
K = {ke[2,r] and |0;] < 1}
and as above

ng = min<neZ, :Vkek, Z <T,L>|9k]”/27’“+1 <7
Jelve—1]

n _
- 1> Cn/Q I'+1 < 7]}

where I' := max{yy : k € [r]} is the largest dimension of the Jordan blocks.
Our goal is to find b € C and b € C such that for any k € K,

< i Zy : T
mln{ne i (F

N . RSN N A
baybay = ¢+ (1—¢")0,° .

\

Note that if k£ € K is such that 6, is an eigenvalue of modulus equal to 1, i.e. of the form e

with m € [d — 1] (recall that 1 ¢ K, so that m = 0 is not permitted), then

d1 1*€i27rm
L+ 0k +-- + 0 T eizemid

= 0

so that the above system (57) reduces to

( 5(k,1)b(k,1) = ("

biebie) + de2yby) = 0
bieybes) + Db + besbry = 0

\

d
~ ~ . e L0+ 0!
b b2 + debiy = (1—C")nobpo y k
~ ~ ~ oy o(no — 1 n,1+9k+~--+6d*1
bk, 1)b(k,3) + Ok,2)0(k,2) + bie3)bey = (1—¢ 0)()(3)9k° 2 y k

which can be solved by taking Z(k,l) =b(r,1) = ¢"0/2 and E(k,l) = by, = 0 for all [ € [2,vx].

17
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For the k € K such that || < 1, we can proceed as before, taking into account that

L+ 0+ + 001
d

< 1

to construct b e C and b € C solving (57) and such that (52) holds (with (53) instead of (51)).

To sum up, we have constructed a strong bi-intertwining relation between P and P with a corre-
sponding interweaving relation from P to }3, so we get a strong bi-interweaving relation between P
and P with q = q as above according to Remark 1. |

We can now proceed to the

Proof of Theorem 2

The reverse implication is obvious: assume that o € Sy, the probability ¢ on Z, and the invertible
links A; (from Cj to Cy(y) and A (from C, ) to Cy), for [ € [€], are such that for any I € [£], we have

Po, A = Alﬁ@(l)
PéamAl = Ade, (58)
MNA = Der, 4I7,

(the corresponding relation (4) with ¢ = ¢ is a consequence of Remark 1).

~

Consider ¥ a permutation of V' such that %(Cj) = Cy(;) for all [ € [€]. Identify ¥ with its V' x V

matrix (1,—g(z)) (2,y)evxv- Replacing P by ypy-! (which amounts to “rename” the elements of V' for

P), we can assume that C; = C, ;) for all [ € [¢]. Ordering appropriately the elements of V', we have

~

Po, 0 -+ 0 Po, 0 - 0
p=| Y fe U po | 0 e 0 (59)
0 0 - Pg 0 0 - Pg

It remains to define the invertible links

Ay 0O - 0 At 0 -+ 0
A = 0 Az O and A = O A 0 (60)
0 0 - Ay 0 0 - Ay

to get a strong bi-interweaving relation between P and P associated to the probability ¢ = ¢.

Conversely assume a strong bi-interweaving relation between P and P holds with respect to some
invertible links A, A and to the probability ¢ = q.

Denote E and E the eigenspaces associated to the eigenvalue 1 respectively for P and P. From the
intertwining relation PA = AP, we deduce that A(E) < E and in fact A(E) = E since A is invertible
and dim(E) = dim(E) by similarity of P and P. As a vector space, E (resp. E) is generated by
the indicator functions 1¢, (resp. 1 51), for [ € [¢]. Thus there exists matrices M = (Mj )y e[ and

M = (Mhl)k’le[[g]] so that for any [ € [¢],

Allg] = ), My,
ke[4]

18



From the fact that A and A are Markov matrices, we deduce that M and M are Markov matrices

too. We also get for any [ € [/],

A[lg] = > (MM)gle,
ke[4]

but from the interweaving relation, we have

AK[]lOl] = Z QNPn[]lCl]
HEZ+
= Z Qn]lCl
n€Z+

= ]lcl

We deduce that MM is the identity matrix. Since both M and M are Markov matrices, this is
only possible, see Lemma 10 below, if there exists a permutation o € Sy such that M and M are the
matrices respectively associated to o and o'

My, = T_o
vk le [, {,M *) (61)
ki = lg—oq)

For any [ € [¢], the relation K[]lcl] and the invertibility of A, imply |C;| = |6U(l)|. Define

=l
A; the O x CN'U(I) restriction of A, which is ;)Markov transition matrix from Cj to 6’0([). Similarly,
let Ay be the C,(;y x Cj restriction of A. Up to the renaming transformations considered in the first
part of this proof, we can assume that for any [ € [¢], Cy;) = C; and that both (59) and (60) hold.
Expressing the bi-intertwining relation between P and P in this block-diagonal matrix form, we get
the validity of (58) (with C, ;) replaced by Cj), which is the desired result.

The last assertion of Theorem 2 comes from the constructions of the probabilities ¢ in the irreducible
case. They can be made compatible for the Pr, and PC’U(Z)’ for [ € [¢], by considering a probability
q = €do+ (1 —e)Upp nra—1], where Up, nyq—17 is the uniform distribution on [n,n+d—1], with € € (0, 1)
small enough, n € Z, large enough, and d the least common multiple of the periods of the P, . ]

In the above proof we needed the following well-known result, given for completeness.

Lemma 10 Assume that M and M are two Markov matrices on [€] such that M is the inverse of
M. Then there exists a permutation o € Sy of the state space such that (10) holds.

Proof

It is sufficient to show that for any k € [¢], there exist a unique [ € [¢] such that M (k,l) > 0. Indeed,
then we have M (k,l) = 1 and we define (k) := . The mapping o constructed in this way is necessarily
a permutation, otherwise M would not be invertible.

