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Abstract
Unveiling	 the	 intricate	 relationships	 between	 animal	 movement	 ecology,	 feeding	
behavior,	and	internal	energy	budgeting	is	crucial	for	a	comprehensive	understand-
ing	of	ecosystem	 functioning,	 especially	on	coral	 reefs	under	 significant	 anthropo-
genic	 stress.	Here,	herbivorous	 fishes	play	a	vital	 role	as	mediators	between	algae	
growth	and	coral	recruitment.	Our	research	examines	the	feeding	preferences,	bite	
rates,	inter-	bite	distances,	and	foraging	energy	expenditure	of	the	Brown	surgeonfish	
(Acanthurus nigrofuscus)	and	the	Yellowtail	tang	(Zebrasoma xanthurum)	within	the	fish	
community	on	a	Red	Sea	coral	reef.	To	this	end,	we	used	advanced	methods	such	as	
remote	underwater	stereo-	video,	AI-	driven	object	recognition,	species	classification,	
and	3D	tracking.	Despite	their	comparatively	low	biomass,	the	two	surgeonfish	spe-
cies	significantly	 influence	grazing	pressure	on	the	studied	coral	 reef.	A. nigrofuscus 
exhibits	specialized	feeding	preferences	and	Z. xanthurum	a	more	generalist	approach,	
highlighting	 niche	 differentiation	 and	 their	 importance	 in	maintaining	 reef	 ecosys-
tem	balance.	Despite	these	differences	 in	their	foraging	strategies,	on	a	population	
level,	both	species	achieve	a	similar	level	of	energy	efficiency.	This	study	highlights	
the	transformative	potential	of	cutting-	edge	technologies	in	revealing	the	functional	
feeding	 traits	 and	 energy	 utilization	 of	 keystone	 species.	 It	 facilitates	 the	 detailed	
mapping	of	energy	seascapes,	guiding	targeted	conservation	efforts	to	enhance	eco-
system	health	and	biodiversity.
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1  |  INTRODUC TION

The	 dynamics	 of	 herbivore	 consumption,	 both	 spatially	 and	 tem-
porally,	 are	 pivotal	 in	 sustaining	 ecosystem	 functioning,	 particu-
larly	 through	 their	 impact	 on	 energy	 and	 nutrient	 flows	 (Bauer	&	
Hoye,	 2014;	 Lundberg	 &	 Moberg,	 2003).	 Influenced	 by	 resource	
availability,	 feeding	 preferences,	 and	 internal	 energy	 budgets,	
these	 dynamics	 shape	 herbivore	 foraging	 strategies	 (Gordon	 &	
Prins,	2019).	Yet,	a	fundamental	question	remains	 in	ecology:	how	
do	these	factors	 interact	to	 influence	the	expression	of	 functional	
traits	in	herbivores,	and	what	is	their	relative	importance	in	this	pro-
cess	 (Bellwood	 et	 al.,	2019)?	 Even	 further,	 behavioral	 adaptations	
driven	by	metabolic	demands	have	far-	reaching	implications	for	spe-
cies	interactions,	community	dynamics,	and	ecosystem	functionality	
(Candolin	&	Rahman,	2023).	Understanding	these	linkages	is	critical	
for	predicting	ecosystem	responses	to	environmental	changes	and	
preserving	biodiversity	and	ecosystem	health	(Schlägel	et	al.,	2020).

To	 fully	 grasp	 the	 complexities	 of	 ecosystem	 functioning,	
going	 beyond	 studying	 foraging	 behavior	 is	 inevitable	 (Semmler	
et	 al.,	 2021).	 However,	 assessing	metabolic	 traits	 and	 the	 energy	
invested	 into	 certain	 behaviors	 in	 the	 field	 (e.g.	 field	 metabolic	
rates)	remains	challenging	–	especially	in	aquatic	organisms	(Treberg	
et	 al.,	 2016).	 Synchronous	 consideration	 of	 functional	 traits	 and	
metabolic	rates	presents	a	promising	approach	to	decipher	the	en-
ergetic	 foundations	 of	 species	 co-	existence	 and	 community	 inter-
actions	 (Brandl	et	al.,	2023).	These	traits	are	 inextricably	 linked	to	
an	organism's	 strategy	 for	 acquiring,	 utilizing,	 and	distributing	 en-
ergy,	 thus	 impacting	 its	 ecological	 fitness	 and	 shaping	 community	
functioning	 (Burton	et	al.,	2011;	Grémillet	et	al.,	2018).	Therefore,	
overcoming	 these	 challenges	 to	measure	 energy	 expenditure	 (EE)	
in	free-	roaming	animals	is	crucial	for	assessing	ecosystem-	level	en-
ergy	landscapes,	enabling	an	understanding	of	metabolic	constraints	
underlying	animal	movement	and	an	ecosystem's	ability	to	function	
(Shepard	et	al.,	2013).

Through	the	use	of	remote	underwater	video	(RUV),	we	can	now	
further	our	understanding	of	aquatic	herbivore	fine-	scale	feeding	hab-
its	and	their	role	in	maintaining	ecosystem	balance	(Lamb	et	al.,	2020; 
Streit	 et	 al.,	2019).	Even	 further,	with	 the	 rising	application	of	RUV	
combined	with	 advanced	AI-	driven	 object	 recognition	 and	 tracking	
capabilities	(Dell	et	al.,	2014;	Kays	et	al.,	2015),	our	capacity	to	study	
animal	 behavior	 has	 improved	 considerably.	 Particularly	 in	 aquatic	
environments,	remote	underwater	stereo-	video	(RUSV)	 in	combina-
tion	with	AI	can	meticulously	track	and	analyze	the	3D	movements	of	
foraging	animals	(Engel	et	al.,	2021;	Francisco	et	al.,	2020).	This	inno-
vative	approach	allows	for	a	broader	exploration	of	animal	behavior,	
providing	 unprecedented	 insights	 into	 foraging	 strategies,	 feeding	
habits,	and	energy	budgeting	(Nathan	et	al.,	2022).	The	resulting	high-	
resolution	data	becomes	even	more	meaningful	when	combined	with	
measurements	of	Overall	Dynamic	Body	Acceleration	 (ODBA).	This	
method	assumes	a	direct	correlation	between	an	animal's	movement	
and	energy	expenditure	(EE),	making	it	an	effective	proxy	for	estimat-
ing	metabolic	rates	in	free-	ranging	animals	(Gleiss	et	al.,	2011;	Gómez	
Laich	et	al.,	2011).	Indeed,	previous	research	has	successfully	applied	

this	method	to	study	the	relationship	between	field	metabolic	rates	
and	fitness	variations	in	wild	animals	(Grémillet	et	al.,	2018).

Herbivorous	 fishes,	 characterized	 by	 diverse	 feeding-	related	
functional	 traits,	 substantially	 contribute	 to	 herbivory	 within	 coral	
reef	ecosystems	(Green	&	Bellwood,	2009;	Kelly	et	al.,	2016; Tebbett 
et	al.,	2020).	These	fishes	play	a	key	role	in	controlling	the	spread	of	
epilithic	algal	turfs	(EAT)	and	macroalgae	fronds,	which	compete	with	
coral	colonies	for	light	and	space,	facilitating	the	settlement	of	coral	lar-
vae	and	the	eventual	recovery	of	the	reef	(Ceccarelli	et	al.,	2005; Roth 
et	al.,	2018).	Disruptions	to	this	intricate	relationship	could	significantly	
impede	 the	 recovery	 process	 of	 these	 delicate	 ecosystems	 (Hoegh-	
Guldberg	et	al.,	2007;	Pratchett,	Hoey,	&	Wilson,	2014).	Among	her-
bivorous	fishes,	surgeonfishes	are	known	for	their	ubiquitous	presence	
and	instrumental	role	in	turf	algae	removal	(Green	&	Bellwood,	2009; 
Kelly	et	al.,	2016;	Tebbett	et	al.,	2020).	A	more	 in-	depth	analysis	of	
surgeonfishes'	fine-	scale	feeding	behaviors	is	crucial	to	better	under-
standing	their	role	in	reef	resilience	(Korzen	et	al.,	2011).

In	a	coral	reef	ecosystem	influenced	by	global	changes,	our	study	
focuses	on	unraveling	 the	community-	scale	 functional	 feeding	 traits,	
as	well	as	feeding	behaviors	and	EE	of	the	two	most	dominant	graz-
ing	herbivores,	the	Brown	surgeonfish	(Acanthurus nigrofuscus)	and	the	
Yellowtail	tang	(Zebrasoma xanthurum).	Utilizing	innovative	tools	such	as	
RUSV	and	AI-	driven	multi-	object	tracking	for	measuring	EE	through	al-
lometric	scaling	and	ODBA,	our	investigation	aims	to	reveal	the	intricate	
feeding	dynamics	and	energy	utilization	patterns	of	 these	 functional	
key	species.	This	approach	is	designed	to	enhance	our	understanding	
of	their	metabolic	mechanisms	and	their	roles	within	the	broader	reef	
community,	 contributing	 to	 the	 rapid	 assessment	 of	 field	 metabolic	
rates	and	the	expression	of	functional	traits	in	fish	communities.

