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Efficacy of the Sterile Insect Technique in the
presence of inaccessible areas: A study using

two-patch models
Pierre-Alexandre Bliman1, Nga Nguyen2, Nicolas Vauchelet3

Abstract

The Sterile Insect Technique (SIT) is one of the sustainable strategies for the control
of disease vectors, which consists of releasing sterilized males that will mate with the wild
females, resulting in a reduction and, eventually a local elimination, of the wild popula-
tion. The implementation of the SIT in the field can become problematic when there are
inaccessible areas where the release of sterile insects cannot be carried out directly, and
the migration of wild insects from these areas to the treated zone may influence the effi-
cacy of this technique. However, we can also take advantage of the movement of sterile
individuals to control the wild population in these unreachable places. In this paper, we
derive a two-patch model for Aedes mosquitoes where we consider the discrete diffusion
between the treated area and the inaccessible zone. We investigate two different release
strategies (constant and impulsive periodic releases), and by using the monotonicity of the
model, we show that if the number of released sterile males exceeds some threshold, the
technique succeeds in driving the whole population in both areas to extinction. This thresh-
old depends on not only the biological parameters of the population but also the diffusion
between the two patches.

Keywords: sterile insect technique, metapopulation model, monotone dynamical systems

1 Introduction
Mosquitoes of genus Aedes aegypti and Aedes albopictus play a crucial role in transmitting various ar-
boviruses to humans including dengue, chikungunya, and Zika virus. Unfortunately, there are no specific
vaccines or drugs available for these diseases. Consequently, the primary prevention lies in controlling
the mosquito population [37]. However, traditional insecticide-based methods have limitations, prompt-
ing the need for innovative and sustainable strategies [2], [10]. Biological controls involve releasing
large numbers of mosquitoes that are either sterile or incapable of transmitting diseases, which recently
gained much attention. The Sterile Insect Technique is among these sustainable alternative methods
which consist of the release of sterilized male mosquitoes that will mate with wild females [21], [19].
These wild females, unable to lay viable eggs, will gradually drive the wild population to decline. The
efficacy of SIT relies on a comprehensive understanding of the vector behavior, as well as accurate
modeling of its dispersal, to optimize the release strategies.
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Spatial heterogeneity in mosquito populations and mosquito-borne diseases occurs due to differ-
ences in the quality and quantity of their habitats, as well as variations in host density, temperature, and
rainfall [15], [34], [31]. Especially, the number and accessibility of sites where mosquitoes lay their
eggs play a significant role in determining the size of adult mosquito populations by increasing the car-
rying capacity of the environment [1]. Developing models that capture mosquito behavior in response
to environmental heterogeneity is crucial for designing effective control strategies, especially in the face
of rapid global land-use changes. Models using monotone dynamical systems were introduced (see e.g.
[7], [18], [35]) and applied efficiently (see e.g. [11], [8], [12]) to study the SIT. Not many mosquito
modeling studies have incorporated migration or dispersal effects due to insufficient information on
individual movement in the field as well as the complex analysis of models. Most of them used the
diffusion approach, which considers space as a continuous variable. They were first developed in one-
dimensional space using scalar reaction-diffusion equations [30], [25], then extended to sex-structured
compartmental systems to consider the different behaviors of aquatic phases, wild females, males, and
sterile males (see e.g. [4], [6], [24]) and in higher dimension (see e.g. [17], [5]). However, it remains
challenging to explicitly incorporate the factors that affect the movement of sterile males. For instance,
when resources are concentrated in patches or distinct locations, a metapopulation approach in which
we treat space as a discrete set of patches and describe how the population on each patch varies with
time is more suitable for modeling mosquito dispersal [9], [28], [29].

The application of the SIT in the field encounters a difficulty of the limitation in space when there are
some inaccessible areas where people can not release sterile insects directly. For example, mosquitoes
of the genus Aedes polynesiensis primarily exploit land crab burrows for oviposition in certain French
Polynesian atolls [13], [22], [23], [20]. The larvae in the crab burrows emerge into adult mosquitoes
that can fly out to search for food and human blood for fertility. However, one standout advantage of the
SIT is that it relies on the natural ability of the male mosquitoes to move, locate, and mate with females.
This behavior will take place in those areas that cannot be reached with conventional control techniques
(i.e. insecticides). Therefore, we are interested in the mosquito population dynamics in the presence of
such reservoirs and the elimination of the whole population while considering that the released sterile
males can fly into unreachable sites. The patchy models with discrete diffusion mentioned above are a
useful approach to describe the mosquito dynamic taking into account the inaccessibility to the burrows.
We develop a two-patch model and in each patch, we consider a monotone dynamical system inspired
by the models in [35] where the population is divided into different compartments characterizing the
aquatic phase, wild females, wild males, and sterile males. Except for the aquatic phase, individuals in
other states move between patches at specific rates. The SIT is only carried out in the first patch and only
affects the second one through these natural movements. Two-patch models were used to study the same
problem in [38], where they considered a simple scalar equation to describe the population dynamics in
each patch. Our model provides a better understanding of how the dynamics of each stage influence the
result of the control method. However, the complexity of our system does not allow us to obtain the full
analysis of the model like what has been done in [38].

In the present work, we are interested in how to guarantee the successful elimination of the SIT
in both areas and how the diffusion rates as well as other biological parameters influence the efficacy.
To tackle this problem, we focus on studying the global stability of the extinction equilibrium in our
system. Results of global asymptotic behavior for the single-species model depending on the discrete
diffusion were provided in the literature[3], [36], [27]. Lyapunov’s second method was used in [26]
to investigate the multi-species system with discrete diffusion. Many works have been done to design
robust strategies for releasing sterile males to drive a population to elimination [11], [12]. We extend
these control strategies to our two-patch system and prove the sufficient conditions for both constant
continuous and periodic impulsive releases to drive the whole system to extinction. We obtain that when
the number of released sterile males exceeds some threshold, the populations in both the treated and the
inaccessible zone reach elimination. We also show in the present work how the diffusion rates between
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two areas and other biological parameters influence these conditions. These results may help estimate
the possibility and the surplus of sterile mosquitoes necessary to complete elimination in the presence
of hidden, inaccessible, reservoirs.

The organization of the paper is as follows. In section 2, we present the formulation of the two-patch
model and prove the monotonicity of the systems and some other preliminary results that be applied in
our proofs. Section 3 is devoted to the study of the system without sterile insects. In Theorem 3.1, we
provide conditions for the persistence and extinction of the wild population on each patch. In section 4,
we study the dynamics of mosquito population in the presence of the SIT with two release strategies:
constant and impulsive releases. Theorem 4.2 presents sufficient conditions on the average number of
sterile males released per time unit to drive the population to elimination. We provide the principle of
the method used to treat the system in 4.1 and then apply this principle to prove Theorem 4.2. Section 5
is focused on the dependence of the critical number of sterile males on parameters. The results in 5.1.1
show that when the diffusion rates are large, the dynamics of the whole system are the same as in the
case when there is no separation between the two sub-populations. Then, Theorem 5.3 shows that the
critical number of released sterile males depends monotonically on the biological parameters. Finally,
some numerical illustrations are provided in Section 6.

2 Model
In this section, we present the formulation of the model used to study the population dynamics in 2.1.
Then, in 2.2, we provide some preliminary results that will be used later in the present work.

2.1 Formulation of the model
Consider two patches and denote Ei,Fi,Mi, and Ms

i respectively the density of aquatic phase (eggs,
larvae, pupae), fertile females, males, and sterile males on the patch i depending on time t. We consider
a two-patch model coupled by the diffusion terms as follows where the dynamic in each patch is inspired
by the model in [35]

Ė1 = bF1

(
1− E1

K1

)
− (νE +µE)E1, (1a)

Ḟ1 = rνEE1
M1

M1 + γMs
1
−µFF1 −d12F1 +d21F2, (1b)

Ṁ1 = (1− r)νEE1 −µMM1 −βd12M1 +βd21M2, (1c)

Ṁs
1 = Λ−µsMs

1 −αd12Ms
1 +αd21Ms

2, (1d)

Ė2 = bF2

(
1− E2

K2

)
− (νE +µE)E2, (1e)

Ḟ2 = rνEE2
M2

M2 + γMs
2
−µFF2 −d21F2 +d12F1, (1f)

Ṁ2 = (1− r)νEE2 −µMM2 −βd21M2 +βd12M1, (1g)

Ṁs
2 =−µsMs

2 −αd21Ms
2 +αd12Ms

1. (1h)

The interpretation of the parameters used in the model, with i, j ∈ {1,2}, is as below

• Λ(t) is the number per time unit of sterile mosquitoes that are released at time t on the first patch;

• the fraction Mi
Mi+γMs

i
corresponds to the probability that a female mates with a fertile male;
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• b > 0 is the birth rate; µE > 0, µM > 0, and µF > 0 denote the death rates for the mosquitoes in
the aquatic phase, for adult males, and for adult females, respectively;

• Ki is an environmental capacity for the aquatic phase on patch ith, accounting also for the in-
traspecific competition;

• νE > 0 is the rate of emergence;

• r ∈ (0,1) is the probability that a female emerges, then (1− r) is the probability that a male
emerges.

