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Abstract
To our knowledge, the analysis of convergence rates for persistence diagram estimation from
noisy signals had predominantly relied on lifting signal estimation results through sup norm (or
other functional norm) stability theorems. We believe that moving forward from this approach
can lead to considerable gains. We illustrate it in the setting of Gaussian white noise model. We
examine from a minimax perspective, the inference of persistence diagram (for sublevel sets fil-
tration). We show that for piecewise Hölder-continuous functions, with control over the reach of
the discontinuities set, taking the persistence diagram coming from a simple histogram estimator
of the signal, permit to achieve the minimax rates known for Hölder-continuous functions.

Introduction

Motivation

Inferring information from noisy signals is a central subject in statistics. Specifically, the recovery of
the whole signal structure has been extensively studied by the non-parametric statistics community.
When the signal is regular (e.g; belonging to a Hölder, Sobolev or Besov space) rigorous minimax
study as long as tractable optimal procedures has been provided, forming a nearly exhaustive bench-
mark. For an overview, see Tsybakov (2008).
When facing more irregular signals, typically signals that are only piecewise continuous, the prob-
lem becomes significantly more difficult. Motivated by applications, later works have attempted to
explore this case. For an overview, refer to Qiu (2005). However, proposed methods suffer from
certain limitations : strong additional knowledge assumptions (e.g. suppose to known the number
of jumps, their locations or their magnitudes), restrict to low dimensional cases (only univariate or
bivariate signals), high computational costs or lack of rigorous and general statistical guarantees
over the risk. Additionally, due to the strong sensibility to point-wise discontinuity of the sup norm,
these works only consider L2 (or sometimes Lp, p < +∞) metric (less sensitive to topology). All
these problematic points motivate the exploration of looser descriptors that can be inferred more
easily.

In the last two decades, Topological Data Analysis has emerged as a powerful approach, offer-
ing new geometric tools for characterizing complex signals. Among these tools, persistent homology
has garnered significant attention. Represented through persistence diagrams (or barcodes), it has
proven to be a versatile descriptor, valuable from both practical and theoretical standpoints. Recent
research has focused on the estimation of such representations, opening up exciting opportunities
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to explore the statistical aspects of Topological Data Analysis. In this context, the model that
has received the most attention is the density model, initiated by the work of Bubenik and Kim
(2006) in a simple parametric setting. Subsequently, efforts have been made to extend this model
to wider, non-parametric settings. Notable contributions include the work of Balakrishnan et al.
(2012), which addresses the estimation of Betty numbers for smooth manifolds with different noise
models, and Fasy et al. (2014), who provide confidence sets for persistence diagrams in a similar
context. Additionally, Chazal et al. (2014) provide a minimax estimator while controlling the reg-
ularity of the density support.
The study of non-parametric regression or the Gaussian white noise model remains relatively un-
explored in the context of Topological Data Analysis. Advancements in this direction include the
works of Bubenik et al. (2009) and Bobrowski et al. (2017), as well as more recent contributions,
such as those by Perez (2022), albeit in a different direction.
The general approach followed in most of these works (except Bobrowski et al. (2017)) involves es-
timating the signal (or density), quantifying the estimation error in sup-norm, Hausdorff distance,
or Gromov-Hausdorff distance, and bounding the bottleneck error on the diagram using stability
theorems (Cohen-Steiner et al., 2005; Chazal et al., 2009, 2016, 2012). The power and importance of
stability theorems are evident as they enable the direct translation of convergence rates in sup-norm
(or similar metrics) to convergence rates in bottleneck distance over diagrams (under the assumption
that the signal is q-tame). To further underline the significance of stability theorems, some studies,
such as Bubenik et al. (2009) and Chazal et al. (2014), demonstrate that these rates are minimax
for typical function classes.

However, adopting these approaches may sacrifice efficiency and generality. One of the main interest
of the persistence diagram lies in its capacity to provide a more flexible representation compared
to the entire signal. Consequently, in certain cases, inferring the persistence diagram should be
(strictly) simpler. In this direction, Bobrowski et al. (2017) by breaking free from this approach,
show that we can consider wider classes of functions. Unfortunately, this work does not quantify
the convergence rates of the proposed estimator. This observation serves as a crucial motivation
to conduct finer analysis of the convergence properties of persistence diagram estimator. Moreover,
it highlights the broader appeal of utilizing topological or geometrical descriptors, especially when
conventional non-parametric techniques yield unsatisfactory results. As mentioned earlier, such
scenarios commonly arise when signals display irregularities.

Framework

Regularity assumptions. For a set A ⊂ [0, 1]d, we denote A its adherence, A◦ its interior, ∂A its
boundary and Ac its complement. Let f : [0, 1]d → R, we make the following assumption over f :

A1. f is a piecewise (L,α)−Hölder-continuous function, i.e. there exist M1, ...,Ml open sets of
[0, 1]d such that,

l⋃
i=1

Mi = [0, 1]d

and for all i ∈ {1, ..., l} and x, y ∈Mi,

|f(x)− f(y)| ≤ L∥x− y∥α2 .

A2. f verifies, ∀x0 ∈ [0, 1]d,
lim inf

x∈
l⋃

i=1
Mi→x0

f(x) = f(x0)
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In this context, two signals, differing only on a null set, are statistically undistinguishable. And
persistent homology is sensitive to point-wise irregularity, two signals differing only on a null set
can have very different persistence diagram. Assumption A2 prevents such scenario. Furthermore,
note that for any piecewise Hölder-continuous function f , there exists a modification f̃ verifying
Assumption A2 such that f and f̃ coincide except on a null measure sets.

