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Highlights 3 to 5 bullet points (maximum 85 characters, including spaces, per bullet point). 

 

- Radiation therapy harnesses numerous technological breakthroughs.  

- Radiomics biomarkers from medical images become an asset for data-driven precision medicine. 

- Promising applications of radiomics may add incremental value to patient care. 

- Integration of these methods in clinics requires addressing technical caveats. 

 

Abstract 

 

Radiation therapy is a pivotal cancer treatment that has significantly progressed over the last 

decade due to numerous technological breakthroughs. Imaging is now playing a critical role on 

deployment of the clinical workflow, both for treatment planning and treatment delivery. Machine-

learning analysis of predefined features extracted from medical images, i.e. radiomics, has emerged as a 

promising clinical tool for a wide range of clinical problems addressing drug development, clinical 

diagnosis, treatment selection and implementation as well as prognosis. Radiomics denotes a paradigm 

shift redefining medical images as a quantitative asset for data-driven precision medicine.  

 The adoption of machine-learning in a clinical setting and in particular of radiomics features 

requires the selection of robust, representative and clinically interpretable biomarkers that are properly 

evaluated on a representative clinical data set. To be clinically relevant, radiomics must not only improve 

patients’ management with great accuracy but also be reproducible and generalizable. Hence, this review 

explores the existing literature and exposes its potential technical caveats, such as the lack of quality 

control, standardization, sufficient sample size, type of data collection, and external validation.  

Based upon the analysis of 165 original research studies based on PET, CT-scan, and MRI, this 

review provides an overview of new concepts, and hypotheses generating findings that should be 

validated. In particular, it describes evolving research trends to enhance several clinical tasks such as 

prognostication, treatment planning, response assessment, prediction of recurrence/relapse, and prediction 

of toxicity. Perspectives regarding the implementation of an AI-based radiotherapy workflow are 

presented. 
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Introduction  

 

  Radiation therapy (RT) is a pivotal cancer treatment used in about half of cancer patients.[1] RT 

can be used as a standalone option or in combination with other treatment strategies such as surgery or 

systemic therapies. Numerous technological innovations have substantially improved the radiotherapy 

landscape in the last decade. Beyond the rapid increase of computing capacities and the development of 

high conformal dose delivery systems, that have led to the advent of intensity-modulated radiation 

therapy, and stereotactic radiotherapy, the importance of imaging in radiotherapy has been steadily 

increasing both in terms of planning as well as in terms of treatment delivery.[1]  

Patients’ management in RT such as disease characterization, treatment planning, treatment 

delivery, and treatment follow-up rely massively on imaging technologies.[2] Computed tomography (CT) 

is the gold standard for dose calculations and the most common method for treatment implementation 

guiding patient repositioning and providing means for assessing the need of re-planning. Magnetic 

resonance imaging (MRI) is a radiation toxicity-free modality associated with better contrast in soft tissue 

regions. Its adoption is constantly increasing and is expected to acceleration with the arrival of 

commercial Magnetic resonance (MR)-Linacs. MR associated with multi-parametric imaging should 

allow improved target localization and motion management during radiation therapy for instance in 

lesions affected by respiratory motion[3, 4] while having the potential to drive dose adaptation and 

personalized dose escalation in a near future.[5] Positron emission tomography (PET) is the most 

prominent image modality to appraise tumor metabolism and achieve molecular imaging in clinical 

routine. 18F-fluorodeoxyglucose (FDG) PET images have been shown to help in target volume 

delineation thanks to their good tumor to healthy tissue signal ratio[6], even if they suffer from poor 

spatial resolution. Recent results from a clinical trial demonstrated that FDG PET-based dose planning 

allowed for a reduction in target volume and an improvement in local control in non-small-cell lung 

cancer patients.[7] 

Artificial Intelligence (AI) is a broad term that encompasses different fields, such as machine 

learning and deep learning which is a subset of machine-learning. The term machine-learning defines 

algorithms, and mathematical models built to reproduce the relation between input-output for a given data 

set without necessarily following the principles of decision used to determine this relationship. Such 

models are often low dimensional and in general benefit from domain’s information as it contains the 

most informative features. Deep learning algorithms are a subclass of machine learning that in general 

deploy high dimensional models that have an architecture close to neural networks which can be trained to 

predict an output without any explicit domain-related knowledge.[8] This review will focus on the more 



mature field of machine-learning analysis based on predefined features extracted from medical images, i.e. 

radiomics[9-11], although deep learning has the potential for a broad spectrum of applications.[12] 

The recent and important adoption of radiomics illustrates a paradigm shift in RT.[13] Medical 

images used to be considered as pictures guiding an inherently subjective treatment planning. Radiomics 

is redefining medical images as a quantitative asset that can be used for decision support.[14-18] 

Radiomics derives from the quantitative transformation of images into comprehensive biomarkers, which 

are calculated automatically by algorithms using predefined mathematical formulas.[9-11] The added 

value of radiomics to optimize patient care could be threefold. First, radiomics is a noninvasive clinically 

relevant information space that is accessible / available at no additional cost. Second, radiomics when 

interpreted from algorithms is quantitative and tends to be reproducible, while the interpretation of 

medical images by physicians remains inherently subjective. Third, each step of patients’ RT management 

can be divided into specific tasks, and AI technologies can be trained to excel in these narrow tasks so that 

clinicians across institutions can deliver the best reproducible treatment and save time for high value care.  

Several tasks of the RT chain can take advantage of imaging biomarkers and associated machine-

learning models. Today, conventional radiotherapy prescription is based on a “one dose fits all” concept 

with an objective of homogeneous dose delivery inside manually defined target volumes and identical 

dose-volume histogram constraints for every patient.[19] Machine-learning analysis of medical images 

has the potential to accelerate and improve reproducibility of target volume delineation.[20, 21] Future 

treatment decisions, including prescribed dose and compromise between organs-at-risk (OAR) sparing and 

target volumes coverage, will likely be guided by prognostic, response and toxicity models either directly 

at the beginning of the treatment or during the treatment using an adaptive strategy. In patients with brain, 

rectum or esophageal cancers, the evaluation of response to RT can be complex because of pseudo-

progression and/or radiation-induced changes. Image analysis appears as an appealing non-invasive 

method to guide subsequent treatment strategies.[22, 23] Finally, the huge amount of retrospective data 

acquired at different treatment stages combined with increased knowledge about the correlation between 

image content, the sites of relapse/failure and underlying biology will surely guide targeted dose 

prescriptions also known as dose painting in the coming years.  

  Number of recent studies demonstrated that the adoption of radiomics and machine learning pave 

the way for improved patients’ management in RT along with the fact that there is a great number of open 

technical issues related with their clinical adoption such as reproducibility, robustness and generalization. 

Hence, numerous technical caveats have to be considered [15-18, 24] and robust methodologies are 

needed to differentiate signal from noise in the medical images. This requires a standardization of image 

preprocessing, tissue segmentation, feature calculation, and statistical methodologies such as dimension 

reduction and feature selection. 



  In this review, we will first describe the current state of the art regarding radiomics pipeline 

implementation. We will then discuss how these technologies are currently used in clinical research to 

optimize the management of cancer patients treated with radiation therapy. Finally, this review will focus 

on possible future implementations of radiomics in clinics. It should be noted there should be a clear 

separation between the notion of radiomics and the notion of artificial intelligence algorithms even though 

these two notions are interconnected within a clinical objective. Radiomics refers to a predefined set of 

imaging biomarkers while AI algorithms seek to determine a subset of them that once combined with a 

prediction mechanism are able to provide a prediction with respect to the considered clinical task. 

 

  



Radiomics pipeline optimization: state-of-the art 

  

Practices standardization 

The use of radiomics-based biomarkers in a clinical context involves identifying and minimizing 

the impact of potential confounding factors on predictive models. Hence, the need for practices 

standardization for mainstream imaging modalities. 