So by contradiction, assume there exist k € [¢] as well as Iy # Iy € [¢] with M(k,l;) > 0 and
M (k,l2) > 0. Since

MMk D)M(LE) = 1

le[f]

we deduce that we must have M(ll,k) =1= M(lg,k) = 1, otherwise the sum in the Lh.s. would
be strictly less than 1. It follows that the row M(l1,-) and M(l2,-) are the Dirac mass at k and in
particular we have M (ly,-) = M (ls,-), in contradiction with the fact that M is invertible. |
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As promised after (39), let us present an estimate on the quantity 7 introduced there, under the
assumption that all the eigenvalues are real. An investigation of the general case should be possible in
a similar fashion, but we refrain from entering the corresponding more involved calculations. Indeed,
they will not serve as an inspiring guide in Section 5, where only non-negative eigenvalues will be
considered. Nevertheless, at the end of this section we will deduce an example of bounds that can
given on the support of ¢ in Proposition 4, namely on the warming-up time to pass from P to P and
conversely, when all the eigenvalues are assumed to be real.

We need the Gramian matrices

R = (mlownemw in]) (), es and R = (TP ety Pl 1)) o), (k7 11)e s

where (w(k,l))(k,l)es and (cﬁ(kyl))(m)es are bases adapted to the spectral structure of P and P respec-
tively.

These matrices are positive definite. Let v, = v, > 0 (respectively U, > U, > 0) be the largest
and the smallest eigenvalues of R (resp. R).

Their interest comes from the following analogue of Lemma 7:

Lemma 11 We have for any z,y €V,

Ap(2,y) IV S '
‘ 7(y) ‘ < T Tr /7 @) () {lbgp| = (k,1) € So}
Ay(e.y) o, 1 .

EORE F\/: mmax{!b<k,z>\ + (k1) € So}

where Sy = S\{(1,1)}.

In particular, in (39) we can take

n = 1 U—A\/WA%A

'\ v,

Proof
We adapt the proof of Lemma 7. The entries of the matrix associated to A; are given by

Va,yeV,  Ay(z,y) = Lo, Ap[Ly])

where (-, -) is the usual scalar product in RV (recall that 1, and 1, are the indicators function of z
and y). Using integration with respect to m, this can be written

1,
v z,y € ‘/7 Ab($7y) = 7 [Ab[]ly]}

m(x)

or equivalently

Vagev, Ay _ WH;)A”H&)”

Introduce the following decompositions in the bases (G.1))(k,es and (Pk)) (k,)es:

ﬁ]i;)(') = 2 omn@ewrn() (62)
(k,)eS

L, N .

%(y)() (k%:es k1) W) Py ()
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with some real coefficients a(z) = () (%)) (k,17es and a(y) = (A1) (Y)) (k,1es-
We deduce

Ap(z, ~ ~
Va,yeV, ;T(( )y) = Z 1) ()8 iy 1) ()T [ 00,0y Abl P ()] ]
y (k,0), (K )eS

= Z gy (@) 1y () [0 0,0 Al B 1] ]
(k1),(K1")S0

= D oy @) w ) Y] burr—je1) R, o)
(k,0),(K',l")eSo jelv]

= DU @) By W) R w.) (63)
(kvl)7(k/7j)eso

where we took into account the orthogonality of ¢(; 1) with the other elements of the basis in the
second equality and where Bo(y) = (B 5)(¥))  j)es, is defined by

vV (K, 4) € So, B jy(y) = Z A 1) (V)b yr—j+1)
Vel ] gell’]

Multiplying (62) by ¢ ) for any (k',1') € S and integrating with respect to 7, we get

eun (@) = > (@) R, w
(kDes

namely we have the vectorial equality

Ra(z) = (o) (@)wies = ¢@)

i.e.
a(zr) = R 'o(z) (64)
Note that we can write
1 0
ne (00) "
with RO = (R(k,l),(k’,l’))(k,l),(k’,l’)ESO' Furthermore, we have
-1 1 0
R = ( o m (66)

From (64), we deduce oy 1y(z) = 1 and ag(z) = Ralcpo(z), with ag(x) = () () k)es, and
wo(z) = (k1) () (k,1)es0-
Applying (62) at the point x, we get
1 1. (z)
() ()
= 1+ <ao(), o))
= 1+ {ao(x), Ry (x)),

where (-, -), is the usual scalar product on R,
It follows that
1
—— = {ao(x), Roao(x))q (67)

m(z)
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> un ao(z)[g

(since v, is also the smallest eigenvalue of Rp).

Similarly, we have

—— = . [do(@)[} (68)

Coming back to (63), the Cauchy-Schwartz’ inequality implies

’Ab(ffay)

D] < )l [Roco(e)l (69

Let us deal with the last factor:

[Roao(@)ly = +/(Roao(x), Roan()),

= [V Rorofa), Ro Foa(@)),
< \/Uv <\/R70ao($)7\/370040($)>0

= /vy {ag(z), Roao(x))y

m(x)

(70)

On the other hand, we can bound the square of first factor of the r.h.s. of (69) by

1Bo(y)ly =

N

N

N

N

N

<

<

Z ﬂ(Qk,j) (y)

(k,5)€So

2
Z ( Z a(k,z) (y)b(k,lj)>

(k,3)eSo \le[vi] :jell]

> 2 A® 2 b

(k,5)eS0 te[vi] : el Velvel : jell']

| 8 o | B8
(k

Vely] J)€So le[vi] : jeli]

max {fyk/b%k,l,) (K1) e SO} Z &?k’l)(y) Z 1

(k,1)eSo Jell]
max {’}/k/b%kIJI) : (kla l/) € SO} Z l&%k,l) (y)
(k,1)eSo
I'max {/}/k/b%k’,l’) : (kla l/) € SO} Z &%k,l) (y)
(k,1)eSo

F2 max {b%k’,l’) : (kla l/) € SO} Ha()(y)ug

1
r? b2, o (K1) e Syt ———
e {#fe ) 5 (1) € Sof 5

according to (68). This leads to the first announced bound. The second bound is obtained by sym-
metry. The last assertion about 7 follows at once. |
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To finish this section, we give an application for bounding the support of ¢ in Proposition 4, when
all the eigenvalues of P are real.

