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Abstract— Image registration is a fundamental medical
image analysis task, and a wide variety of approaches
have been proposed. However, only a few studies have
comprehensively compared medical image registration
approaches on a wide range of clinically relevant tasks.
This limits the development of registration methods, the
adoption of research advances into practice, and a fair
benchmark across competing approaches. The Learn2Reg
challenge addresses these limitations by providing a
multi-task medical image registration data set for com-
prehensive characterisation of deformable registration
algorithms. A continuous evaluation will be possible at
https://learn2reg.grand-challenge.org. Learn2Reg covers a
wide range of anatomies (brain, abdomen, and thorax),
modalities (ultrasound, CT, MR), availability of annotations,
as well as intra- and inter-patient registration evaluation.
We established an easily accessible framework for training
and validation of 3D registration methods, which enabled
the compilation of results of over 65 individual method sub-
missions from more than 20 unique teams. We used a com-
plementary set of metrics, including robustness, accuracy,
plausibility, and runtime, enabling unique insight into the
current state-of-the-art of medical image registration. This
paper describes datasets, tasks, evaluation methods and
results of the challenge, as well as results of further analysis
of transferability to new datasets, the importance of label
supervision, and resulting bias. While no single approach
worked best across all tasks, many methodological aspects
could be identified that push the performance of medical
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image registration to new state-of-the-art performance. Fur-
thermore, we demystified the common belief that conven-
tional registration methods have to be much slower than
deep-learning-based methods.

Index Terms— Medical image registration, challenge,
evaluation.

I. INTRODUCTION

IMAGE registration is a fundamental task in medical image
analysis and has been an active field of research for

decades [1], [2], [3], [4]. Most studies that compared regis-
tration methods were focused on specific tasks or algorithmic
aspects, and did not comprehensively characterise current
approaches. With the recent success of deep learning strategies
in image analysis, the degree and dependency of algorithms
on (partially) labelled training data is often a crucial aspect in
current research. The Learn2Reg challenge aims to gain insight
into which methodological components and supervision strate-
gies are best suited for a wide range of clinically useful 3D
image registration tasks, and sets a new benchmark to evaluate
and distinguish strengths and weaknesses of task-tailored
solutions. Learn2Reg covers a wide range of anatomies (brain,
abdomen and thorax), modalities (ultrasound, CT, MR) and
auxiliary annotations (e.g. segmentation, keypoints). The chal-
lenge also includes both intra- and inter-patient registration
tasks. Due to this broad range, it serves as a unique benchmark
to evaluate the current state-of-the-art with respect to vari-
ous qualities of registration algorithms: accuracy, robustness,
plausibility and speed. Furthermore, no other medical image
registration challenge has thoroughly analysed the benefits and
shortcomings of learning- and optimisation-based strategies.
To engage a wider participation from new research groups,
Learn2Reg removes entry barriers by providing pre-processed
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and pre-aligned images with additional annotations, as well as
evaluation scripts and code for all evaluation metrics.

This overview ranks and scores results from over 65 entries
from more than 20 teams throughout 2020 and 2021. We per-
form additional experiments to analyse the robustness towards
cross-dataset transfer, the influence of the bias induced by only
labelling certain anatomical regions, and direct comparisons of
the supervision level of selected methods.

A. Related Work

In the following a brief overview of important related
work on comparing (bio)-medical image registration, and
its fundamental methodological choices that differentiate the
wide range of metrics, optimisation, and supervision is given.
General guidelines for setting up a fair and unbiased challenge
have been recently thoroughly discussed in literature [5].
These criteria were adhered to in Learn2Reg and externally
reviewed and confirmed by the MICCAI challenge team.

1) Challenges: There have previously been four prominent
challenges for medical image registration. Three challenges
focused on a single task: EMPIRE10 (lung CT) [6], CuRIOUS
(intra-operative US and MR) [7], and ANHIR (histology) [8].
Each attracted at least ten participating teams and used various
metrics for quantifying the performance. The EMPIRE10 chal-
lenge provided the most comprehensive evaluation including
distances of manual landmark pairs, fissure segmentations, and
Jacobian determinant values of the deformation field. This
challenge also required (original) participants to perform live
registrations during the MICCAI workshop in Beijing and
therefore employed a time constraint on the computations.
The Continuous Registration Challenge [9] co-organised with
WBIR 2018 aimed at combining multiple tasks from previous
benchmarks (lung CT and inter-patient brain MR). It addressed
assessing registration quality as a service but is limited to
algorithms that can be incorporated into the SuperElastix
framework and therefore had limited participation.

2) Benchmark Papers: Several papers have compared mul-
tiple registration algorithms for a given dataset. In contrast
to challenges, these benchmark papers did not have an open
workshop format that enabled wide-spread participation. Nev-
ertheless, their findings provided meaningful insights. Starting
from RIRE [10], which compared rigid-body alignment of
head MR (T1, T2), PET and CT, there have been several
brain registration benchmarks - most notably the evaluation
of 14 nonlinear iterative registration algorithms [11]. Fewer
studies analysed abdominal registration, and included the eval-
uation of six affine and non-linear algorithms on inter-patient
registration of the “beyond the cranial vault” dataset [12].
This study revealed large performance gaps and motivated our
inclusion of this dataset to study the potential benefit of super-
vised (learning-based) algorithms. The DIR-Lab datasets [13]
have been widely used to benchmark intra-patient CT lung
motion estimation and provide a leaderboard for state-of-the-
art comparison. All landmarks are publicly available, which
makes the dataset prone to overfitting on the test data.

3) Survey Papers and Baseline Methods: Surveys on con-
ventional medical image registration [2], [3] have compre-
hensively reviewed typical categories of approaches including

similarity metric, regulariser, and optimiser criteria. Due to
the strong increase in the number of deep-learning-based
registration paper in the last few years, several new surveys
have been published (e.g. [4]) extending the typical categories
with deep-learning specific categories like supervision-type
and network architecture. Moreover, the training data and
thus the registered body region and image modality are more
important for deep-learning-based methods and get more into
the focus of those survey papers. While few papers have
evaluated their proposed registration method on more than
two different registration tasks, there is a variety of public
methods SyN [14], Elastix [15], NiftyReg [16] and deeds [17],
and Voxelmorph [18] that are commonly used as baseline
or comparison methods. When comparing only among deep-
learning based methods simply re-training specific architec-
tures on new data may be insufficient. Hence the use of
a challenge benchmark that incorporates several generally
applicable baselines is essential for a fair evaluation.