2  |  MATERIAL S AND METHODS

2.1  |  Study site

Sampling	was	conducted	on	 the	 reef	 located	 in	 front	of	 the	 Inter-	
University	 Institute	 for	 Marine	 Sciences	 (IUI)	 (29°30′7.0″ N,	
34°55′3.7″ E)	in	Eilat,	Gulf	of	Aqaba,	between	March	8	and	14,	2018.	
Prior	 to	 the	1970s,	Eilat's	 reefs,	nestled	at	 the	northern	tip	of	 the	
Gulf	 of	 Aqaba	 in	 the	 Red	 Sea,	 boasted	 exceptional	within-	habitat	
coral	species	diversity,	comparable	to	the	Great	Barrier	Reef's	reef	
flats	(Loya,	2004).	However,	since	the	1970s,	these	reefs	have	been	
under	persistent	anthropogenic	stress,	resulting	in	a	worrying	shift	
toward	 dominance	 by	 EAT,	 covering	 over	 70%	 of	 available	 hard	
substrates	 (Bahartan	et	al.,	2010;	Loya,	2004).	This	sustained	reef	
degradation	has	triggered	a	concerning	drop	in	the	region's	marine	
biodiversity	(Reverter	et	al.,	2020).

2.2  |  Remote underwater stereo- video surveys

To	carry	out	the	surveys,	we	deployed	three	calibrated	stereo-	video	
systems,	 each	 comprising	 two	 GoPro	 cameras	 (four	 Hero	 5	 and	
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    |  3 of 19LILKENDEY et al.

two	Hero	4),	 following	 the	methodology	 outlined	 by	Neuswanger	
et	 al.	 (2016).	 Footage	was	 shot	with	 a	 resolution	 of	 1080p	 and	 a	
recording	 rate	of	 60	 frames	per	 second	 (fps).	 To	 validate	 the	 cali-
bration	accuracy	of	our	stereo-	video	systems,	we	measured	the	dis-
tances	between	dots	on	the	front	surface	of	the	calibration	frame	
(199 mm)	across	10	different	video	 frames	and	distances	 from	the	
systems.	The	mean	absolute	errors	 (±SD)	 and	mean	absolute	per-
centage	errors	for	the	three	systems	were	5.06 ± 5.79 mm	and	2.5%,	
6.80 ± 5.20 mm	 and	 3.4%,	 and	 5.73 ± 3.17 mm	 and	 2.9%,	 respec-
tively.	Over	three	sampling	days,	we	installed	all	three	stereo-	video	
systems	at	a	single	sampling	station	each	day,	positioning	 them	at	
depths	of	2–3 m	and	approximately	10 m	apart	from	each	other.

For	each	system	placement,	sites	were	selected	based	on	the	
diversity	 of	 grazable	 substrata,	 a	 key	 factor	 for	 understanding	
the	 varied	 feeding	 strategies	 of	 herbivorous	 reef	 fishes	 and	 cat-
egorizing	different	micro-	habitats	(Green	&	Bellwood,	2009).	This	
methodological	choice	facilitated	a	detailed	analysis	of	the	impact	
of	substrata	types	on	the	foraging	behaviors	of	these	fishes	within	
their	 respective	 ecological	 niches.	 Hence,	 sites	with	 a	 heteroge-
neous	mix	 of	 benthic	 substrate	 cover	were	 preferred.	 Since	 sur-
geonfishes	exhibit	peak	grazing	rates	around	midday,	the	majority	
of	our	 filming	 took	place	between	11:00	and	15:00	 (Fouda	&	El-	
Sayed,	1994;	Montgomery	et	al.,	1989).	From	nine	rack	placements,	
we	obtained	13.5 h	of	analyzable	video	footage,	with	each	original	
video	lasting	1.75 h.

2.3  |  Assessment of benthic cover

At	 the	 start	 of	 each	 recording	 session,	 a	 1 × 1 m	 quadrat	was	 po-
sitioned	 in	 front	 of	 the	 cameras.	 To	 quantify	 the	 substrate	 cover	
within	each	quadrat,	a	long	shot	photograph	was	taken	from	above,	
capturing	 the	entire	quadrat	 in	 the	 frame.	These	 images	were	up-
loaded	to	the	program	SketchAndCalc	 (iCalc	 Inc,	Version	1.1.2),	 in	
which	the	1 × 1 m	quadrat	was	calibrated,	so	each	transformed	image	
contained	roughly	the	same	number	of	cells.	This	equated	to	~1000 
cells	per	image,	each	being	around	5 cm2.	The	images	with	the	canvas	
imprinted	 upon	 them	were	 subsequently	 exported	 and	 annotated	
with	each	form	of	substratum	–	live	coral	and	standing	dead	coral,	
bare	calcium-	carbonate/sedimentary	rock,	coral	rubble,	and	sand	–	
having	a	corresponding	color.	We	counted	the	annotated	cells	and	
calculated	relative	substrate	cover	(%).

2.4  |  Assessment of feeding dynamics

We	manually	 measured	 fish	 total	 length	 (TL;	 mm)	 and	 functional	
traits,	bite	 rate	 (bites	min−1)	as	well	 as	 the	distance	between	each	
consecutive	 bite	 (bite	 distance,	 in	 mm),	 only	 within	 the	 delimited	
quadrat	area	during	the	entirety	of	the	recorded	video	footage.	The	
initial	 15	min	 of	 each	 video	were	 discarded	 to	 allow	 for	 fishes	 to	
resume	normal	behavior	after	the	quadrat	was	removed	and	divers	
left	the	site.	The	time	at	which	a	single	fish	entered	the	area	of	the	

quadrat	to	take	bites	from	substrates	until	the	time	when	it	exited	
constituted	a	feeding	event.	For	each	feeding	event,	all	bites	were	
counted	and	then	standardized	against	time	to	obtain	bite	rates.

We	 calculated	 individual	 fish	 mass	 according	 to	 each	 species'	
length-	weight	relationship:	mass = aTLb,	where	a	and	b	for	each	spe-
cies	were	informed	from	FishBase	(see	Table	A1)	(Froese	et	al.,	2014).	
For	each	rack	placement,	fish	biomass	(g m−2)	was	calculated	by	add-
ing	all	masses	of	individuals	(from	19	species)	that	entered	the	quad-
rat	during	45 min	of	filming	to	take	bites.	With	this	information,	we	
were	able	 to	 calculate	 total	 feeding	 rates	 (bites	m−2 h−1)	 as	well	 as	
feeding	pressure	as	biomass	standardized	bites	(kg	bites	m−2 h−1)	per	
species	(Longo	et	al.,	2015).

The	 surgeonfishes	 A. nigrofuscus	 and	 Z. xanthurum	 contributed	
more	than	86%	of	all	recorded	bites,	and	were	thus	selected	as	the	
model	species	to	address	our	research	question	(Table 1,	Videos 1 
and	2).	For	each	species,	we	manually	recorded	the	substrate	type	for	
each	bite	observed	in	our	stereo-	videos.	This	detailed	data	was	then	
utilized	 to	 calculate	Manly's	 feeding	 ratios,	 effectively	 illustrating	
the	utilization	of	different	substrate	categories	by	individual	fish	in	
relation	to	the	availability	of	these	substrates	across	the	reef	(Manly	
et	al.,	2002).	The	summed	feeding	ratios	per	grazed	substrate	were	
compared	to	ascertain	feeding	preference	(%)	for	the	two	target	spe-
cies	across	the	entire	reef	(Pratchett,	Hoey,	Cvitanovic,	et	al.,	2014).	
Further,	for	the	focal	species	in	each	feeding	event	we	averaged	the	
distances	between	consecutive	bites	 to	obtain	mean	bite	distance	
(mm).	We	conducted	all	manual	measurements	 in	 the	open	source	
software	VidSync	Version	1.661	(Neuswanger	et	al.,	2016).

2.5  |  AI- driven tracking of coral reef fish

In	this	study,	we	aimed	to	achieve	AI-	driven	automated	fish	detec-
tion,	 identification,	 and	 tracking	 from	 stereo-	video	 by	 performing	
several	steps:

2.5.1  |  Calibration

Our	calibration	process	had	to	accurately	estimate	the	3D	position	
of	 objects	 using	 our	 stereo	 camera	 system.	 This	 system	 captures	
two-	dimensional	 images,	and	our	task	was	to	project	these	onto	a	
three-	dimensional	plane.	We	employed	 the	pinhole	 camera	model	
for	 this	 purpose,	 a	 standard	 approach	 in	 photogrammetry,	 which	
facilitates	 the	 projection	 of	 3D	points	 onto	 the	 image	 plane	 via	 a	
perspective	transformation.

However,	pinhole	cameras,	like	the	ones	we	used	in	our	study,	
are	 inherently	 prone	 to	 certain	 distortions.	 Radial	 and	 tangen-
tial	distortions	are	common	issues,	which	often	result	 in	straight	
lines	 in	 the	 real	world	appearing	curved	 in	 the	captured	 images.	
To	address	this,	we	first	synchronized	our	stereo-	video	image	set	
in	time	through	a	clap.	Following	this,	we	recorded	a	checkboard	
pattern	with	both	cameras,	which	is	a	standard	practice	in	camera	
calibration.
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4 of 19  |     LILKENDEY et al.

