An example of medical treatment optimization under model uncertainty

Orlane Le Quellennec¹, Alice Cleynen^{1,2}, Benoîte de Saporta¹ and Régis Sabbadin³

¹IMAG, Univ Montpellier, CNRS, Montpellier, France ²John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia ³Univ Toulouse, INRAE-MIAT, Toulouse, France

June 30, 2023

A medical context

How can these issues be addressed in a simplified problem ?

¹Data from IUC Oncopole, Toulouse, and CRCT, Toulouse, France

Markov Decision Process (MDP²)

- * $s \in \mathcal{S}$ the state space
- * $a \in \mathcal{A}$ the action space
- * $\ensuremath{\mathcal{P}}$ the transition matrix
- $c(s_t, a_t)$ the cost function

²ML Puterman (1994). "Finite-horizon Markov decision processes". In: Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley-Interscience, pp. 78–9.

Markov Decision Process (MDP²)

- * $s \in \mathcal{S}$ the state space
- * $a \in \mathcal{A}$ the action space
- * $\ensuremath{\mathcal{P}}$ the transition matrix
- $c(s_t, a_t)$ the cost function

²ML Puterman (1994). "Finite-horizon Markov decision processes". In: Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley-Interscience, pp. 78–9.

Markov Decision Process (MDP²)

- * $s \in \mathcal{S}$ the state space
- * $a \in \mathcal{A}$ the action space
- * $\ensuremath{\mathcal{P}}$ the transition matrix
- $c(s_t, a_t)$ the cost function

²ML Puterman (1994). "Finite-horizon Markov decision processes". In: Markov Decision Processes: Discrete Stochastic Dynamic Programming. New York: Wiley-Interscience, pp. 78–9.

State transition

The transition matrix is partially known

Table: Transition matrix when patient has no treatment ($a = \emptyset$).

$s_t \setminus s_{t+1}$	(0, 0, 0)	(1, 0, 1)	(1, 0, 2)	(1, 1, 1)	(1, 1, 2)	(1, 2, 1)	(1, 2, 2)	(1, 3, 1)	(1, 3, 2)	(2, 4, 0)
(0, 0, 0)	$p^{\emptyset}_{(0,0,0)}$	$p^{\emptyset}_{(1,0,1)}$	$p^{\emptyset}_{(1,0,2)}$	0	0	0	0	0	0	0
(1, 0, 1)	0	0	0	1	0	0	0	0	0	0
(1, 0, 2)	0	0	0	0	0	0	1	0	0	0
(1, 1, 1)	0	0	0	0	0	1	0	0	0	0
(1, 1, 2)	0	0	0	0	0	0	0	0	1	0
(1, 2, 1)	0	0	0	0	0	0	0	1	0	0
(1, 2, 2)	0	0	0	0	0	0	0	0	0	1
(1, 3, 1)	0	0	0	0	0	0	0	0	0	1
(1, 3, 2)	0	0	0	0	0	0	0	0	0	1
(2, 4, 0)	0	0	0	0	0	0	0	0	0	1

State transition

The transition matrix is partially known

Table: Transition matrix when patient has treatment ($a = \rho$).

$s_t \setminus s_{t+1}$	(0, 0, 0)	(1, 0, 1)	(1, 0, 2)	(1, 1, 1)	(1, 1, 2)	(1 , 2 , 1)	(1, 2, 2)	(1,3,1)	(1, 3, 2)	(2, 4, 0)
(0, 0, 0)	$p^{\rho}_{(0,0,0)}$	$p^{\rho}_{(1,0,1)}$	$p^{\rho}_{(1,0,2)}$	0	0	0	0	0	0	0
(1, 0, 1)	1	0	0	0	0	0	0	0	0	0
(1, 0, 2)	1	0	0	0	0	0	0	0	0	0
(1, 1, 1)	1	0	0	0	0	0	0	0	0	0
(1, 1, 2)	1	0	0	0	0	0	0	0	0	0
(1, 2, 1)	0	0	0	1	0	0	0	0	0	0
(1, 2, 2)	0	0	0	0	1	0	0	0	0	0
(1, 3, 1)	0	0	0	0	0	0	0	1	0	0
(1, 3, 2)	0	0	0	0	0	0	0	0	1	0
(2, 4, 0)	0	0	0	0	0	0	0	0	0	1

The list of costs:

- Treatment: 300
- Disease 1: 200
- Disease 2: 300
- Death: 1000

Policy π

Let $f : S \to A$ for all $s \in S$ is a decision rule. A sequence of decision rules $\pi = (f_0, f_1, \dots, f_{H-1})$ is a policy.

Policy cost and value function

$$J_H(\pi, s) = \mathbb{E}\left[\sum_{t=0}^{H-1} c(s_t, a_t) | \pi, s\right]$$
$$V_H(s) = \inf_{\pi \in \Pi} J_H(\pi, s)$$

The list of costs:

- Treatment: 300
- Disease 1: 200
- Disease 2: 300
- Death: 1000

Policy π

Let $f : S \to A$ for all $s \in S$ is a decision rule. A sequence of decision rules $\pi = (f_0, f_1, \dots, f_{H-1})$ is a policy.

Policy cost and value function

$$J_H(\pi, s) = \mathbb{E}\left[\sum_{t=0}^{H-1} c(s_t, a_t) | \pi, s\right]$$
$$V_H(s) = \inf_{\pi \in \Pi} J_H(\pi, s)$$

Optimization criterion

$$V^{\star}(s_{t}) = \min_{a \in \mathcal{A}} [c(s_{t}, a_{t}) + \sum_{s_{t+1} \in \mathcal{S}} \mathcal{P}(s_{t+1}|s_{t}, a_{t})V^{\star}(s_{t+1})]$$

Q-learning^{3,4} algorithm

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/BF00992698.