Coming back to (53), (54) and (55), it appears that the support of the constructed ¢ is included
into [0,np]. Taking into account (56), the bound ( ) < % valid for all n,m € Z,, and Lemma 11,

n
m.
we get ng < ng with

r—1n! /v
g = min{nEZ+ YV kek, n' 712 < (I‘z) SA\/WA%ACF_I}

4 Matthews result

Our purpose here is to show Theorem 5 of Matthews [5] by interpreting it as a degenerate version of
Proposition 4 where P is an absorbed Markov chain.

Let P be an irreducible and reversible transition matrix on V and recall the notations introduced
before Theorem 5. We assume that the eigenvalues of P are non-negative.
Consider the state space V' := [|V|] endowed with the transition kernel P defined by

1 Jifk=1=1

~ ~ Ok Jifk=1>2
VEkleV, P(k,l) =
1—6; ,ifk>2andl=1

0 , otherwise

The corresponding Markov chains are absorbed at 1. Since P is lower diagonal, its eigenvalues are
given by the entries of the diagonal, namely are exactly those of P. Furthermore, for any k € [2,|V],
an eigenvector associated to 0 for Pis Pk = 1. As usual we take g7 = 1.

We say that Pisa simple model for P.

Let X := (X (n))nez, be a Markov chain as in Theorem 5, namely with transition matrix P and
initial distribution pg, which is fixed from now on. Up to multiplying some of the eigenfunctions by
—1, we can assume that

VEe[lVIl,  moler] = 0 (71)

(of course this is automatically satisfied for ¢ = 1). In particular the quantity defined in (7) equals

Z(po,no) = Z len]l oo 02] 67
E[IVIIN1}

where ng is given by (8). As mentioned in the introduction, Z(ug,n¢) = 0 if and only pp = 7, which
is also the only case where ng = 0. From now on we assume that Z(uo,no) > 0.
Consider the V' x V matrix A defined by

Z(po,mo)

VeeV,VkeV, Ak =
0 Jifk=1

Contrary to the previous sections, A is not a transition matrix, since some of its entries are negative.
Nevertheless it has two interesting properties. First we check that

oA = i (73)

the probability on V defined in (6) with n replaced by ng.
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Secondly, we have

v k € [HVH]7 A[@k] = Z(Mo,no) Pr 51 =

©1 ,ifk':1

(74)

In contrast, we look for a “true” transition kernel A from V to V verifying the properties of the
following lemma.

Lemma 12 There exist a transition kernel A from VtoV and a probability q = (qn)nez, on [0,n0]
such that (1) and (3) are satisfied.

Before proving Lemma 12, let us show how it implies Theorem b5:

Proof of Theorem 5
Consider X := (X(n))nez . and Y := (Y(n))nez, , respectively a Markov chain with transition kernel

P and ﬁ((]no) as initial distribution and a Markov chain with transition kernel P and vq := ﬁg"O)T\ as
initial distribution.

Due to (1) and vy = ﬁéno)]&, Diaconis and Fill [2] provide a coupling of X and Y such that we have
for any n e Z,

~

LE (0 ADY) = LE (0, aDIY ([0, 7)) (75)
Lo mIX[0.a)) = A(Xm), ) (76)

(where the various £(+]-) stand for conditional distributions).

From the first relation, we deduce that any stopping time relative to X is also a stopping time
relative to Y. The second relation, which can be seen as a probabilistic version of (1), is still valid
when n is replaced by a stopping time for X. It leads us to introduce the stopping time

F o= inf{neZ, : X(n) =1}

which is finite a.s., since 1 — 6y > 0 for any k € [2, |[V]].

From (1) and the fact that 1 is absorbing for X, we deduce that A(1,-) is invariant for P, namely
A(1,-) = 7. Tt follows that Y (%) is distributed according to @ = A(X(%),:). Furthermore, from
LY (7)) X([0,7])) = A(X(F),-) = m, we deduce that Y (7) is independent from 7, since 7 is measurable
with respect to X ([0,7]) (and maybe to some additional independent randomness). Thus 7 is a strong
stationary time for Y. For more details about these classical assertions, see Diaconis and Fill |2].

The extreme simplicity of P shows that 7 is distributed as the random variable G described above
the statement of Theorem 5.

Consider 7 a time independent from X and distributed according to the probability ¢ appearing
in Lemma 12.

From (73) and (3), we deduce that Y has the same law as (X(7 + n))nez, . It leads us to define
T =T + T, since we get that X (7) is distributed according to m. To see that 7 is a strong stationary
time for X, it remains to check that 7 and X (7) are independent. So let be given two functions
f:V—>Riandg: Z; — R;. We compute

E[f(X)g(r)] = E[J(Y(F)g(F +7)]
S GE[(Y(F)gln +7)]

ne0,no]

= ) GEFY@)E(n+7)]

ne0,no]

ELfF(Y(®)] ), aElg(n+7)]

nef0,no]
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= Elf(Y(@)IE[g(n)]
= E[f(X(7)]E[g(7)]

where in the third equality we used the independence of Y (7) and 7.

Since the support of ¢ is included into [0, n¢], 7 is stochastically dominated by ng + G, showing
the first assertion of Theorem 5.

For the second assertion, note that for any k € [2,|V|], we have ug[or] < |prll, < 1/y/ma (use
either m[¢?] = 1 or (14)). We deducethat for any n € Z,

Z(,u,(), < Z 9n

" kel2,VI]

showing that ng < ng, where ng is defined in (9).
Furthermore, since 0 < 0 < 02, we have for any n € Z,

14
Z(po,m) < gy
N
so that
Vv
ng < min{neZJr : u9§< 1}
T A
_ [(Vi/ra)
ln(l / 62)
Moreover, it is clear that G is stochastically dominated by a geometric random variable of parameter
5. [ |

Let us now come to the

Proof of Lemma 12

The calculations are inspired by those of Lemma 7.
Let be given a family b= (bk)ke[[|\/|]] with by = 1. We look for an operator A~ which is such that

vie[[VIl, Klol = b@ (77)

which ensures the commutativity property (1). Let us check that ./NXE is a transition kernel for appro-

priate choices of b.