For	 the	 actual	 calibration	 in	 Matlab	 (TheMathWorks,	 Version	
R2022a),	we	utilized	Zhang's	calibration	method	(Zhang,	2000).	This	
method	is	particularly	effective	for	correcting	the	mentioned	distor-
tions	and	aligning	the	3D	and	2D	points	accurately	 (Figure 1).	The	
function	allowed	us	to	make	use	of	 the	maximum	number	of	 rect-
angles	from	the	calibration	chessboard	pattern	on	the	back	of	our	
calibration	frame.	After	calibrating	our	camera	system	in	Matlab,	we	
reformatted	the	detected	 image	points	and	calibration	parameters	
to	align	with	OpenCV's	data	representation	conventions	for	subse-
quent	processing.

2.6  |  Stereorectification

Stereorectification	 aligns	 left	 and	 right	 camera	 images	 in	 such	 a	
way	 that	 they	appear	as	 if	 they	have	been	 shifted	only	horizon-
tally.	 This	 alignment	 facilitates	 locating	 corresponding	 pixels	 in	
each	image,	which	is	crucial	for	accurately	triangulating	the	depth	
of	 the	 scene.	 The	 rectification	 was	 done	 with	 OpenCV	 (Open	
Source	 Computer	 Vision	 Library,	 Version	 4.9.0).	 The	 function	

CVstereoRectify	takes	the	projection	matrices	and	the	distortion	
parameters	of	both	cameras	as	 input.	As	output,	 it	provides	two	
rotation	matrices	 and	 two	 projection	matrices	 in	 the	 new	 coor-
dinates.	We	could	now	reassign	all	the	pixels	of	the	left	image	to	
the	right	image	to	get	a	rectified	pair	(Figure 2).	Using	this	method	
of	 calibration,	 we	 obtained	 an	 overall	 mean	 [±SD]	 absolute	 re-	
projection	error	of	0.9	[±1.9]	mm	which	corresponds	to	0.45%	of	
the	true	value.

2.7  |  Object detection

For	object	detection,	we	employed	the	You	Only	Look	Once	Version	
5	 (YOLOv5)	 convolutional	 neural	 network	 (CNN)	 (Bochkovskiy	
et	 al.,	2020).	 Initially,	 YOLOv5	was	 trained	 on	 a	 diverse	 dataset	
comprising	32,054	annotated	images,	covering	52	animal	species,	
including	 corals,	 and	 divided	 into	 80%	 training,	 10%	 validation,	
and	10%	testing	sets,	ensuring	distinct	 locations	for	training	and	
validation.	 To	 tailor	 YOLOv5	 for	 our	 specific	 requirements,	 we	
retrained	it	with	additional	background	images	from	the	Red	Sea	

TA B L E  1 Replication	details	for	the	study	on	feeding	behavior	(feeding	preferences	and	functional	traits)	and	energy	expenditure	
of	A. nigrofuscus	and	Z. xanthurum	on	a	coral	reef	in	Eilat,	Israel,	Gulf	of	Aqaba.	Energy	expenditure	assessments	were	not	conducted	
simultaneously	with	the	observation	of	feeding	behaviors.

Species
Number of individuals 
(feeding behavior)

Number of replicates 
(feeding events) Total bites

Number of trajectories 
(energy expenditure)

Acanthurus nigrofuscus 20 40 559 14

Zebrazoma xanthurum 10 72 1375 21

V I D E O  1 Zebrazoma xanthurum	taking	bites	from	the	reef	matrix	on	a	coral	reef	in	Eilat,	Gulf	of	Aqaba,	Red	Sea.
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    |  5 of 19LILKENDEY et al.

V I D E O  2 Acanthurus nigrofuscus	and	Ctenochaetus striatus	foraging	on	the	reef	matrix	on	a	coral	reef	in	Eilat,	Gulf	of	Aqaba,	Red	Sea.

F I G U R E  1 Detection	of	the	checkboard	pattern	on	the	back	of	the	calibration	frame	in	Matlab.

F I G U R E  2 The	calibration	frame	in	a	stereorectified	frame	pair	in	OpenCV.
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6 of 19  |     LILKENDEY et al.

videos,	aiming	for	precise	detection	that	differentiates	 fish	 from	
corals	 and	 other	 background	 elements.	 This	 retraining	 involved	
using	images	where	fish	were	consistently	present,	treating	mov-
ing	foreground	objects	as	noise,	and	calculating	frame	medians	for	
background	extraction.

Our	retraining	strategy	maintained	the	original	data	ratio	while	
incorporating	 10%	 of	 new	 background	 images.	 The	 goal	 was	 to	
achieve	 clear	 and	 accurate	 object	 detection,	 avoiding	 misidentifi-
cation	of	non-	fish	elements	and	reducing	computational	overhead.	
Post-	detection,	 the	bounding	boxes	generated	by	YOLOv5	served	
as	input	for	further	classification	and	stereo	matching.	This	step	in-
volved	comparing	feature	vectors	of	bounding	boxes	from	left	and	
right	camera	images	along	the	same	epipolar	line,	ensuring	accurate	
matching	and	spatial	positioning	of	detected	objects	(Figure 3).

2.8  |  Object classification

We	utilized	 iNaturalist	 (www.	inatu	ralist.	org),	 a	 social	 network	 and	
image	repository	used	by	community	scientists	globally,	to	classify	
detected	fish	species	 in	our	study	 (Shepley	et	al.,	2021;	Van	Horn	
et	al.,	2018).	iNaturalist	serves	as	a	platform	for	sharing	biodiversity	
observations,	where	users	contribute	to	the	identification	of	various	
organisms.	To	augment	training	of	our	CNN,	we	selected	research	
grade,	location-	invariant	images	of	identified	fish	species	from	this	
repository.	Due	to	iNaturalist's	limitations	on	mass	image	download-
ing,	we	employed	web	scraping	techniques	using	the	Beautiful	Soup	
Python	 library	 (Richardson,	 2007)	 and	 Selenium	 (ThoughtWorks,	
Version	 4).	 To	 comply	 with	 the	 FAIR	 (Findable,	 Accessible,	
Interoperable,	 and	 Reusable)	 data	 principles,	 we	 made	 our	 train-
ing	dataset	openly	 available	 (Lilkendey,	2023):	 https://	github.	com/	
Knoch	enfis	ch/	Funct	ional	-		and-		Metab	olic-		Trait	s-		of-		Surge	onfis	hes/	
blob/	6ece6	3aaaf	20133	084f8	e7496	0796b	37fd5	40317/		data/	iNatu	
ralist_	obser	vatio	ns_	train	ing_	datas	et.	csv

In	the	process	of	handling	the	high-	resolution	images	from	iNat-
uralist,	 we	 first	 passed	 them	 through	 our	 detection	 system.	 This	
system	primarily	cropped	the	images	to	enhance	focus	on	the	sub-
ject	 animals.	When	multiple	 bounding	 boxes	were	 detected	 in	 an	
image,	suggesting	the	presence	of	various	species,	these	instances	
required	manual	verification	 to	ensure	accuracy.	Furthermore,	we	

tackled	the	disparity	in	image	resolution	between	our	training	data-
set	 and	 the	 iNaturalist	 images.	 The	 iNaturalist	 images,	 being	 of	 a	
much	higher	resolution	compared	to	the	medium-	quality	images	our	
detector	was	trained	on,	were	scaled	down	to	match	the	resolution	
of	our	training	dataset.

However,	 the	 iNaturalist	dataset	had	 limited	 images	 (A. nigro-
fuscus:	827,	Z. xanthurum:	234),	and	therefore	we	employed	trans-
fer	 learning	using	weights	computed	 from	a	previously	 recorded	
dataset	 from	Mayotte,	 Indian	 Ocean,	 as	 a	 starting	 point	 (Villon	
et	 al.,	 2018).	 In	 this	 approach,	 we	 adapted	 a	 pre-	trained	 neural	
network	model	to	our	task,	focusing	on	four	specific	classes.	Since	
the	feature	extraction	part	of	the	model,	represented	by	the	early	
layers,	was	already	trained	on	a	 large	dataset	 for	classifying	 fish	
species,	 we	 “froze”	 these	 layers	 to	 retain	 their	 learned	 general	
features.	 This	 decision	was	 based	 on	 the	 similarity	 of	 the	 tasks	
–	 classifying	 fish	 species	 in	 both	original	 and	new	 contexts.	We	
then	modified	the	number	of	output	nodes	in	the	final	layer	from	
52	to	4,	tailoring	it	to	our	specific	class	requirements	and	enabling	
this	 layer	 to	 adapt	 to	 the	 nuances	 of	 our	 classification	 task.	 To	
account	for	the	variability	in	iNaturalist	images,	caused	by	differ-
ent	capture	conditions	and	sources,	and	to	ensure	the	robustness	
and	generalization	of	our	method,	we	implemented	a	K-	fold	cross-	
validation	strategy.