A3.
l⋃

i=1
∂Mi∩]0, 1[d is a C1,1 hypersurface, verifying, for R > 0,

reach

(
]0, 1[d∩

l⋃
i=1

∂Mi

)
≥ R and d2

(
∩

l⋃
i=1

∂Mi∩]0, 1[d, ∂[0, 1]d
)

≥ R

where, for a set A ⊂ Rd,

reach(A) = sup
{
r ∈ R : ∀x ∈ Rd\A with d2({x}, A) < r,∃!y ∈ A s.t. ||x− y||2 = d2({x}, A)

}
and,

d2(A,B) = max

(
sup
x∈B

inf
y∈A

||x− y||2, sup
x∈A

inf
y∈B

||x− y||2
)

The reach is a curvature measure introduced by Federer (1959). An intuitive way to approach it
is that if A has a reach R we can roll a ball of radius R along the boundary of A. Positive reach
assumptions are fairly common (and sometimes necessary) in statistical TDA (Balakrishnan et al.,
2012; Niyogi et al., 2008) and geometric inference (Genovese et al., 2012; Kim et al., 2016; Aamari
and Levrard, 2017; Aamari et al., 2019; Berenfeld et al., 2021). Here, the first part of Assumption
A3 gives geometric control over the union of the boundary of the Mi in the interior of [0, 1]d, for
example it prevents cusps and multiple points to appear. Following the same idea, the second part
ensures that the discontinuities not appear too close from the boundary. The combination of As-

M1

M2

M3

M4

M6

M5

(a) Assumption A3 verified

M1

M2

M3

M4

M5

M6

(b) Assumption A3 not verified

Figure 1: Illustration of Assumption A3

sumptions A2 and A3 ensures that the persistence diagram of f is well-defined (see Appendix A,
Proposition 6).

We denote Sd(L,α,R) the set of such functions.

Statistical model. We considered the Gaussian white noise model given by the following stochastic
equation,

dXt1,...,td = f(t1, ..., td)dt1...dtd + θdWt1,...,td (1)
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with W a d−parameters Wiener field, f a signal in Sd(L,α,R) and θ ≥ 0 the level of noise. Model
1 is a classical model in non-parametric statistics.

Estimator. In this context, our goal is to estimate dgm(f), the persistence diagram of f (consid-
ering singular homology with coefficient in a field). The estimation procedures consist of simply
taking the persistence diagram induced by the sublevel sets of the signal estimated using histograms.

More formally, let h > 0 such that 1/h is an integer, consider Gh the regular orthogonal grid
over [0, 1]d of step h and Ch the collection of all the closed hypercubes of side h composing Gh. We
define, ∀λ ∈ R, the estimator of Fλ = f−1(]−∞, λ]), by,

F̂λ,h =
⋃

H∈Ch,λ

H , with Ch,λ =

{
H ∈ Ch such that

∫
H
dX −

∫
H
λ ≤ 0

}
.

It is worth noting that F̂λ, h represents the sublevel set indexed by λ of the histogram estimator
of f . We then consider, for all s ∈ {0, ..., d}, V̂f,s the persistent module induced by the collection
of homology groups

(
Hs

(
F̂λ,hθ,α

))
λ∈R

equipped with inclusion induced maps and d̂gm(f) the
associated persistence diagrams. This procedure is illustrated by Figure 2, in the slightly different
setting of non-parametric regression with fixed design (see Appendix C), this choice being more
convenient for simulations.
A natural question is how to calibrate the window-size h for signals. From the proof of Lemma 2
(see Appendix B), a good choice is taking hθ,α such that,

hd+αθ,α√
hdθ,α log

(
1 + 1

hdθ,α

) > θ

which implies that we can take,

hθ,α ≃
(
θ2 log

(
1

θ

)) 1
d+2α

.

Contribution

In this framework, we study the convergence properties of the estimator dgm(f). We provide a
rigorous analysis of the convergence properties for the proposed estimator, showing that it achieves
the following rates for the bottleneck distance over the classes Sd(L,α,R).

Theorem 1. Let p ≥ 1,

sup
f∈Sd(L,α,R)

E
(
db

(
d̂gm(f),dgm(f)

)p)
≲

(
θ2 log

(
1

θ

)) pα
d+2α

.

Furthermore, we establish that these rates are optimal, in the minimax sense, over the classes
Sd(L,α,R).

Theorem 3. Let p ≥ 1,

inf
̂dgm(f)

sup
f∈Sd(L,α,R)

E
(
db

(
d̂gm(f), dgm(f)

)p)
≳

(
θ2 log

(
1

θ

)) pα
d+2α

.
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Original signal

Noisy observations

Histogram estimator

Estimated persistence diagram

True persistence diagram

Comparison
in db

Figure 2: Numerical illustration of the estimation procedures in the setting of the non-parametric
regression (see Appendix C). f(x, y) = cos(2πx) sin(2πx)+1(x−1/2)2+(y−1/2)2<1/8, σ = 0.1, n = 2500,
h = 1/4(log(n)/n)1/4.
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Interestingly, these rates coincide with the well-known minimax rates obtained on Hölder spaces.
Up to a multiplicative constant, there is no additional cost for considering signal in Sd(L,α,R). It
demonstrates the gain of breaking free from usual analysis approach in TDA and the robustness
to discontinuities of persistence diagram estimation. Also, as such irregularities are challenging to
handle for signal estimation, these results promote the use of persistence diagram while processing
noisy (irregular) signals.

The adaptivity to regularity is discussed. Applying Lepskii’s method (Lepskii, 1991), we derive
an adaptive procedure (see Section 2.4) that achieves the established minimax rates.

Following the same idea, we propose an estimator tailored for the non-parametric regression setting,
with fixed design. We show that, also in this context, our estimator achieves minimax rates over
the classes Sd(L,α,R) (see Appendix C).

