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Abstract

The Sterile Insect Technique (SIT) is one of the sustainable strategies for the control of disease
vectors, which consists of releasing sterilized males that will mate with the wild females, resulting
in a reduction and, eventually a local elimination, of the wild population. The implementation of
the SIT in the field can become problematic when there are inaccessible areas where the release of
sterile insects cannot be carried out directly, and the migration of wild insects from these areas to
the treated zone may influence the efficacy of this technique. However, we can also take advantage
of the movement of sterile individuals to control the wild population in these unreachable places.
In this paper, we derive a two-patch model for Aedes mosquitoes where we consider the discrete
diffusion between the treated area and the inaccessible zone. We investigate two different release
strategies (constant and impulsive periodic releases), and by using the monotonicity of the model,
we show that if the number of released sterile males exceeds some threshold, the technique succeeds
in driving the whole population in both areas to extinction. This threshold depends on not only the
biological parameters of the population but also the diffusion between the two patches.

Keywords – sterile insect technique, metapopulation model, monotone dynamical systems

1 Introduction

Mosquitoes of genus Aedes aegypti and Aedes albopictus play a crucial role in transmitting various arboviruses to
humans including dengue, chikungunya, and Zika virus. Existing treatments are only symptomatic, and available
vaccines (e.g. Dengvaxia for dengue) have a lot of constraints [1]. Consequently, the primary prevention lies
in controlling the mosquito population [2]. However, traditional insecticide-based methods have limitations,
prompting the need for innovative and sustainable strategies [3], [4]. Biological controls involve releasing large
numbers of mosquitoes that are either sterile or incapable of transmitting diseases, which recently gained much
attention. The Sterile Insect Technique is among these sustainable alternative methods which consist of the
release of sterilized male mosquitoes that will mate with wild females [5], [6]. These wild females, unable to lay
viable eggs, will gradually drive the wild population to decline. The efficacy of SIT relies on a comprehensive
understanding of the vector behavior, as well as accurate modeling of its dispersal, to optimize the release
strategies.

Spatial heterogeneity in mosquito populations and mosquito-borne diseases occurs due to differences in the
quality and quantity of their habitats, as well as variations in host density, temperature, and rainfall [7], [8],
[9]. Especially, the number and accessibility of sites where mosquitoes lay their eggs play a significant role
in determining the size of adult mosquito populations by increasing the carrying capacity of the environment
[10]. Developing models that capture mosquito behavior in response to environmental heterogeneity is crucial
for designing effective control strategies, especially in the face of rapid global land-use changes. Models using
monotone dynamical systems were introduced (see e.g. [11], [12], [13]) and applied efficiently (see e.g. [14], [15],
[16]) to study the SIT. Not many mosquito modeling studies have incorporated migration or dispersal effects due
to insufficient information on individual movement in the field as well as the complex analysis of models. Most
of them used the diffusion approach, which considers space as a continuous variable. They were first developed
in one-dimensional space using scalar reaction-diffusion equations [17], [18], then extended to sex-structured
compartmental systems to consider the different behaviors of aquatic phases, wild females, males, and sterile
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males (see e.g. [19], [20], [21]) and in higher dimension (see e.g. [22], [23]). However, it remains challenging to
explicitly incorporate the factors that affect the movement of sterile males. For instance, when resources are
concentrated in patches or distinct locations, a metapopulation approach in which we treat space as a discrete
set of patches and describe how the population on each patch varies with time is more suitable for modeling
mosquito dispersal [24], [25], [26].

The application of the SIT in the field encounters a difficulty of the limitation in space when there are some
inaccessible areas where people can not release sterile insects directly. For example, mosquitoes of the genus
Aedes polynesiensis primarily exploit land crab burrows for oviposition in certain French Polynesian atolls [27],
[28], [29], [30]. The larvae in the crab burrows emerge into adult mosquitoes that can fly out to search for food
and human blood for fertility. Another example is the inaccessibility in heavily forested or narrow mountainous
terrain, where sterile insects must be released via helicopters owing to their better maneuverability [31]. However,
one standout advantage of the SIT is that it relies on the natural ability of the male mosquitoes to move, locate,
and mate with females. This behavior will take place in those areas that cannot be reached with conventional
control techniques (i.e. insecticides). Therefore, we are interested in the mosquito population dynamics in the
presence of such reservoirs and the elimination of the whole population while considering that the released sterile
males can fly into unreachable sites. The patchy models with discrete diffusion mentioned above are a useful
approach to describe the mosquito dynamic taking into account the inaccessibility to the burrows. We develop
a two-patch model and in each patch, we consider a monotone dynamical system inspired by the models in [13]
where the population is divided into different compartments characterizing the aquatic phase, wild females, wild
males, and sterile males. Except for the aquatic phase, individuals in other states move between patches at
specific rates. The SIT is only carried out in the first patch and only affects the second one through these natural
movements. Two-patch models were used to study the same problem in [32], where they considered a simple
scalar equation to describe the population dynamics in each patch. Our model provides a better understanding
of how the dynamics of each stage influence the result of the control method. However, the complexity of our
system does not allow us to obtain the full analysis of the model like what has been done in [32].

In the present work, we are interested in how to guarantee the successful elimination of the SIT in both
areas and how the diffusion rates as well as other biological parameters influence the efficacy. To tackle this
problem, we focus on studying the global stability of the extinction equilibrium in our system. Results of
global asymptotic behavior for the single-species model depending on the discrete diffusion were provided in the
literature [33], [34], [35]. Lyapunov’s second method was used in [36] to investigate the multi-species system with
discrete diffusion. Many works have been done to design robust strategies for releasing sterile males to drive a
population to elimination [14], [16]. We extend these control strategies to our two-patch system and prove the
sufficient conditions for both constant continuous and periodic impulsive releases to drive the whole system to
extinction. We obtain that when the number of released sterile males exceeds some threshold, the populations in
both the treated and the inaccessible zone reach elimination, and we show how this critical value depends on the
diffusion rates between two areas and other biological intrinsic parameters. In the original mathematical model
provided by Knipling [5], the population elimination depends on an overflooding ratio of the number of sterile
males released to the initial wild male population size. In our result, the threshold number of sterile males does
not depend on the initial level of the wild population due to the global stability of the zero steady state. Our
results may help estimate the possibility and the amount of sterile mosquitoes necessary to complete elimination
in the presence of hidden, inaccessible reservoirs.

The organization of the paper is as follows. In section 2, we present the formulation of the two-patch model
and prove the monotonicity of the systems and some other preliminary results that will be applied in our proofs.
Section 3 is devoted to the study of the system without sterile insects. In Theorem 3.1, we provide conditions
for the persistence and extinction of the wild population on each patch. In section 4, we study the dynamics
of mosquito population in the presence of the SIT with two release strategies: constant and impulsive releases.
Theorem 4.2 presents sufficient conditions on the average number of sterile males released per time unit to drive
the population to elimination. In section 4.1, we present the principle of our method and then apply it to prove
Theorem 4.2. Section 5 is focused on the dependence of the critical number of sterile males on parameters. The
results in 5.1.1 show that when the diffusion rates are large, the dynamics of the whole system are the same as in
the case when there is no separation between the two sub-populations. Then, Theorem 5.3 shows that the critical
number of released sterile males depends monotonically on the biological parameters. Finally, some numerical
illustrations are provided in Section 6.

2 Model

In this section, we present the formulation of the model used to study the population dynamics in 2.1. Then, in
2.2, we provide some preliminary results that will be used later in the present work.
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2.1 Formulation of the model

Consider two patches and denote Ei, Fi,Mi, and Ms
i respectively the density of aquatic phase (eggs, larvae,

pupae), fertilized females, wild males, and sterile males on the patch i depending on time t. We consider a
two-patch model coupled by the diffusion terms as follows where the dynamic in each patch is inspired by the
model in [13,15]

Ė1 = bF1

(
1− E1

K1

)
− (νE + µE)E1, (1a)

Ḟ1 = rνEE1
M1

M1 + γMs
1

− µFF1 − d12F1 + d21F2, (1b)

Ṁ1 = (1− r)νEE1 − µMM1 − βd12M1 + βd21M2, (1c)

Ṁs
1 = Λ− µsM

s
1 − αd12M

s
1 + αd21M

s
2 , (1d)

Ė2 = bF2

(
1− E2

K2

)
− (νE + µE)E2, (1e)

Ḟ2 = rνEE2
M2

M2 + γMs
2

− µFF2 − d21F2 + d12F1, (1f)

Ṁ2 = (1− r)νEE2 − µMM2 − βd21M2 + βd12M1, (1g)

Ṁs
2 = −µsM

s
2 − αd21M

s
2 + αd12M

s
1 . (1h)

In Aedes mosquitoes, fertilization takes place very quickly after the females have hatched (the males wait for the
females to hatch near the breeding sites). So an important assumption we made in system (1) is that all female
mosquitoes can mate with either wild or sterile males. The variable Fi only characterizes the density of females
fertilized by wild males and Ei denotes the density of viable offspring in the aquatic phase. On patch i, the total
amount of offspring emerging per time unit is νEEi. These correspond to the birth of males and females, with
the respective quantities (1 − r)νEEi and rνEEi. Among the rνEEi females that hatch at each unit of time, a

quantity rνEEi
Mi

(Mi + γMs
i )

mate with a wild male and produce viable offspring (which corresponds to the first

term of equations (1a) and (1e)); and the females that couple with a sterile male are no longer involved in the
reproduction.