The capacity to replicate and validate radiomics studies is vital to produce sufficient and 

convincing scientific evidence for the translation of possible applications into clinical practice. The 

community needs to adopt consensual standards. A systematic review demonstrated that only 17% of 

radiomics studies addressed in detail every methodological aspect related to image acquisition, 

preprocessing, or feature extraction.[25] Another review showed that only 6% of radiomics studies fulfill 

rigorous requirements such as prospective validation in external datasets.[26]  

Nonetheless, recent initiatives demonstrate a trend toward practices standardization. To bridge this 

gap, several efforts have been made to standardize the imaging protocols, including the Quantitative 

Imaging Biomarker Alliance (QIBA)[27], the Quantitative Imaging Network (QIN)[28], the Image 

Biomarker Standardisation Initiative (IBSI).[29, 30] The latest seeks to provide image biomarker 

nomenclature and definitions, benchmark data sets, and benchmark values to verify image processing and 

image biomarker calculations, as well as reporting guidelines, for high-throughput image analysis.  

 Finally, “FAIR (Findable, Accessible, Interoperable and Reusable) guiding principles”[31, 32], a 

brief enumeration of principles for better accessibility, interoperability and reusability of scientific data, 

should ease translation of radiomics into clinics.[33] 

 

Data preprocessing and harmonization 

The majority of radiomics studies use images extracted from standard of care clinical devices such 

as CT, MRI, and PET. These images are acquired with a wide range of scanning devices and 

manufacturers. The absence of standardized protocols leads to a significant variability in acquisition and 

reconstruction parameters. These parameters have been shown to affect the noise, the contrast and the 

spatial resolution of medical images impacting the subsequent measurement of shape, histogram, texture 

and higher-order features extracted from the images (see below).  

 

CT 

For CT images, several confounding variables can alter the estimation of imaging features such as 

acquisition and reconstruction parameters[34, 35], or quality of contrast-enhancement.[36-38] The impact 

of kernel filter, pixel size, slice thickness, kVp and tube current (mA) has been deeply investigated[39-43] 



and it has been demonstrated that reconstruction kernel filters (smooth and sharp) should not be used 

interchangeably.[40] Consistent spatial sampling is of fundamental importance since it influences the 

measurement of a significant percentage of radiomics features[41], hence the interest of resampling all the 

image sets to a nominal voxel size.[42] In contrast, x-ray tube current is unlikely to have a large effect on 

radiomics features extracted from CT images of textured objects such as tumors.[43] Some studies 

suggested the use of convolutional neural networks for post-processing of retrospective data to improve 

radiomics reproducibility.[44] A simple solution would be to reduce variability by using predefined fixed 

CT parameters for image acquisition in future prospective radiomics studies.[45, 46]  

 

PET 

The conventional PET tracer in cancer imaging is 18F-FDG. Maximal Standard Uptake Value 

(SUVmax) is the mainstream imaging biomarker derived from the analysis of 18F-FDG PET images used 

to guide clinical decision.[47] Beyond SUVmax, new radiomics biomarkers are currently investigated. The 

reproducibility of these biomarkers is hampered by several factors, which can be either physiologic (i.e., 

blood glucose concentration) or technical (e.g. type of detectors and associated electronics, reconstruction 

algorithms).[48, 49] Harmonization guidelines have been formulated to ensure reproducibility of SUV in 

multicenter studies[50] and became concrete as early as in 2010 with the launch of the EANM/EARL 

accreditation program which seeks to standardize PET-quantification across centers for the use of the 

FDG PET as a quantitative imaging biomarker.[51, 52] Recent literature reviews addressed methods, 

pitfalls and challenges of radiomics analysis of PET images.[15, 53-56] Despite a low level of evidence 

for most of the 38 potentially-affecting factors, variations in acquisition type (static vs. dynamic), 

reconstruction parameters, voxel size and delineation seem to alter the extraction of radiomics 

features[53]. However, the majority of factors were shown to have a low impact on biomarkers reliability 

which was defined as the comparison between factor variability vs. inter subject variability.  The authors 

recommended limiting deviations in reconstruction parameters including voxel size and the use of a 

unique segmentation algorithm and the same discretization scheme for the whole cohort till evidence level 

is increased. 

 

MRI 

A major caveat of MRI is that intensities are non-standardized and highly dependent on 

manufacturer, sequence type and acquisition parameters.[57, 58] Consequently, a large variability in intra-

patient and inter-patient image intensities exists, and affects radiomics features.[58, 59] In order to solve 

this technical challenge, radiomics studies have adopted image pre-processing techniques. For example, it 

has been shown that bias field correction minimizes efficiently MR intensity inhomogeneity within a 



tissue region.[60-62] Spatial resampling can reduce the variability generated by different voxel sizes.[62-

64] In brain studies, a brain extraction is mandatory in order to remove the skull that generates the most 

important variations in intensities[65, 66], and permits to define the region in which intensities should be 

considered before any final image intensity normalization step.[62, 66] 

 

Recently, radiomics studies have used a compensation method to pool cohorts from different 

centers. This data-driven post-processing method called ComBat [67] seems to be able to harmonize 

radiomics features a posteriori. Initially proposed to correct batch effects in genomic studies, it has 

demonstrated its effectiveness in PET [68] and CT imaging.[69, 70] 

 

Tumor segmentation  

In radiomics analysis, segmentation is a crucial step determining the region of interest for feature 

extraction and variability in contouring is known to alter the reproducibility of predictive models[71]. The 

absence of pathological gold standard in many clinical situations makes it difficult to evaluate the quality 

of the contours. Despite the well-known variability between readers, manual segmentation remains a 

standard in a majority of radiomics studies in RT.[72-76] The Intra-class Correlation Coefficient (ICC), 

that quantifies the intra- and inter-reader agreement, has been consistently used to evaluate radiomics 

features reproducibility.[77-79] Semi-automatic computer-aided segmentation approaches on top of 

addressing efficiency/saving time (manual delineation is time consuming) also improve the reproducibility 

in tumor delineation and feature extraction.[80-83] Recent advances in deep learning lead to the 

development of fully automatic segmentation methods [84, 85] using different architectures such as U-

Net.[86] However, automatic segmentation is prone to errors, especially in the presence of artifacts, a poor 

signal-to-background ratio, noise and/or when the lesions of interest are very heterogeneous.[87]. In PET, 

guidelines are available about methods to use preferably depending on the clinical application. 

Conclusions showed that fixed thresholds should be avoided in realistic complex cases and are in favor on 

algorithms relying on advanced image analysis.[88] In CT and MRI, several studies highlight the benefit 

of using semi-automated or fully automated segmentation.[89-94] The main challenge refers to the 

definition of an optimal delineation itself. First, an optimal delineation could be defined by its ability to 

correctly reflect ground truth from a pathological point of view. However, ground truth is often defined by 

manual expert annotations in the context of radiomics. The performance of a segmentation tool could 

therefore be judged on its capacity to produce informative and reproducible features for the prediction of 

the outcome of interest, i.e., a given molecular or clinical parameter.  

 

 



Grey-level discretization 

 The grey-level discretization clustering similar grey levels into bins for textural feature calculation 

has been proposed to minimize the noise impact and decrease calculation times.[95] This additional pre-

processing step does not adhere consensus and is not detailed in most radiomics studies. Conventionally, 

the grey-level discretization can be defined as absolute if a fixed bin size is used to cluster intensities of a 

region of interest within a predefined interval or as relative when a fixed bin number whose size depends 

on the minimum and maximum intensity values within the same region of interest is preferred. Each 

method has its own strengths and limitations [95-99], but cannot be used interchangeably. In PET, relative 

discretization was shown in particular to exhibit higher correlation with the metabolic volume for tumors 

less than 60 mL[96], whereas it leads to better repeatability in test-retest experiments.[97] In a majority of 

studies, fixed bin size within a predefined interval has been presented as the default discretization method 

based on published PET/CT results[95, 100]. This principle is rational for quantitative or semi-quantitative 

modalities (e. g. HU in CT, SUV in PET) for which intensities have a physical meaning. In MRI, a 

relative discretization is recommended by the IBSI consortium to account for the variable intensity ranges 

when no intensity normalization preprocessing step is applied.[29] Note that other discretization 

approaches exist[98] such as the absolute resampling[96], or the use of a clustering algorithm (Max-

Lloyd)[101], but they are currently not included in the IBSI guidelines.  