2.9  |  Multi- object tracking

Finally,	we	implemented	the	DeepSORT	framework	–	an	enhanced	
version	 of	 the	 Simple	 Online	 and	 Realtime	 Tracking	 (SORT)	 algo-
rithm	 –	 for	 multi-	object	 tracking	 (Wojke	 et	 al.,	 2017).	 More	 pre-
cisely,	DeepSORT	merges	object	detection	with	a	tracker	to	follow	
and	identify	multiple	targets	in	video	sequences.	It	employs	convo-
lutional	 neural	 networks	 to	 extract	 visual	 features	 of	 objects	 and	
embeddings	 to	 represent	 unique	 identities,	 enabling	 precise	 asso-
ciation	of	objects	across	successive	frames	and	handling	occlusions.	
Additionally,	DeepSORT	integrates	a	Kalman	filter	on	stereo-	video	
coordinates	 to	 correct	misdetections	 and	 to	 display	 the	 bounding	
boxes	continuously.	This	framework	tracked	each	bounding	box	 in	
both	 the	 left	and	 right	videos.	Triangulation	was	performed	 to	 re-
trieve	 the	 3D	 coordinates	 of	 the	 fish	 relative	 to	 the	 left	 camera,	

F I G U R E  3 Performance	of	automatic	object	detection	(a)	before	and	(b)	after	background	subtraction.
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and	 we	 applied	 denoising	 to	 remove	 any	 erroneous	 data	 points.	
Overall,	our	approach	enabled	reliable	and	automatic	object	detec-
tion	 and	 tracking	 from	 stereo-	video	 (Video 3),	 providing	 valuable	
data	for	studying	movements	of	the	two	focal	species	in	their	natu-
ral	habitats.	For	comprehensive	documentation	on	automated	fish	
length	measurements	and	the	tracking	algorithm,	refer	to	Barrelet	
et	al.	(2023).

To	 further	 optimize	 the	quality	 of	 our	 3D	 fish	 trajectory	 data,	
we	implemented	a	systematic	three-	step	process	in	R	(R	Core	team,	
Version	4.2.3):

1. Outlier Removal:	 Recognizing	 the	 sensitivity	 of	 Kalman	 filter-
ing	 to	 outliers,	 due	 to	 its	 Gaussian-	distributed	 measurement	
noise	assumption,	we	initiated	our	process	with	the	interquartile	
range	 (IQR)	 method	 for	 outlier	 detection	 and	 removal.	 IQR	 is	
a	 statistical	 measure	 representing	 the	 range	 within	 which	 the	
middle	 50%	 of	 data	 values	 lie,	 making	 it	 useful	 for	 assessing	
data	variability	and	identifying	outliers.	We	removed	data	points	
that	 fell	 below	 the	 lower	 bound	 (Q1–1.5	 *	 IQR)	 and	 above	
the	 upper	 bound	 (Q3 + 1.5	 *	 IQR)	 using	 a	 threshold	 of	 1.5	
times	 the	 IQR.	 This	 ensures	 that	 the	 filter	 operates	 optimally,	
delivering	 robust	 performance	 even	 when	 conditions	 deviate	
from	 the	norm	 (Kassam	&	Poor,	1985;	Kautz	&	Eskofier,	2015).

2. Running Median Smoothing:	We	used	the	zoo	package	to	apply	a	
5-	point	running	median	filter	(Zeileis	et	al.,	2023).	The	choice	of	
a	 5-	frame	 filter	 size,	 given	 our	 dataset's	 60 Hz	 acquisition	 rate,	
adeptly	balances	noise	reduction	and	the	preservation	of	intrinsic	

data	 features,	all	while	achieving	our	 targeted	minimum	resolu-
tion	of	10 Hz.

3. Kalman Filtering:	 Building	 upon	 the	 median-	smoothed	 data,	
we	 employed	 Kalman	 filtering,	 as	 suggested	 by	 Kalita	 and	
Lyakhov	 (2022).	A	Kalman	 filter	 is	 an	algorithm	 that	 refines	es-
timates	of	unknown	variables	over	 time	using	a	series	of	meas-
urements,	 even	 when	 these	 measurements	 contain	 noise	 or	
inaccuracies.	 It	 improves	 predictions	 by	 continuously	 updating	
them	with	 new	data	 (Welch,	1997).	 Kalman	 filtering	was	 facili-
tated	by	the	KFAS	package,	which	hinges	on	the	Gaussian	distri-
bution	assumption	of	measurement	noise	(Helske,	2017).

2.10  |  Assessment of energy expenditure from 3D 
fish trajectories

To	 quantify	 EE	we	 used	 change	 in	 velocity	 data	 obtained	 via	 the	
AI-	generated	 fish	 trajectories	 on	 the	 basis	 of	 stereo-	video	 foot-
age	(Krohn	&	Boisclair,	1994).	We	selected	a	subset	of	the	 longest	
detected	 surgeonfish	 trajectories,	 ensuring	 that	 the	 automatically	
measured	surgeonfish	individual	TL	fell	within	the	length	frequency	
distribution	 of	 each	 species	 determined	 manually	 via	 VidSync	
(Figure	A2;	Table	A1).

From	these	trajectories,	we	computed	velocity	(cm s−1)	by	mea-
suring	the	distances	a	fish	moved	between	X,	Y,	and	Z	coordinates	
between	consecutive	video	frames.	Acceleration	(cm s−2)	was	com-
puted	using	the	differences	in	velocity	between	consecutive	frames.	

V I D E O  3 Coral	reef	fishes	detected	and	tracked	automatically	through	artificial	intelligence	while	foraging	on	a	coral	reef	in	Eilat,	Gulf	of	
Aqaba,	Red	Sea.
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8 of 19  |     LILKENDEY et al.

Using	the	methodology	of	Gleiss	et	al.	(2011),	we	calculated	ODBA,	
incorporating	net	 acceleration	 to	account	 for	both	movement	and	
direction	changes	(Equation 1).

We	 implemented	 allometric	 scaling	 to	 correlate	 body	 mass	
with	 our	 ODBA	 data,	 as	 suggested	 by	 Chakravarty	 et	 al.	 (2023).	
To	 establish	 this	 correlation,	we	 utilized	 Standard	Metabolic	 Rate	
(SMR)-	mass	 relationships,	which	were	derived	 from	data	 recorded	
by	Schiettekatte	et	al.	(2022)	(https://	github.	com/	nschi	ett/	activ	ity_	
rate_	fishes/	blob/	master/	data/	data_	respi	romet	ry.	csv).	 The	 correc-
tion	factor	K	(mg O2 

−1 g−E d−1)	was	derived	from	the	intercept	of	the	
log–log	regression	of	SMR	against	body	mass,	serving	as	a	baseline	
metabolic	rate	per	unit	mass,	essential	for	accurately	scaling	the	EE	
calculations	 in	 relation	 to	 the	 specific	body	mass	and	activity	 lev-
els	of	 the	studied	species.	The	exponent	E	was	obtained	from	the	
slope	of	the	log–log	regression	line	between	log	SMR	and	log	mass.	
Our	methodology	 involved	using	the	functionally	similar	surrogate	
species,	 specifically	 Ctenochaetus striatus	 (SMR = 3.9994 × body	
mass0.7789)	and	Zebrasoma scopas	 (SMR = 3.9109 × body	mass0.6958),	
as	proxies	for	A. nigrofuscus	and	Z. xanthurum,	respectively.

To	account	for	variations	in	metabolic	rates	due	to	different	am-
bient	temperatures,	we	applied	a	temperature	correction	to	our	EE	
calculations.	We	employed	the	Q10	temperature	coefficient,	which	
quantifies	the	rate	of	metabolic	change	associated	with	a	10°C	in-
crease	in	body	temperature.	This	factor	is	crucial	for	poikilotherms,	
as	their	body	temperatures	and	metabolic	rates	can	significantly	vary	
with	their	thermal	environment	(Hill	et	al.,	2012).	We	adopted	a	Q10	
value	of	1.92,	typical	for	one	of	our	surrogate	species	Zebrasoma sco-
pas	(McFarlane,	2016),	and	set	our	reference	temperature	at	28°C,	
aligning	with	the	conditions	under	which	Schiettekatte	et	al.	(2022)	
conducted	 their	 metabolic	 studies	 in	 Mo′orea,	 French	 Polynesia.	
Our	 study	 temperature	 was	 selected	 as	 21°C,	 representing	 the	
water	temperature	at	sampling	depth.	The	Temperature	Adjustment	
Factor	was	calculated	using	Equation 2.

We	converted	metabolic	rates	to	EE	using	a	conversion	factor	of	
14.1 J mg−1 O2	based	on	Brownscombe	et	al.	(2017),	with	reference	
to	 the	established	bioenergetic	standard	for	ammoniotelic	animals	
(Elliott	&	Davison,	1975).	For	each	frame,	we	computed	EE	(W)	using	
Equation 3	where	mass	is	in	g	and	ODBA	is	unitless.