The interpretation of the parameters used in the model, with i, j ∈ {1, 2}, is as below
• Λ(t) is the number per time unit of sterile mosquitoes that are released at time t on the first patch;

• γ ∈ [0, 1] characterizes the competitiveness of sterile males;

• b > 0 is the birth rate; µE > 0, µM > 0, and µF > 0 denote the death rates for the mosquitoes in the aquatic
phase, for adult males, and for adult females, respectively;

• Ki is an environmental capacity for the aquatic phase on patch i, accounting also for the intraspecific com-
petition;

• νE > 0 is the rate of emergence;

• r ∈ (0, 1) is the probability that a female emerges, then (1− r) is the probability that a male emerges.

• dij > 0 is the moving rate of female mosquitoes from patch i to patch j; the fertile males and sterile males
move slower but with proportional rates respectively βdij , αdij where typically 0 < α < β < 1 in practice.

Mosquito life cycle characteristics in both zones are linked to the zone sizes, comparable to the distance a mosquito
can travel. In this way, the overall homogeneity of the species can be preserved, despite the possible effects of
evolution, due to permanent mixing, so it is relevant to consider the same biological parameters b, r, µE , µF , µM

in the two patches.
We recall the basic offspring number of the sub-population in one patch as introduced in [13]

N =
brνE

µF (µE + νE)
. (2)

The persistence and extinction of the population in the patch depend strongly on the value of this number.
In Section, 3, we will show that N is also the basic offspring number of the whole two-patch system.

2.2 Preliminary results

First, we provide some definitions and denotations of the order used in the present work.
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Definition 2.1. A matrix A ∈ Mm×n is called non-negative, denoted A ≥ 0, if all of its entries are non-negative.
It is called positive, denoted A > 0, if it is non-negative and there is at least one positive entry.
It is called strictly positive, denoted A ≫ 0, if all of its entries are strictly positive.

In the present work, we also use the above definition of order for vectors in Rn. Next, we recall the definition
of a Metzler matrix and present a property of a Metzler matrix that will be used in this paper.

Definition 2.2. A matrix A = (aij) is called Metzler of all the off-diagonal components are nonnegative, i.e.
aij ≥ 0 for i ̸= j.

A matrix A ∈ Mn×n is irreducible if it is not similar via a permutation to a block upper triangular matrix.

Lemma 2.1. Assume that a square matrix A is Metzler and irreducible, then eA is strictly positive.

Proof. Since A is Metzler, then there exists a constant δ > 0 large enough such that A + δI is a non-negative
matrix with a positive element on the main diagonal. Moreover, A is irreducible so A + δI is also irreducible.
Thus, A + δI is primitive, that is, there exists an integer n > 0 such that (A + δI)n ≫ 0. Hence, we have
eA+δI ≫ 0, and since δI commutes with all matrices, one has eA = eA+δIe−δI ≫ 0.

We present in this section the so-called Kamke [37] or Chaplygin [38] lemma for a cooperative system (Lemma
2.2). Then, we apply this lemma to show the monotonicity of system (1) in Lemma 2.3.

Lemma 2.2. For any n ∈ N∗, consider a smooth function f : Rn → Rn, and a vector function u(t) satisfying a
differential equation

u̇ = f(u).

Moreover, we assume that the above system is cooperative, that is,

∂fi
∂uj

(t) ≥ 0, for i ̸= j, t > 0. (3)

If a vector function v(t) satisfies a differential inequality v̇ ≤ f(v) then, for initial data v(0) ≤ u(0), we have
v(t) ≤ u(t) for all t > 0.

To apply this Lemma to system (1), we first define the following order in R8 as follows

Definition 2.3. For any vectors u,v ∈ R8, we define an order ⪯ such that u ⪯ v if and only if{
ui ≤ vi for i ∈ {1, 2, 3, 5, 6, 7},
ui ≥ vi for i ∈ {4, 8}.

Moreover, we write u ≺ v if u ⪯ v and u ̸= v.

The following result shows the comparison principle of system (1)

Lemma 2.3. By denoting u = (E1, F1,M1,M
s
1 , E2, F2,M2,M

s
2 ) ∈ R8, we can write system (1) as the form

u̇ = f(u) with f is C1 in R8. In the subset {0 ≤ E1 ≤ K1}∩{0 ≤ E2 ≤ K2} of R8
+, system (1) is monotone in the

sense that if a vector function v(t) satisfies a differential inequality v̇ ⪯ f(v) then, for initial data v(0) ⪯ u(0),
we have v(t) ⪯ u(t) for all t > 0.

Proof. By changing the variable to ũ = (E1, F1,M1,−Ms
1 , E2, F2,M2,−Ms

2 ), we can write system (1) as

ũ = f̃(ũ).

This system is cooperative since in {0 ≤ E1 ≤ K1} ∩ {0 ≤ E2 ≤ K2} of R8
+, we have

∂f̃1
∂ũ2

= b

(
1− E1

K1

)
≥ 0,

∂f̃1
∂ũj

= 0 for any j > 2,

∂f̃2
∂ũ1

= rνE
M1

M1 + γMs
1

≥ 0,
∂f̃2
∂ũ3

= rνE
γMs

1

(M1 + γMs
1 )

2
≥ 0,

∂f̃2
∂ũ4

= rνEE1
γM1

(M1 + γMs
1 )

2
≥ 0,

∂f̃2
∂ũ6

= d21 > 0,
∂f̃2
∂ũj

= 0 for j ∈ {5, 7, 8}.

∂f̃3
∂ũ1

= (1− r)νE ≥ 0,
∂f̃3
∂ũ7

= βd21 > 0,
∂f̃1
∂ũj

= 0 for j ∈ {2, 4, 5, 6, 8},
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∂f̃4
∂ũ8

= αd21 > 0,
∂f̃4
∂ũj

= 0 for j ∈ {1, 2, 3, 5, 6, 7}.

Similarly for f̃i with i > 4, so f̃ is cooperative.
For any vector function v such that v̇ ⪯ f(v), by the same variable change, one has ˙̃v ≤ f̃(ṽ). The initial

data v(0) ⪯ u(0) implies that ṽ(0) ≤ ũ(0). Therefore, by applying Lemma 2.2, one has ṽ(t) ≤ ũ(t) for any t > 0
which is equivalent to v(t) ⪯ u(t).

In order to define the solution of (1), we make some assumptions for the release function Λ(t)

Assumption 2.1. Assume that function Λ(t) satisfies

Λ(t) = Λ1(t) + Λ2(t), (4)

where Λ1 ∈ L1
loc(0,+∞), Λ1(t) ≥ 0 for almost every t, and Λ2 is a sum of Dirac masses with positive weights.

More precisely, for 0 < t1 < t2 < . . . , one has

Λ2(t) =

+∞∑
i=0

wkδtk (t) with wk > 0. (5)

Assume moreover that there exists a time T > 0 such that the average value of Λ over any T -time interval is
finite, that is,

CΛ :=
1

T
sup
t≥0

∫ t+T

t

Λ(s)ds < +∞. (6)

Assumption 2.1 is natural since in practice, the total amount of the sterile males released in a finite time
interval is finite. The term Λ2 corresponds to impulsive releases.

The next result shows that any trajectory of system (1) resulting from any non-negative initial data is
bounded.

Lemma 2.4. Let Λ satisfy Assumption 2.1. For any non-negative initial data (E0
1 , F

0
1 ,M

0
1 ,M

s,0
1 , E0

2 , F
0
2 ,M

0
2 ,M

s,0
2 ),

there exists a unique solution (E1, F1,M1,M
s
1 , E2, F2,M2,M

s
2 ) of system (1) that is smooth on each interval

(tk, tk+1) of the impulsive function Λ2 defined in (5) with k = 0, 1, . . . , and it is non-negative. If E0
i < Ki with

i = 1, 2, then Ei(t) ≤ Ki for any t > 0. Moreover, for all t ≥ 0, we have the uniform bounds

F1 + F2 ≤ max
{
F 0
1 + F 0

2 , CF

}
, M1 +M2 ≤ max

{
M0

1 +M0
2 , CM

}
,

where

CF :=
rνE(K1 +K2)

µF
, CM :=

(1− r)νE(K1 +K2)

µM
,

and

Ms
1 (t) +Ms

2 (t) ≤ max

{
Ms,0

1 +Ms,0
2 ,

TCΛ

1− e−µsT

}
+ TCΛ,

with T and CΛ defined in Assumption 2.1. One also has

lim sup
t→+∞

(F1 + F2)(t) ≤ CF , lim sup
t→+∞

(M1 +M2)(t) ≤ CM , ,

and

lim sup
t→+∞

(Ms
1 +Ms

2 )(t) ≤
TCΛ

1− e−µsT
+ TCΛ =: CMs .

Remark 2.1. In the case Λ ∈ L∞(0,+∞), one can let T tend to zero and obtain that CΛ = supt>0 Λ(t) and

lim sup
t→+∞

(Ms
1 +Ms

2 ) ≤
CΛ

µs
. The condition of Λ that we made in Assumption 2.1 is weaker than the L∞ assumption

since we also include impulsive releases, represented by a sum of Dirac masses.