• di j > 0 is the moving rate of female mosquitoes from patch ith to patch jth; the fertile males
and sterile males move slower but with proportional rates respectively βdi j, αdi j where typically
0 < α < β < 1 in practice.

We recall the basic offspring number of the sub-population in one patch as introduced in [35]

N =
brνE

µF(µE +νE)
. (2)

The persistence and extinction of the population in the patch depend strongly on the value of this
number. In Section, 3, we will show that N is also the basic offspring number of the whole two-patch
system.

2.2 Preliminary results
First, we provide some definitions and denotations of the order used in the present work.

Definition 2.1. A matrix A ∈ M m×n is called non-negative, denote A ≥ 0, if all of its entries are non-
negative.
It is called positive, denote A > 0, if it is non-negative and there is at least one positive entry.
It is called strictly positive, denote A ≫ 0, if all of its entries are strictly positive.

In the present work, we also use the above definition of order for vectors in Rn. Next, we present a
property of a Metzler matrix that will be used in this paper.

Lemma 2.1. Assume that a square matrix A is Metzler and irreducible, then eA is strictly positive.

Proof. Since A is Metzler, then there exists a constant δ > 0 large enough such that A+ δ I is a non-
negative matrix with a positive element on the main diagonal. Moreover, A is irreducible so A+ δ I is
also irreducible. Thus, A+δ I is primitive, that is, there exists an integer n > 0 such that (A+δ I)n ≫ 0.
Hence, we have eA+δ I ≫ 0, and since δ I commutes with all matrices, one has eA = eA+δ Ie−δ I ≫ 0.

We present in this section the so-called Kamke [16] or Chaplygin [14] lemma for a cooperative
system (Lemma 2.2). Then, we apply this lemma to show the monotonicity of system (1) in Lemma 2.3.

Lemma 2.2. For any n ∈ N∗, consider a smooth function f : Rn → Rn, and a vector function u(t)
satisfying a differential equation

u̇ = f(u).

Moreover, we assume that the above system is cooperative, that is,

∂ fi

∂u j
(t)≥ 0, for i ̸= j, t > 0. (3)

If a vector function v(t) satisfies a differential inequality v̇ ≤ f(v) then, for initial data v(0)≤ u(0), we
have v(t)≤ u(t) for all t > 0.
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To apply this Lemma to system (1), we first define the following order in R8 as follows

Definition 2.2. For any vectors u,v ∈ R8, we define an order ⪯ such that u ⪯ v if and only if{
ui ≤ vi for i ∈ {1,2,3,5,6,7},
ui ≥ vi for i ∈ {4,8}.

Moreover, we write u ≺ v if u ⪯ v and u ̸= v.

The monotonicity of system (1) is shown in the following result

Lemma 2.3. By denoting u = (E1,F1,M1,Ms
1,E2,F2,M2,Ms

2) ∈R8, we can write system (1) as the form
u̇ = f(u) with f is C 1 in R8. In the invariant subset {0 ≤ E1 ≤ K1}∩{0 ≤ E2 ≤ K2} of R8

+, system (1)
is monotone in the sense that if a vector function v(t) satisfies a differential inequality v̇ ⪯ f(v) then, for
initial data v(0)⪯ u(0), we have v(t)⪯ u(t) for all t > 0.

Proof. By changing the variable to ũ = (E1,F1,M1,−Ms
1,E2,F2,M2,−Ms

2), we can write system (1) as

ũ = f̃(ũ).

This system is cooperative since in {0 ≤ E1 ≤ K1}∩{0 ≤ E2 ≤ K2} of R8
+, we have

∂ f̃1

∂ ũ2
= b

(
1− E1

K1

)
≥ 0,

∂ f̃1

∂ ũ j
= 0 for any j > 2,

∂ f̃2

∂ ũ1
= rνE

M1

M1 + γMs
1
≥ 0,

∂ f̃2

∂ ũ3
= rνE

γMs
1

(M1 + γMs
1)

2 ≥ 0,

∂ f̃2

∂ ũ4
= rνEE1

γM1

(M1 + γMs
1)

2 ≥ 0,
∂ f̃2

∂ ũ6
= d21 > 0,

∂ f̃2

∂ ũ j
= 0 for j ∈ {5,7,8}.

∂ f̃3

∂ ũ1
= (1− r)νE ≥ 0,

∂ f̃3

∂ ũ7
= βd21 > 0,

∂ f̃1

∂ ũ j
= 0 for j ∈ {2,4,5,6,8},

∂ f̃4

∂ ũ8
= αd21 > 0,

∂ f̃4

∂ ũ j
= 0 for j ∈ {1,2,3,5,6,7}.

Similarly for f̃i with i > 4, so f̃ is cooperative.
For any vector function v such that v ⪯ f(v), by the same variable change, one has ṽ ≤ f̃(ṽ). The

initial data v(0)⪯ u(0) implies that ṽ(0)≤ ũ(0). Therefore, by applying Lemma 2.2, one has ṽ(t)≤ ũ(t)
for any t > 0 which is equivalent to v(t)⪯ u(t).

In order to define the solution of (1), we make some assumptions for the release function Λ(t)

Assumption 2.1. Assume that function Λ(t) satisfies

Λ(t) = Λ1(t)+Λ2(t), (4)

where Λ1 ∈ L1
loc(0,+∞), Λ1(t) ≥ 0 for almost every t, and Λ2 is a sum of Dirac masses with positive

weights. Assume moreover that there exists a time T > 0 such that the average value of Λ over any
T -time interval is finite, that is,

CΛ :=
1
T

sup
t≥0

∫ t+T

t
Λ(s)ds <+∞. (5)
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Assumption 2.1 is natural since in practice, the total amount of the sterile males released in a finite
time interval is finite. The term Λ2 corresponds to impulsive releases.

The next result shows that any trajectory of system (1) resulting from any non-negative initial data
is bounded.

Lemma 2.4. Let Λ satisfy Assumption 2.1. For any non-negative initial data (E0
1 ,F

0
1 ,M

0
1 ,M

s,0
1 ,E0

2 ,F
0

2 ,M
0
2 ,M

s,0
2 ),

there exists a unique solution (E1,F1,M1,Ms
1,E2,F2,M2,Ms

2) of system (1), and it is non-negative. If
E0

i < Ki with i = 1,2, then Ei(t)≤ Ki for any t > 0. Moreover, for all t ≥ 0, we have the uniform bounds

F1 +F2 ≤ max
{

F0
1 +F0

2 , CF
}
, M1 +M2 ≤ max

{
M0

1 +M0
2 , CM

}
,

where

CF :=
rνE(K1 +K2)

µF
, CM :=

(1− r)νE(K1 +K2)

µM
,

and

Ms
1(t)+Ms

2(t)≤ max
{

Ms,0
1 +Ms,0

2 ,
TCΛ

1− e−µsT

}
+TCΛ,

with T and CΛ defined in Assumption 2.1. One also has

limsup
t→+∞

(F1 +F2)(t)≤CF , limsup
t→+∞

(M1 +M2)(t)≤CM, ,

and
limsup

t→+∞

(Ms
1 +Ms

2)(t)≤
TCΛ

1− e−µsT
+TCΛ =: CMs .

Remark 2.1. In the case Λ ∈ L∞(0,+∞), one can let T tend to zero and obtain that CΛ = supt>0 Λ(t)

and limsup
t→+∞

(Ms
1 +Ms

2)≤
CΛ

µs
. The condition of Λ that we made in Assumption 2.1 is weaker than the L∞

assumption since we also include impulsive releases, represented by the Dirac masses.

Proof of Lemma 2.4. By applying the Lemma 2.3, one deduces that system (1) preserves the positivity.
For i = 1,2, we have Ei(t = 0) = E0

i < Ki and assume that there exists a value t0 < ∞ such that

t0 = inf{t > 0 : Ei(t) = Ki}

then Ėi(t0) > 0 but from (1a) and (1e), one has Ėi(t0) = −(νE + µE)Ki < 0 (contradictory). Then we
deduce that Ei(t)≤ Ki for any t > 0.

From equations (1b) and (1f), since for i = 1,2,
Mi

Mi + γMs
i
≤ 1 one has

Ḟ1 + Ḟ2 ≤ rνE(E1 +E2)−µF(F1 +F2).