Feature extraction software 

 There are many free software packages (stand-alone programs, modules and libraries) allowing 

radiomics feature extraction such as CERR [102], S-IBEX [103], LIFEx [104], MITK [105], RaCaT 

[106], and PyRadiomics [107]. Even if several studies are still carried out with radiomics in-house 

developed programs [108-112], use of standardized tools, which must be IBSI-compliant, should be 

preferred to ensure reproducibility of published data using independent imaging sets.  

 

Feature extraction 

 Radiomics was originally defined as the extraction of high-throughput features from medical 

images[11] with the endgoal to identify a limited subset of clinically valuable imaging biomarkers. 

Radiomics features encompass two broad categories of features: handcrafted features and deep learning 

features. 

 Handcrafted features are calculated using predefined mathematical formulas, proposed by experts 

in human image processing. Handcrafted features include semantic and agnostic features.[10] Semantic 

features refer to features used in the radiologists’ lexicon to describe lesions, but can be evaluated with 

computer assistance. Agnostic features can be divided into subgroups: (i) shape-based features describing 



the 3D geometry of the segmented structure, (ii) first-order features quantifying the distribution of voxel 

intensities, (iii) second-order features, also known as textural features, measuring the statistical 

relationships between voxels and (iv) higher-order features extracted from filtered-images to analyze 

repetitive and non-repetitive patterns. All of these handcrafted features are also known as traditional 

radiomics features.  

 Deep-learning features are automatically extracted from medical images by neural networks 

designed to answer to a classification or a regression problem. They are increasingly used in radiomics as 

they reduce the need for medical expertise for lesion contouring, and remove the inter-expert variability. 

In addition, they do not necessitate any prior knowledge about predefined features to be extracted. Recent 

works demonstrated the superiority of deep-learning features compared to handcrafted features in large 

datasets.[113-115] 

 

Machine-learning strategies and overfitting 

Ideally, radiomics studies should provide clinically meaningful decision tools, after having been 

trained/validated on large multicentric datasets, and thoroughly tested on a previously unseen large 

multicentric dataset, ideally prospectively collected after the training/validation step. Nonetheless, a recent 

review of imaging studies demonstrated that only 6% of radiomics studies fulfill these rigorous but 

mandatory requirements.[26]  

The problem is that AI is so powerful at handling complex multidimensional data that it can easily 

draw false correlations. Overfitting defines the fact that high dimensional models and associated AI 

training algorithms ‘memorize’ that a specific combination of parameters is linked to the data being used 

for training.  In other terms, AI learns a model that addresses perfectly the prediction task on the training 

set but will fail to predict future observations from new sets of data. One key limitation is, therefore, that 

training robust AI approaches requires techniques that generalize well. This can be achieved either by 

using a large representative sample set of training or integration of domain knowledge and clinically 

inspired imaging biomarkers.  

Recent papers have detailed good practices guidelines for radiomics model building and 

evaluation.[13, 53, 116] 

 

 

 

 

 



Applications of machine-learning analysis of radiomics features in radiation therapy: state-of-the 

art 

 

Overview 

Overall, we identified a few articles reporting negative results [118-121] while we identified 161 

manuscripts deciphering positive results on the potential impact of radiomics on patients’ care based on 

CT-scan, MRI, and PET (Table 1) using as keywords “Radiotherapy AND (CT OR MRI OR PET) AND 

(Radiomics OR texture)” on Pubmed.  

In Figure 1, we provide a summary of our results by primary tumor site (Fig. 1A), classification 

task (Fig. 1B), sample size (Fig. 1C), publication year (Fig. 1D), type of data collection (Fig. 1E-F) and 

type of model performance evaluation (Fig. 1G). 

Radiomics and machine learning were mainly used for prognosis (n=75, 45%) and response 

prediction (n=44, 27%). Other tasks, such as classification (n=23, 14%), segmentation (n=10, 6%), or 

prediction of toxicity (n=11, 7%) were less frequent (Fig. 1B). Figure 2 shows an overview of these 

applications based on the current literature. The most important use of radiomics was for prognostic 

purposes: the stated aim was to derive a progression-free survival or overall survival tool. The second was 

the use of radiomics for predictive purposes: the radiomics variables were selected for their ability to 

predict tumor sensitivity to treatment, based on a gold standard evaluator, whether radiological (e.g. 

RECIST criteria) or histological (complete vs. incomplete pathological response). The third most common 

use of radiomics was for classification tasks that did not fall into one of the above categories. The vast 

majority of papers focused on binary classification tasks which are suitable for most machine-learning 

algorithms but might not encompass the complexity of clinical classification tasks. 

Most of studies were retrospective (n=152, 93%) while only a dismal amount of studies have used 

prospective datasets (n=12, 7%) (Fig. 1E). Similarly, most studies were performed in a monocentric 

setting (n=149, 91%) while a minority was performed in multiple institutions (n=15, 9%) (Fig. 1F). 

Finally, half of studies presented results only in the training dataset (n=73, 44%) (Fig. 1G). Stringent 

validation strategies such as validation and test sets (n=4, 2%) should be the norm. Nonetheless, a vast 

majority of studies did not use such rigorous approach and relied on cross-validation (n=35, 21%), use of a 

validation set (n=40, 24%), or cross validation and test sets (n=12, 7%). Cross-validation refers to a 

principle of creating several partitions of the data set between training and testing and reporting the 

aggregated results. Validation set can be envisioned as an extension of the training set, which should be 

used to fix hyper-parameters and/or evaluate if the model developed in the training set generalizes well. 

The test set is an external data set that should have the same probability distributions than the training 



partition and on which the results are reported once the algorithm has been trained and already evaluated 

on a validation set. It should be used once only. 

The heterogeneity of the literature is further accentuated by the variety of imaging techniques 

explored. In CT scan, the current literature is mostly derived from the analysis of standard of care images. 

Nonetheless, contrast-enhancement protocols are variable. Most PET-CT studies used 18F-FDG as a 

radiotracer (59/63 = 94%). In MR, in addition to anatomical T1 and T2 sequences, about 40% of studies 

analyzed functional Diffusion-Weighted Imaging (DWI).  

 

Sample size 

 The median [interquartile range] number of patients was 64 [29.5-125.5]. A majority of studies 

included more than 50 patients (n=101, 61%) (Fig. 1C). Nonetheless, a minority of studies reached sample 

sizes that would allow high dimensional models and machine learning approaches to be statistically robust 

such as >100 patients (n=57, 35%) or >200 patients (n=24, 15%). Hence, the robustness of the results as 

well as the actual predictive performance are likely overestimated by most studies due to probable 

overfitting:  the performance of existing algorithms was indeed not applied to large new datasets in most 

studies. This is further accentuated from the lack of multi-centric data cohorts as pointed earlier.  

 

Primary tumor type 

The primary tumor localization in these articles was: head and neck (n=40, 24%), anorectal (n=28, 

17%), lung (n=29, 17%), brain (n=24, 15%), prostate (n=14, 9%), esophagus (n=13, 8%), cervix (n=11, 

7%), bone (n=4, 2%), breast (n=2, 1%), pancreas (n=2, 1%), neuroendocrine tumors (n=1, 1%) (Fig. 1A). 

A few articles used mixed cohorts (lung-cervical and lung-head and neck), respectively to assess the risk 

of remote relapse and to evaluate the ability of radiomics to distinguish between healthy and pathological 

tissue.[117, 122, 123]  

 

Milestones 

We could not clearly identify a subset of radiomics biomarkers with major clinical value across 

several studies since there was a wide range of distinct clinical endpoints and statistical approaches. 