Proof of Lemma 2.4. By denoting u = (E1, F1,M1,M
s
1 , E2, F2,M2,M

s
2 ) ∈ R8, we can write system (1) as the

form u̇ = f(u) with f = (f1, f2, . . . , f8) is C1 in R8. We easily observe that in the subset {0 ≤ E1 ≤ K1} ∩ {0 ≤
E2 ≤ K2} of R8

+, one has fi(ui = 0) ≥ 0 for i = 1, . . . , 8, and f1(E1 = K1) ≤ 0, f5(E2 = K2) ≤ 0. Therefore, the
vector field f on the boundary of R8

+ ∩ {0 ≤ E1 ≤ K1} ∩ {0 ≤ E2 ≤ K2} is inward or tangential, so this set is
positively invariant.

From equations (1b) and (1f), since for i = 1, 2, we have
Mi

Mi + γMs
i

≤ 1, and

Ḟ1 + Ḟ2 ≤ rνE(E1 + E2)− µF (F1 + F2).
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Since E1, E2 are bounded then we deduce that

(F1 + F2)(t) ≤ (F 0
1 + F 0

2 )e
−µF t +

rνE(K1 +K2)

µF
(1− e−µF t) ≤ max

{
F 0
1 + F 0

2 ,
rνE(K1 +K2)

µF

}
,

for any t ≥ 0. For i = 1, 2, one has Fi ≥ 0, thus Fi(t) ≤ max
{
F 0
1 + F 0

2 , CF

}
for any t ≥ 0. Let t go to infinity

we get lim sup
t→+∞

(F1 + F2)(t) ≤ CF . One obtains similarly the inequalities for M1,M2.

For Ms
1 and Ms

2 , by denoting Xs(t) = Ms
1 (t) +Ms

2 (t), then from equations (1d) and (1h), one has

Ẋs(t) = −µsXs(t) + Λ(t).

For any integer k, by integrating both sides of this equality in ((k − 1)T, kT ) with T defined in Assumption 2.1,
one gets

Xs(kT ) = e−µsTXs((k − 1)T ) +

∫ kT

(k−1)T

e−µs(t−(k−1)T )Λ(t)dt.

Since e−µs(t−(k−1)T ) < 1 for any t ∈ ((k − 1)T, kT ) and by Assumption 2.1, we deduce that

Xs(kT ) ≤ e−µsTXs((k − 1)T ) + TCΛ,

with CΛ defined in (6). Using the iteration with respect to k, we deduce that

Xs(kT ) ≤ e−µskTX0
s + TCΛ

(
1 + e−µsT + · · ·+ e−µs(k−1)T

)
= e−µskTX0

s + TCΛ
1− e−µskT

1− e−µsT
.

Now for any time t > 0, there exists an integer k such that t ∈ [kT, (k + 1)T ). Then, we obtain that

Xs(t) = e−µs(t−kT )Xs(kT ) +

∫ t

kT

e−µs(t−s)Λ(s)ds

≤ e−µstX0
s + TCΛ

e−µs(t−kT ) − e−µst

1− e−µsT
+ TCΛ.

≤ e−µstX0
s +

TCΛ

1− e−µsT

(
1− e−µst

)
+ TCΛ

since e−µs(t−kT ) < 1. The inequality of Ms
1 +Ms

2 follows.

3 Mosquito dynamics without sterile males

First, we describe the dynamics of wild mosquitoes in the two areas by considering the following system which is
re-obtained from system (1) in the absence of sterile males

Ė1 = bF1

(
1− E1

K1

)
− (νE + µE)E1, (7a)

Ḟ1 = rνEE1 − µFF1 − d12F1 + d21F2, (7b)

Ṁ1 = (1− r)νEE1 − µMM1 − βd12M1 + βd21M2, (7c)

Ė2 = bF2

(
1− E2

K2

)
− (νE + µE)E2, (7d)

Ḟ2 = rνEE2 − µFF2 − d21F2 + d12F1, (7e)

Ṁ2 = (1− r)νEE2 − µMM2 − βd21M2 + βd12M1, (7f)

It is clear that the subset {0 ≤ E1 ≤ K1} ∩ {0 ≤ E2 ≤ K2} of the positive cone of R6 is positively invariant over
time. The following result shows the nature of the equilibrium points of system (7).

Theorem 3.1. For N ≤ 1, zero is the unique equilibrium of system (7), and all trajectories of (7) resulting
from non-negative initial data converge to zero as time evolves.

For N > 1, system (7) has two equilibrium points: zero and u+ = (E+
1 , F+

1 ,M+
1 , E+

2 , F+
2 ,M+

2 ) strictly
positive. Moreover, the zero equilibrium is unstable. All trajectories of (7) resulting from any positive initial data
(E0

1 , F
0
1 ,M

0
1 , E

0
2 , F

0
2 ,M

0
2 ) such that (E0

1 , F
0
1 , E

0
2 , F

0
2 ) > 0 converge to u+ when t → +∞.
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Theorem 3.1 shows that the constant N defined in (2) is the basic offspring number of the whole two-patch
system (1). When N > 1, the populations in both areas remain persistent for any diffusion rates as time evolves.
In the rest of the paper, we only consider the case N > 1.

To prove this theorem, we first consider the sub-system of E1, E2, F1, F2. From equations (7b) and (7e),
the positive equilibrium satisfies

rνE

(
E+

1

E+
2

)
=

(
µF + d12 −d21
−d12 µF + d21

)(
F+
1

F+
2

)
,

then (
F+
1

F+
2

)
=

rνE
µF (µF + d12 + d21)

(
µF + d21 d21

d12 µF + d12

)(
E+

1

E+
2

)
. (8)

On the other hand, from equation (7a) and (7d), we also have

F+
1 =

νE + µE

b

E+
1

1− E+
1

K1

, F+
2 =

νE + µE

b

E+
2

1− E+
2

K2

. (9)

From (8) and (9), we deduce that

E+
2 =

µF + d12 + d21
d21

1

N
E+

1

1− E+
1

K1

− µF + d21
d21

E+
1 =: f21(E

+
1 ), (10)

E+
1 =

µF + d12 + d21
d12

1

N
E+

2

1− E+
2

K2

− µF + d12
d12

E+
2 =: f12(E

+
2 ). (11)

The following lemma provides information for these functions.

Lemma 3.2. For {i, j} = {1, 2}, function fij(x) is defined and convex on (0,Kj) ⊂ R.

If N ≤ µF + dij + dji
µF + dij

, then fij has no positive root and it is increasing on (0,Kj).

Otherwise, it has a unique positive root

K+
j := Kj

(
1− µF + dji + dij

µF + dij

1

N

)
< Kj (12)

Moreover, fij < 0 on (0,K+
j ), fij > 0 and increasing on (K+

j ,Kj).

Proof of Lemma 3.2. We recall function fij(x) :=
µF + dij + dji

dij

1

N
x

1− x
Kj

− µF + dij
dij

x. One has fij = 0 if and

only if
µF + dij

Kj
x2 +

(
µF + dij + dji

N − µF − dij

)
x = 0.

We deduce that fij = 0 at 0 and K+
j as in (12), and K+

j > 0 if and only if N >
µF + dij + dji

µF + dij
. Moreover,

fij < 0 on (0,K+
j ), fij > 0 and is increasing on (K+

j ,Kj). It is defined and convex on (0,Kj) ⊂ R since

f ′′
ij(x) = 2

µF + dij + dji
dij

1

KjN
1(

1− x
Kj

)3 > 0,

for any x ∈ (0,Kj). We also have fij(0) = 0, lim
x→Kj

fij(x) = +∞.

Proof of Theorem 3.1. Existence and uniqueness of the positive equilibrium. System (7) has a positive
equilibrium iff system (10)-(11) has a solution (E+

1 , E+
2 ) in (0,K1)× (0,K2).

Case 1: 0 < N ≤ min
i,j∈{1,2}

i ̸=j

µF + dij + dji
µF + dij

.

According to Lemma 3.2, we have f12 : [0,K2) → [0,+∞) is positive and increasing, so this function is
invertible (see Figure 1). We denote f−1

12 : [0,K1] → [0,K2) the restriction of the inverse function of f12 on
[0,K1], then

E+
2 = f21(E

+
1 ) = f−1

12 (E+
1 ).

7



(a) 1 < N ≤ min
i,j∈{1,2},i ̸=j

µF + dij + dji
µF + dij

(b) N >
µF + d12 + d21

µF + d12
with d12 > d21

Figure 1: Relations E+
2 = f21(E

+
1 ) (in green) and E+

1 = f12(E
+
2 ) (in red) presented in the E1−E2 plane

when N > 1. In case (a), function f12 and f21 are increasing and have a unique root zero, so f12 is
invertible on [0,K2) and the inverse function f−1

12 : [0,K1] → [0,K2) is plotted in the solid red line. In
case (b), function f12 has another positive root K+

2 and is invertible on [K+
2 ,K2). The inverse function

f−1
12 : [0,K1] → [K+

2 ,K2) is plotted in the solid red line.

Thus, E+
1 is a positive root of function f21 − f−1

12 . For any x ∈ (0,K1), one has

(f21 − f−1
12 )′(x) = f ′

21(x)−
1

f ′
12(f

−1
12 (x))

,

then

(f21 − f−1
12 )′′(x) = f ′′

21(x) +
f ′′
12(f

−1
12 (x))

(f ′
12(f

−1
12 (x)))3

> 0

since fij is convex on (0,Kj). Hence, f21 − f−1
12 is convex on (0,K1). Moreover, we have (f21 − f−1

12 )(0) = 0, and
lim

x→K1

(f21 − f−1
12 )(x) = +∞. Therefore, this function has a unique positive root if and only if the derivative at

zero is negative. We have

(f21 − f−1
12 )′(0) =

1
N (µF + d12 + d21)− µF − d21

d21
− d12

1
N (µF + d12 + d21)− µF − d12

.