B. Contributions

Learn2Reg provides both datasets and an easily accessible
benchmark for the first comprehensive evaluation of a wide-
range of methods for inter- and intra-patient, mono- and
multimodal medical registration. We introduce a complemen-
tary set of metrics, including robustness, accuracy, plausibility
and speed, that follows the principles defined by the BIAS
group [5] and could become an important data set collection
for comparing new algorithms. Further analysis of label bias
(for supervised methods), domain transfer and statistical test-
ing of significant differences across algorithms and types of
methods highlight the complementary strength and weaknesses
of learning vs. non-learning-based approaches.

II. MATERIAL AND METHODS

A. Challenge Organisation

The Learn2Reg challenge is organised by Alessa Hering,
Lasse Hansen, Adrian Dalca and Mattias Heinrich and is asso-
ciated with MICCAI 2020 and 2021. The following tasks were
included in 2020: CuRIOUS, Hippocampus MR, Abdomen
CT-CT and Lung CT. In 2021, Abdomen MR-CT and OASIS
were newly introduced and the Lung CT task was continued.
The Learn2Reg challenge consisted of two phases (mainly
organised on grand-challenge.org).

• Phase 1 - Validation Phase: The participants downloaded
the training and validation datasets and trained a regis-
tration network or tuned hyperparameters on them. The
calculated displacement fields on the validation dataset
were submitted and evaluated using grand-challenge.org.
Challenge participants were allowed to create five sub-
missions per day to this phase.

• Phase 2 - Test phase: Within one week after the test
data release, the participants had to send either the gen-
erated displacement fields to the organisers or a Docker
container containing the algorithm. A Docker submission
was preferred and made more attractive by evaluating the
runtime of the algorithm.
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Members of the organisers’ institutes could participate in the
challenge having the same data access as any other participant.
However, they were not eligible for awards. A continuous eval-
uation for test data will be possible at grand-challenge.org.1

All methods that solve at least four of the six tasks are
included into the overall ranking of this paper. To remove entry
barriers for new participants with expertise in deep learning
but not necessarily registration, the organisers provided pre-
preprocessed data. A detailed description of the used pre-
processing is given in section II-B. Furthermore, the evaluation
code for voxel displacement fields as well as an example
Docker container submissions were provided. All additional
resources can be found at the Learn2Reg repository.2

B. Tasks

Learn2Reg consists of six clinically relevant complementary
tasks (datasets). Table I summarises the dataset details, and we
discuss them in detail below.

1) CuRIOUS: EASY-RESECT [19] is a simplified sub-set
of the original RESECT dataset [20], previously used in
the MICCAI CuRIOUS challenges [21]. The dataset contains
22 training and 10 testing subjects with low-grade brain
gliomas, intended to help to develop MR vs. US registration
algorithms to correct tissue shift in brain tumour resection. For
the Learn2Reg challenge, we included T1w and T2-FLAIR
MR scans, and spatially tracked intra-operative ultrasound
volumes. All scans were acquired for routine clinical care
of brain tumor resection procedures at St Olavs University
Hospital (Trondheim, NO). Matching anatomical landmarks
were annotated between T2-FLAIR MR and 3D ultrasound
volumes [20] to enable evaluation of the registration accuracy.
During pre-processing, for each subject, the T1w scan is
rigidly registered to the T2-FLAIR scan, and both scans are
resampled to the same coordinate space as the 3D ultra-
sound volume yielding fixed voxel dimensions for all scans
(256×256×288) at an isotropic resolution of approximately
0.5 mm. The registration to be carried out for this task was
difficult for following reasons. First of all, it is a multimodal
registration between MR and US images and the US images
are typically noisier than the MR images. Furthermore, the pre-
operative MR scans show a larger region of the brain whereas
the intra-operative US volume was obtained to cover the entire
tumor region after craniotomy but before dura opening.

2) Hippocampus MR: This dataset consists of 394 MR scans
of the hippocampus region acquired in 90 healthy adults and
105 adults with non-affective psychotic disorder taken from
the Psychiatric Genotype/Phenotype Project data repository
at Vanderbilt University Medical Center (VUMC). The hip-
pocampus head and tail were manually traced in all scans.
The ability to establish correspondences for small structures
between patients is particularly important for accurate popula-
tion analysis. Previous to the Learn2Reg challenge, the dataset
was used as part of the Medical Segmentation Decathlon [22].
Due to its small volumetric size and large training dataset
with two anatomical labels, Hippocampus MR appeared to

1https://learn2reg.grand-challenge.org
2https://github.com/MDL-UzL/L2R

be a good entry-level task for learning-based registration
approaches.

3) Abdomen CT-CT: This task tackles inter-patient registra-
tion of abdominal CT scans, which enables statistical mod-
elling of variations of organs for abnormality detection, and
can provide a canonical atlas space for further investigations.
The dataset contains 50 abdominal CT scans (30/20 for train-
ing/testing) with 13 manually labelled anatomical structures:
spleen, right/left kidney, gall bladder, esophagus, liver, stom-
ach, aorta, inferior vena cava, portal and splenic vein, pancreas
and left/right adrenal gland. Data acquisition and annotation
protocols are detailed in [12]. The images were registered
affinely in a groupwise manner and resampled to the same
voxel resolution and spatial dimensions (192×160×256).

4) Abdomen MR-CT: The data was compiled from public
studies of the cancer imaging archive (TCIA) [23] that con-
tained paired scans of both MR and CT from the same patients.
In particular, 16 MR and CT scans from the following studies,
TCGA-KIRC [24], TCGA-KIRP [25], and TCGA-LIHC [26],
are included in Learn2Reg - that cover routine diagnostic scans
and follow-up imaging for kidney surgery. The data has been
resampled to an isotropic resolution of 2mm, and cropped
and padded to achieve voxel dimensions of 192 × 160 × 192.
We have also manually traced 3D segmentation masks for the
liver, spleen, left and right kidney. All scans were pre-aligned
using a groupwise affine registration based on the deeds-linear
algorithm [27]. Additional unpaired and segmented training
data from two further challenges - BCV-CT [12] and CHAOS-
MR [28], [29] - were provided for pre-training.