The	 culmination	 of	 this	 data	 processing	 protocol	 enabled	 cal-
culations	of	mean	velocity	and	EE	for	each	recorded	3D	trajectory:	
https://	github.	com/	Knoch	enfis	ch/	Funct	ional	-		and-		Metab	olic-		Trait	s-		
of-		Surge	onfis	hes/	blob/	6ece6	3aaaf	20133	084f8	e7496	0796b	37fd5	
40317/		output/	3D_	surge	onfish_	traje	ctori	es.	html

2.11  |  Statistical analysis

2.11.1  |  Analysis	of	benthic	cover	composition	and	
functional	feeding	traits

Spearman	 Rank	 Sum	 tests	 were	 utilized	 to	 identify	 correlations	
within	 the	 quadrat	 benthic	 cover	 composition.	 Also,	 analyses	 and	
visualizations	of	total	bites,	feeding	rates,	biomass	and	feeding	pres-
sure	at	 the	community	 level	as	well	as	surgeonfish	feeding	prefer-
ences	 were	 executed	 using	 JMP	 Pro	 (SAS	 Institute	 Inc,	 Version	
16.0.0).

All	 following	 analyses	were	 done	 in	R.	During	 initial	 data	 pro-
cessing,	 outliers	 in	 our	 data	 on	 surgeonfish	 bites	 rates	 and	 inter	
bite	distances	were	identified	and	excluded	using	the	IQR	method.	
Skewness	in	our	data	on	bite	distances	and	bite	rates	was	rectified	
through	a	logarithmic	transformation.

Six	models	were	devised	to	assess	the	influence	of	“Species”	and	
“Mass”	on	bite	rates	and	bite	distances.	These	models	were	designed	
to	account	for	the	potential	non-	independence	of	observations:

1.	 A	linear	mixed-	effects	model	(LMM)	with	“Fish	ID”	and	“Quadrat	
ID”	 as	 random	effects,	 to	 compensate	 for	 resampling	 the	 same	
individual	 and	 the	 same	 quadrat,	 respectively.

2.	 Another	 LMM	 incorporating	only	 “Fish	 ID”	 as	 a	 random	effect,	
to	address	the	potential	non-	independence	of	observations	from	
the	same	individual.

3.	 A	basic	linear	model	without	random	effects,	to	assess	the	direct	
effects	of	the	fixed	factors.

We	employed	the	Akaike	Information	Criterion	(AIC)	to	compare	
these	models,	favoring	those	with	the	best	fit.	Notably,	linear	models	
excluding	random	effects	and	using	only	“Species”	as	an	explanatory	
variable	 consistently	 showed	 the	 lowest	AIC	 values	 (Table	A2).	 In	
our	final	models,	homoscedasticity	and	normality	of	residuals	were	
visually	 assessed	 using	 Residuals	 vs.	 Fitted	 Values	 and	 Quantile-	
Quantile	(Q-	Q)	plots,	respectively.

For	exploring	correlations	between	functional	feeding	traits	(bite	
distance	 and	 bite	 rate)	 and	 environmental	 metrics,	 we	 employed	
LMMs.	These	models,	developed	with	the	lmer	function	in	the	lme4	
package	in	R	(Bates	et	al.,	2015),	 included	species	as	a	fixed	effect	
and	 individual	 fish	and	quadrat	 identity	as	nested	random	effects.	
Every	 substrate	 type	 was	 analyzed	 separately	 to	 avoid	 multicol-
linearity	(Equation 4).

2.11.2  |  Analysis	of	velocity	and	energy	expenditure

To	 ascertain	 significant	 differences	 in	 velocity	 and	 EE	 between	
the	 studied	 species,	 we	 employed	 Wilcoxon	 rank	 sum	 tests.	
Additionally,	 Levene's	 test	was	 utilized	 to	 assess	 the	 equality	 of	
variances	 in	 the	 model	 residuals.	 We	 employed	 an	 Analysis	 of	
Covariance	 (ANCOVA)	 to	 investigate	whether	 the	 slopes	 of	 the	

(1)

ODBA =
|
|
|
acceleration Xcms−1

|
|
|
+
|
|
|
acceleration Ycms−1

|
|
|
+
|
|
|
acceleration Zcms−1

|
|
|

(2)Temperature Adjustment Factor = 1.92
28

◦

C−21
◦

C

10

(3)

EE =
K × bodymassE ×ODBA × TemperatureAdjustmentFactor × 14.1Jmg−1O2

60 × 60 × 24

(4)
Functional Feeding Trait ∼ Species ID + Substrate Type + ( 1|Fish ID:Quadrat ID)
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regression	 lines,	depicting	the	relationship	between	EE	and	 indi-
vidual	 mass,	 exhibited	 significant	 differences	 between	 the	 two	
fish	species.

We	consulted	 the	 large	 language	model	ChatGPT	 (version	4.0,	
OpenAI)	 for	 two	 key	 aspects	 of	 our	 study.	 First,	 the	model	 aided	
in	 refining	our	methodology,	which	 involved	 integrating	allometric	
scaling	with	ODBA	data	obtained	from	three-	dimensional	trajecto-
ries.	Second,	ChatGPT	provided	assistance	in	English	language	edit-
ing,	enhancing	the	clarity	and	coherence	of	the	manuscript.

3  |  RESULTS

3.1  |  Benthic cover composition

The	 benthic	 cover	 of	 the	 study	 quadrats	 was	 dominated	 by	 rub-
ble,	 followed	by	dead	 corals	 (Figure	A1).	Overall,	 only	10%	of	 the	
substrate	across	all	quadrats	was	covered	by	live	coral.	In	the	study	
quadrats,	 significant	 correlations	were	 found	within	 the	 substrate	
categories,	where	benthic	 cover	 in	 rock	was	negatively	 correlated	
with	 both	 standing	 dead	 coral	 (Spearman's	 ρ = −0.7667,	 p = .0159)	
and	live	coral	(Spearman's	ρ = −0.7000,	p = .0358).	Additionally,	ben-
thic	cover	 in	sand	was	positively	correlated	with	 rock	 (Spearman's	
ρ = 0.6833,	p = .0424).

3.2  |  Community- scale functional feeding traits

Acanthurus nigrofuscus	 accounted	 for	 33.56%	 of	 total	 bites	 with	
a	 mean ± SD	 biomass	 of	 616.57 ± 767.14 g,	 a	 mean	 feeding	 rate	
of	 290.22 ± 259.07	 bites	 m−2 h−1,	 and	 a	 mean	 feeding	 pressure	 of	
298.61 ± 433.85 kg	 bites	 m−2 h−1.	 In	 contrast,	 Z. xanthurum	 con-
tributed	 52.52%	 of	 total	 bites,	 presenting	 a	 mean	 biomass	 of	
166.53 ± 142.81 g,	 a	 mean	 feeding	 rate	 of	 227.11 ± 331.15	 bites	
m−2 h−1,	 and	 a	 mean	 feeding	 pressure	 of	 52.78 ± 90.07 kg	 bites	
m−2 h−1.	 All	 other	 species	 recorded	 for	 this	 study	 contributed	 less	
substantially	 to	 total	 bites,	 feeding	 rates,	 biomass,	 and	 feeding	
pressure.	Although	certain	species	exhibited	higher	mean	biomass	
values,	such	as	Daisy	parrotfish	(Chlorurus sordidus)	with	a	mean	bio-
mass	of	2052.15 ± 1596.13 g	 and	Broomtail	wrasse	 (Cheilinus lunu-
latus)	at	915.73 ± 870.09 g,	their	overall	contributions	to	total	bites,	
feeding	rates,	and	feeding	pressure	were	lower	compared	to	the	two	
focal	species	(Figure 4).

3.3  |  Surgeonfish feeding preferences and 
functional feeding traits

In	 terms	of	grazed	benthos,	A. nigrofuscus	primarily	grazed	EAT	on	
standing	dead	coral,	whereas	feeding	preference	was	generally	more	
spread	out	across	a	range	of	substrates	in	Z. xanthurum,	led	by	EAT	
on	rock	(Figure 5).

Acanthurus nigrofuscus	 exhibited	 a	 mean ± SD	 bite	 distance	
of	 58.44 ± 32.54 mm	 and	 a	 bite	 rate	 of	 44.82 ± 25.14	 bites	 min−1. 
Conversely,	 individual	 Z. xanthurum	 exhibited	 an	 average	 bite	 dis-
tance	of	79.52 ± 42.43 mm	and	a	bite	rate	of	40.57 ± 19.08	bites	min−1. 
The	mean	 distances	 between	 consecutive	 bites	were	 significantly	
greater	for	Z. xanthurum	compared	to	A. nigrofuscus,	as	evidenced	by	
the	linear	model	(SE = 0.11914,	t = 2.37,	p = .0197)	(Figure 6).	Across	
both	species,	our	data	underscored	a	significant	negative	correlation	
between	the	percentage	of	sand	cover	and	bite	distance,	estimating	
a	decrease	of	0.05 mm	in	the	distance	of	consecutive	bites	for	each	
percent	 increase	 in	sand	cover	 (LMM,	SE = 0.01999,	df = 17.89422,	
t = −2.225,	p = .039).