Since N ≤ min
i,j∈{1,2}

i ̸=j

µF + dij + dji
µF + dij

<
µF + d12 + d21

µF
, then (f21 − f−1

12 )′(0) < 0 if and only if N > 1.

Case 2: N > min
i,j∈{1,2}

i ̸=j

µF + dij + dji
µF + dij

.

Without loss of generality, we assume that d12 > d21, then
µF + d12 + d21

µF + d12
= min

i,j∈{1,2}
i̸=j

µF + dij + dji
µF + dij

.

If N >
µF + d12 + d21

µF + d12
> 1, again according to Lemma 3.2, function f12 has a unique positive root K+

2 and

is invertible on [K+
2 ,K2] (see Figure 1(b)). We denote again f−1

12 : [0,K1] → [K+
2 ,K2) the restriction of the

inverse function of f12 on [0,K1], then we also have f21−f−1
12 convex on (0,K1), and (f21−f−1

12 )(0) = −f−1
12 (0) =

−K+
2 < 0, lim

x→K1

(f21 − f−1
12 )(x) = +∞ > 0. We can deduce that f21 − f−1

12 has a unique positive root on (0,K1).

Instability of the zero equilibrium. At the origin 06 = (0, 0, 0, 0, 0, 0) of R6, the Jacobian matrix of system
(7) is

J(0) =


−νE − µE b 0 0 0 0

rνE −µF − d12 0 0 d21 0
(1− r)νE 0 −µM − βd12 0 0 βd21

0 0 0 −νE − µE b 0
0 d12 0 rνE −µF − d21 0
0 0 βd12 (1− r)νE 0 −µF − βd21

 ,
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with the characteristic polynomial

det(J(0)− λI) = [(λ+ µF )(λ+ µM ) + β(d12 + d21 + d12µF + d21µM )] [(λ+ νE + µE)(λ+ µF )− brνE ]

× [(λ+ νE + µE)(λ+ µF + d12 + d21)− brνE ] .

Since N > 1, we have µF (νE+µE)−brνE < 0. Thus, we can deduce that the factor (λ+νE+µE)(λ+µF )−brνE =
λ2 + λ(νE + µE + µF ) + µF (νE + µE) − brνE has one positive root λ > 0. Hence, the Jacobian at zero has at
least one positive eigenvalue so the zero equilibrium is unstable.

Stability of the positive equilibrium. First, we can see that the system (7a)-(7b), (7d)-(7e) of (E1, F1, E2, F2)
does not depend on M1, M2, and it is cooperative and irreducible. By applying Theorem 1.1 in Chapter 4 of [39],
one deduces that this system is strongly monotone. When N > 1, this system admits exactly two equilibria:
04 = (0, 0, 0, 0), and (E+

1 , F+
1 , E+

2 , F+
2 ). But the zero equilibrium is unstable, so by Theorem 2.2 in Chapter 2

of [39], if the initial data satisfies that 04 < (E0
1 , F

0
1 , E

0
2 , F

0
2 ) ≤ (E+

1 , F+
1 , E+

2 , F+
2 ), the solution (E1, F1, E2, F2)

converges to (E+
1 , F+

1 , E+
2 , F+

2 ) when t → +∞.
Now if the initial data satisfies that (E0

1 , F
0
1 , E

0
2 , F

0
2 ) > (E+

1 , F+
1 , E+

2 , F+
2 ), then there exists a constant λ > 1

large enough such that λ(E+
1 , F+

1 , E+
2 , F+

2 ) ≥ (E0
1 , F

0
1 , E

0
2 , F

0
2 ). Since 1− λE+

i

Ki
< 1− E+

i

Ki
, one has

bλF+
i

(
1− λE+

i

Ki

)
− (νE + µE)λE

+
i < λ

[
bF+

i

(
1− E+

i

Ki

)
− (νE + µE)E

+
i

]
= 0,

and the right-hand side of system (7a)-(7b), (7d)-(7e) at λ(E+
1 , F+

1 , E+
2 , F+

2 ) is non positive. Thus, the trajectory
resulting from the initial data λ(E+

1 , F+
1 , E+

2 , F+
2 ) is non-increasing, and therefore converges to (E+

1 , F+
1 , E+

2 , F+
2 ).

By applying the Lemma 2.2 to system (7a)-(7b), (7d)-(7e), we deduce that the trajectory resulting from the initial
data (E0

1 , F
0
1 , E

0
2 , F

0
2 ) lies between (E+

1 , F+
1 , E+

2 , F+
2 ) and the trajectories resulting from λ(E+

1 , F+
1 , E+

2 , F+
2 ).

Hence, it also converges to (E+
1 , F+

1 , E+
2 , F+

2 ) when time t goes to infinity.
Moreover, since the trajectories issued from the initial data above and below (E+

1 , F+
1 , E+

2 , F+
2 ) all converge

to the same limit, then by the comparison principle, we deduce that the trajectory resulting from any positive
initial data with values between these initial values converges to this equilibrium.

Secondly, if we denote matrix A =

(
−µM − βd12 βd21

βd12 −µM − βd21

)
, this matrix is Hurwitz. Functions M1, M2

satisfy

(
Ṁ1

Ṁ2

)
= A

(
M1

M2

)
+ (1− r)νE

(
E1

E2

)
. Thus, for any t > 0,

(
M1(t)
M2(t)

)
= etA

(
M0

1

M0
2

)
+ (1− r)νE

∫ t

0

e(t−s)A

(
E1(s)
E2(s)

)
ds. (13)

Moreover, the equilibrium satisfies (
M+

1

M+
2

)
= −(1− r)νEA

−1

(
E+

1

E+
2

)
. (14)

Hence, from (14) and (13), we deduce that(
M1(t)
M2(t)

)
−

(
M+

1

M+
2

)
= etA

(
M0

1

M0
2

)
+ (1− r)νE

[∫ t

0

e(t−s)A

(
E1(s)
E2(s)

)
ds+A−1

(
E+

1

E+
2

)]
. (15)

Moreover, when t → +∞, we have that

(
E1(t)
E2(t)

)
converges to

(
E+

1

E+
2

)
and etA → 0 since A is Hurwitz. Thus,

for any ε > 0, there exists a time Tε > 0 large enough such that for any t > Tε,

E+
i − ε < Ei(t) < E+

i + ε, i = 1, 2, (16)

and ∥etA∥ < ∥eTεA∥ ≤ ε.
Since matrix A is Metzler and irreducible, then by applying Lemma 2.1, one has that eAt is strictly positive

for any t > 0. Moreover, one has Ei ∈ (0,Ki) in (0,+∞), then for any t > 2Tε,

0 <

∫ Tε

0

e(t−s)A

(
E1(s)
E2(s)

)
ds <

∫ Tε

0

e(t−s)Ads

(
K1

K2

)
,

then ∥∥∥∥∫ Tε

0

e(t−s)A

(
E1(s)
E2(s)

)
ds

∥∥∥∥ <

∥∥∥∥∫ Tε

0

e(t−s)Ads

∥∥∥∥ ∥∥∥∥(K1

K2

)∥∥∥∥ =
∥∥∥A−1

(
etA − e(t−Tε)A

)∥∥∥∥∥∥∥(K1

K2

)∥∥∥∥ < εC1,
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with some positive constant C1 not depending on ε. Using the second inequality in (16), one has∫ t

Tε

e(t−s)A

(
E1(s)
E2(s)

)
ds ≤ A−1(e(t−Tε)A − I)

(
E+

1 + ε
E+

2 + ε

)
= A−1e(t−Tε)A

(
E+

1 + ε
E+

2 + ε

)
− εA−1 −A−1

(
E+

1

E+
2

)
.

Proving similarly for the other inequality, we can deduce that∥∥∥∥∫ t

Tε

e(t−s)A

(
E1(s)
E2(s)

)
ds+A−1

(
E+

1

E+
2

)∥∥∥∥ ≤ εC2,

with some positive constant C2 not depending on ε. Hence, from (15), we deduce that for any t > 2Tε,∥∥∥∥(M1(t)
M2(t)

)
−

(
M+

1

M+
2

)∥∥∥∥ < ε

[∥∥∥∥(M0
1

M0
2

)∥∥∥∥+ C1 + C2

]
.

Therefore, (M1(t),M2(t)) converges to (M+
1 ,M+

2 ) when t tends to +∞.

In the following section, by considering the releases of sterile males, we look for a condition of release functions
Λ such that the positive equilibrium disappears.

4 Elimination with releases of sterile males

In this section, we consider Λ(t) in system (1) the number of sterile males released per time unit, and our goal
is to adjust its values such that the wild population reaches elimination. We consider two release strategies as
follows

Constant release: Let the release function Λ(t) ≡ Λ > 0. As time goes to infinity, the density of sterile males
(Ms

1 ,M
s
2 ) converges to (Ms∗

1 ,Ms∗
2 ) that is the solution of system{

Λ− µsM
s∗
1 − αd12M

s∗
1 + αd21M

s∗
2 = 0

−µsM
s∗
2 − αd21M

s∗
2 + αd12M

s∗
1 = 0

(17)

By denoting

τ1 :=
(µs + αd21)

µs(µs + αd12 + αd21)
, τ2 :=

αd12
µs(µs + αd12 + αd21)

, (18)

we have Ms∗
1 = τ1Λ, and Ms∗

2 = τ2Λ and Ms∗
1 +Ms∗

2 =
Λ

µs
.