1 Background on persistent homology

We first recall the required background on persistent homology, focusing on the case of persistent
homology from sublevel sets of real functions. This section does not pretend to give an exhaustive
exposition to persistent homology, but simply introduce the essential formalism to follow this paper.
For an extensive overview, see Chazal et al. (2016).
The construction introduced here exploited the concept of homology, and especially singular homol-
ogy. For an introduction to (singular) homology, the reader can refer to Hatcher (2000).

1.1 Filtrations and persistence modules

The idea behind persistence homology is to encode the evolution of the topology (in the homology
sense) of a nested family of topological spaces, called filtration. As we are moving along indices,
topological features (connected components, cycles, cavities, ...) can appear or die (existing con-
nected components merge, cycle or cavities are filled, ...). Two keys to formalize this idea, that we
use along this paper, are the notions of filtration and of persistence module.

Definition 1. Let Λ ⊂ R be a set of indices. A filtration over Λ is a family (Kλ)λ∈Λ of topological
spaces satisfying, ∀λ, λ′ ∈ Λ, λ ⩽ λ′

Kλ ⊂ Kλ′ .

The typical filtration that we will consider in this paper is, for a function f : Rd → R, the family of
sublevel sets (Fλ)λ∈R.

Definition 2. Let Λ ⊂ R be a set of indices. A persistence module over λ is a family V = (Vλ)λ∈Λ
of vector spaces equipped with linear application vλ′λ : Vλ → Vλ′ such that, ∀λ ⩽ λ′ ⩽ λ′′ ∈ Λ,

vλλ = id

and
vλ

′′
λ′ ◦ vλ′λ = vλ

′′
λ .

The typical persistent modules that we will consider in this paper is, for a function f : Rd → R and
s ∈ N, the family of homology groups Vf,s = (Hs (Fλ))λ∈R equipped with vλ

′

λ the linear application
induced by the inclusion Fλ ⊂ Fλ′ . To be more precise, in this paper, Hs(.) is the singular homology
functor in degree s with coefficient in a field (typically Z/2Z). Hence, Hs (Fλ) is a vector space.
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1.2 Module decompositions, persistence diagrams and q−tameness

persistence diagram (or equivalently barcode) permits to summarize and represent, discretely, the
algebraic structure of a persistent module. Still, this is not possible for all persistent modules. As
shown in Chazal et al. (2016), if V verifies a q−tameness assumption, persistence diagrams can be
defined. The notion of q−tameness is used in this paper to prove that the diagrams we consider are
well-defined.

Definition 3. A persistence module V is said to be q-tame if ∀λ < λ′ ∈ Λ, rank
(
vλ

′
λ

)
is finite.

By extension, when considering the persistent modules (Vf,s)s∈N coming from the sublevel sets fil-
tration of a real functions f , we say that f is q−tame if Vf,s is for all s ∈ N.

To avoid technical definitions, in a more restrictive but illustrative case, to define persistence
diagram. The basic idea being that, if we can then decompose persistent modules as a sum of
elementary bricks, called interval modules. The persistence diagram can, in this case, be directly
derive from this decomposition.

Definition 4. Let I an interval (possibly unbounded) of R and I
′
= I ∩ Λ. A persistence module

V is a interval module on I ′ if,

• Vλ = R if λ ∈ I
′ and Vλ = {0} otherwise

• for all λ ≤ λ
′ , vλ

′

λ = id if λ, λ′ ∈ I
′ and vλ

′

λ = 0 otherwise.

Hence, the structure of interval modules is simple and completely encoded by the extremities of
I
′
= [b, d](∩Λ). Conditions to ensure existence of a decomposition of a persistence module into sum

of interval modules,
V ≃

⊕
j∈J

I[bj ,dj ] (2)

can be found in Chazal et al. (2016) (see theorem 1.4). Assuming we have a decomposition such
as 2, the structure of V is completely described by the extremities (bj , dj) of each interval in the
decomposition. Thus, the associated persistence diagram can be defined simply as the collection of
couples of such extremities. Intuitively, The lower extremity bj corresponds to the birth time of a
topological feature, dj to its death time, and dj − bj represents its lifetime.

Definition 5. Let V a persistence module that can be decomposed as in 2. The associated persis-
tence diagram is,

dgm (V) = {(bj , dj), j ∈ J} ⊂ R
2
.

Barcodes are another popular representation that consider the collection of segments [bj , dj ] in-
stead of the collection of points (bj , dj) in R

2. Barcodes and persistence diagrams are equivalent
representations.

Figure 3: Function filtered by its sublevels, the associated barcode and persistence diagram.
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1.3 Bottleneck distance, interleaved modules and stability

In order to compare persistence diagrams, we need a distance. A popular such distance, due to
its stability property, is the bottleneck distance. This distance is defined as the infimum over all
matching between points in diagrams, of the maximal sup norm distance between two matched
points. In order to be able to consider matching between diagrams not containing the same number
of points, the diagonal is added to diagrams. This distance will be used in this work to evaluate the
quality of our estimation procedures.

Definition 6. The bottleneck distance between two persistence diagrams D1 and D2 is,

db (D1, D2) = inf
γ∈Γ

sup
p∈D1

||p− γ(p)||∞

with Γ the set of all bijection between D1 and D2 (both enriched with the diagonal).

Another notion that will be the key to prove our upper bounds, is the notion of interleaving between
persistent modules. We use especially the fact that if two modules are ε−interleaved, then the
bottleneck distance between their diagram is upper bounded by ε in bottleneck distance.

multiplicity 2

D1

D2

Figure 4: Optimal matching for the bottleneck distance between D1 and D2.