Additionally, these results cannot yet be translated from bench to bedside to personalize patients’ 

management. First, the vast majority of studies do not demonstrate the added value of radiomics as 

compared to existing reference standards or widely available clinical decision tools (i.e., tumor volume, 

stage, RECIST). Additionally, there is a clear need to standardize feature calculation and machine-

learning pipelines so that results can be compared from one institution to another. Finally, there is a need 

to prospectively validate these results.  



Reporting negative results 

The existing results should be considered with caution since the few negative results published in 

the literature might just be the tip of the iceberg.[118-121] This can be explained by several factors 

previously described such as the relatively small size of existing datasets, the heterogeneity in image 

acquisition or the absence of signal in the images. 

A retrospective study reported negative results in 726 CT and 686 PET images from head and 

neck cancer patients, who were divided into training or validation cohorts. A quantification of tumor 

volume alone was found to be the best imaging biomarker for the prediction of overall survival while 

adding radiomics features provided no incremental value.[118] 

Another retrospective study trained a radiomics signature in 141 NSCLC patients treated with 

curative intended (chemo)radiotherapy. To this end, they extracted features quantifying change in tumor 

imaging phenotype extracted from cone-beam CT (CBCT) images. The authors aimed to validate the 

results in three external validation datasets of 94, 61 and 41 patients. Strikingly, the authors could not 

confirm their hypothesis that longitudinal CBCT-extracted radiomics features contribute to improved 

prognostic information for the prediction of patients' outcome.[119] 

Similarly, a PET radiomics study with a moderate sample size was not able to identify prognostic 

features for overall survival in a cohort of patients with NSCLC. [120] 

 

 

Radiomics machine-learning using CT images  

The majority of articles evaluated the use of radiomics-based machine learning algorithms as a 

prognostic tool. The largest study investigated the prognostic value of CT images in head and neck cancer. 

It was a pivotal publication in the field of radiomics and presented a radiomics analysis of 440 features 

quantifying tumor image intensity, shape and texture in 1,019 patients with lung or head-and-neck cancer. 

It demonstrated that intratumor heterogeneity on CT scan images was associated with underlying gene-

expression patterns and suggested a general prognostic phenotype existing in both cancer types.[117] 

Nonetheless, recent studies reanalyzing this seminal work and pioneer radiomics signature showed that the 

performance of the signature was due to tumor volume alone and that other radiomics features were not 

providing additional value.[121] 

There is a growing number of studies evaluating the value of radiomics analysis of CT-scans in 

large cohorts.[108, 122, 124-130] Pioneering papers demonstrated the concept that radiomics features 

extracted from CT-scans could have clinical value in cancer patients with lung cancers[122, 128, 129], 

and head and neck cancers[122, 125] treated with radiation therapy. A wide range of models have been 

developed predicting endpoints associated with patients’ outcome such as stage [122], HPV status [122], 



pathologic gross residual disease [129], distant metastasis[128], and pathologically proven local treatment 

failure.[125] These studies demonstrated the value of a subset of imaging biomarkers deciphering tumor 

imaging phenotype before treatment initiation. The most frequently identified biomarkers were 

respectively tumor intensity [125, 128, 129], tumor texture [125, 128, 129], tumor shape [128, 129], and 

multiscale filters [129]. Additionally, temporal changes using dual time points or multiple time points in 

these features could further enhance clinical decision-making and forecast treatment efficacy.[131-133] 

These imaging biomarkers deciphering temporal changes in tumor volume, tumor shape, and tumor spatial 

heterogeneity seem to be features generalizable beyond image-guided radiation therapy since they can be 

leveraged to predict systemic therapies efficacy.[134, 135] This creates a body of evidence pointing in the 

same direction. 

Interestingly, methodological considerations for the optimization of radiomics machine-learning 

pipeline using CT features have been extensively investigated in patients with lung and head and neck 

cancers.[123, 124, 126] Reliable machine-learning methods[123] and robust radiomics strategies[126] 

were identified for radiomics-based prognosis. Additionally, it has been demonstrated that although the 

presence of CT artifacts could be problematic, it does not preclude designing robust radiomics signatures 

for prognosis.[124]  

CT features have also been used with the aim to predict radiation-induced toxicity. For instance, a 

population of 106 patients who received radiation therapy for esophageal cancer was studied.[130] It was 

shown that the change between pre and post-RT CT-scans in 12 radiomics texture-based features was 

associated with radiation pneumonitis. In another study, the objective was to perform toxicity prediction 

primarily for patients with head and neck cancer.[136] 

As a conclusion, several studies evaluated the performance of models derived from machine-

learning analysis of radiomics features on CT-scan. The reported results certainly bear promise but the 

added value of AI-based clinical care needs to be prospectively validated in randomized multicenter trials 

with a comparison to the optimal standard of care. This is a necessity towards further clinical adoption.  

 

Radiomics machine-learning using PET images  

The majority of articles evaluated radiomics as a prognostic tool. The largest study investigated 

the prognosis value of PET derived shape, intensity, and textural features for the prediction of overall 

survival in patients with lung cancer.[137] It included 358 patients from 7 different centers, divided into 

training, validation, and an external testing cohort (133:204:21). Least absolute shrinkage and selection 

operator (LASSO)[138] was used to identify 2 features (size-variance of the grey-level size zone matrix, 

complexity of the neighborhood grey tone difference matrix) that can stratify high versus low risk patients 

when linearly combined. It is noteworthy to mention that the radiomics features were robust with respect 



to the adopted semi-automatic segmentation. The signature was also robust with respect to PET clinical 

acquisitions across manufacturers/vendors. Finally, only the total metabolic volume (TMTV) and the total 

lesion glycolysis (TLG) were proven as prognostic features among routinely extracted SUV-based 

parameters, but their performance was less significant compared to features that were automatically 

recovered from the model. The main limitation of this analysis, also pointed out by the authors, was the 

lack of comparison with the common clinical prognostic factors (such as performance status for example), 

and the unusual survival distribution in the test set, making it insufficient for complete external validation. 

The discrepancy of population statistics between testing and validation cohorts is a major bottleneck as it 

concerns generalization claims of the radiomics-driven machine learning prediction methods.  

The second largest PET study [139] had as an objective to evaluate radiomics features on the 

tumor nodes and not only on the primary tumor. The study population was divided into training and 

validation sets (262:50). Again, an initial verification of the robustness of the radiomics features was 

performed, before introducing them into a multivariate LASSO model. The consistency of the features 

was analyzed by comparing features extracted from the whole diseased lymphatic volume, to features 

retrieved from the most hypermetabolic lymph node and from the largest lymph node. A multivariable 

model including one feature from the primary tumor and five features from the lymph nodes was 

evaluated and achieved a c-index of 0.62. Regarding this study, two observations should be emphasized: 

first, the lack of prognostic character of the usual metabolic parameters of the primary tumor is in 

agreement with the results of the previous study. Second, the only texture parameter of the primary tumor 

that was prognostic for overall survival was not part of the ones found in the previously described study 

(GLRLM short-run emphasis).[137] 

Within tens of studies regarding esophageal cancer, we have noticed that there was a single study 

involving more than 100 patients.[140] This paper had the particularity of using pre- and post-therapy 

PET-CT to evaluate the ability of texture parameters to predict the complete pathological response on 

histology. The design of this study made it possible to evaluate the incremental contribution of extracted 

texture parameters compared to conventional parameters and visual analysis by the medical expert. A 

clinical impact study was also conducted. Unfortunately, it was observed that the impact of the new 

texture parameters on patient management was rather limited: the increase in the ability to discriminate 

between complete and incomplete histological response was insufficient to translate into clinical 

recommendations.  

Very few studies have focused on the ability of PET textural parameters to predict radiation 

toxicity. Among them, the most interesting [141] studied the salivary toxicity in patients irradiated for 

head and neck cancer. The reported results were not convincing enough to justify the adoption of the study 

outcomes into clinical practice. Indeed, there was a very moderate increase in the discriminating capacity 



of the model compared to the reference model based on gland dose. Moreover, from a methodological 

point of view, the results appear to lack robustness and generalization and were not independently 

validated. 