Impulsive periodic releases: Consider the release function

Λ(t) =

+∞∑
k=0

τΛper
k δkτ , (19)

with period τ > 0 and Λper
k is the average number of sterile males released per time unit during the time interval

(kτ, (k+1)τ) for k = 0, 1, . . . . We choose in this work Λper
k constant and drop consequently the sub-index k. The

release function Λ(t) in (19) means that we release a total amount of τΛper mosquitoes at the beginning of each
time period (t = kτ).

Denote vector X(t) =

(
Ms

1 (t)
Ms

2 (t)

)
, then with k = 0, 1, . . . , the density of sterile males satisfies the following

system

X ′(t) = AsX(t) for any t ∈
∞⋃

k=0

(kτ, (k + 1)τ) , (20a)

X(kτ+) = X(kτ−) +

(
τΛper

0

)
, (20b)

with matrix As =

(
−αd12 − µs αd21

αd12 −αd21 − µs

)
, and X(kτ±) denote the right and left limits of X(t) at time kτ

and by convention, we set X(0−) = 0.
The following lemma shows that X(t) converges to a periodic solution as time evolves and this periodic

solution is discontinuous and bounded from below by a positive value.
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Lemma 4.1. The solution X(t) of system (20) converges to a periodic solution Xper(t) that satisfies

Xper(kτ+) = (I − eAsτ )−1

(
τΛper

0

)
, Xper(t) = eAstXper(kτ+) for any t ∈

∞⋃
k=0

(kτ, (k + 1)τ) . (21)

Moreover, there exist positive constants τper
1 , τper

2 which depend on As and period τ such that for any t > 0, one

has Xper(t) ≥ Λper

(
τper
1

τper
2

)
.

Proof. The densities of the sterile males evolve according to (20a) on the union of open intervals (kτ, (k + 1)τ)
while X is submitted to jump at each point kτ as in (20b). For such a release schedule, the solution of system
(20) satisfies

X(kτ+) =

k∑
i=0

eiAsτ

(
τΛper

0

)
, X(t) = eAstX(kτ+) for any t ∈

∞⋃
k=0

(kτ, (k + 1)τ) .

Since matrix As is Hurwitz, when t → +∞, we have that X converges to the periodic solution Xper =

(
Ms,per

1

Ms,per
2

)
that satisfies that (21) for k = 0, 1, . . .

We have matrix As is Metzler and irreducible, then by applying Lemma 2.1, we deduce that eAs ≫ 0.

On the other hand, matrix As is Hurwitz so (I − eAsτ )−1 =

+∞∑
i=0

eiAsτ ≫ 0 for any τ > 0. Moreover, we have

eAst is also strictly positive for any t > 0, so

inf
t>0

Xper(t) = min
t∈[0,τ ]

Xper(t) = min
t∈[0,τ ]

eAst(I − eAsτ )−1

(
τΛper

0

)
.

By taking

(
τper
1

τper
2

)
= min

t∈[0,τ ]
eAst(I − eAsτ )−1

(
τ
0

)
, the result of Lemma 4.1 follows.

Remark 4.1. The parameters τi defined in (18) and τper
i play a similar role to each other: they define a

relationship between an average release rate Λ per time unit and a (minimum) level of the sterile mosquito
density. These parameters depend on the diffusion rates, the death rate of sterile males, and the release period τ
in the periodic case.

We provide in the following result a condition on Λ(t) for the wild population to reach elimination.

Theorem 4.2. Consider system (1) with the release function Λ(t). Then

• In the constant release case, for Λ(t) ≡ Λ, there exists a positive number Λ satisfying

Λ ≤ max
i=1,2

1

γτi
(N − 1)CM i = 1, 2,

with τi defined in (18), CM defined in Lemma 2.4 such that if Λ > Λ, system (1) has a unique equilibrium

u∗
0 = (0, 0, 0,Ms∗

1 , 0, 0, 0,Ms∗
2 ).

Moreover, in this case, for any non-negative initial data, the solution of (1) converges to this equilibrium
when t → +∞.

• In the periodic release case, for Λ(t) defined in (20), There exists a positive constant Λ
per

satisfying

Λ
per ≤ max

i=1,2

1

γτper
i

(N − 1)CM ,

with τper
i defined in Lemma 4.1, CM defined in Lemma 2.4 such that if Λper > Λ

per
, then for any non-negative

initial data, the solution of the initial value problem of system (1) converges to the unique steady state

uper
0 = (0, 0, 0,Ms,per

1 , 0, 0, 0,Ms,per
2 ),

as time t → +∞ .

This result shows that with a sufficiently large number of sterile males released in the first zone, we can
succeed in driving the wild population in both areas to elimination. In the following, we describe the principle
idea to prove this result.
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4.1 Principle of the method

To provide conditions for the release Λ to stabilize the zero equilibrium, our strategy is as follows:

Step 1: We consider ρi = sup
t>0

Mi(t)

Mi(t) + γMs
i (t)

, for i = 1, 2, in system (1) to be smaller than some level, then

we study the system with the fractions replaced by some constant.
Step 2: We show how to realize, through an adequate choice of Λ, the above behavior of Ms

i .

4.1.1 Step 1: Setting the sterile population level directly

Theorem 3.1 shows us that when the basic offspring number is smaller than 1, the zero equilibrium is globally
asymptotically stable. For the controlled system, the basic offspring numbers are smaller than ρiN . It suggests
that for stabilizing the origin of system (1), it is sufficient to ensure ρiN ≤ 1.

Proposition 4.3. If the trajectory resulting from any positive initial data of system (1) satisfies that for N
defined in (2),

Mi(t)

Mi(t) + γMs
i (t)

≤ 1

N , t ≥ 0, i = 1, 2. (22)

then u′ = (E1, F1,M1, E2, F2,M2) converges to 06 as time t → +∞.

Proof. Assume that we can set Ms
i to be large enough such that (22) holds, and we consider the following system

Ė1 = bF1

(
1− E1

K1

)
− (νE + µE)E1, (23a)

Ḟ1 =
1

N rνEE1 − µFF1 − d12F1 + d21F2, (23b)

Ṁ1 = (1− r)νEE1 − µMM1 − βd12M1 + βd21M2, (23c)

Ė2 = bF2

(
1− E2

K2

)
− (νE + µE)E2, (23d)

Ḟ2 =
1

N rνEE2 − µFF2 − d21F2 + d12F1, (23e)

Ṁ2 = (1− r)νEE2 − µMM2 − βd21M2 + βd12M1, (23f)

Denote ũ = (Ẽ1, F̃1, M̃1, Ẽ2, F̃2, M̃2) solution of system (23). Since system (23) is cooperative and the inequality
(22) holds, one obtains that ũ is a super-solution of the system (1a)-(1c), (1e)-(1g), and by applying Lemma 2.2,
we have ũ ≥ u′.

Denote u∗ = (E∗
1 , F

∗
1 ,M

∗
1 , E

∗
2 , F

∗
2 ,M

∗
2 ) a positive equilibrium of system (23) if exists. Similar to the previous

section, we have

E∗
2 =

µF + d12 + d21
d21

E∗
1

1− E∗
1

K1

− µF + d21
d21

E∗
1 =: g21(E

∗
1 ), (24)

E∗
1 =

µF + d12 + d21
d12

E∗
2

1− E∗
2

K2

− µF + d12
d12

E∗
2 =: g12(E

∗
2 ). (25)

The analysis of gij is analogous to fij in Lemma 3.2. It is easy to check that g12 is increasing on (0,K2), so it is
invertible. Then, E∗

1 satisfies (g21 − g−1
12 )(E∗

1 ) = 0. Function g21 is convex and g−1
12 is concave in (0,K1), and

g′21(0) =
µF + d12 + d21

d21
− (µF + d21)

d21
=

d12
d21

,

(g−1
12 )′(0) =

1

g′12(0)
=

1
µF+d12+d21

d12
− µF+d12

d12

=
d12
d21

.

We obtain that g′21(0) = (g−1
12 )′(0) (see Figure 2), so zero is the unique equilibrium of system (23). By applying

Theorem 3.1 in Chapter 2 of [39], we deduce that when t → +∞, the solution ũ(t) converges to the equilibrium
zero. Since u′(t) ≤ ũ(t) for all t > 0, we deduce that the u′ also converges to zero when t large.

4.1.2 Step 2: Shaping the release function

We now want to choose Λ such that the condition (22) holds, which means

γMs
i (t) ≥ (N − 1)Mi(t), t ≥ 0, i = 1, 2

The upper bound of Mi can be obtained from Lemma 2.4. For time t > 0 large enough, it is sufficient to choose
Λ such that γMs

i (t) ≥ (N − 1)CM .
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Figure 2: Relations E∗
2 = g21(E

∗
1 ) (in green) and E∗

1 = g12(E
∗
2 ) (in red) presented in the E1 − E2 plane

when N > 1. The two curves only intersect at the origin.

4.2 Proof of Theorem 4.2

Proof of Theorem 4.2. Constant release: For Λ(t) ≡ Λ, let us recall As =

(
−µs − αd12 αd21

αd12 −µs − αd21

)
, and

it is a Hurwitz matrix. And we have(
Ms

1 (t)
Ms

2 (t)

)
= etAs

(
Ms0

1

Ms0
2

)
+ (1− r)νE

∫ t

0

e(t−s)Asds

(
Λ
0

)
.