The associated matrix (7\3(14:, x)) is such that

ke\7, zeV

~ ~(k ~
VeV, VaeV, ok 2) <nk,Az[ﬂ’”]>
7(

where (-, -) is the usual scalar product in RV
Let us decompose

1,
eIV
with some real coefficients () = (e ())ieqv-
We deduce
ad K~(k‘ia ZL‘) 7 ~
VkeV,VzeV, Z;T(l_) = > al@)b A, &)

tefvil



On one hand, we compute for any k,[ € ‘N/,

N 1 Lifl=1
A, 1) = { ey S if1>2

where dy,; is the Kronecker symbol.
On the other hand, multiplying (78) by ¢;, for j € [|V|] and integrating with respect to m, we get

pilz) = > al@)r[eel]

(V]
= Z ()0,
L[V
= ()
Thus we get,
N A (k b if k=
VheV.VaeV, k) ) (@b . o ifk=1
m(x) ar(z)by + ag(z)by ,ifk>2
(1 itk =1
B 1+ op(@)by ,ifk>2

We deduce that the entries of A are non-negative if and only if
Ve V{1, VzeV, 1+ep(@)bp = 0 (79)

In this case, 7\5 is a transition kernel, since /NXE[H] = /N\E[cpl] =@ =1.
A simple sufficient condition ensuring (79) is

1

VieeV\{1}, [b < — (80)
Ikl
Let us compute AJNXE. From (74) and (77) we get
N bi |0kl O° k> 9
VeelVI, ARl = { ZGomo) PR BEZ (81)
©®1 if, k=1
Thus (3) is satisfied if and only if
5k lexll o 0°
V ke [|[VI]\{1}, Tk 0
W, gimel - 3
Considering the probability ¢ = d,,, leads to the choices
~ Z (g, ny
vee V1) B = ZUeno)
Ikl

Due to the definition (8) of ng, we get that (80) is satisfied (contrary to the proof of Proposition 6,
we do not need here that the entries of b do not vanish).

Thus the Markov kernel A = Ay and the probability ¢ = dy, provide us with the desired properties.
[
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Remark 13 The definition of A in (72), or equivalently in (74), may seem arbitrary at first view. In
fact it corresponds to an implicit optimisation. To see it rather consider

VoeeV,VkeV, Az, k) = T
b(2, k) Z010.0) Pr(T)
with
Z(pob) = Y, brpol]
le[Ivi]

and where b := (by)gefjv|] is an element of R[_[iVH] with b; = 0.
Assume again that (71) is satisfied. Then (6) and (81) have respectively to be replaced by

- b ol er)
vV ke [|V]], O () = 2EHOLPK
and
- %% if k=2
v ke [|IV]], ApAylor] = Ko,
¥1 if, k=1

It follows that (3) is satisfied with ¢ = &, for some ng € Z, if and only if

Z (o, b)0,°

Vie[[VINM1YL b = o

We still want (80), so we should choose b so that to maximize the quantity

n{z(uo,b)bll:okloo%o ke [Hvl]]\{l}}

By 0-homogeneity in b of the above ratio, it amounts to take (by)refv(p (1} Proportional to the

10

vector (k. 01 kegv 1> leading to (72). o

Let us check on the random walk on the discrete hypercube of high dimension that Theorem 5 can
be quite sharp. It is also the unique example of Matthews [5], in a slightly different version, since he
considers for transition kernel the square of the non-lazy transition kernel instead of the lazy kernel
as here.

Example 14 For N € N, consider the state space V = {—1,1}", endowed with the transition kernel
P of the associated lazy random walk:

% Jifx =4/
Vo o eV, P(x,2") = ﬁ , if z and 2’ only differ at one coordinate
0 , otherwise

The uniform distribution 7 on V' is reversible for P.
Denote by S the set of subsets of [N] and define for S € S, the mapping

ps = Hgs

seS

where the & for s € [N] are the natural coordinate mappings on {—1, 1},
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We compute that for any S € S,

N — 5]

Ples] = N Ps

where |S| stands for the cardinal of S.

Thus (¢g)ses is an orthonormal basis of L2(7) consisting of eigenvectors of P, whose associated
eigenvalues are the (0g)ses = (1 —|S|/N)ses. . The spectrum of P consists of the numbers k/N, for
k € [0, N], with corresponding multiplicities (]IX) Note furthermore that each pg, with S € S, is only
taking values in {—1,1}, so that |¢g|,, = 1. We restrict our attention to initial distributions po that
are Dirac masses, so that we also get that |uo[ps]| = 1.

It follows that the quantity defined in (7) is given by

5 050

SesS\{}
% (0 -%)
ke[N]

For any x > 0, introduce n(N,x) = NIn(N/x). The following result gives a relatively precise
estimate on ng(V) defined in (8).

Z (o, m)

Lemma 15 Fiz x' <In(2) < x”. For N large enough, we have

n(N,x") < no(N) < n(N,x")

Sketch of proof

The arguments are quite standard, so we don’t give all the details.
For fixed x > 0 and k € N, we have as N goes to infinity

(1@"““") < exp(—kIn(N/x))

Furthermore we have

> () expl-ktn )

> @[ ) exp(—kIn(N/x)) — 1

ke[N] ke[0,N]
— (1 + exp(—In(N/x)N —1
_ X\ _
- (1 + N) 1

> N-ow eXp(X) -1
and this expression is strictly smaller (larger) than 1 for xy < In(2) (resp. x > In(2)). [

Next we consider the random variable G appearing in Theorem 5. Let us show that it is roughly
of order N by computing its expectation (the second moment can be treated in the same way, giving
a similar estimate, in particular there is no concentration around the mean).