 

Radiomics machine-learning using MR images 

The majority of studies used radiomics for prognosis (n=23/86, 27%) and response prediction 

(n=32/86, 37%). Interestingly, radiomics or texture analysis was also used for segmentation tasks, toxicity 

prediction and other classification tasks such as differentiation of true progression from pseudo-

progression in brain lesions or pre-treatment identification of eligible patients for adaptive radiotherapy in 

head and neck cancer.       

 In terms of prognosis, existing literature evaluated a great diversity of primary tumor types, with 

applications in cervical cancer[110], osteosarcoma[142], brain tumors[143, 144], head and neck[145] and 

skull-base chordoma.[146] Three papers aimed at developing a nomogram based on multidimensional 

data.[144-146] A nomogram including radiomics features extracted from the regional lymph nodes, 

treatment plan metrics, and TNM stage was shown to outperform score of TNM alone for prediction of the 

3 and 5-years progression free survivals in histologically confirmed loco-regionally advanced 

nasopharyngeal carcinoma (stage III-IVa).[145] Using a cohort composed of 148 skull base chordoma 

patients, a nomogram including histological subtype, blood supply and a radiomics signature was 

developed in [146], showing promising results for prediction of progression risk at 5 years compared to a 

clinical prognosis model.  

 Six studies with a data cohort beyond 100 patients investigated the performance of models 

predicting pathological complete response to neoadjuvant radiotherapy in locally advanced rectal cancer 

with a validation strategy. Two carried out a delta-radiomics analysis based on pre and post radiotherapy 

MR images[131, 147], whereas the others analyzed either pre-treatment images only[148, 149], or pre and 

post-treatment MR images in an independent manner.[150, 151] The obtained ROC-AUC for two of them 

was superior to 0.95 in their validation cohorts. The first study has explored a signature of 30 pre and post-

treatment radiomics features plus the post-treatment tumor length[151] while the second one was 

developed on the basis of 12 pre-treatment radiomics features plus the MR-reported T-stage. Sensitivity 

and specificity values were however lacking despite the notable class imbalance in the dataset.[151] Both 

papers highlighted the informative content of ADC maps for prediction of complete pathological response 

in locally advanced rectal cancer. 

The prediction of radiation-induced toxicities based on pre-treatment MR images has also gained 

attention even radiomics driven AI models failed to reach strong performances. Radiomics features were 

extracted from salivary glands of baseline CT plus T1 post-contrast MR images from 216 patients and a 



generalized linear regression model was developed to predict radiation-induced xerostomia at 3-months 

after radiotherapy.[152] In the independent testing cohort including 50 patients, ROC-AUC values inferior 

to 0.7 were obtained, suggesting limited signal in baseline images. In this paper, a rigorous evaluation 

methodology was adopted including cross-validation plus testing cohort.   

Classification performances of radiomics for distinguishing true progression vs. radionecrosis in 

brain metastasis after stereotactic radiotherapy were evaluated in two papers.[22, 23] The paper including 

the highest number of patients enrolled 87 patients and explored 97 lesions treated by Gamma Knife 

radiosurgery[23] at two time points (interestingly, delta radiomics was normalized according to the delay 

between the two time points). MR images acquired at two time points were also used to select features 

having a high Concordance Correlation Coefficient (CCC > 0.7) in the tumor progression group and low 

CCC comparing tumor progression and radionecrosis groups. The best results were obtained using 5 delta 

radiomics features: a ROC-AUC of 0.73 was achieved using a leave-one-out cross-validation. Slightly 

better classification results were obtained using features extracted from post-contrast T1 and FLAIR 

sequences acquired at a unique time point.[22] No common radiomics feature was identified between the 

two signatures. 

In a different clinical setting, the study of advanced nasopharyngeal carcinoma patients who will 

require a radiotherapy treatment adaptation was done on pretreatment MRI.[153] Average ROC-AUC in 

validation set was 0.930 (95%CI: 0.928–0.933) and included 6 radiomics features for the joint T1-T2 

model. One drawback is that only 13 patients out of the 70 patients included in the study required a 

treatment adaptation.  

Even if the majority of radiomics papers considered tumor volume as a whole, some papers 

applied classification tasks at a voxel scale with the goal to improve tumor delineation and associated 

treatment planning.  The estimation of the peritumoral infiltration and the associated recurrence risk using 

radiomics features for de novo glioblastoma patients was studied in [72]. In this work, pre-operative MR 

images were considered and assumptions were made on the quantity of infiltration in edema regions to 

train a support-vector machine classifier based on a discovery cohort including 31 patients and a leave-

one-out cross-validation strategy. Performances were then evaluated on a validation cohort with similar 

population characteristics (n=59 patients), by reporting manually recurrence areas on pre-operative 

images. Encouraging results were obtained with prediction accuracy equal to 89.5% (sensitivity: 97.1%, 

specificity: 76.7%). Authors concluded on the possibility to guide supratotal resection and/or 

intensification of postoperative radiotherapy based on multiparametric clinical MR sequences. A 

radiomics-based radiotherapy planning strategy was proposed with the ultimate goal to focalize RT for 

low risk patients and to escalate the dose to the most aggressive areas for intermediate/high risk 

patients.[154] In this multi-institutional work, more than 300 features were extracted from T2w and DWI 



MR sequences to identify probability of cancer presence. On the replication cohort, ROC-AUC between 

0.5 and 0.8 were obtained using T2w sequence-radiomics features only on a patient basis. Subsequent 

dosimetric results suggested that radiomics-targeted focal brachytherapy would result in a marked 

reduction of doses to OAR and that the choice of a boost-radiomics-based strategy to the aggressive tumor 

components would lead to a limited increase of doses to OAR.  

 

Discussion and perspectives  

 

 AI and more specifically machine learning analysis of radiomics features is currently a promising 

tool in clinical research to optimize the management of cancer patients treated with radiation therapy. 

With the advent of AI, medical images move from clinically relevant radiological information that are 

subjectively interpreted by clinicians to high dimensional multiparametric data that is exploited by 

algorithms to reproducibly optimize clinical care in radiation therapy based on evidence. Figure 3 

illustrates how these technologies could potentially enhance patient care in future AI-based radiotherapy 

workflow. We have observed that radiomics is used for several clinical tasks such as prognosis, treatment 

implementation, response assessment, prediction of recurrence/relapse, and prediction of toxicity. The 

dominant indication is prognostication for risk stratification. The following paragraphs will summarize the 

current state-of-the art, describe our vision of what radiomics can bring for precision care, and outline next 

steps required to translate radiomics research from bench to bedside.  

 While several guidelines/opinions/reviews deciphered the role of machine learning and radiomics 

as a potential tool for precision medicine [13, 26-30], the present work aimed to explore the existing 

literature in the field of radiation therapy. It exposes current technical caveats that should be overcome in 

the future for the deployment of radiomics in a clinical radiotherapy workflow. Our objective was to 

precisely describe, using a step-by-step approach its current evaluation for a range of clinical problems 

addressing prognostication, treatment planning, response assessment, prediction of recurrence/relapse, and 

prediction of toxicity. Finally, an innovative part of our work was to evaluate multiple modalities since we 

aggregated data from 165 original research studies reported results on PET, CT-scan, and MRI. 

 The first step of the radiomics pipeline is to choose the optimal imaging modality or the best 

combination. We have demonstrated that the majority of studies are focusing on imaging modalities used 

in clinical routine such as CT-scan, anatomical and functional MRI, and 18F-FDG PET/CT. This can be 

explained by the fact that machine-learning requests big data, hence the current use of retrospective 

datasets to prove the concept that these features could be of clinical utility. However, we have to keep in 

mind that radiomics biomarkers are in fact surrogate markers of complex metabolic pathways (Fig. 4). 