Thus, when t → +∞, we can deduce that

(
Ms

1 (t)
Ms

2 (t)

)
converges to

(
Ms∗

1

Ms∗
2

)
for any initial data since etAs → 0

when t → +∞. Hence, for any ε > 0, there exists a value Tε > 0 such that for any t > Tε, i = 1, 2,

Ms
i (t) ≥ Ms∗

i − ε.

If we take Λ such that γ(Ms∗
i − ε) ≥ (N − 1)CM with CM defined in Lemma 2.4, then condition (22) holds.

By applying Proposition 4.3, we deduce that for i = 1, 2, if Λ > max
i=1,2

1

γτi
(N − 1)CM , system (1) has a unique

equilibrium point
u∗
0 = (0, 0, 0,Ms∗

1 , 0, 0, 0,Ms∗
2 ),

and every trajectory converges to this equilibrium when t → +∞. The dynamics of system (1) depend continu-

ously and monotonically on Λ, then we deduce that there exists a positive critical value Λ ≤ max
i=1,2

1

γτi
(N − 1)CM

such that for any Λ > Λ, and for any non-negative initial data, solution u′ = (E1, F1,M1, E2, F2,M2)(t) converges
to 06 when t → +∞.

Impulsive periodic releases: Consider Λ(t) defined in (20), denote (Eper
1 , F per

1 ,Mper
1 , Eper

2 , F per
2 ,Mper

2 ) a
solution of (1a)-(1c), (1e)-(1g) with Ms

i ≡ Ms,per
i defined in (21). From Lemma 4.1, one has Ms,per

i (t) ≥ Λperτper
i

for all t > 0. Therefore, if we take Λper such that γΛperτper
i ≥ (N − 1)CM , then condition (22) holds. By applying

Proposition 4.3, we deduce that uper = (Eper
1 , F per

1 ,Mper
1 , Eper

2 , F per
2 ,Mper

2 ) converges to zero as t grows. Since
(Ms

1 ,M
s
2 ) converges to (Ms,per

1 ,Ms,per
2 ) as t → +∞, we have u′ = (E1, F1,M1, E2, F2,M2) approaches uper and

thus converges to 06 as time t goes to infinity.
Since the dynamics of system (1) depends continuously and monotonically on Λ, there exists a positive critical

value Λ
per ≤ max

i=1,2

1

γτper
i

(N − 1)CM such that if Λper > Λ
per

the equilibrium uper
0 of (1) with Λ(t) defined in (19)

is globally asymptotically stable.

5 Parameter dependence of the critical values of the release
rate

In this section, we consider the constant release case and examine how the critical value Λ depends on the
parameters of system (1). In this model, the elimination of the population depends not only on the diffusion rate
between the inaccessible area and the treated area, but also on the biological intrinsic values like the birth/death
rates, and the carrying capacity.

13



5.1 Diffusion rates

In this part, we want to compare the critical values of Λ corresponding to different values of d12, d21. We show
that when the diffusion rates are large enough, the critical number of sterile males released is the same as in the
case when there is no separation between the two sub-populations.

5.1.1 The case d12, d21 large

First, we present a result of uniform convergence of system (1) when d12, d21 go to +∞ and d12 is proportional
to d21.

Proposition 5.1. For ε > 0, consider the diffusion rates d12 =
1

ε
, d21 =

η

ε
with η =

d21
d12

> 0. Denote

uε = (Eε
1 , F

ε
1 ,M

ε
1 ,M

s,ε
1 , Eε

2 , F
ε
2 ,M

ε
2 ,M

s,ε
2 ) the solution of system (1) with the initial data uε,0 satisfying that

{Eε,0
i }, {F ε,0

i }, {Mε,0
i } converge to E0,0

i , F 0,0
i ,M0,0

i respectively as ε → 0, with i = 1, 2,

and
Eε,0

1 − ηEε,0
2 = O(ε), F ε,0

1 − ηF ε,0
2 = O(ε), Mε,0

1 − ηMε,0
2 = O(ε), Ms,ε,0

1 = Ms,ε,0
2 = 0. (26)

Then, when ε → 0, the sequence {uε} converges uniformly to a limit (E1, F1,M1,M
s
1 , E2, F2,M2,M

s
2 ) on [0,+∞).

Moreover, we have
F1 = ηF2, M1 = ηM2, Ms

1 = ηMs
2 . (27)

If we denote F = F1 +F2, M = M1 +M2, Ms = Ms
1 +Ms

2 , then (E1, E2, F,M,Ms) solves the following system

Ė1 =
η

η + 1
bF

(
1− E1

K1

)
− (νE + µE)E1, (28a)

Ė2 =
1

η + 1
bF

(
1− E2

K2

)
− (νE + µE)E2, (28b)

Ḟ = rνE(E1 + E2)
M

M + γMs
− µFF, (28c)

Ṁ = (1− r)νE(E1 + E2)− µMM, (28d)

Ṁs = Λ∞ − µsM
s, (28e)

with the corresponding initial data E0,0
1 , E0,0

2 , F 0,0 = F 0,0
1 + F 0,0

2 , M0,0 = M0,0
1 +M0,0

2 , Ms,0,0 = 0.

It is straightforward to see that the previous result implies that F1, F2,M1,M2 satisfy

F1 =
η

1 + η
F, F2 =

1

1 + η
F, M1 =

η

1 + η
M, M2 =

1

1 + η
M.

Proof of Proposition 5.1. To prove this result, we first apply the Arzela-Ascoli theorem for the sequence of smooth
solution {uε}ε on a close interval [0, T ] with any T > 0. Then, we extend the convergence at infinity.

• Uniform convergence on [0, T ]: First, we check the uniform boundedness of this sequence. For i = 1, 2,
from Lemma 2.4, one has Eε

i (t) ≤ Ki for all t > 0 and ε > 0. Again by this Lemma, for any t > 0, one has

F ε
i (t) ≤ max

{
F ε,0
1 + F ε,0

2 ,
rνE(K1 +K2)

µF

}
≤ C0

F

where C0
F does not depend on ε since the initial data converge as ε goes to zero. Similarly, we can apply Lemma

2.4 to show that there are positive constants C0
M , C0

Ms not depending on ε such that for any t > 0, one has
Mε

i (t) < C0
M , Ms,ε

i (t) < C0
Ms .

Next, we prove that the sequence of derivative {u̇ε}ε is also uniformly bounded. For any t > 0,

Ḟ ε
1 < rνEK1 −

1

ε
(F ε

1 − ηF ε
2 ) .

We show that
F ε
1 − ηF ε

2

ε
is uniformly bounded on [0, T ]. Indeed, we have for all t > 0 and ε > 0,

Ḟ ε
1 − ηḞ ε

2 = rνE

(
Eε

1
Mε

1

Mε
1 + γMs,ε

1

− ηEε
2

Mε
2

Mε
2 + γMs,ε

2

)
−

(
µF +

η + 1

ε

)
(F ε

1 − ηF ε
2 )

= Aε −
(
η + 1

ε

)
(F ε

1 − ηF ε
2 ),
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where Aε := rνE

(
Eε

1
Mε

1

Mε
1 + γMs,ε

1

− ηEε
2

Mε
2

Mε
2 + γMs,ε

2

)
− µF (F

ε
1 − ηF ε

2 ) is uniformly bounded since we already

proved that uε is uniformly bounded. Then, for any ε > 0, we have |Aε(t)| < C for any t > 0 and some constant
C > 0. By the Duhamel formula, we obtain

(F ε
1 − ηF ε

2 )(t) = (F ε,0
1 − ηF ε,0

2 )e−
η+1
ε

t +

∫ t

0

Aε(s)e−
η+1
ε

(t−s)ds.

So for all t ≥ 0, one has

|F ε
1 − ηF ε

2 |(t)
ε

≤
∣∣F ε,0

1 − ηF ε,0
2

∣∣
ε

e−
η+1
ε

t +
C

η + 1

(
1− e−

η+1
ε

t
)
.

For any t ∈ [0,+∞) and ε > 0, one has 0 < e−
η+1
ε

t < 1. And due to the Assumption (26) for the initial data,
the right-hand side is uniformly bounded with respect to ε. Hence, we deduce that Ḟ ε

1 is uniformly bounded on

[0, T ]. We obtain analogously the uniform boundedness of Ḟ ε
i , Ṁε

i , and
˙Ms,ε
i . Due to the positivity of system

(1), one has Ėε
i (t) < bC0

Fi
for all t > 0 and ε > 0.

Since the sequence of derivatives {u̇ε}ε is uniformly bounded on [0, T ], we deduce the equicontinuity of the
sequence {uε}ε. Hence, by the Arzela-Ascoli theorem, this sequence has a uniformly convergent subsequence.
We denote its limit u = (E1, F1,M1,M

s
1 , E2, F2,M2,M

s
2 ). If we multiply system (1) with ε and let it go to zero,

we obtain the equalities (27) and system (28).
With the initial data satisfying the assumptions in Proposition 5.1, the solution of system (28) on (0,+∞)

is unique. Since all the subsequence of {uε}ε converge to the same limit, we deduce that the whole sequence
converges uniformly to this limit on [0, T ].

• Extension to +∞: For all t ≥ 0, we prove that for all δ > 0, there exists ε0 > 0 such that for all
ε ∈ (0, ε0), we have ∥uε(t)− u(t)∥ < δ.