5) OASIS: The task employed 416 3D whole-brain MR
scans from the Open access series of imaging studies
(OASIS) [30], a cross-sectional MR data study with a wide
range of participants from young, middle-aged, nondemented,
and demented older adults. The clinical relevance of this inter-
patient registration task lies in quantitative brain analysis,
which is of utmost importance for a better understanding of
the human brain and for the analysis of various brain diseases.
Standard brain MR pre-processing including skull-stripping
(optional), normalisation, pre-alignment, and resampling was
performed. Semi-automatic labels with manual corrections of
35 cortical and subcortical brain structures were generated
using FreeSurfer [31]. For details on data curation, see [32].

6) Lung CT: The aim of the lung CT task was the reg-
istration of expiration to inspiration CT scans of the lung.
Establishing correspondences between longitudinal lung scans
can help to monitor disease progression, estimate motion in
radiotherapy planning or enable direct assessment of lung
ventilation. The data consists of 20 training [33] and 10
test scan pairs [34]. The scans were acquired at the Dept.
of Radiology at the Radboud University Medical Center,
Nijmegen, NL. All pairs were affinely pre-registered and
resampled to an image size of 192×192×208. Lung seg-
mentation masks and keypoints were provided as additional
training information. The complexity of this registration task
is manifold. First, the fields of view of the fixed and moving
scan differ largely since the lungs in the expiration scan
are not fully visible. Second, the scale of the motion within
the lungs can often be larger than the anatomical structures
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TABLE I
OVERVIEW OF ALL SIX LEARN2REG TASKS ADDRESSING THE IMMINENT CHALLENGES OF MEDICAL IMAGE REGISTRATION: MULTI-MODAL SCANS

(TASKS WITH AT LEAST TWO DIFFERENT IMAGE MODALITIES), FEW/NOISY ANNOTATIONS (LESS THAN FIVE ANNOTATED ANATOMICAL

STRUCTURES FOR TRAINING CASES), PARTIAL VISIBILITY (RESTRICTED OR CROPPED FIELD OF VIEW FOR AT LEAST ONE IMAGE OF A

REGISTRATION PAIR), SMALL DATASETS (LESS THAN 30 TRAINING CASES), LARGE DEFORMATIONS (TASKS WITH INITIAL

DISPLACEMENTS OF AT LEAST ��CM), SMALL STRUCTURES (TASKS CONTAINING CASES WITH TARGET STRUCTURES

COMPRISING LESS THAN 100 VOXELS), UNSUPERVISED REGISTRATION (NO ANNOTATIONS FOR TRAINING CASES)
AND MISSING CORRESPONDENCES (E.G. DUE TO REMOVED ORGANS, DIFFERENT FIELD OF VIEWS ETC)

(vessels and airways) themselves. Therefore, a registration
method needs to estimate large displacements that account for
substantial breathing motion and also align small structures
like individual pulmonary blood vessels precisely. To measure
the accuracy manual landmarks are used that are typically
located at the boundary or bifurcation of vessels, airways, and
parenchyma.

C. Challenge Design

To provide a comprehensive evaluation of the registration
performance, we consider a number of complementary met-
rics (see section II-C.1) that assess the accuracy, robustness,
plausibility, and speed of the algorithms. For final task ranks,
we further consider the significance of differences in results.
The detailed ranking scheme is described in section II-C.2.
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1) Metrics:
a) DSC: The Dice similarity coefficient (DSC) measures

the overlap of two sets of segmentation labels (on the fixed
and warped moving scan).

b) DSC30: To assess robustness, the DSC30 metric con-
siders the 30th percentile in DSC scores over all anatomical
structures and cases.

c) DSC9: DSC9 is a special metric introduced for the
Abdomen MR-CT task, to asses the effect of label bias. It is
evaluated on 9 additional anatomical labels, that were not
available during training.

d) HD95: The Hausdorff distance (HD) indicates the
maximum distance in a metric space (here: Euclidean space,
distance specified in millimetres (mm)) between two sets of
surfaces (segmentation labels on the fixed and warped moving
scan). For a robust score, we consider the 95th percentile
instead of the maximum distance (HD95).

e) TRE: The target registration error (TRE) is defined
as the euclidean distance (in millimetres (mm)) between
corresponding landmarks in the warped fixed and moving
scan.

f) TRE30: Similar to the DSC30 score the TRE30 metric
collects the 30th percentile of largest landmark distances.

g) SDlogJ: The plausibility (smoothness) of a displace-
ment field is captured using the standard deviation of the
logarithm of the Jacobian determinant (SDlogJ) of the dis-
placement field [35], [36]. The Jacobian is calculated by a
central differencing approximation.

h) RT: In addition, we are able to measure the test-time
registration runtime (RT) on the same hardware (CPU: Xeon
Silver 4210R, GPU: Quadro RTX 8000), when methods are
submitted as a Docker container. Start and stop times are the
loading of the first scan and writing of the displacement field
to disk, respectively.

2) Ranking Scheme: The ranking scheme is based on the
ranking scheme of the Medical Decathlon.3 We rank meth-
ods using statistically significantly different results. For each
metric applied in a task, methods are compared against each
other (Wilcoxon signed rank test with p<0.05), ranked based
on the number of “won” comparisons and finally mapped
to a numerical metric rank score between 0.1 and 1 (with
possible score sharing). A task rank score is then obtained
as the geometric mean of individual metric rank scores. All
methods for which no metric is available (not submitted to the
task, no Docker container submitted) share the lowest possible
metric rank score of 0.1.

III. CHALLENGE ENTRIES

In 2020, ten teams submitted their solutions. The total
number of teams increased to 21 in 2021. Counting the
submissions task-wise results in 65 unique challenge entries.
Table II provides a summary of important information. Below
is a brief description of each of the 21 submissions. For more
details, please refer to the respective articles in the proceedings
of the MICCAI Learn2Reg workshops.

3http://medicaldecathlon.com

3Idiots �: Reference [37] employs deep-learning-based
approach using a hybrid similarity loss consisting of intensity
(SSD), statistical (MI), and label-based (Dice+L1) penalties.
A Voxelmorph [38] model with an increased number of feature
channels and halved output resolution is trained in a patch-
wise manner and applied to the OASIS task.