Definition 7. Two persistence modules V = (Vλ)λ∈I⊂R and W = (Wλ)λ∈I⊂R are said to be ε-
interleaved if there exists two families of applications ϕ = (ϕλ)λ∈I⊂R and ψ = (ψλ)λ∈I⊂R where
ϕλ : Vλ → Wλ+ε, ψλ : Wλ → Vλ+ε, and for all λ < λ

′ the following diagrams commutes,

Vλ Vλ′ Wλ Wλ′

Wλ+ε Wλ′+ε Vλ+ε Vλ′+ε

Vλ Vλ+2ε Wλ Wλ+2ε

Wλ+ε Vλ+ε

ϕλ ϕ
λ
′

wλ
′
+ε

λ+ε

wλ
′

λ

ψλ

vλ
′
+ε

λ+ε

ψ
λ
′

vλ+2ε
λ

ϕλ ψλ+ε ψλ

vλ
′

λ

wλ+2ε
λ

ϕλ+ε

Theorem (algebraic stability (Chazal et al., 2009)). Let V and W two q−tame persistent
modules. If V and W are ε−interleaved then,

db (dgm(V),dgm(W)) ≤ ε

8



In the context of sublevel persistence, a direct consequence of this theorem, is the following theorem.
This result was already established in particular cases in Cohen-Steiner et al. (2005) and Barannikov
(1994).

Theorem (sup norm stability). Let f and g two real-valued q-tame function, for all s ∈ N

db (dgm (Vf,s) , dgm (Vg,s)) ≤ ||f − g||∞.

This property is often used to upper bounds the errors (in bottleneck distance) of "plug-in" esti-
mators of persistence diagrams. It is important to note that this sup norm stability is weaker, and
adopting such approaches may result in a loss of efficiency and generality.

2 Upper bounds

This section is devoted to the proof of Theorem 1. The strategy to prove this theorem is to
construct an interleaving between the estimated and true persistent modules, to then apply the
algebraic stability theorem (Chazal et al., 2009). In the case where two filtrations, F1 and F2,
verify for an ε > 0 and all λ ∈ R, F1

λ ⊂ F2
λ+ε ⊂ F1

λ+2ε, an ε−interleaving is directly given taking
the inclusion induced morphisms between associated modules. Also notes that in this case, if F1

and F2 comes from the sublevel sets of functions f1 and f2, it implies that f1 and f2 are ε close
in sup norm. Thus, in our case, doing so is not possible, due to potential arbitrary large errors in
neighborhoods of the discontinuity sets. To overcome this difficulty, we investigate the geometric
behavior of true and estimated sublevel sets, especially around discontinuities.

2.1 Thicken and shrunk true sublevel sets and retraction properties

This section provides two retraction properties : Propositions 1 and 2. Propositions 1 states that
thickened true sublevel sets are included in slightly larger sets that can be retracted by deformation
into true sublevel sets (up to on controlled errors on the associated indices). And Proposition 2,
that state that the true sublevel sets are included in a slightly larger sets that can be retracted
on the shrunken true sublevel sets (up to on controlled errors on the associated indices). As ho-
mology is invariant under deformation retracts, these deformation retracts provides some flexibility
and margin of error to approximate sublevel "roughly" while preserving the topological information.

Denotes, for a set A ⊂ Rd and b ≥ 0, we denote,

Ab =
{
x ∈ Rd s.t. d2 (x,A) ≤ b

}
and

A−b =
(
(Ac)b

)c
.

As, by Assumption A3, we have,

reach

(
l⋃

i=1

∂Mi∩]0, 1[d
)

≥ R.

Theorem 4.8 of Federer (1959) ensure that for every x ∈ [0, 1]d at (Euclidean) distance strictly

smaller than R of ]0, 1[d∩
l⋃

i=1
∂Mi there exists a unique closest point in ]0, 1[d∩

l⋃
i=1

∂Mi, denoted

ξ(x). Furthermore, ξ is a continuous function.

To prove Proposition 1, we use the following lemma (see proof in Appendix 2.4).
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Lemma 1. Let x ∈ [0, 1]d. If d2
(
x, ∂Mi∩]0, 1[d

)
< R

2 then ξ(x) ∈ ∂Mi∩]0, 1[d.

Proposition 1. For all 0 < h < R
2 there exists a collection of spaces G = (Gλ,h)λ∈R such that

∀λ ∈ R, Fλ ⊂ Gλ,h ⊂ Fλ+L(1+3α)hα and,

Kλ,h := Fh
λ ∪

 ⋃
x∈Sλ,h

[x, ξ(x)]

 ⊂ F2h
λ

with

Sλ,h =

( l⋃
i=1

∂Mi∩]0, 1[d
)h

\ Fλ+Lhα

 ∩ Fh
λ

retracts by deformation onto Gλ,h.

Proof. First, note that if x belongs to
⋃

x∈Sλ,h

[x, ξ(x)] then x is at distance a most h from the union

of (Mi)i=1,...,l, and thus ||x− ξ(x)||2 ≤ h which proves that Kλ,h ⊂ F2h
λ .

Fλ,h : Kλ,h × [0, 1] → Kλ,h the map define by,

Fλ,h(x, t) = (1− t)x+ t

(
ξ(x) + (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+

x− ξ(x)

||x− ξ(x)||2

)
if x ∈

⋃
x∈Sλ,h

[x, ξ(x)] ∩Mi and d2 (ξ(x),Mi ∩ Fλ+Lhα) ≥ 2h− ||x− ξ(x)||2, i ∈ {1, ..., l}, else,

Fλ,h(x, t) = x.

We denote Gλ,h = Im(x 7−→ Fλ,h(x, 1)). As Fλ ⊂

( ⋃
x∈Sλ,h

[x, ξ(x)]

)c
, Fλ ⊂ Gλ,h.