Since E1, E2 are bounded then we deduce that

(F1 +F2)(t)≤ (F0
1 +F0

2 )e
−µF t +

rνE(K1 +K2)

µF
(1− e−µF t)≤ max

{
F0

1 +F0
2 ,

rνE(K1 +K2)

µF

}
,

for any t ≥ 0. For i = 1,2, one has Fi ≥ 0, thus Fi(t)≤ max
{

F0
1 +F0

2 , CF
}

for any t ≥ 0. Let t goes to
infinity we get limsup

t→+∞

(F1 +F2)(t)≤CF . One obtains similarly the inequalities for M1,M2.

For Ms
1 and Ms

2, by denoting Xs(t) = Ms
1(t)+Ms

2(t), then from equations (1d) and (1h), one has

Ẋs(t) =−µsXs(t)+Λ(t).
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For any integer k, by integrating both sides of this equality in ((k−1)T,kT ) with T defined in Assump-
tion 2.1, one gets

Xs(kT ) = e−µsT Xs((k−1)T )+
∫ kT

(k−1)T
e−µs(t−(k−1)T )

Λ(t)dt.

Since e−µs(t−(k−1)T ) < 1 for any t ∈ ((k−1)T,kT ) and by Assumption 2.1, we deduce that

Xs(kT )≤ e−µsT Xs((k−1)T )+TCΛ,

with CΛ defined in (5). Using the iteration with respect to k, we deduce that

Xs(kT )≤ e−µskT X0
s +TCΛ

(
1+ e−µsT + · · ·+ e−µs(k−1)T

)
= e−µskT X0

s +TCΛ

1− e−µskT

1− e−µsT
.

Now for any time t > 0, there exists an integer k such that t ∈ [kT,(k+1)T ). Then, we obtain that

Xs(t) = e−µs(t−kT )Xs(kT )+
∫ t

kT
e−µs(t−s)

Λ(s)ds

≤ e−µstX0
s +TCΛ

e−µs(t−kT )− e−µst

1− e−µsT
+TCΛ.

≤ e−µstX0
s +

TCΛ

1− e−µsT

(
1− e−µst

)
+TCΛ

since e−µs(t−kT ) < 1. The inequality of Ms
1 +Ms

2 follows.

3 Mosquito dynamics without sterile males
First, we describe the dynamics of wild mosquitoes in the two areas by considering the following system
which is re-obtained from system (1) in the absence of sterile males

Ė1 = bF1

(
1− E1

K1

)
− (νE +µE)E1, (6a)

Ḟ1 = rνEE1 −µFF1 −d12F1 +d21F2, (6b)

Ṁ1 = (1− r)νEE1 −µMM1 −βd12M1 +βd21M2, (6c)

Ė2 = bF2

(
1− E2

K2

)
− (νE +µE)E2, (6d)

Ḟ2 = rνEE2 −µFF2 −d21F2 +d12F1, (6e)

Ṁ2 = (1− r)νEE2 −µMM2 −βd21M2 +βd12M1, (6f)

It is clear that the subset {0 ≤ E1 ≤K1}∩{0 ≤ E2 ≤K2} of the positive cone of R6 is positively invariant
over time. The following result shows the nature of the equilibrium points of system (6).

Theorem 3.1. For N < 1, zero is the unique equilibrium of system (6), and all trajectories of (6)
resulting from non-negative initial data converge to zero as time evolves.

For N > 1, system (6) has two equilibrium points: zero and u+ = (E+
1 ,F+

1 ,M+
1 ,E+

2 ,F+
2 ,M+

2 )
strictly positive. Moreover, the zero equilibrium is unstable. All trajectories of (6) resulting from any
positive initial data (E0

1 ,F
0

1 ,M
0
1 ,E

0
2 ,F

0
2 ,M

0
2) such that (E0

1 ,F
0

1 ,E
0
2 ,F

0
2 ) > 0 converge to u+ when t →

+∞.
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Theorem 3.1 shows that the constant N defined in (2) is the basic offspring number of the whole
two-patch system (1). When N > 1, the populations in both areas remain persistent for any diffusion
rates as time evolves. In the rest of the paper, we only consider the case N > 1.

To prove this theorem, we first consider the sub-system of E1, E2, F1, F2. From equations (6b) and
(6e), the positive equilibrium satisfies

rνE

(
E+

1
E+

2

)
=

(
µF +d12 −d21
−d12 µF +d21

)(
F+

1
F+

2

)
,

then (
F+

1
F+

2

)
=

rνE

µF(µF +d12 +d21)

(
µF +d21 d21

d12 µF +d12

)(
E+

1
E+

2

)
. (7)

On the other hand, from equation (6a) and (6d), we also have

F+
1 =

νE +µE

b
E+

1

1− E+
1

K1

, F+
2 =

νE +µE

b
E+

2

1− E+
2

K2

. (8)

From (7) and (8), we deduce that

E+
2 =

µF +d12 +d21

d21

1
N

E+
1

1− E+
1

K1

− µF +d21

d21
E+

1 =: f21(E+
1 ), (9)

E+
1 =

µF +d12 +d21

d12

1
N

E+
2

1− E+
2

K2

− µF +d12

d12
E+

2 =: f12(E+
2 ). (10)

The following lemma provides information for these functions.

Lemma 3.2. For {i, j}= {1,2}, function fi j(x) is defined and convex on (0,K j)⊂ R.

If N ≤
µF +di j +d ji

µF +di j
, then fi j has no positive root and it is increasing on (0,K j).

Otherwise, it has a unique positive root

K+
j := K j

(
1−

µF +d ji +di j

µF +di j

1
N

)
< K j (11)

Moreover, fi j < 0 on (0,K+
j ), fi j > 0 and increasing on (K+

j ,K j).

Proof of Lemma 3.2. We recall function fi j(x) :=
µF +di j +d ji

di j

1
N

x
1− x

K j

−
µF +di j

di j
x. One has fi j = 0

if and only if
µF +di j

K j
x2 +

(
µF +di j +d ji

di j
−µF −di j

)
x = 0.

We deduce that fi j = 0 at 0 and K+
j as in (11) , and K+

j > 0 if and only if N ≤
µF +di j +d ji

µF +di j
. Moreover,

fi j < 0 on (0,K+
j ), fi j > 0 and is increasing on (K+

j ,K j). It is defined and convex on (0,K j)⊂ R since

f ′′i j(x) = 2
µF +di j +d ji

di j

1
K jN

1(
1− x

K j

)3 > 0,

for any x ∈ (0,K j). We also have fi j(0) = 0, lim
x→K j

fi j(x) = +∞.

8



(a) N ≤ min
i, j∈{1,2}

i ̸= j

µF +di j +d ji

µF +di j
(b) N > min

i, j∈{1,2}
i̸= j

µF +di j +d ji

µF +di j

Figure 1: Behaviors of f21 and f−1
12

Proof of Theorem 3.1. Existence and uniqueness of the positive equilibrium. System (6) has a posi-
tive equilibrium iff system (9)-(10) has a solution (E+

1 ,E+
2 ) in (0,K1)× (0,K2).

First, we study the case where 0 < N ≤ min
i, j∈{1,2}

i̸= j

µF +di j +d ji

µF +di j
, then according to Lemma 3.2, we

have f12 : [0,K2)→ [0,+∞) is positive and increasing, so this function is invertible (see Figure 1). We
denote f−1

12 : [0,K1]→ [0,K2) the restriction of the invert function of f12 on [0,K1], then

E+
2 = f21(E+

1 ) = f−1
12 (E+

1 ).

Thus, E+
1 is a positive root of function f21 − f−1

12 . For any x ∈ (0,K1), one has

( f21 − f−1
12 )′(x) = f ′21(x)−

1
f ′12( f−1

12 (x))
,

then

( f21 − f−1
12 )′′(x) = f ′′21(x)+

f ′′12( f−1
12 (x))

( f ′12( f−1
12 (x)))3

> 0

since fi j is convex on (0,K j). Hence, f21 − f−1
12 is convex on (0,K1). Moreover, we have ( f21 −

f−1
12 )(0) = 0, and lim

x→K1
( f21 − f−1

12 )(x) = +∞. Therefore, this function has a unique positive root if and

only if the derivative at zero is negative. We have

( f21 − f−1
12 )′(0) =

1
N (µF +d12 +d21)−µF −d21

d21
− d12

1
N (µF +d12 +d21)−µF −d12

.

Then, ( f21 − f−1
12 )′(0)< 0 if and only if 1 < N <

µF +d12 +d21

µF
.

Now, without loss of generality, we assume that d12 > d21, then
µF +d12 +d21

µF +d12
<

µF +d12 +d21

µF +d21
.