Bailiang �: Reference [39] addresses OASIS and is
based on the DeepRegNet framework from Project-MONAI.
The input of the encoder is the concatenation of fixed and
moving images. A dense vector field (DVF) is predicted
from summing over different level decoders and integrated
using scaling and squaring. The loss function is composed
of LNCC, MIND-SCC, Dice, and a diffusion regulariser.
https://github.com/BailiangJ/learn2reg2021_task3

ConvexAdam �: Reference [40] proposes a decou-
pling of deep learning for semantic feature extraction and
the conventional optimisation. They combine a single-level
dense discretised displacement correlation with large cap-
ture range and convex global optimisation with a local
gradient-based instance refinement using the Adam opti-
miser. The method is applied to all six tasks and uses dif-
fusion regularisation, an inverse-consistency constraint, and
MIND similarity. The method extends the input features
to learned label-supervised representations for inter-patient
tasks: Abdomen CT-CT, Hippocampus MR, and OASIS.
https://github.com/multimodallearning/ConvexAdam

corrField �: A faster implementation (from [41]) of
the corrField method [42] is introduced as a non-learning
based unsupervised baseline. The method estimates sparse
correspondences on image-based Förstner keypoints with
exact message passing on a minimum spanning tree. MIND-
SSC features are used for the similarity term. https://grand-
challenge.org/algorithms/corrfield/

Driver �: Reference [43] uses a dual-encoder UNet
backbone with separated multi-scale feature extractors that
comprises Deformation Field Integration (DFI) and non-rigid
feature fusion (NFF) modules. It produces multi-scale sub-
fields that progressively align fixed and moving features. The
overall framework comprises a rigid transform network and MI
or LNCC similarity, weak label-supervision and regularisation.

Epicure �: Reference [44] addresses the lung CT task
using an iterative registration approach based on the Elastix
toolbox [15] optimising the object function that is composed
of the NCC similarity and a bending energy penalty term.

Estienne �: References [45] and [46] combines a dif-
feomorphic symmetric spatial transformer network with a
embedding merging step, that eases the learning by subtract-
ing the embeddings of separately encoded fixed and mov-
ing scans and thereby leveraging the prior knowledge that
swapped inputs should yield negated velocity fields. They
extend the label-based pre-training by including additional
public datasets with at least partial overlap in segmenta-
tion classes, using segmentation masks produced by a CNN.
https://github.com/TheoEst/abdominal_registration

Gunnarsson �: Reference [47] proposes an end-to-end
learning-based 3D registration method inspired by the PWC-
Net [48]. The method estimates and refines a displace-
ment field from a cost volume at each level of a CNN
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TABLE II
METHODOLOGICAL OVERVIEW OF ALL LEARN2REG METHODS. AN ENTRY IN THE TABLE INDICATES AGREEMENT WITH THE CORRESPONDING

HEADING. UNSUPERVISED AND SUPERVISED CHALLENGE ENTRIES ARE MARKED WITH A � AND • SYMBOL IN THE Tasks SUBGROUP. IF A

CHALLENGE ENTRY USES DIFFERENT APPROACHES FOR DIFFERENT TASKS OR MIXES THEM WITHIN THE METHOD (E.G. DEEP

LEARNING + INSTANCE OPTIMISATION) WE MARKED THE PROPERTY WITH A � SYMBOL. ALL BASELINE METHODS ARE MARKED

WITH AN *. FOR DETAILED DESCRIPTIONS OF THE METHODS SEE SECTION III AND THE ASSOCIATED REFERENCES

downsampling pyramid and is supervised by a similar-
ity (NCC) and/or segmentation (DICE) loss, as well as a
smoothness penalty. The network is trained and evaluated
on scan pairs from the four tasks of the 2020 challenge
(CuRIOUS, Lung CT, Abdomen CT-CT and Hippocam-
pus MR). https://github.com/ngunnar/learning-a-deformable-
registration-pyramid

Imperial �: Reference [49] uses Image-and-Spatial
Transformer Networks (ISTN) as the backbone of their
method. In the ISTN, the fixed and moving images are
first separately processed by the ITN to generate a seg-
mentation mask and a feature map of the input image.
Subsequently, both feature maps are used by the STN to
predict the displacement field. The loss function consists of
a structural-guided and image similarity and a regularisation
loss. https://github.com/biomedia-mira/istn

Joutard �: Joutard addresses the Abdomen CT-CT task
with a weakly supervised deep learning approach. A CNN
extracts features from the fixed and moving image, which
are concatenated with their spatial image coordinates. The
feature distributions for each spatial location are then matched

between the two images which yield a correspondence matrix
from which the average displacement can be derived. The
network is supervised by a segmentation (Dice) and a reg-
ularisation (L2 norm on gradients) loss.

LapIRN �: References [50] and [51] propose an image
registration method based on Laplacian pyramid registration
networks to overcome the large inter-and intra-variations of
anatomical structures in the input scans. For the 2021 tasks
(Abdomen MR-CT, OASIS and Lung CT), [51] extended
their initial approach [50] by adding a conditional module
that enables the input of the regularisation hyperparameter so
that the different solutions for different hyperparameter values
can be captured by a single convolutional neural network.
https://github.com/cwmok/Conditional_LapIRN

LaTIM �: Reference [52] addresses the Abdomen CT-CT
tasks using an iterative technique exploiting vector-valued
directional image representations. The method is implemented
within the Elastix framework.

Lifshitz �: Reference [53] proposes a deep-learning-
based solution for the Lung CT task that comprises a 3D
extension of ARFlow [54] with multi-resolution warping,
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displacement correlation, and flow estimation. To address
edge-preservation of sliding motion an unrolling of the total
variation (L1) regularisation loss using variable substitution is
proposed.

lWM �: lWM employs a deep-learning-based registration
method for the Hippocampus MR and the OASIS task. For the
Hippocampus MR task, they use sequential deformation field
composition, while the solution for the OASIS task uses an
image pyramid separately applied to both input images and
a UNet with residual blocks. The objective function includes
MIND, Dice, inverse consistency and diffusion losses.

MEVIS �: The submission of MEVIS [55], [56] solves
all tasks besides the Hippocampus MR task using a conven-
tional method and build on cost functions and losses made up
from several terms that are selected for the specific task. The
method use a coarse-to-fine multi-level iterative registration
scheme where a Gaussian image pyramid is generated for
both images to obtain downsampled and smoothed images.
On each level, a quasi-Newton L-BFGS optimisation is used.
For the Hippocampus task, a deep learning approach with a
weakly supervised trained UNet is applied using the same cost
function as in the conventional approach.