Beyond these mainstream imaging modalities, several radiotracers could be explored to improve patients’ 



management in the field of radiation therapy alone or in combination with systemic therapies (such as 

chemotherapies, targeted agents and immunotherapies) and are key to understand correlations between 

conventional CT or MR imaging patterns and biological pathways. The next breakthrough in machine-

learning analysis of radiomics features could be to use the information provided by this untapped resource 

of molecularly targeted compounds. These tracers can indeed be used to quantify a wide range of critical 

pathways including amino acid metabolism (18F-FET: fluor-18 Fluoro-ethyl-L-tyrosine, AMT: alpha-11C-

L-methyltryptophan, 18F-FDOPA), DNA synthesis (18F-FLT: 3'-(18F)-Fluoro-3'-deoxythymidine), 

membrane proliferation (18F-fluorocholine), angiogenesis and perfusion (H215O PET, 18F-AlF-NOTA-

PRGD2 PET, 18F FPPRGD2 PET), hypoxia (15Oxygen, 18F-FMISO: 18F-Fluoromisonidazole, 18F-FAZA: 

18F-1-(5-fluoro-5-deoxy-α-D-arabinofuranosyl)-2-nitroimidazole), and mitochondrial activity (TSPO: the 

mitochondrial translocator protein, 18F-GE-180).[155] Regarding immune contexture, surrogate CT-based 

radiomics signatures have been proposed in the literature and shown to correlate significantly with tumor-

infiltrating CD8 cells and responses of patients to immunotherapies.[14] Beyond CT-scan, new 

radiotracers have been developed to decipher immune contexture in vivo such as PD-1/PD-L1 

imaging[156], CD8 imaging[157], tumor-associated macrophages imaging[158], and interleukin-2 

imaging.[159] Therefore, the way forward could be to combine CT-scan or MR to molecularly targeted 

imaging with the ultimate goal to increase prediction performance and guide clinical care with great 

accuracy.  

The second step is to define the volume of interest, which will be used to extract imaging features 

on which machine learning methods will seek to determine prediction. The delineation process is critical 

since it determines the imaging input for RT planning (Fig. 3) and may also ultimately alter the 

performance and the generalizability of radiomics models. The accuracy of high precision image guided 

delivery techniques is hampered by potential deviations in target and OAR volume delineation (Fig. 3). 

Hence, the current development of AI-based automatic segmentation tools to allow for an objective and 

reproducible segmentation.[160-162] These solutions are based in a majority of cases on deep-learning 

networks, which have been shown to outperform multi-atlas algorithms.[163, 164] Nonetheless, the 

dosimetric and clinical impacts of automatic contours still need to be compared to the current “gold 

standard” manual contours.[165] As well, automation of treatment planning will be required to reduce 

dependence on planners’ expertise. Both steps, in addition to standardize RT treatments, will be of 

importance to increase quality of clinical data, which are vital inputs for evidence-based medicine. 

The third step of an AI-based pipeline would be an AI-assisted treatment planning, treatment 

adaptation, and post-treatment management including optimization of patients’ follow-up, individualized 

risk stratification, and personalized adjuvant therapy (Fig. 3). A vast majority of articles have evaluated 

radiomics as a prognostic tool that could be used for risk stratification using CT, MR, and 18F-FDG PET 



scans. These results suggest that a subset of imaging biomarkers that decipher tumor phenotype before 

treatment initiation could be used to detect patients with poor prognosis. These imaging biomarkers can be 

understood as surrogates for tumor vascularity, glucose metabolism, surrounding tissue infiltrativeness, 

and heterogeneity, which are biologically intuitive but need to be validated prospectively.  

Development of MR-based multi-parametric imaging treatment planning solutions will be 

accentuated from the clinical adoption of MR-Linacs. Such innovative planning and treatment 

implementation solutions could drastically change the radiotherapy landscape and might be leveraged by 

radiomics studies. MR-based dosimetry and MR-based treatment implementation open the way to 

daily/weekly non-ionizing anatomical and functional imaging, which will surely contribute to precision 

medicine.[166] Better contrast in soft tissue regions will improve accuracy in patient positioning and 

probably decrease planning target volumes margins for several cancers such as pelvic, and head and neck 

tumors.[166, 167] Additionally, possibilities in treatment adaptation based on geometrical changes, 

already permitted thanks to on-the-fly treatment planning tools, will probably help improve local control 

and decrease toxicities.[167] In adaptive MR-based radiotherapy, we can hypothesize that next steps will 

be incorporation of radiomics for modification of prescription at a certain time point depending on tumor 

response. However, intensive use of imaging on table will probably require short-time acquisitions 

possibly leading to images of inferior quality compared to diagnostic images.[168] Radiomics could still 

help in this particular field by potentializing low-quality imaging by retrieving biological content from 

noisy signals. Role of deep-learning will be interesting also in this field for image quality improvement 

and signal denoising.[169]  

Modifications in dosimetry strategies have also to be evaluated by clinical trials to validate 

hypothesis that focalized RT does not decrease local control for low risk patients and that dose escalation 

to most aggressive areas, which has been shown to slightly increase OAR doses in a theoretical dosimetry 

analysis[154] focused on prostate cancer, has a substantial impact for intermediate/high risk patients. 

Literature is scarce regarding the use of conventional radiomics for the prediction of loco-regional 

recurrence areas.[72, 170, 171] In prostate cancer, work should be pursued to understand correlations 

between multiparametric MR and associated 3D maps of voxel-based radiomics features and tissue 

categories. In brain tumors, for which a bulk resection of the tumor is often impossible, mapping of MR 

acquired at the recurrence time on pre-radiotherapy MR appears to be an alternative for developing 

models quantifying probabilities of relapse.[172] Strategies are here to be defined for dose redistribution 

and dose painting implementation.[173] A suggestion could be the deduction of TCP curves describing the 

probability of killing tumor cells as a function of the received dose and recurrence probability, and the 

implementation of optimizers maximizing patient’s tumor control probability for a prescribed dose. On 

this topic, randomized clinical trials will then have to be launched to compare patient outcome between 



conventional RT and AI-based RT. Regarding personalization of dose prescription itself, tumor response 

and toxicity prediction models will have to be translated into clinical trials in which doses will be 

personalized depending on individual risk when observational retrospective and prospective studies will 

have gained maturity. In these clinical trials, one avenue could be to adapt dose constraints, i.e. dose 

volume histograms clinical goals, to the organs at risk and the target volumes in an individualized manner. 

Tumor Control Probability (TCP)/Normal Tissue Complication Probability (NTCP) concepts[174] would 

then have to be revisited to be adapted to individual or sub-groups sensitivity. This is in line with the 

OSRT (Optimal Stopping Radiotherapy Therapy) concept[175] which aims to personalize TCP and NTCP 

curves through sequential biomarkers evaluation, with the goal to identify for each patient the optimal 

time at which to adapt or stop the radiotherapy treatment to improve the therapeutic ratio. Personalized 

TCP/NTCP curves could also be used earlier in the patient management to determine the best treatment 

option (e.g. proton vs. photon external beam radiotherapies). In particular, individualized response and 

toxicity models could feed into clinical decision support systems which have been proposed recently but 

still suffer from considering population-based radiobiological models.[176]  

The final step of future AI-based treatment pipelines would be to archive and aggregate patients’ 

data in multiple institutions so that it can be used to further improve AI models. This is necessity in order 

to address the existing pitfalls of their clinical adoption that are: standardization, random correlations vs. 

causality and robustness/generalization. Most of the existing literature has explored the potential utility of 

machine-learning of radiomics features in archived datasets in a single institution. Therefore, our insight 

and impression is that the current heterogeneous state-of-the-art is only generating hypotheses that should 

be validated prospectively since the level of evidence remains speculative. The limitation of most existing 

research is indeed the lack of quality control, standardization, sufficient sample size and the availability of 

independent dataset for testing. Another important point is the need of comparison of radiomics models to 

already existing models for not substituting simple predictors by complex combinations.[53] Finally, 

further prospective studies with external validation are needed to translate these results from bench to 

bedside. At the time at which we are publishing this paper, 32 clinical trials containing the keywords 

“radiomics” and “radiotherapy” have been reported. Only two of them (NCT0427347, NCT04278274) 

claim having already built a radiomics signature they want to validate prospectively. This approach is 

interesting and should be encouraged in the future. In spite of regulatory constraints and data protection 

rules, national and international networks initiatives have been developed recently to support precision 

medicine and AI-based and computer-aided medical programs.[177] These initiatives are of utmost 

importance to construct collaborative structured annotated databases which will be essential to build 

robust radiomics models on large cohorts, and evaluate extensively their generalizability.  