Indeed, the solution of both (1) and (28) converges to a constant as time t goes to infinity, then there exists
a time T > 0 large enough and ε1 > 0 such that for any ε ∈ (0, ε1) and all t > T , one has

∥uε(t)− uε(T )∥ <
δ

3
, ∥u(t)− u(T )∥ <

δ

3
.

Moreover, we have that the sequence {uε}ε converges uniformly to u in the closed interval [0, T ]. Thus, there

exists a positive value ε0 < ε1 such that for all ε ∈ (0, ε0), sup
[0,T ]

∥uε−u∥ <
δ

3
. Hence, we have ∥uε(T )−u(T )∥ <

δ

3

and we deduce that

∥uε(t)− u(t)∥ ≤ ∥uε(t)− uε(T )∥+ ∥uε(T )− u(T )∥+ ∥u(t)− u(T )∥ < δ.

It is clear that for t ≤ T , one has ∥uε(t)− u(t)∥ <
δ

3
< δ. So we obtain the convergence on [0,+∞).

In the next result, we study the limit system (28).

Theorem 5.2. Consider system (28) with the release function given by

(i) constant release Λ∞(t) ≡ Λ∞.

Then there exists Λ∞ > 0 such that for any Λ∞ > Λ∞, system (28) has a unique equilibrium u0
∞ =(

0, 0, 0, 0, Λ∞
µs

)
and it is globally asymptotically stable.

(ii) impulsive periodic release Λ∞(t) =

+∞∑
k=0

τΛper
∞ δkτ with period τ .

Then there exists Λ
per
∞ > 0 such that for any Λper

∞ > Λ
per
∞ , all trajectories of (28) resulting from any

non-negative initial data satisfy that (E1, E2, F,M) converges to the equilibrium 04 ∈ R4.

Proof. Firstly, we show that for Λ∞(t) large enough such that
M

M + γMs
≤ 1

N , then all trajectories of (28)

resulting from any non-negative initial data satisfy that (E1, E2, F,M) converges to the equilibrium 04 ∈ R4.

Indeed, consider the first four equations of system (28) with
M

M + γMs
replaced by

1

N , and we denote the

equilibrium (E∗
1 , E

∗
2 , F

∗,M∗) of this system satisfy

F ∗ =
rνE(E

∗
1 + E∗

2 )

NµF
, M∗ =

(1− r)νE(E
∗
1 + E∗

2 )

µM
,
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and

(E∗
1 + E∗

2 ) =
E∗

1 + E∗
2

η
η+1

(
1− E∗

1
K1

)
+ 1

η+1

(
1− E∗

2
K2

) .
This is equivalent to either E∗

1 + E∗
2 = 0 or

η

η + 1

(
1− E∗

1

K1

)
+

1

η + 1

(
1− E∗

2

K2

)
= 1.

The left-hand side of this equality is smaller than 1 since E∗
i < Ki with i = 1, 2, thus we deduce that E∗

1 = E∗
2 =

F ∗ = M∗ = 0. Hence, this system has exactly one equilibrium 04 and all trajectories converge to this steady
state by using Theorem 3.1 in Chapter 2 of [39]. Then, by applying the comparison Lemma 2.2, we deduce the
convergence of system (28).

Analogously to system (1), we have the boundedness for the solution of (28) and the monotonicity of the
system with respect to Λ∞. Therefore, we can deduce the existence of the critical values for both the constant
and periodic cases.

Next, we make a comparison between the previous case and the case where there is no separation between
the two sub-populations.

5.1.2 The non-separation case

When there is no separation between the two sub-populations of mosquitoes, we consider one population (E,F,M,Ms)
in a habitat with aquatic carrying capacity K = K1 +K2. Then (E,F,M,Ms) satisfies the following system

Ė = bF

(
1− E

K

)
− (νE + µE)E, (29a)

Ḟ = rνEE
M

M + γMs
− µFF, (29b)

Ṁ = (1− r)νEE − µMM, (29c)

Ṁs = Λ− µsM
s. (29d)

For the constant release, the positive equilibrium (E∗, F ∗,M∗,Ms∗) satisfies

M∗ =
(1− r)νE

µM
E∗, Ms∗ =

Λ

µs
, F ∗ =

rνE
µF

E∗

1 + µMγΛ
(1−r)νEµsE∗

;

and from (29a), we deduce that

brνE
µF

E∗

1 + µMγΛ
(1−r)νEµsE∗

(
1− E∗

K

)
− (νE + µE)E

∗ = 0.

This equation has no positive solution if and only if Λ > Λ0 =
(1− r)νEKµs(1−N )2

4NµMγ
.

Remark 5.1. We can see that in the special case where K1 = ηK2, by taking E = E1 +E2, we can write system
(28) as system (29) for (E,F,M,Ms) with carrying capacity K = K1 + K2. Hence, we deduce that Λ∞ = Λ0.
This suggests that the critical number of sterile males released in the case with very large diffusion rate is the
same as in the non-separation case in 5.1.2.

5.2 Biological intrinsic values

In this section, we compare the critical value of Λ corresponding to different values of the parameters namely the
birth rate b, the death rates µE , µF , µM , µs, and the carrying capacities K1, K2. In this section, we show that
the critical value Λ is monotone with respect to these parameters. To prove this claim, we first define in R7

+ an
order such that (µE , µF , µM , µs, b,K1,K2) ⊴ (µ′

E , µ
′
F , µ

′
M , µ′

s, b
′,K′

1,K
′
2) if and only if

µE ≤ µ′
E , µF ≤ µ′

F , µM ≤ µ′
M , µs ≥ µ′

s, b ≥ b′, K1 ≥ K′
1, K2 ≥ K′

2.

Moreover, we write (µE , µF , µM , µs, b,K1,K2) ◁ (µ′
E , µ

′
F , µ

′
M , µ′

s, b
′,K′

1,K
′
2) if the two vectors are not identical.

With this order relation, we have the following result
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Table 1: Parameter values of Aedes albopictus mosquitoes used for the numerical simulation

Symbol Description Value Unit

b Birth rate of fertile females 10 day−1

νE Emerging rate of viable eggs 0.08 day−1

µE Death rate of aquatic phase 0.05 day−1

µF Female death rate 0.1 day−1

µM Wild male death rate 0.14 day−1

µs Sterile male death rate 0.14 day−1

K1 Carrying capacity of aquatic phase in patch 1 200
K2 Carrying capacity of aquatic phase in patch 2 180
γ Mating competitiveness of sterile male 1
r Ratio of female hatch 0.5
α Ratio between diffusion rates of sterile males and female 0.5
β Ratio between diffusion rates of sterile males and female 0.8

Theorem 5.3. Consider system (1) and the basic offspring number N > 1, consider the critical values Λ and
Λ

per
as defined in Theorem 4.2, then we have the mappings from R7

+ to R+

(µE , µF , µM , µs, b,K1,K2) 7→ Λ, (µE , µF , µM , µs, b,K1,K2) 7→ Λ
per

,

are non-increasing with respect to the order ⊴.

Proof. First, we consider system (1) with two sets of parameters

Θ = (µE , µF , µM , µs, b,K1,K2), Θ′ = (µ′
E , µ

′
F , µ

′
M , µ′

s, b
′,K′

1,K
′
2),

where Θ ⊴ Θ′. We fix the same value of Λ in both cases and consider

u = (E1, F1,M1,M
s
1 , E2, F2,M2,M

s
2 ), v = (Ẽ1, F̃1, M̃1, M̃s

1 , Ẽ2, F̃2, M̃2, M̃s
2 )

where u, v are the solutions of (1) using the same initial data with the parameters Θ, Θ′, respectively. We have
u̇ = fΘ(u), and v̇ = fΘ′(v) ⪯ fΘ(v) in the subset {0 ≤ E1 ≤ K1} ∩ {0 ≤ E2 ≤ K2} of R8

+. Moreover, functions
fΘ and fΘ′ satisfy the assumptions in Lemma 2.3, then by applying this lemma, we obtain that v ⪯ u for the
same initial data, so

Ei(t) ≥ Ẽi(t), Fi(t) ≥ F̃i(t), Mi(t) ≥ M̃i(t) for all t > 0, i = 1, 2.

On the other hand, for any Λ > ΛΘ, by Theorem 4.2 we have that Ei(t), Fi(t), Mi(t) converge to zero as t goes

to infinity. As a consequence of the above inequalities, we deduce that Ẽi(t), F̃i(t), M̃i(t) also converge to zero
for all initial data. So Λ > ΛΘ′ , and we can deduce that ΛΘ ≥ ΛΘ′ .

6 Numerical simulations

Following [13,22], we consider the parameters as in Table 1.

6.1 Trajectories and Equilibria

We fix the moving rate d12 = 0.06, d21 = 0.04 (day−1), and plot the numerical solutions of system (1) with
different releases functions Λ(t). In the case Λ = 0, system (7) has a unique equilibrium

(E+
1 , F+

1 ,M+
1 , E+

2 , F+
2 ,M+

2 ) = (192.63, 67.92, 50.29, 174.83, 79.06, 54.69).