Q-learning^{3,4} algorithm

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/BF00992698.

Q-learning^{3,4} algorithm

$$Q_{n}(s_{t}, a_{t}) = (1 - \alpha)Q_{n-1}(s_{t}, a_{t}) + \alpha[c(s_{t}, a_{t}) + \min_{a_{t+1} \in \mathcal{A}} Q_{n-1}(s_{t+1}, a_{t+1})]$$

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/BF00992698.

Q-learning^{3,4} algorithm

³Christopher J. C. H. Watkins and Peter Dayan (May 1992). "Q-learning". In: <u>Mach. Learn.</u> 8.3, pp. 279–292. ISSN: 1573-0565. DOI: 10.1007/BF00992698.

A bayesian approach

<u>Remark</u>:

- $P(.|s = (0, 0, 0), a = \emptyset) \sim \mathcal{M}(p^{\emptyset}_{(0,0,0)}, p^{\emptyset}_{(1,0,1)}, p^{\emptyset}_{(1,0,2)})$
- Conjugate distribution : $f(p^{\emptyset}|\Theta^{\emptyset}) \sim \mathcal{D}(\theta^{\emptyset}_{(0,0,0)}, \theta^{\emptyset}_{(1,0,1)}, \theta^{\emptyset}_{(1,0,2)})$

Bayes-Adaptive Markov Decision Process (BAMDP⁵)

- * $s^+ \in \mathcal{S}^+$ the hyper-state space
- * \mathcal{P}^+ the transition matrix

+
$$\Theta_{t+1} = \Theta_t + \Delta^{a_t}_{s_{t+1}}$$
, with

$$\Delta_{s_{t+1}}^{a_t} = \begin{cases} 1 & \text{if } (s = (0, 0, 0), a_t, s_{t+1}), \\ 0 & \text{else.} \end{cases}$$

⁵Michael O'Gordon Duff (2002). **"Optimal learning: Computational procedures for Bayes -adaptive Markov decision processes".** PhD thesis. University of Massachusetts Amherst.

Bayes-Adaptive Markov Decision Process (BAMDP⁵)

- * $s^+ \in \mathcal{S}^+$ the hyper-state space
- * \mathcal{P}^+ the transition matrix

•
$$\Theta_{t+1} = \Theta_t + \Delta^{a_t}_{s_{t+1}}$$
, with

$$\Delta_{s_{t+1}}^{a_t} = \begin{cases} 1 & \text{if } (s = (0, 0, 0), a_t, s_{t+1}), \\ 0 & \text{else.} \end{cases}$$

Optimization criterion

$$V^{\star}(s_t, \Theta_t) = \min_{a \in \mathcal{A}} [c(s_t, a_t) + \sum_{\substack{s_{t+1}^+ \in \mathcal{S}^+}} \mathcal{P}^+(s_{t+1}^+ | s_t^+, a_t) V^{\star}(s_{t+1}, \Theta_{t+1})]$$

⁵Michael O'Gordon Duff (2002). **"Optimal learning: Computational procedures for Bayes -adaptive Markov decision processes".** PhD thesis. University of Massachusetts Amherst.

A model-based method

Bayes-Adaptive Monte-Carlo Planning (BAMCP⁶)

with $h_t = (s_0, a_0, s_1, \dots, s_{t-1}, a_{t-1})$,

⁶Arthur Guez, David Silver, and Peter Dayan (2012). "Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search". In: <u>Advances in Neural Information Processing Systems</u>. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.

10 / 13

A model-based method

Bayes-Adaptive Monte-Carlo Planning (BAMCP⁶)

with $h_t = (s_0, a_0, s_1, \dots, s_{t-1}, a_{t-1})$,

⁶Arthur Guez, David Silver, and Peter Dayan (2012). **"Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search"**. In: <u>Advances in Neural Information Processing Systems</u>. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.

10 / 13

A model-based method

Bayes-Adaptive Monte-Carlo Planning (BAMCP⁶)

with $h_t = (s_0, a_0, s_1, \dots, s_{t-1}, a_{t-1})$,

⁶Arthur Guez, David Silver, and Peter Dayan (2012). "Efficient Bayes-Adaptive Reinforcement Learning using Sample-Based Search". In: <u>Advances in Neural Information Processing Systems</u>. Ed. by F. Pereira et al. Vol. 25. Curran Associates, Inc.

10 / 13

The optimal policy exact cost: 888.89

Simulated patients	Q-learn	ing	BAMCP		
	Cost	Time	Cost	Time	
10^{2}	1427.06 ± 1.05	0.07 sec	1302.58 ± 1.32	2.07 hours	
10^{3}	936.96 ± 0.70	2.48 min	1297.64 ± 1.32	2.22 hours	
10^{4}	936.93 ± 0.70	4.17 min	NC	4 days	
10^{6}	891.6 ± 0.68	10.21 min	NC	1.5 years	

Mathemathical framework Model-free method Model-based method

MDP model	\rightarrow	PDMP ⁷ model
Finite state space	\rightarrow	Continuous state space
Markovian	\rightarrow	Semi-Markovian
Complete observations	\rightarrow	Hidden observations

Unlike model-free methods and deep reinforcement learning, **bayesian approaches** do not require as much interaction with the environment.

⁷Mark H. A. Davis (1984). "Piecewise-Deterministic Markov Processes: A General Class of Non-Diffusion Stochastic Models". In: Journal of the Royal Statistical Society Series B (Methodological) 46, pp. 353–376.