Recall that for any fixed S € S, the expectation of the geometric random variable Gg (defined in
(10), with the index k replaced by S) is given by

1
E[GS] B 1—0g
SO
ElG] = > #g"(s)E[Gs]
SeS\{1}
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T 7 Z o5 1 9
(”0’ o(N SeS\{l} —Us

From the proof of Lemma 15, we deduce that as N goes to infinity
Z(po,no(N)) ~ 1

so that

E[g] ~ Z Hno 1—95

Ses\{1}
WIS
= 1 — — —
KN k N k
Define for any n € Z,
N EN"1
ke[N]

which is a decreasing quantity with respect to n.
Similarly to Lemma 15, it can be shown that for any y > 0, we have for N large

N 1
P = % () es(-kmvg
ke[N]
NF k1
- N1
by KON R
D X1
ke[N] Ktk
i.e.
1Xk
am FINn(NX)) = 2 25

keN

Taking into account Lemma 15 and the monotonicity of F' in its second variable, we get

k
lim E[F] _ 11n(2)
Now N kGNk k!

Putting together these observations, we end up with a strong stationary time of order N In(NV). It
is known, see Matthews [4] and Diaconis 1], Exemple 2 page 72 and Exercise 4 page 77, that N In(NV
is the right order for the separation cut-off on the hypercube {—1,1}" and the above considerations
provide a corresponding upper bound. It follows that the estimate of Theorem 5 is quite sharp for

this example.
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5 Markov kernels with non-negative eigenvalues

Our purpose here is to extend Theorem 5 of Matthews [5] to all Markov kernels whose eigenvalues are
non-negative. In particular we will introduce degenerate models for them. It would be interesting to
extend the results presented here to any finite irreducible Markov kernel, but we are missing simple
models for negative and complex eigenvalues. We hope this challenge will trigger research in this
direction, as it also related to the understanding of transition kernel complex eigenvalues.

Let P be an irreducible transition matrix on V' whose eigenvalues are non-negative. Recall the
notations introduced before (24), in particular the eigenvalues are given by

l=01>0=203>--->26,>0

Introduce the state space V=S5 , the characteristic set of P, endowed with the transition kernel
P defined by

1 Cif (k1) = (K1) = (1,1)
0y, Jifk=k>2and =1
V(k D), (K, eV,  P(kD,(K,0) = { 1—6; ,ifk=FK=>2andl'=1—-1>1

1—6, ,ifk>21=1and (K,I')=(1,1)

0 , otherwise

N

The associated graph looks like a star, with (1,1) as central point to which are converging r — 1
rays of respective lengths 7, ..., 7. The corresponding Markov chains are absorbed at (1,1).

By removing 1 — 6 times the first row to the rows (k, 1), (k,2), ..., (k,v%), for any k € [2,r], we
transform P into a block diagonal matrix whose blocks are exactly the Jordan blocks of P. Thus P
and P have the same characteristic set S.

For any (k,l) € V, with k € [2,7], a generalized eigenvector associated to 6 for Pis Dk =
L(x,), in the sense that

~

PlSupnl = 0Py + Plri-1)

where by convention, @0y = 0 for all &k € [2,r].
As usual we take ¢ 1) = 1.

~

We say again that P is a simple model for P.
Let X := (X(n))nez, be a Markov chain with transition matrix P and initial distribution pg, which
is fixed from now on. We will need the following technical result replacing (71):

Lemma 16 The adapted basis (¢(k7l))(k7l)e‘7 can be modified into another adapted basis ((p,(k;,l))(k,l)ef/

so that in addition to keeping go/(l = 1, we have

~

v (kvl> ev, /J“O[SD/(]CJ)] = 0

Proof
Fix k € [2,7], we show by iteration on [ € [1,7%] that we can change the generalized the family of
vectors (@(x,j)) e into ((p/(k,j))je[[l]]7 so that

vielll,  wolep; = 0

while keeping the relations

v je [, ]B[Qol(k,j)] = 9k<P/(k7j) + CP/(iw‘—l)
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(with 90/(k,0) =0).

For [ = 1, this is clear: if uo[pk,1)] = 0, we just take ‘P/(m) = P(r,1) and otherwise we carry out
the replacement <p’(k 1) = —Pk1)-

Assume the iteration is true for some [ € [y;] with [ < 7. Let us change the family (gp’(k j))je[[l—i-l]]v
with (p’(w“) = P(ks1) NtO ((p/(/k’j))jelll_;’_l]] with the desired property. Note that if uo[go’(k’lﬂ)] > 0,
it is sufficient to keep the same sequence: (‘P/(/k,j))jE[[lJrl}] = (‘P/(k,j))je[[lﬂl]' So let us assume that

pol¢gp41y] <0-
We consider two cases.

e When for any j € [I], uo[cp’(k j)] = 0 we just carry out the replacement (cp’(’k j))je[[lJrl]] =
(_‘P/(k7j))je[[l+1}]-
e Otherwise consider the first m € [I] such that pg [gp’(k m)] > 0. For a > 0 consider
(Plg)ientn = (Pla) + 9Pk jrm—i—1))jel1]

(with the convention that for any u < 0, <,0’<k W = 0). We check that

vjell+1], P[‘lek,j)] = ekﬁpl(/hj) + 90/(/1@]'_1)

SO ((p'(’k j)) jefi+1] still consists of generalized eigenvectors.
By the iteration assumption and since a > 0, we have ,ug[go’(’k j)] > 0 for any j € [I]. Taking
furthermore a = —pg[p ,(k,l+1)]//‘0[90/(k,m)] > 0, we also get MO[QOI(/MH)] > 0 as wanted. |