3.4  |  Surgeonfish velocity and energy expenditure

The	 mean ± SD	 classification	 results	 for	 the	 tracked	 individuals	
were	 0.54 ± 0.09	 in	 A. nigrofuscus	 and	 0.78 ± 0.24	 in	 Z. xanthu-
rum. A. nigrofuscus	exhibited	a	mean	velocity	of	28.6 ± 7.64 cm s−1,	
while Z. xanthurum	displayed	a	mean	velocity	of	24.6 ± 9.46 cm s−1. 
Using	 the	Wilcoxon	 rank	sum	test	on	 individual	mean	velocities,	
the	results	showed	no	statistically	significant	difference	between	
the	two	species	 (W = 179,	p = .2931).	 In	terms	of	rates	of	EE	dur-
ing	foraging,	A. nigrofuscus	exhibited	a	mean	EE	of	21.12 ± 17.43 W,	
while Z. xanthurum	 had	 a	mean	 EE	 of	 19.95 ± 29.10 W.	 Upon	 ap-
plying	the	Wilcoxon	rank	sum	test	 to	 individual	mean	EE	values,	
a	 statistically	 significant	 difference	 was	 not	 identified	 in	 the	
mean	EE	between	the	two	species	(W = 179,	p = .2931)	(Figure 7).	
ANCOVA	revealed	that	while	mean	mass	significantly	 influenced	
EE	(F = 57.59,	p < .001),	there	was	no	significant	difference	 in	the	
slopes	of	 the	regression	 lines	between	the	two	surgeonfish	spe-
cies	(p = .596),	suggesting	a	consistent	relationship	between	mass	
and	EE	across	species.

4  |  DISCUSSION

Understanding	the	movement	ecology	and	foraging	behavior	of	her-
bivores	is	essential	for	insights	into	the	functioning	of	anthropogeni-
cally	 stressed	 ecosystems	 like	 coral	 reefs.	Herbivory	 plays	 a	 critical	
role	 in	 reef	 recovery	 (Eddy	et	 al.,	2021;	 Ledlie	et	 al.,	2007),	 yet	our	
grasp	of	how	species	exhibit	functional	feeding	traits	 in	response	to	
resource	availability	and	metabolic	constraints	within	these	changing	
ecosystems	remains	limited	(Goatley	et	al.,	2016).	By	employing	a	novel	
methodology	combining	RUSV	with	AI-	driven	3D	tracking,	we	estab-
lished	that	A. nigrofuscus	and	Z. xanthurum	are	substantial	contributors	
to	grazing	pressure	on	a	Red	Sea	coral	reef,	despite	their	relatively	low	
biomass.	Our	 results	 reveal	distinct	 foraging	behaviors	between	 the	
two	species,	characterized	by	variations	in	functional	feeding	traits,	yet	
they	maintain	comparable	rates	of	EE.	This	suggests	that	despite	dif-
ferences	in	their	foraging	strategies	and	interactions	with	the	benthic	
environment,	on	a	population	level,	both	species	achieve	a	similar	level	
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10 of 19  |     LILKENDEY et al.

of	energy	efficiency.	Such	observations	are	pivotal	 in	understanding	
the	 resilience	 and	 ecological	 strategies	 of	 herbivorous	 fishes	within	
coral	reef	ecosystems.	It	underlines	the	complexity	of	the	ecological	
roles	played	by	different	species	and	the	importance	of	the	interplay	
between	 energy	 budget	 and	 foraging	 behavior	 in	 maintaining	 the	
health	and	balance	of	coral	reef	systems.

4.1  |  Feeding dynamics of surgeonfish within the 
coral reef fish community

It	is	crucial	to	acknowledge	and	value	the	significance	of	herbivorous	
fish	 species	 that	 surpass	 predicted	 feeding	 pressure	 based	 on	 their	
biomass	alone,	as	 they	play	a	vital	 role	 in	maintaining	ecosystem	 in-
tegrity	 (Longo	et	al.,	2014).	A. nigrofuscus	alone	accounted	for	over	a	
third	 of	 the	 total	 bites	 observed,	 demonstrating	 substantial	 feeding	
activity	 despite	 its	 relatively	 moderate	 biomass	 when	 compared	 to	
other	fishes	on	the	reef	for	which	we	recorded	bites.	Similarly,	Z. xan-
thurum	contributed	over	half	of	the	total	bites,	yet	its	mean	biomass	
was	significantly	lower	than	most	other	species.	Species-	specific	mean	
feeding	rates	were	comparable	to	surgeonfish	feeding	rates	on	Heron	

Island's	near-	pristine	shallow	reefs	(ca.	240	bites	m−2 h−1),	while	feed-
ing	 pressures	 in	 both	 species	were	markedly	 higher	 than	 on	Heron	
Island	(ca.	32 kg	bites	m−2 h−1)	 (Marshell	&	Mumby,	2015).	 It	must	be	
acknowledged	 that	 these	 metrics	 are	 not	 fully	 comparable	 as	 time	
of	day	and	seasonality	also	affect	grazing	rates	in	herbivorous	fishes	
(Ferreira	et	al.,	1998;	Magneville	et	al.,	2023).	However,	our	findings	
indicate	that	both	A. nigrofuscus	and	Z. xanthurum	play	a	disproportion-
ately	large	role	in	grazing	pressure	relative	to	their	biomass,	underscor-
ing	their	importance	in	maintaining	ecosystem	balance	on	our	studied	
coral	reef.	Consistent	with	the	findings	of	Paddack	et	al.	 (2006),	our	
study	underscores	the	pivotal	role	surgeonfishes	play	in	mediating	pri-
mary	productivity	in	coral	reef	environments.

The	 foraging	 behavior	 of	 herbivores	 is	 often	 determined	 by	
various	 ambivalent	 and	 interrelated	 factors	 such	 as	 competi-
tion	 for	 resources,	 nutritional	 ecology,	 and	 physiology	 (Choat	 &	
Clements,	1998;	 Robertson	&	Gaines,	1986).	 In	 terms	 of	 foraging	
mode,	A. nigrofuscus	is	using	short	nipping	bites	and	spatulate	teeth	to	
remove	algal	matter	from	the	EAT	(Marshell	&	Mumby,	2012;	Purcell	
&	Bellwood,	1993;	Tebbett	et	al.,	2017).	Z. xanthurum,	on	the	other	
hand,	is	considered	a	browser,	cutting	off	brown	and	red	turf	algae	
along	the	thallus	(Fouda	&	El-	Sayed,	1994;	Perevolotsky	et	al.,	2020).	

F I G U R E  4 Percentage	of	total	bites	and	mean	(±Standard	Error)	feeding	rate,	biomass,	and	feeding	pressure	for	all	fish	species	recorded	
in	45 min	of	video	per	stereo-	video	rack	placement.	Footage	was	obtained	on	a	coral	reef	in	Eilat,	Gulf	of	Aqaba,	Red	Sea.
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    |  11 of 19LILKENDEY et al.

In	our	 study,	A. nigrofuscus	 exhibited	a	 specialized	 foraging	prefer-
ence	for	EAT	on	standing	dead	coral,	while	Z. xanthurum	exhibited	a	
more	generalized	grazing	strategy,	 favoring	a	variety	of	substrates	
including	EAT	covering	rock.	Z. xanthurum	is	known	to	feed	mainly	on	
shallow	rocks	covered	by	turf	algae	(Perevolotsky	et	al.,	2020),	and	
species	 of	 the	 genus	Zebrasoma	 have	morphological	 features	 that	
enable	them	to	feed	in	crevices	and	concealed	locations	to	a	much	
greater	 extent	 than	 other	 acanthurids	 (Brandl	 et	 al.,	2015).	 These	
behaviors	 suggest	 niche	 differentiation	 at	 the	 microhabitat	 scale,	
potentially	reducing	competition	and	promoting	coexistence	within	
this	 coral	 reef	ecosystems.	Such	a	high	 spatial	 complementarity	 is	
often	reported,	even	for	seemingly	similar	functional	groups	and	on	
disturbed	coral	reefs	(Brandl	et	al.,	2016;	Brandl	&	Bellwood,	2014; 
Marshell	&	Mumby,	2012).

4.2  |  Surgeonfish functional feeding traits and 
rates of energy expenditure in relation to ecosystem 
functioning

Environmental	changes,	such	as	habitat	alteration	and	climate	shifts,	
significantly	affect	 interactions	within	ecosystems,	particularly	be-
tween	 herbivores	 and	 their	 resources,	 due	 to	 changes	 in	 habitat	
structure	and	resource	availability	(Wong	&	Candolin,	2015).	In	our	
study,	we	observed	a	decrease	in	bite	distances	with	an	increase	in	
the	presence	of	sand,	a	less	favorable	foraging	substrate.	This	vari-
ability	in	foraging	behavior,	triggered	by	resource	scarcity,	provides	
insight	into	how	these	species	might	respond	to	the	ongoing	degra-
dation	of	coral	reefs.	Changes	in	how	herbivores	interact	with	their	
environment	and	express	functional	feeding	traits	can	lead	to	cas-
cading	effects	that	ripple	through	the	food	web:	These	can	manifest	

as	 top-	down	effects,	where	alterations	 in	consumer	behaviors	 im-
pact	lower	trophic	levels,	or	as	bottom-	up	effects,	where	changes	at	
lower	trophic	levels,	such	as	the	availability	of	food,	influence	higher	
trophic	dynamics	(Jochum	et	al.,	2012;	Pace	et	al.,	1999).	However,	
the	complexity	of	species	interactions	within	these	networks	makes	
it	challenging	to	predict	the	full	extent	of	these	cascading	processes	
and	 their	 ultimate	 impact	on	 community	 structure	 and	ecosystem	
functioning	(Wong	&	Candolin,	2015).