If N >
µF +d12 +d21

µF +d12
> 1, again according to Lemma 3.2, function f12 has a unique positive root K+

2

and is invertible on [K+
2 ,K2] (see Figure 1). We denote again f−1

12 : [0,K1]→ [K+
2 ,K2) the restriction of

9



the invert function of f12 on [0,K1], then we also have f21− f−1
12 convex on (0,K1), and ( f21− f−1

12 )(0) =
− f−1

12 (0) =−K+
2 < 0, lim

x→K1
( f21− f−1

12 )(x) =+∞> 0. We can deduce that f21− f−1
12 has a unique positive

root on (0,K1).

Instability of the zero equilibrium. At the origin 0 = (0,0,0,0,0,0) of R6, the Jacobian matrix of
system (6) is

J(0) =



−νE −µE b 0 0 0 0
rνE −µF −d12 0 0 d21 0

(1− r)νE 0 −µM −βd12 0 0 βd21
0 0 0 −νE −µE b 0
0 d12 0 rνE −µF −d21 0
0 0 βd12 (1− r)νE 0 −µF −βd21

 ,

with the characteristic polynomial

det(J(0)−λ I) = [(λ +µF)(λ +µM)+β (d12 +d21 +d12µF +d21µM)] [(λ +νE +µE)(λ +µF)−brνE ]

× [(λ +νE +µE)(λ +µF +d12 +d21)−brνE ] .

Since N > 1, we have µF(νE +µE)−brνE < 0. Thus, we can deduce that the factor (λ +νE +µE)(λ +
µF)− brνE = λ 2 + λ (νE + µE + µF)+ µF(νE + µE)− brνE has one positive root λ > 0. Hence, the
Jacobian at zero has at least one positive eigenvalue so the zero equilibrium is unstable.

Stability of the positive equilibrium. First, we can see that the system (6a)-(6b), (6d)-(6e) of
(E1,F1,E2,F2) does not depend on M1, M2, and it is cooperative and irreducible. By applying The-
orem 1.1 in Chapter 4 of [33], one deduces that this system is strongly monotone. When N > 1, this
system admits exactly two equilibria: (0,0,0,0), and (E+

1 ,F+
1 ,E+

2 ,F+
2 ). But the zero equilibrium is

unstable, so by Theorem 2.2 in Chapter 2 of [33], if the initial data satisfies that 0 < (E0
1 ,F

0
1 ,E

0
2 ,F

0
2 )≤

(E+
1 ,F+

1 ,E+
2 ,F+

2 ), the solution (E1,F1,E2,F2) converges to (E+
1 ,F+

1 ,E+
2 ,F+

2 ) when t →+∞.
Now if the initial data satisfies that (E0

1 ,F
0

1 ,E
0
2 ,F

0
2 )> (E+

1 ,F+
1 ,E+

2 ,F+
2 ), then there exists a constant

λ > 1 large enough such that λ (E+
1 ,F+

1 ,E+
2 ,F+

2 )≥ (E0
1 ,F

0
1 ,E

0
2 ,F

0
2 ). Since 1−

λE+
i

Ki
< 1−

E+
i

Ki
, one has

bλF+
i

(
1−

λE+
i

Ki

)
− (νE +µE)λE+

i < λ

[
bF+

i

(
1−

E+
i

Ki

)
− (νE +µE)E+

i

]
= 0,

and the right-hand side of system (6a)-(6b), (6d)-(6e) at λ (E+
1 ,F+

1 ,E+
2 ,F+

2 ) is non positive. Thus, the
trajectory resulting from the initial data λ (E+

1 ,F+
1 ,E+

2 ,F+
2 ) is non-increasing, and therefore converges

to (E+
1 ,F+

1 ,E+
2 ,F+

2 ). By applying the Lemma 2.2 to system (6a)-(6b), (6d)-(6e), we deduce that the tra-
jectory resulting from the initial data (E0

1 ,F
0

1 ,E
0
2 ,F

0
2 ) lies between (E+

1 ,F+
1 ,E+

2 ,F+
2 ) and the trajectories

resulting from λ (E+
1 ,F+

1 ,E+
2 ,F+

2 ). Hence, it also converges to (E+
1 ,F+

1 ,E+
2 ,F+

2 ) when time t goes to
infinity.

Moreover, since the trajectories issued from the initial data above and below (E+
1 ,F+

1 ,E+
2 ,F+

2 ) all
converge to the same limit, then by the comparison principle, we deduce that the trajectory resulting
from any positive initial data with values between these initial values converges to this equilibrium.

Secondly, if we denote matrix A=

(
−µM −βd12 βd21

βd12 −µM −βd21

)
, this matrix is Hurwitz. Functions

M1, M2 satisfy
(

Ṁ1
Ṁ2

)
= A

(
M1
M2

)
+(1− r)νE

(
E1
E2

)
. Thus, for any t > 0,

(
M1(t)
M2(t)

)
= etA

(
M0

1
M0

2

)
+(1− r)νE

∫ t

0
e(t−s)A

(
E1(s)
E2(s)

)
ds. (12)
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Moreover, the equilibrium satisfies(
M+

1
M+

2

)
=−(1− r)νEA−1

(
E+

1
E+

2

)
. (13)

Hence, from (13) and (12), we deduce that(
M1(t)
M2(t)

)
−
(

M+
1

M+
2

)
= etA

(
M0

1
M0

2

)
+(1− r)νE

[∫ t

0
e(t−s)A

(
E1(s)
E2(s)

)
ds+A−1

(
E+

1
E+

2

)]
. (14)

Moreover, when t →+∞, we have that
(

E1(t)
E2(t)

)
converges to

(
E+

1
E+

2

)
and etA → 0 since A is Hurwitz.

Thus, for any ε > 0, there exists a time Tε > 0 large enough such that for any t > Tε ,

E+
i − ε < Ei(t)< E+

i + ε, i = 1,2, (15)

and ∥etA∥< ∥eTε A∥ ≤ ε .
Since matrix A is Metzler and irreducible, then by applying Lemma 2.1, one has that eAt is strictly

positive for any t > 0. Moreover, one has Ei ∈ (0,Ki) in (0,+∞), then for any t > 2Tε ,

0 <
∫ Tε

0
e(t−s)A

(
E1(s)
E2(s)

)
ds <

∫ Tε

0
e(t−s)Ads

(
K1
K2

)
,

then∥∥∥∥∫ Tε

0
e(t−s)A

(
E1(s)
E2(s)

)
ds
∥∥∥∥<

∥∥∥∥∫ Tε

0
e(t−s)Ads

∥∥∥∥∥∥∥∥(K1
K2

)∥∥∥∥=
∥∥∥A−1

(
etA − e(t−Tε )A

)∥∥∥∥∥∥∥(K1
K2

)∥∥∥∥< εC1,

with some positive constant C1 not depending on ε . Using the second inequality in (15), one has∫ t

Tε

e(t−s)A
(

E1(s)
E2(s)

)
ds ≤ A−1(e(t−Tε )A − I)

(
E+

1 + ε

E+
2 + ε

)
= A−1e(t−Tε )A

(
E+

1 + ε

E+
2 + ε

)
− εA−1 −A−1

(
E+

1
E+

2

)
.

Proving similarly for the other inequality, we can deduce that∥∥∥∥∫ t

Tε

e(t−s)A
(

E1(s)
E2(s)

)
ds+A−1

(
E+

1
E+

2

)∥∥∥∥≤ εC2,

with some positive constant C2 not depending on ε . Hence, from (14), we deduce that for any t > 2Tε ,∥∥∥∥(M1(t)
M2(t)

)
−
(

M+
1

M+
2

)∥∥∥∥< ε

[∥∥∥∥(M0
1

M0
2

)∥∥∥∥+C1 +C2

]
.

Therefore, (M1(t),M2(t)) converges to (M+
1 ,M+

2 ) when t tends to +∞.

In the following section, by considering the releases of sterile males, we look for a condition of
release functions Λ such that the positive equilibrium disappears.

4 Elimination with releases of sterile males
In this section, we consider Λ(t) in system (1) the number of sterile males released per time unit and our
goal is to adjust its values such that the wild population reaches elimination. We consider two release
strategies as follows

11



Constant release: Let the release function Λ(t)≡ Λ > 0. As time goes to infinity, the density of sterile
males (Ms

1,M
s
2) converges to (Ms∗

1 ,Ms∗
2 ) that is the solution of system{

Λ−µsMs∗
1 −αd12Ms∗

1 +αd21Ms∗
2 = 0

−µsMs∗
2 −αd21Ms∗

2 +αd12Ms∗
1 = 0

(16)

By denoting

τ1 :=
(µs +αd21)

µs(µs +αd12 +αd21)
, τ2 :=

αd12

µs(µs +αd12 +αd21)
, (17)

we have Ms∗
1 = τ1Λ, and Ms∗

2 = τ2Λ and Ms∗
1 +Ms∗

2 =
Λ

µs
.