As a conclusion, this review provides an overview of new concepts, and hypotheses generating 

findings in the field of machine-learning analysis of radiomics features in cancer patients treated with 

radiation therapy. Based upon the analysis of 165 original research studies exploring the potential impact 

of radiomics on patients’ care based on CT-scan, MRI, and PET, we describe evolving research trends to 

enhance several clinical tasks such as prognostication, treatment planning, response assessment, prediction 

of recurrence/relapse, and prediction of toxicity. This work should be considered as a resource 

summarizing recent promising applications of radiomics machine-learning in radiation therapy, which 

potentially may add strong value to patient care. 

 

  

 

 

 

 

 

  



Tables and figures 

 

Figure 1. Overview of manuscripts on machine-learning analysis of radiomics features applied to 

Radiation Therapy. (A) Tumor site, (B) Clinical task, (C) Number of patients included in the study, 

(D) Number of publications per year, (E) Type of data collection (retrospective or prospective), (F) 

Data source (single center or multicenter), (G) Strategy of model performance evaluation.  

Figure 1 legend. Literature review showed increased interest over time for the radiomics field, the most 

frequent tumor site and machine learning task being head and neck cancer and prognostication 

respectively. However, most of the data used for radiomics based analysis were monocentric and 

retrospective, and performance evaluation scheme was not sufficiently rigorous for the majority of 

articles. 

 

Figure 2. Current applications of radiomics in RT.  

Figure 2 legend. Extraction of biomarkers from multimodal images acquired at different time points of the 

RT treatment (pre, per or post-RT) could help in target volume delineation, dose painting implementation, 

treatment adaptation, prognostication, treatment response and toxicities prediction and classification 

between radiation-induced toxicities and tumor progression after the end of the treatment.  

 

Figure 3. Perspective: AI-guided radiation therapy 

Figure 3 legend. In the current RT practices, multi-component data including clinical, biological, 

anatomopathological and genomic data are subjectively analyzed by physicians who prescribe a 

homogeneous dose to the target volume following a “one dose fits all” concept, i.e. the same prescribed 

dose for sub-groups of patients. Treatment plan preparation includes subjective manual segmentation and 

expert-dependent planning. During the treatment, x-ray-based repositioning is mainly used and no 

treatment adaptation is performed in a large majority of cases.  

In our vision of AI-based radiotherapy, large retrospective data collection will be explored to develop 

multi-component machine-learning models which will help in predicting response and treatment-induced 

toxicities for each patient. Based on this individualized-risk stratification, personalized doses will be 

prescribed and dose-volume histograms constraints will be adjusted. As well, AI-based planning will help 

harmonizing practices. Adaptive RT will become a standard with the democratization of MR-based patient 

repositioning. AI-assisted follow-up will allow the personalization of adjuvant therapy. Patient data and 

outcome will be continuously collected for model improvement.   

 



Figure 4. Radiomics machine learning analysis redefines tumor imaging phenotype as a surrogate of 

molecular pathways 

Figure 4 legend. This figure explains the main signaling pathways and radiotracers that currently exist in 

nuclear medicine and could be used for radiomics machine learning strategies. We have demonstrated that 

the majority of studies are focusing on imaging modalities used in clinical routine such as CT-scan, 

anatomical and functional MRI, and 18F-FDG PET/CT. However, we have to keep in mind that radiomics 

biomarkers are in fact surrogate markers of complex metabolic pathways. Beyond these mainstream 

imaging modalities, several radiotracers could be explored to improve patients’ management in the field of 

radiation therapy alone or in combination with systemic therapies (such as chemotherapies, targeted 

agents and immunotherapies). Additionally, future studies should decipher correlations between 

conventional CT or MR imaging patterns and biological pathways.  

 

Table 1. Use of radiomics and AI in radiation therapy: state of the art 

Table 1 legend. The literature search was performed by three independent readers (one per imaging 

modality). Keywords were “Radiotherapy AND (CT OR MRI OR PET) AND (Radiomics OR texture)”. 

Pubmed was the only database queried. The literature search was performed up to December 2019 for 

PET, February 2020 for CT and March 2020 for MRI. 
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Sample size Tumor type Modality Task Data collection Multicenter Validation strategy PMID Year

1412 head & neck CT ; NM prognosis retrospective no validation set 31536526 2019

1019 head & neck; lung CT prognosis retrospective yes validation set 24892406 2014

948 head & neck CT prognosis retrospective no validation set 30416044 2019

878 head & neck; lung CT prognosis retrospective yes validation set 26251068 2015

542 head & neck CT prognosis retrospective no validation set 26264429 2015

534 lung NM classification retrospective no validation set 29623375 2019

465 head & neck CT prognosis retrospective no validation set; test set 29367653 2018

358 lung NM prognosis retrospective yes validation set; test set 30173391 2019

337 lung CT prognosis retrospective no validation set 31015133 2019

312 lung NM prognosis prospective no cross-validation; test set 29494598 2018

306 head & neck NM classification retrospective no cross-validation 30622931 2019

300 head & neck CT prognosis retrospective yes validation set; test set 28860628 2018

295 lung NM prognosis retrospective no validation set 28944403 2018

293 head & neck CT prognosis retrospective yes validation set; test set 29038455 2019

284 head & neck NM prognosis retrospective no cross-validation 30549149 2019

266 head & neck MRI toxicity retrospective no validation set 31358029 2019

239 head & neck NM prognosis retrospective yes cross-validation; test set 28604368 2018

233 brain MRI prognosis retrospective no validation set 30362964 2018

230 head & neck CT segmentation retrospective no validation set 29376025 2017

224 head & neck MRI prognosis retrospective no validation set 31569054 2019

222 rectal MRI response prediction retrospective no validation set 28939744 2017

221 rectal MRI response prediction retrospective yes validation set 29891200 2018

217 oesophagus NM response prediction retrospective no validation set 26795288 2018

198 rectal MRI response prediction retrospective yes validation set 29230678 2018

189 cervix MRI classification retrospective no validation set 31252296 2019

186 rectal MRI response prediction retrospective no validation set 30128616 2019

182 lung CT prognosis retrospective no validation set 25746350 2015

178 head & neck NM prognosis retrospective no validation set 29122358 2019

176 prostate MRI classification retrospective no validation set 30917943 2019

172 head & neck NM prognosis retrospective no cross-validation; test set 28820287 2018

166 brain MRI prognosis retrospective no none 32065261 2020

165 rectal MRI response prediction retrospective no validation set 31642204 2019

161 head & neck NM toxicity prospective no validation set 28951007 2018

150 lung NM prognosis retrospective no none 29507399 2019

148 bone MRI prognosis retrospective no validation set 31668985 2019

142 cervix NM prognosis retrospective no validation set 30089896 2018



141 brain MRI prognosis retrospective no none 27502180 2016

141 NET NM prognosis prospective yes none 27705948 2019

138 lung NM prognosis retrospective yes cross-validation; test set 31158263 2019

136 rectal MRI response prediction prospective no none 30852633 2019

127 lung CT prognosis retrospective no cross-validation 27085484 2016

125 rectal MRI response prediction retrospective no cross-validation; test set 31431368 2020

122 rectal MRI response prediction retrospective yes none 27974702 2017

118 cervix NM prognosis retrospective no cross-validation 28574816 2017

118 lung NM response prediction retrospective no cross-validation; test set 29862533 2018

115 head & neck MRI classification retrospective no none 29872911 2018

114 rectal MRI response prediction retrospective no cross-validation 29514017 2018