Multi-brain �: Reference [57] uses groupwise, fully
unsupervised registration techniques based on Bayesian mod-
elling and Gauss-Newton optimisation, which learns priors
over image intensities and spatial tissue classes. The method
requires no pre-processing of the imaging data and does not
utilise label information. The method is applied to Abdomen
MR-CT, OASIS, and Lung CT. https://github.com/WTCN-
computational-anatomy-group/mb

NiftyReg �: [16] is applied as conventional baseline for
all tasks without label supervision using NCC for CuRIOUS
and otherwise MIND as similarity metric. Both bending and
Jacobian regularisation penalties are applied and the number
of pyramid levels is restricted to yield competitive run times.
https://github.com/KCL-BMEIS/niftyreg

PDD-Net �: The PDD-Net [58], [59] is used as a
baseline method. It uses a deformable convolutional network
to extract image features and compute a six-dimensional
dissimilarity tensor (three spatial + three displacement dimen-
sions). A smooth displacement field is obtained from the
dissimilarities by mean field inference over spatial dimen-
sions and approximated min-convolutions over displacement
dimensions. The method is adapted to four challenge tasks
(CuRIOUS, Hippocampus MR, Abdomen CT-CT, and Lung
CT). https://github.com/multimodallearning/pdd_net

PIMed �: PIMed uses a multi-slice segmentation network
that yields anatomical maps and is employed for Abdomen
MR-CT and Abdomen CT-CT in conjunction with a NCC loss
and optimised using 1) a translation only and 2) a diffeomor-
phic deformation model. They adapt a residual VoxelMorph
model with weak supervision for OASIS. For lung CT, they
apply a conventional method with geodesic density regression
and adaptation of intensities to lung tissue density [60].

Thorley �: The submission from the University of Birm-
ingham (UoB) team tackled the OASIS task using an iterative
coarse-to-fine registration scheme, optimizing the classical
SAD difference term and a third-order diffusion displacement

regularizer. Additionally, they decomposed the transformation
into the composition of a series of small non-stationary
velocity fields, and solved the convex optimization using the
Nesterov accelerated ADMM [61] with closed-form solutions.
An additional post processing step using a UNet supervised
with dice and diffusion loss was used to further refine the
displacement fields produced by the iterative optimization.

Winter �: Winter addresses the Abdomen MR-CT,
OASIS and Lung CT task by employing a conventional
method for Lung CT and a attention-based deep-learning-
based registration method for Abdomen MR-CT and OASIS
brain. For the Abdomen MR-CT task, a two-step approach
is applied that first aligns the provided ROI masks.
https://github.com/WinterPan2017/ADLReg

IV. ADDITIONAL EXPERIMENTS

A. Label Bias

Previous publications on learning-based registration have
already discussed the possibility of bias towards anatomies
that are used both for training and evaluation [38]. While this
bias is intrinsic to all segmentation approaches, registration is
often used as a more generalistic tool in clinical applications
that may require accurate alignment of structures that are not
defined a priori. To study the effect of adding anatomical
labels to the evaluation that were not present during method
development and training, we extended both abdomen tasks.
For the inter-patient CT-CT registration we included the duo-
denum with the manual annotations provided by [62], for the
intra-patient MR-CT task we extended the predominantly large
organs by five smaller ones: gallbladder, stomach, aorta, portal
vein, pancreas (semi-automatically generated using a nnUNet
trained on the VISCERAL gold corpus [63]).

B. Unsupervised Registration

The top-performing methods are all modular in their use
of segmentation labels for supervision. As analysed in the
label bias experiment, there is a risk of over-fitting registration
performance to the chosen subset of manually annotated
anatomies. We, hence, compared the unsupervised counter-
parts of the following methods: LapIRN and ConvexAdam.
ConvexAdam already uses an unsupervised method for all
three intra-patient tasks, and LapIRN for CuRIOUS and Lung
CT. Therefore the additional comparisons are restricted to the
abdomen and brain.

C. Transferability

A robust registration method should work well for all scan
pairs regardless of acquisition parameters and thus on com-
parable datasets. A limitation of deep-learning-based methods
might be that they reach higher accuracy on the dataset they
are trained on and show a considerable loss of accuracy on
other data. As in [64] and [65], we evaluate the transferability
of methods submitted to the lung CT-CT task by registering
the DIRLab 4DCT [13] scan pairs. The scans are preprocessed
in the same way as the scans of the lung CT-CT task.
The evaluation is based on the target registration error of
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TABLE III
CURIOUS

TABLE IV
HIPPOCAMPUS MR

TABLE V
ABDOMEN CT-CT

the landmarks and the smoothness of the deformation field.
Furthermore, this experiment allows comparison to a variety
of other lung registration methods, as the DIRLAB data set
is often used as a benchmark (please note that the reduced
resolution leads to a general deterioration of TRE of ∼0.3mm).

V. RESULTS

A. Challenge Outcome

In this section, we will first present each task separately and
subsequently the eight methods that are included in the overall
ranking. Tables III to VIII give the numerical results and the

TABLE VI
ABDOMEN MR-CT

TABLE VII
OASIS

scores for each algorithm for each task averaged over the
anatomical structures/landmarks and number of scan pairs that
were registered for that task. The algorithms are listed in order
of their final placement per task. Standard deviations of final
rank scores are calculated using jackknife resampling [66].
Fig. 1 shows boxplots illustrating the distribution of the accu-
racy (TRE and Dice) of the different methods for each task.
Furthermore, for selected task (Abdomen MR-CT, OASIS, and
Lung CT), a bubble chart combines the accuracy, smoothness,
and runtime metric.

1) CuRIOUS: Four methods were submitted to this task
in addition to the three baseline methods. For two of these
methods, some cases caused negative outliers and the average
TRE was worse than the initial TRE (c.f. Table III). Only
the registration of the two baseline methods corrField and
PDD-Net as well as the ConvexAdam method led to a consid-
erable reduction in TRE from 6.38 mm to 2.84 mm, 3.08 mm,
and 3.31 mm, respectively.

2) Hippocampus MR: In this task, all algorithms consistently
performed very well (median Dice > 0.7). Nevertheless, there
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Fig. 1. Boxplots and (selected) bubble charts visualising the results for the six challenge tasks. While the boxplots show the main accuracy metric
(DSC and TRE, respectively), the bubble charts combine the accuracy, smoothness and runtime metric (a larger bubble means a faster runtime).
Arrows (↑, ↓) indicate the favourable direction of metrics. Comparison methods are color coded: ConvexAdam , LapIRN , MEVIS , corrField ,
NiftyReg , PDD-Net , PIMed , Gunnarsson , lWM , Estienne , Joutard , Driver , LaTIM , Winter , Imperial , Multi-brain ,
3Idiots , Thorley , Bailiang , Epicure , and Lifshitz . Methods are sorted according to final rank scores.
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Fig. 2. Exemplary qualitative results for selected methods and tasks. Top row: Overlay of coronal abdominal MR (gray) and warped CT (color) slices.
Middle row: False-negative (green) and false-positive (yellow) voxels of propagated segmentation labels on transversal slices of the OASIS dataset.
Bottom row: Coronal slices of difference images between exhale and warped inhale lung CT scans (including exhale (blue circle) and warped inhale
(red cross) landmarks).