From now on, we assume the adapted basis (SO(k,l))(k Deir satisfies

Y (k1) eV, poleen] = 0

For any given b := (bg) e[y € RW with b = 0, we introduce the probability ﬁéb) on V via
VeV, V(D) = 2afko] 82
Z(M()? b)
where the normalizing factor is given by
Z(po,b) = Z bir o[ (ke 1)) (83)

(K1")e
As in (65), consider Sp := S\{(1,1)} and the Gramian matrix Ry defined by
VL) (R0 € Vo Ro((K ), (K1) = wlipquan en)]

where 7 is the invariant probability associated to P.
Recall (see the sentence after (66)) that for any z € V, po(z) = (0@ (*))k,1es, and define
ap(z) = (a(kyl)(x))(k Dety DY ao(z) = Ry *po(z). Introduce the quantities

Vhel[2,r],  Br = max{ Y lagy(z)] eV (84)
le[ve]

and consider for any n € Z , the particular b := (b,(fn)) wet € ]R[[|r I given by

(n) ._ BLoy} itk =2
vkelr, e = { 0 , otherwise
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Define
ng = min{n > 2T : Z(uo,b(")) < 1} (85)

where I' is given after (56).
Recall the quantities v, > 0 and v, > 0 described before Lemma 11.

Define
L 1 IS
o = (2D)v [2111(1/92) 1“( "2, ﬂ

(recall that 7, = min{nw(z) : z € V}).
Consider X = (X (n))nez, a Markov chain with transition matrix P and initial distribution ﬁ(()b).
Define

G = inf{neZ, : X(n)=(1,1)}

The law of G is a mixture of convolutions of geometric law of parameters the eigenvalues of P.
Here is the generalization of Theorem 5 that we will prove here:

Theorem 17 Assume that P is irreducible and that its eigenvalues are all non-negative. Then there
exists a strong stationary time for X which is stochastically dominated by

no+3g (86)

This random variable is itself stochastically dominated by ng + Ha, where Ho is the convolution of
I' independent geometric random variables of parameter 5.

The arguments adapt the proof of Theorem 5, taking into account the considerations of Section 3,
in particular estimates such as those of Lemma 11.
Consider the V' x V matrix A defined by

~ b
VeeV,V (kD)eV, Az, (k1) = ’M
Ho,

As in the previous section, A is not a transition matrix, since some of its entries are negative.
Nevertheless it has the same two interesting properties. First we have

(87)

~(b)

poly = g
the probability on V defined in (82).
Secondly, we have
by :
~ N s o) s if k=2
VEDEV,  M[Bg] = { Pl (35)
$(1,1) ) if (k7 l) = (17 1)

Nevertheless, we look for a “true” transition kernel A from V to V verifying the properties of the
following lemma.

Lemma 18 There exist a transition kernel A from V toV and a probability q = (Qn>n€Z+ on [0,ng]
such that (1) and (3) are satisfied.

32



Proof

The calculations are inspired by those of Lemma 7. N N
Let be given a real-valued family b = (b(k,l))(k eV with b(y 1) = 1. We look for an operator Aj

which is such that

VkDeV,  Nlognl = ) b1 By (89)
Jell

which ensures the commutativity property (1), see Lemma 8. Let us check that 7\5 is a transition

kernel for appropriate choices of b.

The associated matrix (JN\E((k:, ),z is such that

))(lc,l)ef/, zeV
~ A“’ kj,l 5 ~ ]ll’
V (k) eV,VzeV, Ak D, 2) <]1(k,l),Ag[ ]>

where we recall that (-, -) is the usual scalar product in RV
Let us decompose

) = Z a(k',z')(x)sﬁ(k',l')

m(x N
(k' 1)eV

with some real coefficients a(x) := (a(k/’l/)(x))(k, e
We deduce

Az ((k, 1), )

V(kl)eV,VaeV, b”T = > e @barw—jeny Qg Bagyy
(k' 1"eV J€ll']

We compute for any (k,1), (k',7) € v,
1 it (K, 5) = (1,1)
Sk gy if (K, 5) € VA{(1,1)}

where &1y (i ;) is the Kronecker symbol, now respectively to the couples (k,1) and (&', 5).
It follows that for any (k,l) € VandzeV,

Kz((k’l)vx) { Q(1,1)\T

Mgy e gy) = {

1,1) N ,if (k, 1
(1,1 t sze[[z Y] QK1) (@)bkv—141)  1f (K1

Jif (k1) = (1,1
B { T +Zz/e[[z vi] &k, z')( )E(k,l’—l-&-l)  if (k1) € ‘7\{( 1)}

Recall that the family of coefficients a(x) has been computed in (64), which is still valid here, with
R = (R((K,1I"), (K", l”)))(k, 1)k iy the Gramian matrix defined by

V(L) (K1) eV, R((KL), (K7 = wlege e m]

The link with the matrix Ry mentioned before the statement of Theorem 17 comes from (65). In
particular, as observed after (66), we have a(; 1y(x) = 1. Thus we get,

Ak (0 . D = (1,1
1+ Zl’e[[lmc]] a(k,l')(ﬂf)b(k,lulﬂ) Cif (k1) € VA{(1, 1)}
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We deduce that the entries of A are non-negative if and only if

v (k1) e V\{(1,)}, VzeV, Y ey @bgr—ipy = -1 (90)
l/e[[L'Yk'ﬂ

In this case, [N\g is a transition kernel, since /NXE[H] = 7\5[@(171)] =Py = L
A simple sufficient condition ensuring (90) is

~ ~ 1
VDeTLDL ol < 5 1)
where the By, for k € [2,7] are defined in (84).
Let us compute ApA;. From (88) and (89) we get
b T .
VkDeV,  MKlegyl = {wa@@%thm»ﬂM>2
’ ’ b 9
P(1,1)
Writing P in the adapted basis (SO(kJ))(k e it appears that for any n € Z, we have
~ " n i
VeDeT Pl = 3 (") e 92

Jjelll

It follows that (3) is satisfied with A = Ay, 7\5 and ¢ = d,, for some n € Z, if and only if