By definition of Gλ,h,
Fλ,h(x, 1) ∈ Gλ,h, ∀x ∈ Kλ,h

and by definition of Fλ,h,
Fλ,h(x, 0) = x, ∀x ∈ Kλ,h

Let x ∈
⋃

x∈Sλ,h

[x, ξ(x)] ∩Mi verifying d2 (ξ(x),Mi ∩ Fλ+Lhα) ≥ 2h − ||x − ξ(x)||2. Remark that

Fλ,h(x, t) ∈ [x, ξ(x)] for all t ∈ [0, 1], in particular, this implies that ξ(Fλ,h(x, 1)) = ξ(x) thus
Fλ,h(Fλ,h(x, 1), 1) = Fλ,h(x, 1). In other cases, by construction Fλ,h(x, 1) = x. Hence,

Fλ,h(x, 1) = x, ∀x ∈ Gλ,h.

The proof for the continuity of Fλ,h is rather technical and provided in Lemma 6 in Appendix B.
Then Fλ,h is a deformation retract onto Gλ,h.

Let now prove that Gλ,h ⊂ Fλ+(1+3α)Lhα . Let x ∈ Kλ,h, and suppose x ∈M i ∩ [0, 1]d.

If x /∈
⋃

x∈Sλ,h

[x, ξ(x)], Fλ,h(x, 1) = x and the definition of Sλ,h and assumption A2 ensures that

x ∈ Fλ+Lhα .

If x ∈
⋃

x∈Sλ,h

[x, ξ(x)] and 2h− d2 (ξ(x),Mi ∩ Fλ+Lhα) ≥ 0, as Fλ,h(x, 1) ∈ [x, ξ(x)], we have

d2 (Fλ,h(x, 1),Mi ∩ Fλ+Lhα) ≤ 3h.

10



By Lemma 1, ξ(x) ∈ ∂Mi∩]0, 1[d, thus, [x, ξ(x)] ⊂ M i and in particular Fλ,h(x, 1) ∈ Mi. Assump-
tions A1 and A2 then ensures that,

Fλ,h(x, 1) ∈ Fλ+L(1+3α)hα .

If x ∈
⋃

x∈Sλ,h

[x, ξ(x)] and 2h− d2 (ξ(x),Mi ∩ Fλ+Lhα) < 0, then, Fλ,h(x, 1) = ξ(x). Let ε > 0, there

exists j ∈ {1, ..., l}, i ̸= j and y ∈ Fλ ∩Mj , such that ||x − y||2 ≤ h + ε. Hence, by Lemma 1,
ξ(x) ∈ ∂Mj∩]0, 1[d and ||ξ(x)− y||2 ≤ 2h+ ε. Assumptions A1 and A2 then ensures that,

ξ(x) ∈ Fλ+L(1+(2+ε)α)hα

as it holds for all ε > 0,
Fλ,h(x, 1) = ξ(x) ∈ Fλ+L(1+2α)hα .

Finally, combining cases, Gλ,h ⊂ Fλ+L(1+3α)hα .

Proposition 2. For all 0 < h < R
2 there exists a collection of spaces M = (Mλ,h)λ∈R such that

∀λ ∈ R, F−h
λ ⊂ Mλ,h ⊂ F−h

λ+(2+5α)Lhα and,

Nλ,h := Fλ ∪

 ⋃
x∈Pλ,h

[x, γλ,h(x)]

 ⊂ Fλ+Lhα

with

Pλ,h =

( l⋃
i=1

∂Mi∩]0, 1[d
)h

\ F−h
λ+2Lhα

 ∩ Fλ

and γλ,h the continuous extension over Pλ,h of,

γh(x) =


x+

(
h−d2

(
x,

l⋃
i=1

∂Mi∩]0,1[d
))

d2

(
x,

l⋃
i=1

∂Mi∩]0,1[d
) (x− ξ(x)) , if x ∈

(
l⋃

i=1
∂Mi∩]0, 1[d

)h
\

l⋃
i=1

∂Mi

x, if x /∈
(

l⋃
i=1

∂Mi∩]0, 1[d
)h

retracts by deformation onto Mλ,h.

Proof. The construction of the deformation retract is inspired by Lemma 14 of Kim et al. (2020). Let

x ∈ Pλ,h∩
l⋃

i=1
∂Mi∩]0, 1[d. Assumption A3, ensures that Pλ,h ⊂]0, 1[d. And it does not allow multiple

points, thus it ensures that there exists i, j ∈ {1, ..., l} such that B2(x, h)∩
l⋃

k=1

∂Mk ⊂ ∂Mi ∪ ∂Mj.

Furthermore, this conditions also ensures that we can roll a ball of radius h along ∂Mi∩]0, 1[d in
M i and along ∂Mj∩]0, 1[d in M j . Hence,

B2(x, h) ⊂Mi ∪Mj ∪ (∂Mi ∩ ∂Mj).

Now, If
B2(x, h) ∩ Fλ ∩Mi ̸= ∅ and B2(x, h) ∩ Fλ ∩Mj ̸= ∅

then by assumptions A2 and A1, B2(x, h) ⊂ Fλ+Lhα and thus x ∈ F−h
λ+Lhα . Hence, B2(x, h)∩Pλ,h∩

Mj = ∅ or B2(x, h)∩Pλ,h∩Mi = ∅. Without loss of generality, let suppose B2(x, h)∩Pλ,h∩Mj = ∅.
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Assumption A3 impose that
l⋃

i=1
∂Mi∩]0, 1[d is a C1,1 hypersurface and thus ensures that, for all

x ∈M i∩]0, 1[d, lim
y∈Mi→x

γh(y) exists. We can then define γλ,h(x) = limy∈Mi→x γh(y). And, doing so

for all x ∈ Pλ,h ∩
l⋃

i=1
∂Mi∩]0, 1[d extends continuously γh(x) to Pλ,h.