TABLE VIII
LUNG CT

is a performance gap between algorithms using label super-
vision (LapIRN, MEVIS, ConvexAdam, and Estienne) and
unsupervised methods (NiftyReg, PDD-Net and corrField).
However, despite label-supervision, the methods of IWM and
Gunnarsson perform comparably to unsupervised methods.
This is the only task that enabled sub-second runtimes.

3) Abdomen CT-CT: In this task, a clear three-way partition
of the algorithms appears. The methods of Estienne, LapIRN,

and ConvexAdam achieved a Dice Score of 0.67-0.69 across
the eight individual organs and thus at least a 0.2 higher Dice
Score then all other participants. The midfield includes the
unsupervised methods MEVIS, corrField, and PDD-Net and
the supervised method PIMed which achieve a Dice Score of
0.49-0.51. The final group is formed by the methods Joutard,
NiftyReg and Gunnarsson with a Dice Score of 0.40-0.45. This
structure can also be found in the other accuracy measures
DSC30 and HD95. All methods, apart from NiftyReg and
Gunnarsson, have a runtime of fewer than 10 seconds.

4) Abdomen MR-CT: In the abdominal MR-CT task, the
algorithms can also be divided into three groups based on
the median Dice Score (c.f. Fig. 1). The leading group can
be further divided into the algorithms that achieve a similar
Dice Score on the segmentations provided in the training as
on the nine unknown organ segmentations (ConvexAdam and
corrField) and those that show a performance loss on the nine
unknown organs (LapIRN, PIMed, MEVIS). This division is
also reflected in the variance of the achieved Dice Scores.
In respect of runtime, PIMed stands out in this task with a
runtime of approximatly one minute. In Fig. 2, exemplary
qualitative registration results are shown.

5) OASIS: The OASIS inter-subject brain task attracted the
most learning-based solutions. The results are summarised
in Table VII and visualised in Fig. 1 showing that most
of these methods achieve very similar results in terms of
Dice Score for the cases with the highest scores (Dice of
80-90%). The differences are primarily in the more difficult
cases and thus in the DSC30 score, where the LapIRN,
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TABLE IX
OVERALL RANK SCORES OF METHODS SUBMITTED TO FOUR OR MORE TASKS

ConvexAdam, and the methods of Driver and 3Idiots methods
perform slightly better than for example PIMed and Winter.
The conventional methods of MEVIS and corrField achieve
mid-ranked accuracies and have a higher runtime. Fig. 2 shows
an example transversal slice of the fixed image overlayed with
the false-negative segmented voxels (green) and false-positive
segmented voxels (yellow) for initial moving segmentation
and the propagated segmentations by the methods of Imperial,
PIMed, and LapIRN. All methods were able to align the small
structures of the brain with only very small visible differences.

6) Lung CT: This task was carried out in both years because
in 2020 only the MEVIS, which uses automatically computed
keypoints as additional metric, achieved a TRE of less than
2mm (1.72mm), while other teams performed considerably
worse (e.g. LapIRN 3.24mm and PDD-Net 2.46mm). In 2021,
keypoint correspondences were provided for training and the
submissions improved, with six teams (corrField, Convex-
Adam, MEVIS, LapIRN, LaTIM, Liftschitz) achieving a TRE
of less than 2mm. Compared to the other tasks, the runtime in
the lung CT task is considerably longer for several algorithms
due to the additional time needed to compute keypoints or
perform instance optimisation. Fig. 2 visualises the difference
images of an example coronal slices for the methods of Driver,
ConvexAdam, and MEVIS overlayed with manual landmarks.

7) Overall Ranking: Table IX gives the overall rank scores
of the eight methods submitted to four or more tasks. Addi-
tionally, we separately listed the scores for inter- and intra-
patient registration tasks. ConvexAdam was among the top
three on each task (winning Abdomen CT-CT and Abdomen
MR-CT) and ranked first overall. The GPU-acceleration brings
down computation cost of this optimisation-based method
to a few seconds for 3D registration and that is why it
consistently achieves high scores for the run time in addition
to the very good quality scores. LapIRN reached the overall
second rank and yielded the best result for Hippocampus MR
and OASIS. This demonstrates that a well-designed convolu-
tional feed-forward network (instance optimisation was used
only for CuRIOUS and Lung CT) can outperform conven-
tional approaches in particular for inter-patient tasks. MEVIS
achieved the third place overall, with top ranks in particular
for Lung CT and Hippocampus MR based on a combination
of NGF metric, curvature regularisation, and L-BFGS optimi-
sation with additional learning components only employed for
the brain task. CorrField uses no label supervision at all, but

relies on highly optimised graph-based registration, and comes
fourth overall winning two individual tasks: CuRIOUS and
LungCT. It is the best method for intra-patient registration.
PIMed’s method achieves strong performance on Abdomen
MR-CT and OASIS and generalises well to Abdomen CT-CT.

B. Additional Experiments

1) Label Bias and Unsupervised Registration: When eval-
uating the influence of supervision with anatomical labels,
we found a clear distinction between intra- (Abdomen
MR-CT) and inter-patient registration (Abdomen CT-CT, Hip-
pocampus and OASIS), see Table IX. The former shows
nearly no advantage of including such information and it is
therefore possible to avoid a risk of overfitting towards certain
anatomies. The latter, however, shows a clear deterioration in
accuracy when excluding structures from training that are used
for evaluation. CorrField (unsupervised) achieves the highest
scores for intra-patient registration trails nearly all learning-
based methods on the remaining inter-patient tasks. LapIRN
trained without Dice loss (i.e. without anatomical knowledge)
improves upon those results and achieves very strong results
for OASIS and Abdomen CT-CT. This indicates that a large
training database and an advanced deep learning architecture
may narrow the gap between supervised and unsupervised
approaches. We evaluated ConvexAdam for Abdomen CT-CT
in three settings, each time evaluating on 8 test labels: 1)
all 13 labels in training (DSC=69%), 2) 4 labels in training
(DSC=55%) and 3) no labels in training (DSC=45%). This
shows that partial supervision clearly leads to improvement of
those identical anatomies but can also help to align nearby
structures: aligning the esophagus which was excluded as
label from training improved by 16% points (likely through
the guidance of liver and aorta) and pancreas overlap was
increased by 12% points (possibly by including portal vein
and adrenal gland). As mentioned in Sec. V-A training on
4 and evaluating on 9 abdominal organs for MR-CT fusion
results in a moderate performance gap between supervised and
unsupervised methods.