Impulsive periodic releases: Consider the release function

Λ(t) =
+∞

∑
k=0

τΛ
per
k δkτ , (18)

with period τ > 0 and Λ
per
k is the average number of sterile males released per time unit during the time

interval (kτ,(k+1)τ) for k = 0,1, . . . . We choose in this work Λ
per
k constant and drop consequently the

sub-index k. The release function Λ(t) in (18) means that we release a total amount of τΛper mosquitoes
at the beginning of each time period (t = kτ).

Denote vector X(t) =
(

Ms
1(t)

Ms
2(t)

)
, then with k = 0,1, . . . , the density of sterile males satisfies the

following system

X ′(t) = AsX(t) for any t ∈
∞⋃

k=0

(kτ,(k+1)τ) , (19a)

X(kτ
+) = X(kτ

−)+

(
τΛper

0

)
, (19b)

with matrix As =

(
−αd12 −µs αd21

αd12 −αd21 −µs

)
, and X(kτ±) denote the right and left limits of X(t) at

time kτ and by convention, we set X(0−) = 0. The densities of the sterile males evolve according to
(19a) on the union of open intervals (kτ,(k+ 1)τ) while X is submitted to jump at each point kτ as in
(19b). For such a release schedule, the solution of system (19) satisfies

X(kτ
+) =

k

∑
i=0

eiAsτ

(
τΛper

0

)
, X(t) = eAstX(kτ

+) for any t ∈
∞⋃

k=0

(kτ,(k+1)τ) .

Since matrix As is Hurwitz, when t → +∞, we have that X converges to the periodic solution Xper =(
Ms,per

1
Ms,per

2

)
that satisfies that, for k = 0,1, . . .

Xper(kτ
+) = (I−eAsτ)−1

(
τΛper

0

)
, Xper(t) = eAstXper(kτ

+) for any t ∈
∞⋃

k=0

(kτ,(k+1)τ) . (20)

The following lemma shows that the periodic solution Xper is strictly positive at any time t.

Lemma 4.1. There exists positive constant τ
per
1 , τ

per
2 which depends on As and period τ such that for

any t > 0, one has Xper(t)≥ Λper
(

τ
per
1

τ
per
2

)
.
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Proof. We have matrix As is Metzler and irreducible, then by applying Lemma 2.1, we deduce that
eAs ≫ 0.

On the other hand, matrix As is Hurwitz so (I−eAsτ)−1 =
+∞

∑
i=0

eiAsτ ≫ 0 for any τ > 0. Moreover, we

have eAst is also strictly positive for any t > 0, thus there exist positive constants τ
per
1 , τ

per
2 depending on

τ and As such that

inf
t>0

Xper(t) = min
t∈[0,τ]

Xper(t) = min
t∈[0,τ]

eAst(I − eAsτ)−1
(

τΛper

0

)
≥ Λ

per
(

τ
per
1

τ
per
2

)
.

The result of Lemma 4.1 follows.

Remark 4.1. The parameters τi defined in (17) and τ
per
i play a similar role to each other: they define

a relationship between an average release rate Λ per time unit and a (minimum) level of the sterile
mosquito density.

We provide in the following result a condition on Λ(t) for the wild population to reach elimination.

Theorem 4.2. Consider system (1) with the release function Λ(t). Then

• In the constant release case, for Λ(t)≡ Λ, there exists a positive number Λ satisfying

Λ ≤ max
i=1,2

1
γτi

(N −1)CM i = 1,2,

with τi defined in (17), CM defined in Lemma 2.4 such that if Λ > Λ, system (1) has a unique equilib-
rium

u∗
0 = (0,0,0,Ms∗

1 ,0,0,0,Ms∗
2 ).

Moreover, in this case, for any non-negative initial data, the solution of (1) converges to this equilib-
rium when t →+∞.

• In the periodic release case, for Λ(t) defined in (19), There exists a positive constant Λ
per

satisfying

Λ
per ≤ max

i=1,2

1
γτ

per
i

(N −1)CM,

with τ
per
i defined in Lemma 4.1, CM defined in Lemma 2.4 such that if Λper > Λ

per
, then for any non-

negative initial data, the solution of the initial value problem of system (1) converges to the unique
steady state

uper
0 = (0,0,0,Ms,per

1 ,0,0,0,Ms,per
2 ),

as time t →+∞ .

This result shows that with a sufficiently large number of sterile males released in the first zone, we
can succeed in driving the wild population in both areas to elimination. In the following, we describe
the principle idea to prove this result.

4.1 Principle of the method
To provide conditions for the release Λ to stabilize the zero equilibrium, our strategy is as follows:

Step 1: We consider ρi = sup
t>0

Mi(t)
Mi(t)+ γMs

i (t)
, for i = 1, 2, in system (1) to be smaller than some

level, then we study the system with the fractions replaced by some constant.
Step 2: We show how to realize, through an adequate choice of Λ, the above behavior of Ms

i .
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4.1.1 Step 1: Setting the sterile population level directly

Theorem 3.1 shows us that when the basic offspring number is smaller than 1, the zero equilibrium is
globally asymptotically stable. For the controlled system, the basic offspring numbers are smaller than
ρiN . It suggests that for stabilizing the origin of system (1), it is sufficient to ensure ρiN ≤ 1.

Proposition 4.3. If the trajectory resulting from any positive initial data of system (1) satisfies that for
N defined in (2),

Mi(t)
Mi(t)+ γMs

i (t)
≤ 1

N
, t ≥ 0, i = 1,2. (21)

then u′ = (E1,F1,M1,E2,F2,M2) converges to 06 as time t →+∞.

Proof. Assume that we can set Ms
i to be large enough such that (21) holds, and we consider the following

system

Ė1 = bF1

(
1− E1

K1

)
− (νE +µE)E1, (22a)

Ḟ1 =
1

N
rνEE1 −µFF1 −d12F1 +d21F2, (22b)

Ṁ1 = (1− r)νEE1 −µMM1 −βd12M1 +βd21M2, (22c)

Ė2 = bF2

(
1− E2

K2

)
− (νE +µE)E2, (22d)

Ḟ2 =
1

N
rνEE2 −µFF2 −d21F2 +d12F1, (22e)

Ṁ2 = (1− r)νEE2 −µMM2 −βd21M2 +βd12M1, (22f)

Denote ũ = (Ẽ1, F̃1,M̃1, Ẽ2, F̃2,M̃2) solution of system (22). Since system (22) is cooperative and the
inequality (21) holds, one obtains that ũ is a super-solution of the system (1a)-(1c), (1e)-(1g), and by
applying Lemma 2.2, we have ũ ≥ u′.

Denote u∗ = (E∗
1 ,F

∗
1 ,M

∗
1 ,E

∗
2 ,F

∗
2 ,M

∗
2) a positive equilibrium of system (22) if exists. Similar to the

previous section, we have

E∗
2 =

µF +d12 +d21

d21

E∗
1

1− E∗
1

K1

− µF +d21

d21
E∗

1 =: g21(E∗
1 ), (23)

E∗
1 =

µF +d12 +d21

d12

E∗
2

1− E∗
2

K2

− µF +d12

d12
E∗

2 =: g12(E∗
2 ). (24)

The analysis of gi j is analogous to fi j in Lemma 3.2. It is easy to check that g12 is increasing on (0,K2),
so it is invertible. Then, E∗

1 satisfies (g21 −g−1
12 )(E

∗
1 ) = 0. Function g21 is convex and g−1

12 is concave in
(0,K1), and

g′21(0) =
µF +d12 +d21

d21
− (µF +d21)

d21
=

d12

d21
,

(g−1
12 )

′(0) =
1

g′12(0)
=

1
µF+d12+d21

d12
− µF+d12

d12

=
d12

d21
.

We obtain that g′21(0) = (g−1
12 )

′(0) (see Figure 2), so zero is the unique equilibrium of system (22). By
applying Theorem 3.1 in Chapter 2 of [33], we deduce that when t →+∞, the solution ũ(t) converges to
the equilibrium zero. Since u′(t)≤ ũ(t) for all t > 0, we deduce that the u′ also converges to zero when
t large.
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Figure 2: The case when the positive root disappears

4.1.2 Step 2: Shaping the release function

We now want to choose Λ such that the condition (21) holds, which means

γMs
i (t)≥ (N −1)Mi(t), t ≥ 0, i = 1, 2

The upper bound of Mi can be obtained from Lemma 2.4. For time t > 0 large enough, it is sufficient to
choose Λ such that γMs

i (t)≥ (N −1)CM.

4.2 Proof of Theorem 4.2

Proof of Theorem 4.2. Constant release: For Λ(t)≡Λ, let us recall As =

(
−µs −αd12 αd21

αd12 −µs −αd21

)
,

and it is a Hurwitz matrix. And we have(
Ms

1(t)
Ms

2(t)

)
= etAs

(
Ms0

1
Ms0

2

)
+(1− r)νE

∫ t

0
e(t−s)Asds

(
Λ

0

)
.