Tracing	 the	 flow	 of	 energy	 plays	 a	 pivotal	 role	 in	 understand-
ing	 ecosystem	 functioning,	 particularly	 in	 the	 context	 of	 coral	 reefs	
(Bellwood	et	al.,	2019).	The	meticulous	delineation	of	energy	budgets	
provides	important	insights	into	the	variations	in	fish	fitness	(Watson	
et	al.,	2020).	For	instance,	variable	metabolic	rates,	turnover	rates	of	
energy	from	food	into	usable	biological	energy,	can	impact	interspe-
cies	 competition,	 survival,	 and	 coexistence	 patterns	 on	 coral	 reefs	
(Clarke,	1989,	1992).	Assessing	metabolic	traits	of	fishes	can	thus	help	
in	grasping	complex,	unpredictable	outcomes	in	these	species	interac-
tion	networks	(Brandl	et	al.,	2023).	In	the	context	of	our	study	on	coral	
reef	herbivores,	EE	serves	as	an	indicator	of	the	energy	invested	into	
foraging	by	two	dominant	grazing	fish	species.	Longer	bite	distances	in	
Z. xanthurum	are	an	indication	that	the	fish	have	to	traverse	longer	dis-
tances	to	find	feeding	spots	on	a	microhabitat	scale.	Despite	differing	
foraging	behaviors,	the	similar	EE	of	these	species	suggests	potential	
variations	in	diet	nutritional	quality	or	absorption	efficiency	(Clements	
et	al.,	2009;	Schiettekatte	et	al.,	2023).	Z. xanthurum	may	also	employ	
a	more	energy	efficient	biting	physiology	than	A. nigrofuscus	(Mihalitsis	
&	Wainwright,	2024;	Perevolotsky	et	al.,	2020).	Our	results,	therefore,	
provide	direct	insights	into	population-	level	energy	use	strategies	by	
investigating	EE	and	the	functional	responses	of	fishes	to	changes	in	
habitat	quality	–	shedding	light	on	the	processes	that	mediate	compet-
itive	interactions	between	the	two	model	species	(Brandl	et	al.,	2023).	

F I G U R E  5 Feeding	preferences	of	the	two	study	surgeonfish	species	on	a	coral	reef	in	Eilat,	Gulf	of	Aqaba,	Red	Sea.	EAT,	epilithic	algae	
turf.
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12 of 19  |     LILKENDEY et al.

Ultimately,	combining	approaches	to	assess	energy	flows	across	tro-
phic	 levels	 and	 ecosystem	 scales	 will	 help	 to	 paint	 a	 more	 holistic	
picture	of	how	energy	moves	 through	aquatic	 food	webs	 (Robinson	
et	al.,	2023).

4.3  |  Automated tracking and inference of energy 
expenditure in fish

Recent	AI	advancements	have	significantly	 improved	object	 rec-
ognition	 and	 tracking,	 leading	 to	 enhanced	 accuracy	 in	 species	
identification.	However,	there's	a	need	for	developing	innovative,	
automated	approaches	and	multidimensional	data	analysis	 in	the	
fields	 of	 ecology	 and	 conservation	 (Besson	 et	 al.,	2022;	Nathan	
et	 al.,	 2022).	 Also,	 classification	 accuracy	 still	 heavily	 relies	 on	
the	 training	data's	quality	and	quantity	 (Muksit	et	 al.,	2022;	Tan	
et	 al.,	 2022).	 Our	 automated	 method	 detects	 fish	 from	 stereo-	
video	 images	on	 a	Red	Sea	 coral	 reef	 using	YOLOv5.	Employing	

pre-	trained	 EfficientNet	 CNN	 and	 fine-	tuning	 with	 a	 limited	
dataset	 from	 iNaturalist,	 we	 automatically	 identify	 fish	 species,	
achieving	an	overall	classification	accuracy	of	73%	and	showcas-
ing	 transfer	 learning's	 potential.	 Our	 classification	 performance	
for	one	model	species	was	suboptimal,	potentially	due	to	the	close	
resemblance	between	A. nigrofuscus	and	C. striatus,	which	we	also	
found	on	the	reef,	posing	a	challenge	even	for	expert	human	ob-
servers.	We	 expect	 that	 expanding	 the	 iNaturalist	 dataset	 with	
more	varied	images	will	enhance	our	system's	ability	to	accurately	
classify	 these	species.	Our	system,	capable	of	 tracking	and	clas-
sifying	 multiple	 objects,	 marks	 a	 significant	 advancement	 over	
previous	studies	lacking	species	identification	(Engel	et	al.,	2021; 
Francisco	 et	 al.,	2020).	 Our	methodology	 leveraged	DeepLabv3	
for	 the	 segmentation	 of	 fish	 within	 digital	 imagery,	 facilitating	
accurate	 measurements	 through	 3D	 localization	 and	 triangula-
tion	 techniques	 by	 pinpointing	 extremal	 points	 and	 leveraging	
Principal	Component	Analysis	 (Barrelet	 et	 al.,	2023;	Chen	et	 al.,	

F I G U R E  6 Violin	plots	of	manually	determined	bite	distances	
and	bite	rates	of	the	two	study	surgeonfish	species	on	a	coral	reef	
in	Eilat,	Gulf	of	Aqaba,	Red	Sea.	The	asterisk	indicates	a	significant	
difference.
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F I G U R E  7 Violin	plots	showcasing	mean	velocities	and	rates	
of	energy	expenditures	during	foraging,	based	on	artificial	
intelligence-	generated	three-	dimensional	fish	trajectories	for	
Acanthurus nigrofuscus	and	Zebrasoma xanthurum.	Stereo-	video	
footage	was	captured	in	Eilat,	Red	Sea,	Israel.
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    |  13 of 19LILKENDEY et al.

2018).	In	contrast,	methodologies	like	the	one	presented	by	Coro	
and	Walsh	(2021)	utilize	YOLO	for	frame-	by-	frame	detection,	rely-
ing	on	 image	characteristics	for	size	estimation	without	distance	
sensors	which	could	lead	to	less	precision	in	complex	or	overlap-
ping	scenarios.	Our	methodology	employs	DeepSORT	for	robust	
tracking,	 allowing	 for	 dynamic	 3D	 trajectory	 creation	 thanks	 to	
triangulation.	The	presence	of	noise	in	our	trajectory	data	led	to	
inaccuracies,	 necessitating	 the	 use	 of	 denoising	methods	 to	 en-
hance	data	quality.	We	adapted	YOLOv5	and	DeepSort	 for	 new	
environments	and	species,	employing	techniques	like	background	
subtraction	and	transfer	learning,	due	to	the	scarcity	of	extensive	

training	data.	The	model's	effective	adaptation	from	the	Mayotte	
dataset	 to	 the	Red	Sea,	despite	 requiring	effort,	underscores	 its	
flexibility	 and	 potential	 for	 wide-	ranging	 applications	 in	 marine	
environments.

Inference	of	EE	in	aquatic	organisms	remains	a	challenging	task	
and	metabolic	studies	conducted	in	respiratory	chambers	–	if	avail-
able	at	all	–	seldom	capture	complex	activity	patterns	observed	 in	
the	 field	 (Treberg	 et	 al.,	 2016).	 Animal	 movement	 often	 involves	
variable	 acceleration	 patterns,	 and	 tracking	 acceleration	 has	 be-
come	a	dependable	way	to	study	animal	activity	 in	the	wild	 (Yoda	
et	 al.,	 2001).	 Moreover,	 measuring	 an	 animal's	 acceleration	 in	 all	

TA B L E  A 1 Mean	(±Standard	Deviation)	total	length	(TL),	bite	distance,	as	well	as	a	and	b	(from	FishBase)	of	fish	species	recorded	taking	
bites	from	the	reef	matrix	in	Eilat,	Gulf	of	Aqaba,	Red	Sea.