Let, Hλ,h : Nλ,h × [0, 1] → Nλ,h, defined by,

Hλ,h(x, t) = (1− t)x+ t

(
γλ,h(x) +

(
3h− d2

(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
))

+

x− γλ,h(x)

||x− γλ,h(x)||2

)
if x ∈

⋃
x∈Pλ,h

[x, γλ,h(x)]∩Mi and d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
≥ 3h−||x−γλ,h(x)||2, i ∈ {1, ..., l},

else,
Hλ,h(x, t) = x.

and let Mλ,h = Im(x 7−→ Hλ,h(x, 1)). As F−h
λ ⊂

( ⋃
x∈Pλ,h

[x, γλ,h(x)]

)c
, F−h

λ ⊂ Mλ,h. Note that,

by definition of Mλ,h

Hλ,h(x, 1) ∈ Mλ,h, ∀x ∈ Nλ,h

and by definition of Hλ,h

Hλ,h(x, 0) = x, ∀x ∈ Nλ,h

Let x ∈
⋃

x∈Pλ,h

[x, γλ,h(x)]∩Mi verifying d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
≥ 3h−||x−γλ,h(x)||2, by con-

struction Hλ,h(x, t) ∈ [x, γλ,h(x)] for all t ∈ [0, 1], in particular this implies that γλ,x(Hλ,h(x, 1)) =
γλ,h(x). Thus, Hλ,h(Hλ,h(x, 1), 1) = Hλ,h(x, 1). In other cases Hλ,h(x, 1) = x. Hence,

Hλ,h(x, 1) = x, ∀x ∈ Mλ,α.

The proof of the continuity of Hλ,h is rather technical and provided by Lemma 7 in Appendix B.
Then Hλ,h is a deformation retract onto Mλ,h.

Let’s now prove that Mλ,h ⊂ F−h
λ+L(2+5α)hα . Let x ∈ Nλ,h, and suppose x ∈M i ∩ [0, 1]d.

If x /∈
⋃

x∈Pλ,h

[x, γλ,h(x)], directly, F (1, x) = x ∈ F−h
λ+2Lhα .

If x ∈
⋃

x∈Pλ,h

[x, γλ,h(x)] and 3h − d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
≥ 0, then there exists z ∈ Mj ∩

Fλ+2Lhα , j ̸= i such that ||x − z||2 ≤ 3h thus ||Hλ,h(x, 1) − z||2 ≤ 4h. Also, by assumption
A3, B2(Hλ,h(x, 1), h) ⊂ Mi ∪M j . Thus, by assumption A1 and A2, B2(Hλ,h(x, 1), h) ∩M j ⊂
Fλ+L(2+5α)hα and B2(Hλ,h(x, 1), h) ∩M i ⊂ Fλ+L2αhα , thus,

Hλ,h(x, 1) ∈ F−h
λ+L(2+5α)hα .

If x ∈
⋃

x∈Pλ,h

[x, γλ,h(x)] and 3h− d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
< 0, then Hλ,h(x, 1) = γλ,h(x) and

thus B2(Hλ,h(x, 1), h) ⊂M i. As ||x− γλ,h||2 ≤ h, it follows that,

Hλ,h(x, 1) ∈ F−h
λ+L2αhα .

From the same reasoning, it also follows that [x, γλ,h(x)] ⊂ Fλ+Lhα and hence Nλ,h ⊂ Fλ+Lhα .

Combining all cases, it follows that Mλ,h ⊂ F−h
λ+L(2+5α)hα .
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2.2 Compatibility with the histogram estimator

In this section, we provide two additional key properties : Propositions 3 and 4. These results allow
using the deformation retracts from Proposition 1 and Proposition 2 to construct the interleaving
we are looking for.

We define,

||W ||cube,h = sup
H∈Ch

|W (H)|
ω(L(H))

with ω(r) =
√
r log(1 + 1/r), W (H) =

∫
H dW and L the Lebesgue measure. Before proving

Propositions 3, we state the following lemma, which proof can be found in Appendix B.

Lemma 2. Let f : [0, 1]d → R. Let H ⊂ Fc
λ+||W ||cube,hθ,αh

α
θ,α

∩Chθ,α and H ′ ⊂ Fλ−||W ||cube,hθ,αh
α
θ,α

∩
Chθ,α . We then have that, ∫

H
dX −

∫
H
λ > 0 and

∫
H′
dX −

∫
H
λ < 0.

Proposition 3. Let f : [0, 1]d → R. For all λ ∈ R,

F−
√
dhθ,α

λ−||W ||cube,hθ,αh
α
θ,α

⊂ F̂λ,hθ,α ⊂ F
√
dhθ,α

λ+||W ||cube,hθ,αh
α
θ,α
.

Proof. Let x ∈ F−
√
dhθ,α

λ−||W ||cube,hθ,αh
α
θ,α

and H the hypercube of Ch containing x. We then have,

H ⊂ Fλ−||W ||cube,hθ,αh
α
θ,α
.

Hence, by Lemma 2,
∫
H dX −

∫
H λ < 0, thus,

H ⊂ F̂λ,hθ,α .

Now, let x ∈
(
F

√
dhθ,α

λ+||W ||cube,hθ,αh
α
θ,α

)c
, and H the hypercube of Ch containing x. We then have,

H ⊂ Fc
λ+||W ||cube,hθ,αh

α
θ,α
.

Hence, by Lemma 2,
∫
H dX −

∫
H λ > 0, thus,

H ⊂ F̂c
λ,hθ,α

and Proposition 3 is proved.