Thus, when t →+∞, we can deduce that
(

Ms
1(t)

Ms
2(t)

)
converges to

(
Ms∗

1
Ms∗

2

)
for any initial data since etAs → 0

when t →+∞. Hence, for any ε > 0, there exists a value Tε > 0 such that for any t > Tε , i = 1,2,

Ms
i (t)≥ Ms∗

i − ε.

If we take Λ such that γ(Ms∗
i − ε) ≥ (N −1)CM with CM defined in Lemma 2.4, then condition (21)

holds. By applying Proposition 4.3, we deduce that for i = 1,2, if Λ > max
i=1,2

1
γτi

(N −1)CM, system (1)

has u∗
0 as a unique equilibrium point, and every trajectory converges to this equilibrium when t → +∞.

The dynamics of system (1) depend continuously and monotonically on Λ, then we deduce that there

exists a positive critical value Λ≤max
i=1,2

1
γτi

(N −1)CM such that for any Λ>Λ, and for any non-negative

initial data, solution u′ = (E1,F1,M1,E2,F2,M2)(t) converges to 06 when t →+∞.

Impulsive periodic releases: Consider Λ(t) defined in (19), denote (Eper
1 ,Fper

1 ,Mper
1 ,Eper

2 ,Fper
2 ,Mper

2 ) a
solution of (1a)-(1c), (1e)-(1g) with Ms

i ≡ Ms,per
i defined in (20). From Lemma 4.1, one has Ms,per

i (t)≥
Λperτ

per
i for all t > 0. Therefore, if we take Λper such that γΛperτ

per
i ≥ (N −1)CM, then condition
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(21) holds. By applying Proposition 4.3, we deduce that uper = (Eper
1 ,Fper

1 ,Mper
1 ,Eper

2 ,Fper
2 ,Mper

2 ) con-
verges to zero as t grows. Since (Ms

1,M
s
2) converges to (Ms,per

1 ,Ms,per
2 ) as t → +∞, we have u′ =

(E1,F1,M1,E2,F2,M2) appoaches uper and thus converges to 06 as time t goes to infinity.
Since the dynamics of system (1) depends continuously and monotonically on Λ, there exists a

positive critical value Λ
per ≤ max

i=1,2

1
γτ

per
i

(N − 1)CM such that if Λper > Λ
per the equilibrium uper

0 of (1)

with Λ(t) defined in (18) is globally asymptotically stable.

5 Parameter dependence of the critical values of the release
rate

In this section, we consider the constant release case and examine how the critical value Λ depends
on the parameters of system (1). In this model, the elimination of the population depends not only on
the diffusion rate between the inaccessible area and the treated area, but also on the biological intrinsic
values like the birth/death rates, and the carrying capacity.

5.1 Diffusion rates
In this part, we want to compare the critical values of Λ corresponding to different values of d12, d21.
We show that when the diffusion rates are large enough, the critical number of sterile males released is
the same as in the case when there is no separation between the two sub-populations.

5.1.1 The case d12, d21 large

First, we present a result of uniform convergence of system (1) when d12, d21 go to +∞ and d12 is
proportional to d21.

Proposition 5.1. For ε > 0, consider the diffusion rates d12 =
1
ε
, d21 =

η

ε
with η =

d21

d12
> 0. Denote

uε = (Eε
1 ,F

ε
1 ,M

ε
1 ,M

s,ε
1 ,Eε

2 ,F
ε

2 ,M
ε
2 ,M

s,ε
2 ) the solution of system (1) with the initial date uε,0 satisfying

that

{Eε,0
i }ε , {Fε,0

i }ε , {Mε,0
i }ε converge to E0,0

i ,F0,0
i ,M0,0

i respectively as ε → 0, with i = 1, 2,

and

Eε,0
1 −ηEε,0

2 = O(ε), Fε,0
1 −ηFε,0

2 = O(ε), Mε,0
1 −ηMε,0

2 = O(ε), Ms,ε,0
1 = Ms,ε,0

2 = 0. (25)

Then, when ε → 0, the sequence {uε}ε converges uniformly to a limit (E1,F1,M1,Ms
1,E2,F2,M2,Ms

2) on
[0,+∞). Moreover, we have

F1 = ηF2, M1 = ηM2, Ms
1 = ηMs

2. (26)

If we denote F = F1 +F2, M = M1 +M2, Ms = Ms
1 +Ms

2 , then (E1,E2,F,M,Ms) solves the following
system

Ė1 =
η

η +1
bF

(
1− E1

K1

)
− (νE +µE)E1, (27a)

Ė2 =
1

η +1
bF

(
1− E2

K2

)
− (νE +µE)E2, (27b)
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Ḟ = rνE(E1 +E2)
M

M+ γMs −µFF, (27c)

Ṁ = (1− r)νE(E1 +E2)−µMM, (27d)

Ṁs = Λ∞ −µsMs, (27e)

with the corresponding initial data E0,0
1 , E0,0

2 , F0,0 = F0,0
1 +F0,0

2 , M0,0 = M0,0
1 +M0,0

2 , Ms,0,0 = 0.

It is straightforward to see that the previous result implies that the functions F1,F2,M1,M2 fulfill the
following identities:

F1 =
η

1+η
F, F2 =

1
1+η

F, M1 =
η

1+η
M, M2 =

1
1+η

M.

Proof of Proposition 5.1. To prove this result, we first apply the Arzela-Ascoli theorem for the sequence
of smooth solution {uε}ε on a close interval [0,T ] with any T > 0. Then, we extend the convergence at
infinity.

• Uniform convergence on [0,T ]: First, we check the uniform boundedness of this sequence. For
i = 1,2, from Lemma 2.4, one has Eε

i (t) ≤ Ki for all t > 0 and ε > 0. Again by this Lemma, for any
t > 0, one has

Fε
i (t)≤ max

{
Fε,0

1 +Fε,0
2 ,

rνE(K1 +K2)

µF

}
≤C0

F

where C0
F does not depend on ε since the initial data converge as ε goes to zero. Similarly, we can apply

Lemma 2.4 to show that there are positive constants C0
M, C0

Ms not depending on ε such that for any t > 0,
one has Mε

i (t)<C0
M, Ms,ε

i (t)<C0
Ms .

Next, we prove that the sequence of derivative {u̇ε}ε is also uniformly bounded. For any t > 0,

Ḟε
1 < rνEK1 −

1
ε
(Fε

1 −ηFε
2 ) .

We show that
Fε

1 −ηFε
2

ε
is uniformly bounded on [0,T ]. Indeed, we have for all t > 0 and ε > 0,

Ḟε
1 −ηḞε

2 = rνE

(
Eε

1
Mε

1

Mε
1 + γMs,ε

1
−ηEε

2
Mε

2

Mε
2 + γMs,ε

2

)
−
(

µF +
η +1

ε

)
(Fε

1 −ηFε
2 )

= Aε −
(

η +1
ε

)
(Fε

1 −ηFε
2 ),

where Aε := rνE

(
Eε

1
Mε

1

Mε
1 + γMs,ε

1
−ηEε

2
Mε

2

Mε
2 + γMs,ε

2

)
−µF(Fε

1 −ηFε
2 ) is uniformly bounded since we

already proved that uε is uniformly bounded. Then, for any ε > 0, we have |Aε(t)| < C for any t > 0
and some constant C > 0. By the Duhamel formula, we obtain

(Fε
1 −ηFε

2 )(t) = (Fε,0
1 −ηFε,0

2 )e−
η+1

ε
t +

∫ t

0
Aε(s)e−

η+1
ε

(t−s)ds.

So for all t ≥ 0, one has

|Fε
1 −ηFε

2 |(t)
ε

≤

∣∣∣Fε,0
1 −ηFε,0

2

∣∣∣
ε

e−
η+1

ε
t +

C
η +1

(
1− e−

η+1
ε

t
)
.

For any t ∈ [0,+∞) and ε > 0, one has 0 < e−
η+1

ε
t < 1. And due to the Assumption (25) for the initial

data, the right-hand side is uniformly bounded with respect to ε . Hence, we deduce that Ḟε
1 is uniformly
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bounded on [0,T ]. We obtain analogously the uniform boundedness of Ḟε
i , Ṁε

i , and ˙Ms,ε
i . Due to the

positivity of system (1), one has Ėε
i (t)< bC0

Fi
for all t > 0 and ε > 0.