Family Species TL (mm) Bite distance (mm) a b

Acanthuridae Acanthurus nigrofuscus 134.7 ± 30.1 66.0 ± 41.4 0.02455 2.97

Ctenochaetus striatus 152.4 ± 16.6 123.4 ± 164.7 0.02344 3.06

Zebrasoma desjardinii 202.9 ± 55.0 86.2 ± 4.6 0.02344 2.97

Zebrasoma xanthurum 135.3 ± 28.1 81.7 ± 48.2 0.02344 2.96

Balistidae Sufflamen albicaudatum 153.8 ± 10.7 246.9 ± 158.6 0.02570 2.94

Chaetodontidae Chaetodon paucifasciatus 108.6 ± 17.6 294.8 ± 321.6 0.02291 3.00

Chaetodon trifascialis 138.9 525.0 0.02138 2.95

Chaetodon trifasciatus 130.8 0.02344 3.06

Kyphosidae Kyphosus bigibbus 276.2 ± 51.0 197.0 ± 158.8 0.01660 2.98

Labridae Cheilinus lunulatus 336.0 ± 125.9 0.01995 3.00

Mullidae Parupeneus macronemus 131.8 ± 26.3 152.5 ± 167.4 0.00912 3.15

Ostraciidae Ostracion cubicus 95.6 42.6 0.05248 2.76

Scaridae Calotomus viridescens 178.3 105.3 0.02089 2.98

Cetoscarus bicolor 164.8 0.01445 3.03

Chlorurus sordidus 377.8 ± 8.5 126.6 ± 96.5 0.01585 3.05

Scarus ferrugineus 254.8 ± 46.7 111.7 ± 72.8 0.01445 3.00

Scarus niger 275.5 ± 81.7 55.6 ± 4.5 0.01622 3.04

Siganidae Siganus luridus 162.7 ± 53.4 39.3 ± 30.9 0.01288 2.96

Tetraodontidae Canthigaster cyanospilota 106.9 68 ± 7.8 0.02818 2.94

Independent variables Dependent variable Random effects AIC

Species + Mass Bite	rate Fish	ID + Quadrat	ID 200.5431

Species Bite	rate Fish	ID + Quadrat	ID 187.8529

Species + Mass Bite	rate Fish	ID 198.5431

Species Bite	rate Fish	ID 185.8529

Species + Mass Bite	rate 185.2544

Species Bite	rate 183.2562

Species + Mass Bite	distance Fish	ID + Quadrat	ID 218.4714

Species Bite	distance Fish	ID + Quadrat	ID 205.2367

Species + Mass Bite	distance Fish	ID 216.4714

Species Bite	distance Fish	ID 203.2367

Species + Mass Bite	distance 196.8243

Species Bite	distance 195.0681

TA B L E  A 2 Akaike	Information	
Criterion	(AIC)	values	for	linear	mixed-	
effects	models	examining	the	relationship	
between	surgeonfish	species,	individual	
mass,	and	either	bite	rate	or	bite	distance,	
with	varying	combinations	of	Fish	identity	
(ID)	and	Quadrat	ID	as	random	effects.	
The	lowest	AIC	value	is	marked	in	bold.
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three	dimensions	provides	a	valuable	proxy	to	infer	EE	while	moving	
(Wilson	et	al.,	2006).	We	are	confident	that	our	acceleration	values	
are	correct,	as	the	swimming	speeds	for	the	two	model	species	are	
well	within	the	range	of	swimming	speeds	of	other	coral	reef	fishes	
observed	using	stereo-	video	(Schiettekatte	et	al.,	2022).	We	extrap-
olated	 EE	 from	ODBA,	 calculated	 using	AI-	generated	 trajectories,	
based	on	previously	published	relationships	between	SMR	and	mass	
from	functionally	similar	species.	This	method	aligns	with	approaches	
used	in	various	studies,	such	as	Gómez	Laich	et	al.	(2011)	for	Imperial	
Cormorants	 (Phalacrocorax atriceps)	 and	 Wright	 et	 al.	 (2014)	 for	
sea	bass	 (Dicentrarchus labrax).	Chakravarty	et	al.	 (2023)	 leveraged	
past	 allometric	 research	 to	 quantify	 EE	 in	 free-	roaming	meerkats	
(Suricata suricatta)	as	a	function	of	body	size	by	deriving	SMR-	mass	
relationships	from	a	related	species,	the	dwarf	mongoose	(Helogale 
pervula).	Our	EE	values	are	consistent	with	studies	that	utilized	ac-
celeration	data	post-	calibration	with	respirometry	 in	marine	fishes	
(Brownscombe	et	al.,	2017;	Krohn	&	Boisclair,	1994),	and	are	situ-
ated	within	 the	 intermediate	metabolic	 range	 between	MMR	 and	
SMR	of	our	 surrogate	 species	 (Schiettekatte	et	 al.,	2022).	 This	 in-
dicates	the	potential	of	combining	accelerometry	and	allometry	for	
estimating	EE	in	aquatic	species,	especially	when	in-	lab	calibration	
is	not	feasible.

4.4  |  Limitations and future research avenues

Future	 studies	 should	 overcome	 our	 research's	 limitations	 for	 a	
fuller	understanding	across	varied	marine	environments.	A	notable	
constraint	was	our	 inability	 to	measure	bite	distance,	 rate,	and	EE	
for	 individual	A. nigrofuscus	 and	 Z. xanthurum,	 limiting	 our	 analysis	
to	 species-	level	 energy	 use	 strategies.	 Given	 the	 current	 reliance	
on	labor-	intensive	manual	methods	for	evaluating	functional	traits,	
there's	a	pressing	need	for	automated	systems	to	identify	and	meas-
ure	these	traits	accurately.	This	gap	in	methodology	presents	a	sig-
nificant	avenue	for	future	studies	using	methods	that	can	integrate	
these	crucial	aspects	of	foraging	behavior	and	metabolic	activity	in	
individual	 fish.	Obtaining	comprehensive	data	 is	 crucial	 for	under-
standing	the	relationship	between	feeding	behavior	and	EE	at	an	in-
dividual	level.	Additionally,	the	sample	size	in	our	study	may	not	be	
large	enough	to	represent	the	species'	general	behavior,	potentially	
limiting	 our	 findings	 to	 the	 specific	 coral	 reef	 area	we	 examined.	
Furthermore,	 integrating	 ecological	 variables	 like	 competition	 and	
predator–prey	dynamics,	along	with	direct	SMR	measurements,	will	
contribute	to	a	more	nuanced	understanding	of	herbivore	foraging	
behaviors	and	energetics.

As	AI	and	tracking	technologies	continue	to	advance,	they	will	
become	 integral	 to	understanding	ecological	processes	and	eco-
system	resilience	(Besson	et	al.,	2022).	Incorporating	AI	into	RUSV	
devices	will	 revolutionize	marine	ecology	 research	by	 streamlin-
ing	 data	 collection,	 improving	 methodological	 consistency,	 and	
expanding	 study	 scales,	 thereby	 elevating	 AI	 from	 a	 mere	 data	
recording	tool	 to	a	fundamental	aspect	of	ecological	monitoring.	
Our	approach	offers	potential	for	studying	movement	and	energy	

budgets	 of	 keystone	 species	 across	 habitats	 and	 ecosystems,	
rapidly	 assessing	metabolic	 traits	 in	 entire	 communities	 (Nathan	
et	al.,	2022).	By	analyzing	acceleration	patterns	across	communi-
ties,	we	can	deduce	“energy	seascapes”	 in	marine	environments,	
mapping	 the	 varied	 energy	 costs	 of	 foraging	 in	 diverse	 settings	
(English	et	al.,	2024;	Wilson	et	al.,	2012).	These	contributions	are	
pivotal	for	developing	ecosystem	health	indicators	and	shaping	ef-
fective	conservation	strategies	(Bograd	et	al.,	2010).	Such	knowl-
edge	is	invaluable	for	deriving	targeted	protection	and	restoration	
initiatives,	 thereby	 enhancing	 both	 biodiversity	 and	 overall	 eco-
system	functionality.

5  |  CONCLUSIONS

In	 our	 study	 conducted	 on	 a	 Red	 Sea	 coral	 reef,	 we	 leveraged	
RUSV	 and	AI-	generated	 3D	movement	 trajectories	 to	 delve	 into	
resource	use	patterns,	the	expression	of	functional	feeding	traits,	
and	rate	of	EE	–	a	key	metabolic	 trait	–	 in	 two	dominant	grazing	
fish	species.	Our	innovative	methodology	revealed	distinct	forag-
ing	behaviors	between	two	surgeonfish	species,	characterized	by	
variations	 in	 functional	 feeding	 traits,	 yet	 they	maintained	 com-
parable	rates	of	EE.	This	suggests	that	despite	differences	in	their	
foraging	strategies	and	interactions	with	the	benthic	environment,	
on	a	population	scale,	both	species	achieve	a	similar	level	of	energy	
efficiency.	This	study	underscores	the	transformative	potential	of	
technologies	like	RUSV,	AI-	driven	fish	identification,	and	3D	track-
ing	 in	 enhancing	 our	 understanding	 of	metabolic	 traits	 and	 their	
role	in	big	data-	driven	conservation	strategies.	While	our	research	
was	specific	 to	a	coral	 reef,	 it	opens	 the	door	 for	 further	studies	
to	explore	ecological	energetics	and	energy	landscapes	in	various	
ecosystems.
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F I G U R E  A 2 Total	length	frequencies	
of	the	focal	species	on	a	coral	reef	in	
Eilat,	Gulf	of	Aqaba,	measured	manually	
using	VidSync	(a)	and	measured	by	object	
recognition	driven	by	artificial	intelligence	
in	individuals	used	for	this	study	(b).

(a)

(b)
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