To highlight the global stability of equilibria, we numerically solve the system with initial data in three levels:
close to zero, intermediate, and close to the positive equilibrium when Λ = 0. For the level close to zero, the
initial data is taken between 1% to 10% of the value of the above equilibrium, between 40% and 50% for the
intermediate level, and between 90% to 100% for the third case. More precisely, we take

(E0
1 , F

0
1 ,M

0
1 ,M

s,0
1 , E0

2 , F
0
2 ,M

0
2 ,M

s,0
2 ) ∈ {(2, 5, 4, 0, 3, 5, 3, 0), (80, 30, 20, 0, 70, 30, 30, 0), (160, 60, 50, 0, 155, 70, 50, 0)}.

When the largest wild mosquito population was less than 10−2, we considered the wild population to be elimi-
nated. The following section presents several numerical simulations showing the trajectories and approximated
equilibria according to different release strategies.
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6.1.1 Constant continuous releases

We take three different constant values of Λ ∈ {0, 200, 500} (day−1). The initial density of sterile males is equal
to zero. We approximate the positive equilibria in each case and plot the trajectories of E1 and E2 in Figures 3
according to different values of Λ. We observe the following:

• When Λ = 0, there is one positive equilibrium

(E∗
1 , E

∗
2 ) = (192.62, 174.82).

All positive trajectories converge to the positive steady state (E∗
1 , E

∗
2 ).

• When Λ = 200 (day−1), there are two positive equilibria

(e∗1, e
∗
2) = (17.29, 49.98), (E∗

1 , E
∗
2 ) = (85.79, 130.02).

All positive trajectories also converge to the larger positive steady state (E∗
1 , E

∗
2 ).

• When Λ = 500 (day−1), there is no positive equilibrium. All the trajectories converge to the zero equilibrium.

This validates the result in Theorem 4.2 that when Λ exceeds some critical value, zero is the unique equilibrium of
system (1). The observation for Λ = 0 illustrates the result in Theorem 3.1 that there is one positive equilibrium
and it is globally asymptotically stable. The introduction of sterile males (Λ = 200 > 0) reduces the value of the
positive steady state (see Figure 3b), and when Λ = 500 (day−1) exceeds some critical value (at most equal to
500), all trajectories converge to the zero equilibrium (see Figure 3c). This illustrates the first point of Theorem
4.2. To approximate the critical value of Λ, we provide some numerical bifurcation diagrams in Section 6.2.

6.1.2 Periodic impulsive releases

In this part, we consider the periodic impulsive releases with Λ(t) defined in (19), with Λper equal to 200 and
300 (day−1), the period τ = 10 (days). The trajectories of E1, E2 shown in Figure 4 converge to the periodic
solution when Λper = 200 (day−1) and go to zero when Λper = 300 (day−1). This illustrates the second point of
Theorem 4.2 that when the number of sterile males released exceeds a critical value Λ

per
, the wild populations

of mosquitoes in both areas reach elimination.

6.2 Critical values and bifurcation

Our aim in this section is to approximate the critical value of Λ where the bifurcation occurs.

6.2.1 Bifurcation diagram in the constant release case

We solve a system of nonlinear stationary problems F(u; Λ) = 0 for all values of the parameter Λ, knowing that
the solutions are continuous with respect to Λ. Solving by numerical approximations can be done using numerical
continuation methods (see [40]).

Here we present the simplest method called Natural Parameter Continuation (incremental methods, see [40]):
Iteratively find approximate roots of F(u; Λ) = 0 for several values of Λi with index i ∈ N∗. The root of step i is
used as an initial guess for the numerical solver at step i + 1. The first initial guess is the root for the smallest
Λ. To approximate the critical value Λ in the constant case and examine what happens when 0 < Λ ≤ Λ, we
draw the bifurcation diagram for Λ ∈ [0.1, 500]. The initial positions of the numerical continuation are taken at
the approximated equilibria when Λ = 0.1.

We obtain the bifurcation diagrams in Figure 5 for two scenarios. We observed that the critical value of Λ
decreases when the diffusion rates increase.

• For d12 = 1, d21 = 2, the critical value Λ = 106.45 (day−1).

• For d12 = 0.06, d21 = 0.04, the critical value Λ = 250.88 (day−1).

Values of Λ varying with respect to different values of d12, d21 ∈ [0.05, 2] were depicted in Figure 6a. We observe
that as the diffusion rates get larger, the critical value Λ is decreasing and converges to some value Λ∞. This
validates the result provided by Proposition 5.2 where Λ∞ is the critical value of Λ corresponding to system (28).

By considering the case d21 = ηd12, we plot values of Λ corresponding to different ratios η while fixing
d12 = 0.6 in Figure 6b. We can see that Λ reach a local maximum as η passes through the ratio K1

K2
. In practice,

since the mosquitoes will likely move to areas with more breeding sites, the ratio η = d21
d12

is close to the carrying

capacity K1
K2

. This indicates that intervening on the breeding sites to increase the difference between these two
ratios can help decrease the number of sterile males needing release.

Moreover, as d12 get larger, this value of Λ gets closer to the critical value Λ0 of the system when there is no
separation between the two sub-populations defined in 5.1.2.
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(a) Λ = 0

(b) Λ = 200 (day−1).

(c) Λ = 500 (day−1).

Figure 3: Trajectories of E1 and E2 in the constant release case with diffusion rates d12 = 0.06, d21 = 0.04
(day−1).
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(a) Λper = 200 (day−1).

(b) Λper = 300 (day−1).

Figure 4: Trajectories of E1 and E2 in the periodic release case with period τ = 10 (days), diffusion
rates d12 = 0.06, d21 = 0.04 (day−1).

Figure 5: Bifucation diagrams of E∗
1 with parameter Λ in the constant continuous release case.
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(a) Heatmap depicts values for Λ (b) Values of Λ change with respect to η = d21/d12

Figure 6: Values of Λ varies with respect to diffusion rates d12, d21 ∈ [0.05, 2].

Figure 7: Densities of Ms
1 and Ms

2 in both cases. Left: constant continuous releases with Λ = Λ = 250.88
(day−1), Right: periodic impulsive releases with Λper = Λ

per
= 255.15 (day−1).
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Figure 8: Densities of wild mosquitoes in two patches in both cases. Left: constant continuous release
with Λ = 300 mosquitoes released per day, Right: periodic impulsive releases with Λper = 300 mosquitoes
released at the beginning of each time period.

6.2.2 Comparison of release strategies

In practice, the strategy using impulsive releases is more realistic than the constant strategy. In this section, we
make a comparison between these two strategies.

For the fixed diffusion rates d12 = 0.06, d21 = 0.04, we approximated the critical number of sterile males
released in both cases using the method in 6.2

• When Λ(t) ≡ Λ constant, the critical value Λ ≈ 250.88 (day−1);

• When Λ(t) =

+∞∑
k=0

τΛperδkτ with period τ = 10, the critical value of Λper is Λ
per ≈ 255.15 (day−1).

We can see that Λ and Λ
per

are consistent. We also present numerical simulations in both cases with the same
total amount of sterile males released where Λper = Λ = 300. The densities of sterile males in both cases are shown
in Figure 7. In the constant release case, one observes that the density of sterile males in both zones converges
to an equilibrium (Ms,∗

1 ,Ms,∗
2 ). In the periodic case, Figure 7 illustrates the results provided in Lemma 4.1 in

which the density of sterile males converges to a periodic solution that is bounded from below.
We obtained in Figure 8 that in both cases, the wild mosquito population reaches elimination at time t ≈ 300.

Again we can see that the two strategies provide the same performance.

7 Discussion and conclusion

The existence of some hidden areas (e.g. crab burrows) that can not be accessed by the SIT hinders the population
from reaching elimination. Without the implementation of this technique, Theorem 3.1 showed that the wild
populations in both areas are persistent and converge towards the unique positive equilibrium (see Figure 3a) and
are independent of the diffusion rates between them. The main results obtained in the present work indicated
that with a sufficient number of sterile males released, the SIT succeeds in driving both sub-populations to
extinction. We investigated both continuous constant releases and impulsive periodic releases in Theorem 4.2.
The two strategies provided almost similar performance but the periodic release is more realistic in practice. The
idea in our proof can also be used to design a feedback release strategy and this could be studied in future works.
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The results in Theorem 5.3 also pointed out that the critical numbers of released sterile males are monotone
with respect to the biological parameters of the population (see Section 5.2). A population with a larger birth rate
and a bigger environment carrying capacity requires more sterile males to reach elimination. A larger death rate
in any compartment of the wild mosquitoes reduces this critical value, and on the contrary, a larger death rate
for the sterile males increases this value. From the control measure point of view, one can lower the threshold
value of Λ by killing mosquitoes to increase mosquito mortality or removing breeding sites, even only in the
accessible zone to reduce the carrying capacity (K1). This indicates that other conventional control measures
can be combined with the SIT control to make the SIT elimination threshold easier to attain.

Moreover, the critical number of sterile males also depends on the diffusion rates between the treated area
and the inaccessible zone. More precisely, if the diffusion rates are large, this system approaches the case when
there is no separation between two sub-populations (see Theorem 5.2). Numerically, we showed that the larger
the values of diffusion rates, the smaller the threshold we need to exceed to obtain elimination (see Figure 6).
This also showed that when the movement is at a low level, the leak of wild mosquitoes from the inaccessible
area impedes the eradication in the treated zone and it requires a larger number of sterile males to break through
this obstacle. In practice, this could be an unrealistic amount of sterile mosquitoes. It is not surprising that the
scenario with larger diffusion between two areas is better since more sterile males can arrive at the unreachable
zone. Further study on dispersal rates of mosquitoes is necessary to estimate the release rates for SIT elimination
in the presence of inaccessible zones.
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