2) Transferability: We were able to show that the three
best methods of the lung registration task also perform very
well on the DIRLab dataset (MEVIS 1.22 mm, ConvexAdam
1.31 mm, and corrField 1.34 mm) without further hyperpara-
meter adaptations. Since the inspiration and expiration images
of the DIRLab dataset are extracted from a 4DCT dataset with
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shallow breathing, the registration task is probably easier than
the Learn2Reg lung CT task. This might explain the lower
TRE values on the DIRLab dataset compared to the Learn2Reg
lung task (improved TRE of 0.46 mm, 0.48 mm, and 0.41 mm
for MEVIS, ConvexAdam, and corrField, respectively). Due to
the preprocessing and the reduced resolutions, the Learn2Reg
methods achieve slightly worse results than state-of-the-art
methods evaluated on the DIRLab dataset. For example, the
method of MEVIS as part of their complete registration
pipeline and applied to the original images reaches a TRE
of 0.94 mm [67]. LapIRN achieves similar results on both
datasets (Learn2Reg lung CT 1.98 mm and DIRLab 1.98 mm)
showing that the best deep-learning-based methods can also be
successfully applied to other datasets without retraining.

VI. DISCUSSION

A. Reducing Entry Barriers

By pre-processing each dataset to the same dimensions and
isotropic resolution and providing anatomical annotations for
training data wide participation was achieved from research
groups across the world. The OASIS inter-subject brain task
attracted the most learning-based solutions, which highlights
the importance of large, labelled training datasets for deep-
learning registration and mirrors the focus of recent research.
Lung CT intra-patient registration was addressed by the same
number but more diverse set of methods, including con-
ventional, fully deep-learning-based, and hybrid approaches.
Some aspects of medical image registration, including affine or
rigid pre-alignment, dealing with differences in field-of-view
of voxel resolutions, and the processing of very high-resolution
scans have been omitted due to our challenge design and could
be addressed in future.

B. Task Specific Results

In general, it is difficult to find the exact reasons why one
or the other method performed better or worse in the various
tasks. Nevertheless, there are some relevant patterns that can
be identified. In the CuRIOUS task, the three methods using
a dense discretised displacement correlation (ConvexAdam,
corrField and PDD-Net) cope best with the difference in
the field of view of the input images. In the case of the
Hippocampus MR task, the learning-based methods perform
considerably better. This can be explained by the fact that
the structures used for the evaluation were also available
in the training data set, so that the learning-based methods
were specialised in the alignment of these structures during
the training. A similar result was observed on the OASIS
and Abdomen CT-CT task. The OASIS dataset has already
been used in the past in various training-test splits by several
groups to develop and test the registration algorithms, so that
consistently good results were to be expected and which
became true for both deep-learning based and conventional
methods. On the Abdomen CT-CT dataset, it is difficult to
explain the large performance difference of a nearly 0.2 higher
Dice. A successful strategy for inter patient registration can
be identified in the ConvexAdam method. Instead of using the
segmentations directly in the training of a registration network,

a segmentation network is trained. This is used to first generate
the segmentations on new data and then to utilise them in
the cost function of the optimisation-based registration. In the
Abdomen MR-CT task, we found that using a Dice loss for
certain structures can lead to overfitting on these structures
and therefore the registration network might not registering
other structures as well. Furthermore, it has been shown that
a multimodal distance metric, as used by most participants,
is essential. Successful strategies for lung registration seem to
be the use of keypoints and the combination of deep learning
registration + instance optimisation. Gunnarsson’s learning-
based method performs worse in comparison, this is most
likely due to the fact that a common network was trained
for the Lung CT, Abdomen CT-CT and Hippocampus MR
tasks showing that task-specific solutions might be beneficial.
Nevertheless, this result shows that a registration network is
capable of solving very different tasks at the same time.

C. Comparison of Learning- vs Optimisation-based
Registration

We argue that Learn2Reg has helped to demystify common
beliefs of fundamental differences between learning- and opti-
misation registration. First and foremost, there is virtually no
difference in computational speed. GPU-acceleration brings
down computation cost of optimisation-based methods to a
few seconds for 3D registration, i.e. the extraction of features
using CNNs often outweighs optimisation times. Furthermore,
we see a clear trend that learning on segmentation labels is pri-
marily beneficial for inter-subject registration. For Abdomen
CT-CT for instance large improvements of 20%points in Dice
overlap compared to previous work [12] could be achieved
using Dice losses. All three highest ranked approaches employ
a combination of DL and optimisation: LapIRN primarily
uses a deep network, but add instance optimisation for Lung
CT, MEVIS mainly use conventional optimisation but a DL
network for Hippocampus MR, and ConvexAdam combines
discrete optimisation with UNet-based semantic features for
inter-patient tasks. Our current challenge design did not con-
sider any computational constraints (GPU memory, runtime
on CPU), which might limit the practical impact for some
applications and should be considered in future studies.

D. Algorithmic Design Choices

There are no direct ablation studies possible for the used
architectures and loss functions since each method differs in
multiple aspects (see Table II), but some general trends are
visible nonetheless. Most approaches use a combination of
contrast-invariant intensity metrics (LNCC, NGF and MIND)
as well as a Dice loss for tasks where anatomical labels are
available. To address larger motion (all tasks expect brain)
DL registration methods employ multi-scale (and residual)
architectures, multiple warps or often dense correlation layers.
Two-stream approaches that process both input scans indepen-
dently are commonplace to deal with multimodality or contrast
variations.
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E. Comparison to Baselines

We evaluated two conventional methods, NiftyReg [16]
and corrField [42] (using the GPU implementation of [41]),
and two learning-based approaches, PDD-Net [58] and the
original VoxelMorph [38] as baselines. The latter two were
only applied to a subset of tasks. NiftyReg achieves reasonable
accuracies but falls behind supervised methods on inter-patient
tasks. The original VoxelMorph variant reaches an average
Dice overlap of 76.88%±2.17 % for OASIS (7th-10th place
based on DSC alone) and a TRE of 7.51±3.43 mm for
lung CT (13th place). When trained on a large additional
lung dataset [64] a TRE of 1.71±2.86 mm was achieved
for the additional DIRLAB lung experiment for which the
best performing methods in this challenge achieved 1.3 mm.
PDD-Net achieved a second rank for CuRIOUS and fifth
place for Lung CT. CorrField achieved the best scores overall
for CuRIOUS and LungCT and second place for Abdomen
MR-CT, making it stand out as the best performing intra-
patient approach (without supervision). This demonstrates that
conventional methods are still very competitive for datasets
without strong label supervision.