114 rectal MRI response prediction retrospective no none 30451764 2019

113 brain NM prognosis retrospective no none 26219871 2015

112 bone MRI prognosis retrospective no validation set 31667064 2019

109 brain MRI prognosis retrospective no cross-validation 26576732 2015

108 cervix NM prognosis retrospective no validation set 28916879 2018

106 oesophagus CT toxicity retrospective no none 25670540 2015

102 cervix NM; MRI prognosis retrospective no validation set 29222685 2018

101 lung NM prognosis retrospective no cross-validation; test set 27046074 2018

101 rectal MRI response prediction retrospective no validation set 30866965 2019

100 breast MRI classification retrospective no none 26453892 2016

100 lung; cervix NM prognosis retrospective no cross-validation 29616661 2019

100 brain MRI prognosis retrospective no cross-validation 31882597 2019

98 rectal MRI response prediction retrospective no validation set 31153390 2019

97 oesophagus NM response prediction retrospective no cross-validation 27738011 2018

96 oesophagus NM toxicity retrospective no validation set 28422299 2018

93 head & neck MRI toxicity retrospective yes validation set 29958772 2018

90 head & neck NM prognosis retrospective no cross-validation 30363632 2019

90 brain MRI classification retrospective no cross-validation; test set 29531967 2018

87 brain MRI classification retrospective no cross-validation 29178031 2018

87 cervix MRI prognosis retrospective no cross-validation; test set 31907716 2020

86 rectal NM prognosis retrospective no none 29046927 2018

82 brain MRI prognosis retrospective no none 26520762 2015

82 oesophagus MRI prognosis prospective no cross-validation 31681593 2019

81 brain MRI prognosis retrospective no none 27774518 2016

81 head & neck MRI classification retrospective no none 30045324 2018

78 head & neck CT prognosis retrospective no cross-validation; test set 30087056 2019



74 rectal NM prognosis retrospective no none 26338180 2018

74 prostate MRI prognosis retrospective no none 27345946 2016

73 oesophagus NM response prediction retrospective no cross-validation 29533721 2018

72 lung NM prognosis retrospective no none 30001264 2018

70 head & neck NM prognosis retrospective no none 24042030 2016

70 head & neck MRI classification retrospective no validation set 31681588 2019

66 brain MRI classification retrospective no cross-validation 30353872 2018

65 brain MRI prognosis retrospective no cross-validation 27778090 2016

65 oesophagus NM prognosis retrospective no none 28282392 2018

63 lung NM prognosis retrospective no none 26830299 2018

63 breast MRI prognosis retrospective no none 27364695 2016

58 lung NM prognosis retrospective no none 27322376 2019

58 head & neck NM prognosis retrospective no none 31002689 2019

58 brain MRI classification retrospective yes validation set 27633806 2016

57 head & neck NM prognosis retrospective no none 27999896 2018

56 rectal MRI prognosis retrospective no none 27538267 2017

55 rectal MRI response prediction retrospective no validation set 31439226 2019

53 lung NM prognosis retrospective no none 23204495 2013

53 cervix NM prognosis retrospective no validation set 28324966 2018

53 head & neck NM classification retrospective no none 29311707 2019

53 head & neck MRI response prediction retrospective no validation set 26778191 2016

52 oesophagus NM prognosis retrospective no none 27613542 2019

52 lung NM prognosis retrospective no cross-validation 28480871 2016

52 head & neck CT segmentation retrospective no cross-validation 29559291 2018

52 brain NM classification retrospective no cross-validation 30175040 2019

52 rectal NM; MRI response prediction retrospective no none 30637502 2019

51 rectal MRI response prediction retrospective no cross-validation 31059768 2019

48 rectal MRI response prediction retrospective no cross-validation 27185368 2016

47 brain NM classification retrospective no none 27853813 2019

45 oesophagus NM prognosis retrospective no none 26738433 2018

45 lung CT prognosis retrospective no cross-validation 26907916 2016

41 oesophagus NM response prediction retrospective no none 21321270 2018

41 rectal MRI response prediction prospective no none 31030244 2019

40 head & neck; lung NM classification retrospective no cross-validation 19244009 2016

40 brain MRI prognosis prospective yes none 27557121 2016

38 brain MRI response prediction retrospective no cross-validation 31946067 2019

38 brain MRI prognosis retrospective no none 27226944 2016



37 head & neck MRI prognosis prospective no none 23151830 2013

36 lung NM prognosis retrospective no none 29312866 2018

36 cervix MRI prognosis prospective no none 29190929 2017

35 bone MRI classification retrospective no cross-validation 24065500 2013

33 prostate MRI toxicity retrospective no cross-validation 29969358 2018

33 prostate MRI toxicity prospective no none 31176433 2019

33 prostate MRI response prediction retrospective no cross-validation 30607868 2019

32 brain MRI response prediction retrospective no none 30544300 2018

30 lung NM response prediction retrospective no cross-validation 30337006 2018

30 lung NM prognosis retrospective no cross-validation 31000087 2019

30 head & neck MRI response prediction retrospective no none 27639451 2016

30 prostate MRI toxicity retrospective no none 30900614 2019

30 prostate MRI segmentation retrospective no cross-validation 24007443 2013

28 prostate MRI classification retrospective no none 30478670 2019

28 anal MRI prognosis retrospective no none 29404766 2018

27 lung NM prognosis retrospective no none 22098794 2016

27 rectal NM prognosis retrospective no none 24752672 2016

27 head & neck NM prognosis retrospective no none 25487968 2018

26 pancreas NM prognosis retrospective no none 28280617 2018

26 lung NM prognosis retrospective no none 29036692 2018

26 rectal MRI response prediction retrospective no none 28497403 2017

25 brain MRI segmentation retrospective no cross-validation 30542636 2018

24 head & neck NM prognosis retrospective no none 30306059 2018

23 prostate MRI segmentation retrospective yes validation set 27829431 2016

23 head & neck MRI response prediction retrospective no none 31493607 2019

23 brain MRI prognosis retrospective no cross-validation 25281955 2014

23 prostate MRI response prediction retrospective no cross-validation; test set 31695500 2019

22 brain MRI classification retrospective no none 25956436 2015

21 head & neck CT toxicity retrospective no cross-validation 24183861 2013

21 cervix MRI; NM response prediction prospective no none 29044908 2018

21 rectal MRI response prediction retrospective no none 30029837 2018

20 oesophagus NM response prediction retrospective no none 23219566 2013

20 cervix NM response prediction retrospective no none 23340594 2018

20 oesophagus NM response prediction retrospective no none 24089897 2018

20 oesophagus NM response prediction retrospective no none 24189128 2014

20 lung CT response prediction retrospective no none 28463166 2016

20 Pancreas CT response prediction retrospective no none 28575105 2017



20 lung CT segmentation retrospective no NA 29208513 2018

20 head & neck MRI toxicity retrospective no cross-validation 29057333 2017

20 brain MRI classification retrospective no cross-validation 32160109 2020

19 head & neck MRI response prediction retrospective no none 26834947 2016

17 brain MRI other retrospective no none 28011044 2017

16 rectal MRI response prediction retrospective no none 30374650 2019

15 lung MRI classification retrospective no none 30978707 2019

15 head & neck MRI segmentation retrospective no validation set 25442347 2014

15 rectal MRI response prediction prospective no none 25501017 2015

15 prostate MRI segmentation retrospective no validation set 14528961 2003

14 prostate MRI other retrospective no none 31126856 2019

13 prostate MRI classification retrospective no none 29415344 2018

12 rectal MRI response prediction retrospective no none 27056748 2016

10 head & neck NM segmentation retrospective no none 19683403 2009

10 prostate MRI toxicity retrospective no none 31778319 2020

8 rectal MRI response prediction retrospective no none 29119525 2018

8 bone MRI classification retrospective no cross-validation 30191445 2019

NA NA NM segmentation NA NA cross-validation; test set 27273293 2018