V (kD) e P\{(L 1)}V g e T, % _ (lfj)e:ﬂ-z
or equivalently,
vV (k1) e V\{(1,1)} m - ( n >9n+1—z (93)
’ S Z(po,b) 1—1)%

at least for n > I', otherwise if there exists k € [2,7] such that 6 = 0 the r.h.s. may not be defined.
For n > T and k € [2,7] such that 6 = 0, both sides of (93) vanish, since b,gn) = B0} = 0.
For n > T and k € [2,7] such that 6 > 0, (93) reduces to

7 Z(MOa b(n)) n —
b = T\ _q)0% (94)

We are thus led to take (94) as definition of b ;). Let us check that (91) is satisfied if we choose
n = ng given in (85), namely

- . Z(po, 6™ n N\ 1
k,l 1,1 th 6 _— 0 < —
V (k,1) € V\{(1,1)} with 6 # 0, B 1—1)% B,

ie.
YV (k,1) € V\{(1,1)} with 6 # 0, Z (110, ")) (l il 1)9}1—1 < 1

Note that for n > 2I', the Lh.s. is increasing in [ (recall that 0 < 0 < 1), so that we can restrict
our attention to [ = 1, namely

V (k1) e V\{(1,1)} with 6 #0,  Z(u,b™)) < 1
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which justifies the definition (85).

The Markov kernel A = A~ and the probability ¢ = d,,, satisfy the desired properties. [ ]

We can now come to the
Proof of Theorem 17

The first assertion is shown in exactly the same way as in the first part of the proof of Theorem 5, with

X = ()?(n))neZJr and Y =

(Y(n))nez, , Markov chains with transition kernels and initial distributions

respectively given by P and ﬁ[()) and P and vy = u(() A,
Concerning the second assertion, note that for any x € V and k € [2,r], the Cauchy-Schwartz

inequality implies

By,

where (64) was taken into account.
It follows that for any n e Z,

N

N

D ey (@)

lefve]

lell
(K, 1NeV\{(1,1)}
VT ()]
r
m(x)va

r

TAUA

\/f %l’,k;’)(x)

F Y
TAUA % Z

(kDEV\{(1,1)}

pole ]

To get an upper bound of Z(ug,b) independently from pg, also use the Cauchy-Schwartz inequality:

write

2

(kDEV\{(1,1)}

pole ]

N

VIVI | ko Z
(kDEV\{(1,1)}

V\V\/MO HSDOH
V\uno HRoaoH

)

where we used that ¢y = Rayp, see the sentence after (66). Taking into account (70), we deduce

and by consequence

2

(kDEV\{(1,1)}

(%Y
polewnl < v |V‘”7T

IN% 0%
Z (10, b™) < 4 [TV]v, 03 (95)
Un A
This upper bound shows that ng < ng.
Moreover G is clearly stochastically dominated by Ha, so the desired result follows. ]
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6 On continuous time
Here we present how to adapt to the continuous time setting the previous discrete-time results.

Instead of transition kernels on the finite set V', we now work with Markov generators on V', namely
matrices L := (L(x,y))syev whose off-diagonal entries are non-negative and whose row sums vanish.
For such a matrix L, we can find a > 0 and a transition kernel @, such that L = a(Q4 — I), where
is the V' x V identity matrix. This decomposition is not unique as there is one for any a > ag, where

ap = max{|L(z,x)| : zeV}

since for positive a = ag, % + I is a Markov kernel (if ap = 0, then L = 0 = 0(Qo — I) for any transition
kernel Qo).

Given two Markov generators L and E, the notions of corresponding intertwining relation, faithful
intertwining relation, bi-intertwining relation and faithful bi-intertwining relation are defined exactly
as in the introduction for their transition kernel counterpart. We can even directly relate them: let
a = 0 large enough so that we can write

L = a(Q,—1I) and L = a(Qq,—1I) (96)

where ), and @a are transition kernels. Then the above relations for L and L are equivalent to the
same relations for ), and @a, with the same links A and A.

The notion of interweaving relation has to be slightly modified, replacing (3) by the existence of a
probability ¢ on R such that

AR — JR exp(tL) q(dt) (97)

The notions of faithful interweaving, bi-interweaving, faithful bi-interweaving relations follow ac-
cordingly.

Nevertheless, it is no longer so easy to relate interweaving relations for L and L and those for Qa
and @a appearing in (96). So instead of trying to extend the discrete-time results to the continuous
time via writings such as (96), we go straight back to the proofs, as they are quite simple to adapt.
Below we present the continuous-time statements and we just mention the main modifications that
have to be brought to the proofs of their discrete-time counter-parts.

The analogue of Proposition 4 is:
Proposition 19 Assume that the Markov generators L and L are irreducible and similar. Then there

exists a faithful bi-interweaving relation between them, with equal probability distribution ¢ = ¢ which
can be taken to be a Dirac mass.

The construction of the links is identical to that given in Section 3. With the notations de-
fined there, they are of the form A, and A; for families of real numbers b = (bc)eec((1,1)} and

~

b= (be)eec((1,1)} belonging to the set B described in (40), using the number 7 defined in (39).
A first (little) difference pops up when we try to check (97), with ¢ = &, for some ty > 0, namely we
look for families b and b such that

AbT\Z = exp(tol)
As in Section 3, we verify this equality on an adapted basis (¢ (k1)) (x,)es, i-¢. such that

v (k1) €S, Llewnl = —AePen) + Pei-1)
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where by convention, ¢ gy = 0 for all k € [r]. Note that we then have

V(k,)eS,  exp(tol)lpwnl = exp(—todr) | P + toPmi—1) + -+ ﬁsﬁ(m) (98)

It follows that, for any k € K (the set K was introduced in (43), using the set R defined in (38)),
(48) has to be replaced by the system of equations