Propositions 3 locate the estimated sublevel sets (up to shifts) between the true shrunken and thick-
ened sublevel sets. It allows building, from the deformation retracts of Proposition 1, a morphism
from the estimated persistent modules to the true one. And, It allows building, from the defor-
mation retracts of Proposition 2, a morphism from the true persistent modules to the estimated one.

A key that will ensure that those morphisms induce, in deed, an interleaving, is that the defor-
mation retracts, restricted to the estimated sublevel sets have their supports (again, up to shifts) in
estimated sublevel sets. This is a direct consequence of Proposition 4. Before proving it, we provide
a technical lemma which proof can also be found in Appendix B.
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Lemma 3. Let K,h > 0 such that Kh < R. There exists a constant C2 (depending only on K, d
and R) such that for all i ∈ {1, ..., l} and x ∈

(
∂Mi∩]0, 1[d

)2Kh ∩M i, we have,

dH (B2 (ξ(x),Kh) ∩Mi, B2 (ξ(x),Kh) ∩ P ) ≤ C2h
2

with
P =

{
z ∈ [0, 1]d s.t.

〈
z,

x− ξ(x)

∥x− ξ(x)∥2

〉
≥
〈
ξ(x),

x− ξ(x)

∥x− ξ(x)∥2

〉}
.

Proposition 4. Let λ ∈ R, 0 < C <
√
d, K ≤

√
d and x ∈ F̂λ ∩B2

(
l⋃

i=1
∂Mi∩]0, 1[d,Khθ,α

)
. For

sufficiently small θ, we have,

[x, ξ(x)] ⊂ F̂Chθ,α

λ+(2||W ||cube,hθ,α+(K+
√
d)αL)hαθ,α,hθ,α

(3)

and [
x, γλ,Khθ,α(x)

]
⊂ F̂λ+(3||W ||cube,hθ,α+(L((K+

√
d)α+Kα+dα/2))hαθ,α,hθ,α

(4)

Proof. Without loss of generality we can suppose x ∈Mi. LetH1 ∈ Chθ,α,λ the hypercube containing
x and denote x1 its center. Suppose there exist y ∈ [x, ξ(x)] such that y /∈ H

Chθ,α
1 and without loss

of generality, we can suppose that for an arbitrarily small ε, [y− ε, y+ ε] ⊂ [x, ξ(x)] is contained in
H2 an hypercube of Chθ,α , we denote x2 its center. We have,

⟨x− y, x1 − x2⟩ = ⟨x− x1, x1 − x2⟩+ ||x1 − x2||22 + ⟨y − x2, x1 − x2⟩

As x ∈ H1, then,

⟨x− x1, x1 − x2⟩ ≥ −||x1 − x2||22
2

As, y ∈ H2 \H
Chθ,α
1 , for sufficiently small θ,

⟨y − x2, x1 − x2⟩ ≥ −||x1 − x2||22
2

+
Ch2θ,α

2
√
d

and thus, as ||x− y||2 ≤ ||x− ξ(x)||2 ≤ Khθ,α,〈
x− ξ(x)

||x− ξ(x)||2
, x1 − x2

〉
=

〈
x− y

||x− y||2
, x1 − x2

〉
≥

Ch2θ,α

2
√
d||x− y||2

≥
Chθ,α

2K
√
d
.

This implies that, for all z ∈ H1 ∩ P ,

B2

(
z + (x1 − x2),

Chθ,α

2K
√
d

)
⊂ P . (5)

Let z ∈ H
−C2h2θ,α
1 ∩Mi, by Lemma 3, there exists z′ in H1 ∩ P such that ||z − z

′ ||2 ≤ C2h
2
θ,α. And

by 5,

B2

(
z
′
+ (x1 − x2),

Chθ,α

2K
√
d

)
⊂ P .

Then, by Lemma 3, for θ sufficiently small for Chθ,α

2K
√
d
hθ,α > 2C2h

2
θ,α,

B2

(
z + (x1 − x2), C2h

2
θ,α

)
⊂ B2

(
z
′
+ (x1 − x2),

Chθ,α

2K
√
d
− C2h

2
θ,α

)
⊂M i.
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Consequently, for θ sufficiently small, L (H2 ∩Mi) ≥ L (H1 ∩Mi). Now, as H2 ⊂ H
(K+

√
d)hθ,α

1 ,
assumption A1 and A2 implies that,∫

H2

dX =

∫
H2∩Mi

f +

∫
H2∩Mc

i

f + θ

∫
H2

dW

≤
∫
H1∩Mi

(f + L((K +
√
d)hθ,α)

α) +

∫
H1∩Mi

(f + L((K +
√
d)hθ,α)

α)

+ θ

∫
H1

dW + θ

∫
H2

dW − θ

∫
H1

dW

≤ (λ+ (K +
√
d)αL+ 2||W ||cube,hθ,α)h

α
θ,α)h

d
θ,α

by the choice made for hθ,α. Thus, H2 ⊂ F̂λ+(2||W ||cube,hθ,α+(K+
√
d)αL)hαθ,α,hθ,α

, and 3 follows.

By construction, γλ,Khθ,α(x) is a distance Khθ,α from ξ(x) and thus at distance at most Khθ,α
from x. By Proposition 2, γλ,Khθ,α(x) ∈ Fλ+LKαhαθ,α

. By construction, B(γλ,Khθ,α(x),Khθ,α) ⊂M i,
and thus, as K ≥

√
d,

γλ,Khθ,α(x) ∈ F−
√
dhθ,α

λ+L(Kα+dα/2)hαθ,α
.

Proposition 3 then gives,

γλ,Khθ,α(x) ⊂ F̂λ+L(Kα+dα/2+||W ||cube,hθ,α )hαθ,α,hθ,α
.