Since the sequence of derivatives {u̇ε}ε is uniformly bounded on [0,T ], we deduce the equicon-
tinuity of the sequence {uε}ε . Hence, by the Arzela-Ascoli theorem, this sequence has a uniformly
convergent subsequence. We denote its limit u = (E1,F1,M1,Ms

1,E2,F2,M2,Ms
2). If we multiply system

(1) with ε and let it go to zero, we obtain the equalities (26) and system (27).
With the initial data satisfying the assumptions in Proposition 5.1, the solution of system (27) on

(0,+∞) is unique. Since all the subsequence of {uε}ε converge to the same limit, we deduce that the
whole sequence converges uniformly to this limit on [0,T ].

• Extension to +∞: For all t ≥ 0, we prove that for all δ > 0, there exists ε0 > 0 such that for all
ε ∈ (0,ε0), we have ∥uε(t)−u(t)∥< δ .

Indeed, the solution of both (1) and (27) converges to a constant as time t goes to infinity, then there
exists a time T > 0 large enough and ε1 > 0 such that for any ε ∈ (0,ε1) and all t > T , one has

∥uε(t)−uε(T )∥< δ

3
, ∥u(t)−u(T )∥< δ

3
.

Moreover, we have that the sequence {uε}ε converges uniformly to u in the closed interval [0,T ]. Thus,
there exists a positive value ε0 < ε1 such that for all ε ∈ (0,ε0),

sup
[0,T ]

∥uε −u∥< δ

3
.

Hence, we have ∥uε(T )−u(T )∥< δ

3
and we deduce that

∥uε(t)−u(t)∥ ≤ ∥uε(t)−uε(T )∥+∥uε(T )−u(T )∥+∥u(t)−u(T )∥< δ .

It is clear that for t ≤ T , one has ∥uε(t)−u(t)∥< δ

3
< δ . So we obtain the convergence on [0,+∞).

In the next result, we study the limit system (27).

Theorem 5.2. Consider system (27) with the release function given by

(i) constant release Λ∞(t)≡ Λ∞.

Then there exists Λ∞ > 0 such that for any Λ∞ > Λ∞, system (27) has a unique equilibrium
u0

∞ =
(

0,0,0,0, Λ∞

µs

)
and it is globally asymptotically stable.

(ii) impulsive periodic release Λ∞(t) =
+∞

∑
k=0

τΛ
per
∞ δkτ with period τ .

Then there exists Λ
per
∞ > 0 such that for any Λ

per
∞ > Λ

per
∞ , all trajectories of (27) resulting from any

non-negative initial data satisfy that (E1,E2,F,M) converges to the equilibrium 04 ∈ R4.

Proof. Firstly, we show that for Λ∞(t) large enough such that
M

M+ γMs ≤ 1
N

, then all trajectories of

(27) resulting from any non-negative initial data satisfy that (E1,E2,F,M) converges to the equilibrium

04 ∈R4. Indeed, consider the first four equations of system (27) with
M

M+ γMs replaced by
1

N
, and we

denote the equilibrium (E∗
1 ,E

∗
2 ,F

∗,M∗) of this system satisfy

F∗ =
rνE(E∗

1 +E∗
2 )

N µF
, M∗ =

(1− r)νE(E∗
1 +E∗

2 )

µM
,
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and
(E∗

1 +E∗
2 ) =

E∗
1 +E∗

2
η

η+1

(
1− E∗

1
K1

)
+ 1

η+1

(
1− E∗

2
K2

) .
This is equivalent to either E∗

1 +E∗
2 = 0 or

η

η +1

(
1− E∗

1
K1

)
+

1
η +1

(
1− E∗

2
K2

)
= 1.

The left-hand side of this equality is smaller than 1 since E∗
i < Ki with i = 1,2, thus we deduce that

E∗
1 = E∗

2 = F∗ = M∗ = 0. Hence, this system has exactly one equilibrium 04 and all trajectories converge
to this steady state by using Theorem 3.1 in Chapter 2 of [33]. Then, by applying the comparison Lemma
2.2, we deduce the convergence of system (27).

Analogously to system (1), we have the boundedness for the solution of (27) and the monotonicity
of the system with respect to Λ∞. Therefore, we can deduce the existence of the critical values for both
the constant and periodic cases.

Next, we make a comparison between the previous case and the case where there is no separation
between the two sub-populations.

5.1.2 The non-separation case

When there is no separation between the two sub-populations of mosquitoes, we consider one population
(E,F,M,Ms) in a habitat with aquatic carrying capacity K = K1 +K2. Then (E,F,M,Ms) satisfies the
following system

Ė = bF
(

1− E
K

)
− (νE +µE)E, (28a)

Ḟ = rνEE
M

M+ γMs −µFF, (28b)

Ṁ = (1− r)νEE −µMM, (28c)

Ṁs = Λ−µsMs. (28d)

For the constant release, the positive equilibrium (E∗,F∗,M∗,Ms∗) satisfies

M∗ =
(1− r)νE

µM
E∗, Ms∗ =

Λ

µs
, F∗ =

rνE

µF

E∗

1+ µMγΛ

(1−r)νE µsE∗

;

and from (28a), we deduce that

brνE

µF

E∗

1+ µMγΛ

(1−r)νE µsE∗

(
1− E∗

K

)
− (νE +µE)E∗ = 0.

This equation has no positive solution if and only if Λ > Λ0 =
(1− r)νEKµs(1−N )2

4N µMγ
.

Remark 5.1. We can see that in the special case where K1 = ηK2, by taking E = E1 +E2, we can write
system (27) as system (28) for (E,F,M,Ms) with carrying capacity K = K1+K2. Hence, we deduce that
Λ∞ = Λ0. This suggests that the critical number of sterile males released in the case with very large
diffusion rate is the same as in the non-separation case in 5.1.2.
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5.2 Biological intrinsic values
In this section, we compare the critical value of Λ corresponding to different values of the parameters
namely the birth rate b, the death rate µE , µF , µM, µs, and the carrying capacities K1, K2. In this section,
we show that the critical value Λ is monotone with respect to these parameters. To prove this claim, we
first define in R7

+ an order such that (µE ,µF ,µM,µs,b,K1,K2) ⊴ (µ ′
E ,µ

′
F ,µ

′
M,µ ′

s,b
′,K′

1,K
′
2) if and only

if
µE ≤ µ

′
E , µF ≤ µ

′
F , µM ≤ µ

′
M, µs ≥ µ

′
s, b ≥ b′, K1 ≥ K′

1, K2 ≥ K′
2.

Moreover, we write (µE ,µF ,µM,µs,b,K1,K2) ◁ (µ ′
E ,µ

′
F ,µ

′
M,µ ′

s,b
′,K′

1,K
′
2) if the two vectors are not

identical. With this order relation, we have the following result

Theorem 5.3. Consider system (1) and the basic offspring number N > 1, consider the critical values
Λ and Λ

per
as defined in Theorem 4.2, then we have the mappings from R7

+ to R+

(µE ,µF ,µM,µs,b,K1,K2) 7→ Λ, (µE ,µF ,µM,µs,b,K1,K2) 7→ Λ
per
,

are non-increasing with respect to the order ⊴.

Proof. First, we consider system (1) with two sets of parameters

Θ = (µE ,µF ,µM,µs,b,K1,K2), Θ
′ = (µ ′

E ,µ
′
F ,µ

′
M,µ ′

s,b
′,K′

1,K
′
2),

where Θ ⊴ Θ′. We fix the same value of Λ in both cases and consider

u = (E1,F1,M1,Ms
1,E2,F2,M2,Ms

2), v = (Ẽ1, F̃1,M̃1,M̃s
1, Ẽ2, F̃2,M̃2,M̃s

2)

where u, v are the solutions of (1) with the parameters Θ, Θ′, respectively. We have u̇ = fΘ(u), and
v̇ = fΘ′(v)⪯ fΘ(v) in the subset {0 ≤ E1 ≤ K1}∩{0 ≤ E2 ≤ K2} of R8

+. Moreover, functions fΘ and fΘ′

satisfy the assumptions in Lemma 2.3, then by applying this lemma, we obtain that v ⪯ u for the same
initial data, so

Ei(t)≥ Ẽi(t), Fi(t)≥ F̃i(t), Mi(t)≥ M̃i(t) for all t > 0, i = 1,2.

On the other hand, for any Λ > ΛΘ, by Theorem 4.2 we have that Ei(t), Fi(t), Mi(t) converge to zero
as t goes to infinity. As a consequence of the above inequalities, we deduce that Ẽi(t), F̃i(t), M̃i(t) also
converge to zero for all initial data. So Λ > ΛΘ′ , and we can deduce that ΛΘ ≥ ΛΘ′ .