~

bie, )b,y = exp(—toAx)
g(k,l)b(ka) + g(k,z)b(k,n = toexp(—to)
bie,1)0(k,3) T O(k,2)D(k,2) + b, 3)bk1y = & exp(—toAr)

Looking for a solution of the form b ;) = exp(—R(A\x)t0/2) Bk, and E(k,l) = exp(—R(Ag)to/2) for
I € [v], we end up with the following system replacing (49)

B,y = e ttoak
Bk + By = toe ook
2 .
6(]6,3) + B(khQ) + /B(k‘,l) — %Je—ltoozk

\
with ag = $(Ag). This system admits a unique solution, which satisfies

5 o

Vielwl, |1Bwyl =
jeli—11 7

N

and we get
- té
max{|bg | v [bey| L€ [w]} < Z 7eXP(—t0§}f(Ak)/2)
jell-1] 7"

Since all the eigenvalues have a positive real part, except for the eigenvalue 0, it follows that for
to large enough, the constructed families b and b solution of (99) belong to B. This ends the proof of
Proposition 19 with ¢ = § = d;,. When all the eigenvalues are assumed to be real, it is possible to get
estimates on tg, as it was done at the end of Section 3.

For the equivalent of Theorem 2, consider L and L two non-transient Markov generators. We
denote by C1, Cs, ..., Cp (respectively Cy, Oy, ..., ég) the irreducible classes of L (resp. E) They are
in the same number ¢ € N and they are also the irreducible classes of @), and @a appearing in (96).
For all I € [4] :={1,2,...,¢}, denote L¢, (resp. Eéz) the restriction of L (resp. L) to C; (resp. C;). Note
that these matrices are irreducible Markov generators.

Theorem 20 There exists a faithful bi-interweaving relation between L and L if and only if there
exists a permutation o € Sy and a probability ¢ on Ry such that for any 1 € [(], |Ci] = |Cyq)| and

there is a faithful bi-interweaving relation between Lc, and Eé " with the same probability ¢ = q. It
can furthermore be imposed that q is a Dirac mass.
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The proof is identical to that of Theorem 2, since it mainly consists in manipulations of the links.
The last assertion comes from the fact that in Proposition 19, any Dirac mass d;, with o large enough
is allowed, we can thus choose one common ¢ for all the L¢, and Ly " for [ € [/].

For the analogue of Theorem 17, we need to introduce corresponding notations. Let L be an
irreducible Markov generator whose eigenvalues are real. They are necessarily non-positive, zero being
one of them with (algebraic) multiplicity 1. The eigenvalues of —L are denoted

D= <Xd< A3 <A\,

and to each of the Ay, k € [r], is associated a Jordan block of size 7y, (so that y1 =1 and >}y g, 7% =
[V]). Consider S = {(k,l) : ke [r],1 € [w]} and let (o)) k,es be an adapted basis, namely
satisfying

V (k1) e S, Llownl = =M@y + €ki-1)

where by convention, ¢ 0y = 0 for all k € [r]. As usual, we assume that ¢ 1) = 1.
Let X = (X(t))wer, be a Markov process with Markov generator L and initial distribution o,
which is fixed from now on. Lemma 16 is still valid so we assume that

v (k1) €S, polewnl = 0

As in Section 5, we see S as a state space on which we introduce, for any given time ¢ > 0, the

probability ﬁét) given by

Broxp(Autlmolewnl e p S 9

VikDeS, (kD) = Z(u00) !
0 Cif (k1) = (1,1)

where the quantities By, for k € [2,r], are described in (84) (see also the preceding paragraph there)
and

Z(po,t) = D1 Brexp(—Ait)olem] (100)
(k,DeS\{1,1)}
In the sequel we will be interested in the particular time ¢y defined via
to = min{t =T : Z(up,t) <1} (101)

(where T is given after (56)). N
We furthermore endow S with the simple model Markov generator L given by

Me Sifk=kK>2andl'=1-1>1
V (k1) # (K,U') € S, L((k, 1), (K1) = A Lifk>=21=1and (K,l')=(1,1)
0 , otherwise
Consider X := (X (t))ser . a Markov process with generator L and initial distribution ﬁ(()to). It ends

up being absorbed at (1,1) after following one of the  — 1 rays of the underlying graph. We denote
G the absorption time:

~

G = inf{teR, : X(t)=(1,1)}

whose law is a mixture of gamma distributions whose scale parameters are (some of) the 1/\g, for

ke [2,r].
Recall the quantities v, > 0 and v, > 0 described before Lemma 11 and define
~ 1 Vv,
to = I'v—In|——— 102
0 N )\2 n( F%\U,\ ) ( )

Here is the analogue of Theorem 17 for continuous time:
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Theorem 21 Assume that L is irreducible and that its eigenvalues are all real. Then there exists a
strong stationary time for X which is stochastically dominated by

to+G

This random variable is itself stochastically dominated by to+Hsa, where Ha is a gamma distribution
of shape T' and scale 1/Xz.

The underlying discrete time considerations of Diaconis and Fill [2] (see the first part of the proof
of Theorem 5) have to be replaced by their continuous time analogues of Fill [3]. In addition, the
constructions from the adapted bases of the links Ay and KE follow the same patterns as in Section 5:

e The link A} is defined as in (87), with

Vkel[r], b = { fk exp(—Axto) g : i ?

(and Z (o, b) replaced by Z (o, to) defined in (100)).
e For the link Az, (94) has to be replaced by

Z(pojto) ty " —ta) fh>9
V (k1) €S, B, (-1 exp(—toAy) ,if k>
1  if (k, 1) = (1,1)

The choice of ¢¢ in (101) ensures us again that (91) is satisfied, taking into account that the mapping

-1
tO

(-1

[T]>1 —

is increasing for tg > I
Finally the last assertion of Theorem 21 is proven in exactly the same way as that of Theorem 17,

with (95) replaced by
INAN — ot
VE=0,  Zlpet) < 4 ’U|U )
A TA

which shows that tg < tg, where tg is defined in (102).
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