F. Plausibility of Transformations

We analysed the smoothness of transformations with respect
to the log-standard deviation of Jacobian determinants for
all experiments. While this measure is far from perfect,
it enabled a ranking of different solutions to the inherently
ambiguous nonlinear registration task that may achieve similar
accuracy with large differences in complexity (the common
assumption being: the smoother transform is then preferable).
As visualised in Fig. 1 there is a tendency that more accurate
solutions are also smoother, which indicates that enforcing
regularity is an effective means of avoiding overfitting and
improves robustness. Some notable exceptions can be found
for lung CT, where Imperial appears to suffer from too low
regularisation while PDD-Net and PIMed may have reduced
accuracy in exchange for overly smooth fields. A potential
explanation for the positive correlation of smoothness and
accuracy could be the hypothesis that accurate methods are
able to establish strong (correct) correspondences at relevant
anatomies and extrapolate as smooth as possible in uncertain
areas. That means putting emphasis on either surfaces (e.g.
based on segmentation estimates) or geometric keypoints (for
lung scans) can be beneficial.

G. Limitations of the Challenge Design

We have identified a number of limitations that should be
addressed in future studies. First, for computational reasons the
training of algorithms was performed offline by participants.
This could introduce a bias when additional data is used by
certain teams that is not accessible to others and prevents the
use of larger datasets that cannot be made public due to privacy
concerns. Enabling docker-based training or fine-tuning of
models directly at grand-challenge.org would be desirable.
Second, the amount of available annotated training data varied
across tasks and made in particular intra-patient tasks harder
for learning-based approaches. Unfortunately, the problem is

that large datasets are often not publicly available and therefore
cannot be used in this type of challenge. Decoupling anatomi-
cal feature learning from patient-wise optimisation could be a
next step, e.g. by providing training data for airway and fissure
segmentation for lung CT. The registration accuracy cannot
be measured directly but must be evaluated via auxiliary
metrics such as the overlap of segmentation masks which dis-
regards the plausibility of correspondences along the surface
or within the structure. While this is an inherent problem in
evaluating image registration, this issue can be mitigated by
generating further manual annotations for certain structures.
The provision of all segmentation classes for training that
were used for testing is in our opinion the most problematic
limitation of this challenge. This was due to the fact, that for
3 out of 4 tasks with segmentation labels these annotations
were already publicly available prior to Learn2Reg and we
considered it in-transparent to simply not point participants to
their availability. We aimed to mitigate the influence of over-
fitting towards labelled anatomies by performing additional
experiments for partial supervision. And finally, statements
about the quality of the registration algorithms can only be
generalised to a limited extent, but apply mainly to the selected
tasks.

H. Impact and Clinical Adoption

With regard to the five-year-old survey on medical image
registration by [3], we can reflect that the shift from surface- to
intensity-based registration has somewhat been reverted with a
majority of approaches employing segmentation-based overlap
or keypoints as driving force. The establishing of learning-
based strategies, including hybrid approaches that decouple
semantic feature extraction from optimisation or combine
feed-forward networks with instance optimisation, can be seen
as an important new trend. To assess the likelihood of adopting
registration in clinical practice, we are encouraged to see that a
number of previous obstacles have been successfully addressed
by the participants. First, robustness against variations in
scanner protocol and patient characteristics was shown to be
very high for top-ranking methods that tackled both multi-
centric MR studies (OASIS) as well as the transferability issue
for lung CT. Second, run times have been considerably reduced
to a few seconds, which will enable clinicians to interact with
algorithmic solutions by adjusting hyper-parameters, e.g. the
strength of regularisation in near realtime (this holds only
true for DL-based methods if they are either decoupled or
trained with conditioning cf. [51]). Third, it became clear that
highly nonrigid transformations are as well solved as rigid
alignment, opening up the promise for clinical applications
in image-guided surgery/radiotherapy. In fact, it appears as if
pre-alignment remains an active problem in particular for DL
solutions.

VII. CONCLUSION

The Learn2Reg challenge was the first to evaluate a wide-
range of methods for various inter- and intra-patient as well
as mono- and multimodal medical image registration tasks.
The main goal was to provide a standardised benchmark on
complementary tasks with clinical impact and a platform for
comparison of conventional and learning-based medical image
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registration methods. We established a low entry barrier for
training and validation of 3D registration, which helped us
compile results of over 65 individual method submissions
from more than 20 unique teams. Although registration is
highly dependent on the task, two methods (ConvexAdam and
LapIRN) and a baseline method (corrField) were shown to
work robustly on all tasks with only minor adjustments to
the hyperparameters. The submission of MEVIS also works
robustly for all tasks. It should be noted, however, that
they use a deep-learning-based method for the hippocampal
tasks. Furthermore, several teams (Estienne, PIMed, Driver,
3idiots, Multi-brain LaTIM, Lifshitz and Imperial) have sub-
mitted tailored solutions to individual tasks and achieve very
good results with it. Our additional Transferability experiment
(c.f. section V-B) gives a tentative indication that the con-
ventional methods ConvexAdam, MEVIS, and corrField can
be directly applied to new data sets without much loss of
accuracy. Furthermore, we demystified the common belief that
conventional registration methods have to be much slower than
deep-learning-based methods. Nevertheless, with LapIRN a
deep-learning-based registration method achieves state-of-the-
art registration results within seconds. We could not identify
any architecture that was advantageous over others. In our
experiments, it was found that for deep-learning-based meth-
ods using a Dice loss for inter-patient registration is partic-
ularly useful and instance optimisation helped increasing the
accuracy for intra-patient registration. The results presented in
this paper initially apply to the submitted methods on the six
data sets used in this challenge. However, they may provide a
reference for further research on additional data sets. With the
Learn2Reg challenge, we have created a dataset for comparing
future registration papers. Furthermore, the dataset has the
potential to allow the development of dataset-independent and
self-configuring registration methods.
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