6 Numerical simulations
Following [17, 35], we consider the parameters as in Table 1.

6.1 Trajectories and Equilibria
We fix the moving rate d12 = 0.06, d21 = 0.04 (day−1), and plot the numerical solutions of system (1)
with different releases functions Λ(t). In each case, we numerically solve the system with different initial
data (E0

1 ,F
0

1 ,M
0
1 ,E

0
2 ,F

0
2 ,M

0
2) : {(2,5,6,3,5,6), (10,20,60,25,40,60), (100,50,60,120,80,60)}. In the

following section, we present several numerical simulations showing the trajectories and approximated
equilibria according to different release strategies.
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(a) Λ = 0

(b) Λ = 200 (day−1).

(c) Λ = 500 (day−1).

Figure 3: Trajectories of E1 and E2 in the constant release case with diffusion rates d12 =
0.06, d21 = 0.04 (day−1).
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Table 1: Parameter values of Aedes albopictus mosquitoes used for the numerical simulation

Symbol Description Value Unit
b Birth rate of fertile females 10 day−1

νE Emerging rate of viable eggs 0.08 day−1

µE Death rate of aquatic phase 0.05 day−1

µF Female death rate 0.1 day−1

µM Wild male death rate 0.14 day−1

µs Sterile male death rate 0.14 day−1

K1 Carrying capacity of aquatic phase in patch 1 200 _
K2 Carrying capacity of aquatic phase in patch 2 180 _
γ Mating competitiveness of sterile male 1 _
r Ratio of female hatch 0.5 _
α Ratio between diffusion rates of sterile males and female 0.5 _
β Ratio between diffusion rates of sterile males and female 0.8 _

6.1.1 Constant continuous releases

We take three different constant values of Λ ∈ {0,200,500} (day−1). The initial density of sterile males
is equal to zero. We approximate the positive equilibria in each case and plot the trajectories of E1 and
E2 in Figures 3 according to different values of Λ. We observe the following:

• When Λ = 0, there is one positive equilibrium

(E∗
1 ,E

∗
2 ) = (192.62,174.82).

All positive trajectories converge to the positive steady state (E∗
1 ,E

∗
2 ).

• When Λ = 200 (day−1), there are two positive equilibria

(E+
1 ,E+

2 ) = (17.29,49.98), (E∗
1 ,E

∗
2 ) = (85.79,130.02).

All positive trajectories also converge to the larger positive steady state (E∗
1 ,E

∗
2 ).

• When Λ = 500 (day−1), there is no positive equilibrium. All the trajectories converge to the zero
equilibrium.

This validates the result in Theorem 4.2 that when Λ exceeds some critical value, zero is the unique
equilibrium of system (1). The observation for Λ = 0 illustrates the result in Theorem 3.1 that there
is one positive equilibrium and it is globally asymptotically stable. The introduction of sterile males
(Λ = 200 > 0) reduces the value of the positive steady state (see Figure 3b), and when Λ = 500 (day−1)
exceeds some critical value (at most equal to 500), all trajectories converge to the zero equilibrium (see
Figure 3c). This illustrates the first point of Theorem 4.2. To approximate the critical value of Λ, we
provide some numerical bifurcation diagrams in Section 6.2.

6.1.2 Periodic impulsive releases

In this part, we consider the periodic impulsive releases with Λ(t) defined in (18), with Λper equal to 200
and 300 (day−1), the period τ = 10 (days). The trajectories of E1, E2 shown in Figure 4 converge to
the periodic solution when Λper = 200 (day−1) and go to zero when Λper = 300 (day−1). This illustrates
the second point of Theorem 4.2 that when the number of sterile males released exceeds a critical value
Λ

per, the wild populations of mosquitoes in both areas reach elimination.
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(a) Λper = 200

(b) Λper = 300

Figure 4: Trajectories of E1 and E2 in the periodic release case with period τ = 10 (days),
diffusion rates d12 = 0.06, d21 = 0.04 (day−1).
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Figure 5: Bifucation diagrams of E∗
1 with parameter Λ in the constant continuous release case.

6.2 Critical values and bifurcation
Our aim in this section is to approximate the critical value of Λ where the bifurcation occurs.

6.2.1 Bifurcation diagram in the constant release case

We solve a system of nonlinear stationary problem F (u;Λ) = 0 for all values of the parameter Λ,
knowing that the solutions are continuous with respect to Λ. Solving by numerical approximations can
be done using numerical continuation methods (see [32]).

Here we present the simplest method called Natural Parameter Continuation (incremental methods,
see [32]): Iteratively find approximate roots of F (u,Λ) = 0 for several values of Λi with index i ∈ N∗.
The root of step i is used as an initial guess for the numerical solver at step i+1. The first initial guess
is the root for the smallest Λ. To approximate the critical value Λ in the constant case and examine what
happens when 0 < Λ ≤ Λ, we draw the bifurcation diagram for Λ ∈ [0.1,500]. The initial positions of
the numerical continuation are taken at the approximated equilibria when Λ = 0.1.

We obtain the bifurcation diagrams in Figure 5 for two scenarios. We observed that the critical value
of Λ decreases when the diffusion rates increase.

• For d12 = 1, d21 = 2, the critical value Λ = 106.45 (day−1).

• For d12 = 0.06, d21 = 0.04, the critical value Λ = 250.88 (day−1).

Taking d12 = d21, we plot the critical value Λ corresponding to the moving rates d12 (see Figure 6).
This shows that the value of Λ decreases when the diffusion rate gets larger, and converges to a value
Λ∞ ≈ 109.45 (day−1) as d12 goes to infinity. This validates the result provided by Proposition 5.2 where
Λ∞ is the critical value of Λ corresponding to system (27). We also found that Λ∞ = Λ0 where Λ0 is
the critical value of the system when there is no separation between the two sub-populations defined in
5.1.2.

6.2.2 Comparison of release strategies

In practice, the strategy using impulsive releases is more realistic than the constant strategy. In this
section, we make a comparison between these two strategies.

For the fixed diffusion rates d12 = 0.06, d21 = 0.04, we approximated the critical number of sterile
males released in both cases using the method in 6.2
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Figure 6: Dependence of Λ on the diffusion rate d12.

Figure 7: Densities of Ms
1 and Ms

2 in both cases. Left: constant continuous releases with Λ =

Λ = 250.88 (day−1), Right: periodic impulsive releases with Λper = Λ
per

= 255.15 (day−1).
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Figure 8: Densities of wild mosquitoes in two patches in both cases. Left: constant continuous
release with Λ = 300 mosquitoes released per day, Right: periodic impulsive releases with
τΛper = 3000 mosquitoes released at the beginning of each time period.

• When Λ(t)≡ Λ constant, the critical value Λ ≈ 250.88 (day−1);

• When Λ(t) =
+∞

∑
k=0

τΛ
per

δkτ with period τ = 10, the critical value of Λper is Λ
per ≈ 255.15 (day−1).

We can see that Λ and Λ
per are consistent. We also present numerical simulations in both cases with

the same total amount of sterile males released where Λper = Λ = 300. The densities of sterile males
in both cases are shown in Figure 7. We obtained in Figure 8 that in both cases, the wild mosquito
population reaches elimination at time t ≈ 300. Again we can see that the two strategies provide the
same performance.

7 Discussion and conclusion
The existence of some hidden areas (e.g. crab burrows) that can not be accessed by the SIT hinders
the population from reaching elimination. Without the implementation of this technique, Theorem 3.1
showed that the wild populations in both areas are persistent and converge towards the unique posi-
tive equilibrium (see Figure 3a) and are independent of the diffusion rates between them. The main
results obtained in the present work indicated that with a sufficient number of sterile males released, the
SIT succeeds in driving both sub-populations to extinction. We investigated both continuous constant
releases and impulsive periodic releases in Theorem 4.2. The two strategies provided almost similar
performance but the periodic release is more realistic in practice. The idea in our proof can also be used
to design a feedback release strategy and this could be studied in future works.
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The results also pointed out that the critical numbers of released sterile males are monotone with
respect to the biological parameters of the population (see Section 5.2). A population with a larger birth
rate of wild mosquitoes and a bigger carrying capacity of the environment requires more sterile males to
reach elimination. A larger death rate in any compartment of the wild mosquitoes reduces this critical
value, and on the contrary larger death rate for the sterile males increases this value.

Moreover, the critical number of sterile males also depends on the diffusion rates between the treated
area and the inaccessible zone. More precisely, if the diffusion rates are large, this system approaches
the case when there is no separation between two sub-populations (see Theorem 5.2). Numerically, we
showed that the larger the values of diffusion rates, the smaller the threshold we need to exceed to obtain
elimination (see Figure 6). This also showed that when the movement is at a low level, the leak of wild
mosquitoes from the inaccessible area impedes the eradication in the treated zone and it requires a large
number of sterile males to break through this obstacle. In practice, this could be an unrealistic amount of
sterile mosquitoes. It is not surprising that the scenario with larger diffusion between two areas is better
since more sterile males can arrive at the unreachable zone.
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