Hence, by 3,

[x, γλ,Khθ,α(x)] ⊂ [ξ(x), γλ,Khθ,α(x)] ⊂ F̂λ+(3||W ||cube,hθ,α+(L((K+
√
d)α+Kα+dα/2))hαθ,α,hθ,α

which proves 4.

2.3 Main results

Now equipped with Propositions 1, 2, 3 and 4, we have all the ingredients to establish our main
results. We formalize the reasoning describe in the beginning of this section, constructing, for all
s ∈ N, an Chθ,α-interleaving between V̂

hθ,α
f,s and the true persistence module Vf,s induced by the

filtration F to provide a concentration bound, Proposition 5, from which follows Theorem 1.

Before proving our main results, we provide concentration results on ||W ||cube,h, used in the proof
of Proposition 5.

Lemma 4.

P (||W ||cube,h ≥ t) ≤ 2

(
1

h

)d
exp

(
−1

2
t2 log

(
1 +

1

hd

))
.

Consequently, there exists two constants C0 and C1 depending only on d such that, for all h < 1,

P (||W ||cube,h ≤ t) ≤ C0 exp
(
−C1t

2
)
.

Proof. The proof essentially follows from the fact that for all h > 0 and H hypercube of side h,
W (H)

hd/2
is a standard Gaussian.

P

(
sup
H∈Ch

|W (H)|
ω(hd)

> t

)
≤
(
1

h

)d
P

(
|W (H)|
ω (hd)

> t

)
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=

(
1

h

)d
P

(
|W (H)|
hd/2

> t

√
log

(
1 +

1

hd

))

≤ 2

(
1

h

)d
exp

(
−1

2
t2 log

(
1 +

1

hd

))
Now, take t ≥

√
8, then t2/4 + 2 ≤ t2. Thus,

P (||W ||cube,h ≥ t) ≤ 2

(
1

h

)d
exp

(
−1

2
t2 log

(
1 +

1

hd

))
≤ 2

(
1

h

)d
exp

(
−(t2/8 + 1) log

(
1 +

1

hd

))
≤ 2 exp(−t2/8).

Hence, for all t > 0,
P (||W ||cube,h ≥ t) ≤ 2e× exp(−t2/8).

Proposition 5. There exists C̃0 and C̃1 such that, for all t > 0,

P

(
sup

f∈Sd(L,α,R)
db

(
d̂gm(f), dgm(f)

)
≥ t

(
θ2 log

(
1

θ

)) α
d+2α

)
≤ C̃0 exp

(
−C̃1t

2
)
.

Proof. The strategy is to construct an interleaving between the persistent module Vs,f and the mod-
ule induced by the filtration

(
F̂λ,hθ,α

)
λ∈R

. It suffices to show the result for small θ (up to rescaling

C̃0). Hence, suppose that θ is such that 2
√
dhθ,α <

R
2 and Proposition 4 holds for C = 1/4.

Note that for all λ ∈ R, F̂λ,hθ,α is a union of hypercube of Chθ,α , hence its µ-reach (see defini-
tion in Chazal et al. (2006)) is lower bounded by hθ,α/2 for all µ < 1/2. Hence, Theorem 12 of Kim
et al. (2020) ensures that F̂h/4

λ,hθ,α
deformation retracts onto F̂λ,hθ,α . Then, the module Vs,f can be

thought as the module induced by the filtration
(
F̂hθ,α/4
λ,hθ,α

)
λ∈R

. Let,

j1,λ : Hs

(
F̂hθ,α/4
λ,hθ,α

)
→ Hs

(
Kλ+||W ||cube,hθ,αh

α
θ,α,2

√
dhθ,α

)
the map induced by the inclusion F̂hθ,α/4

λ,hθ,α
⊂ Kλ+||W ||cube,hθ,αh

α
θ,α,2

√
dhθ,α

,

j2,α : Hs

(
Kλ+||W ||cube,hθ,αh

α
θ,α,2

√
dhθ,α

)
→ Hs

(
Gλ+||W ||cube,hθ,αh

α
θ,α,2

√
dhθ,α

)
induced by the deformation retract of Proposition 1, and,

j3,α : Hs

(
Gλ+||W ||cube,hθ,αh

α
θ,α,2

√
dhθ,α

)
→ Hs

(
F
λ+L

(
2αdα/2(1+3α)+||W ||cube,hθ,α

)
hαθ,α

)
the map induced inclusion following again Proposition 1. We then define, ϕλ : Hs

(
F̂hθ,α/4
λ,hθ,α

)
→ Hs

(
F
λ+L

(
2αdα/2(1+3α)+||W ||cube,hθ,α

)
hαθ,α

)
ϕλ = j3,λ ◦ j2,λ ◦ j1,λ
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This gives us the first module morphism. Let construct the second one. Let,

j4,λ : Hs (Fλ) → Hs

(
Nλ,

√
dhθ,α

)
the map induced by the inclusion Fλ ⊂ Nλ,

√
dhθ,α

,

j5,λ : Hs

(
Nλ,

√
dhθ,α

)
→ Hs

(
Mλ,

√
dhθ,α

)
the map induced by the deformation retract of Proposition 2, and,

j6,λ : Hs

(
Mλ,

√
dhθ,α

)
→ Hs

(
F̂hθ,α/4

λ+
(
L(2αdα/2(2+5α)+dα/2(3α+2α+3))+4||W ||cube,hθ,α

)
hαθ,α,hθ,α

)

induced by the inclusion Mλ,
√
dhθ,α

⊂ F̂hθ,α/4

λ+
(
L(2αdα/2(2+5α)+dα/2(3α+2α+3))+4||W ||cube,hθ,α

)
hαθ,α,hθ,α

, from

the combination of Proposition 3 and 2. We then define, ψλ : Hs (Fλ) −→ Hs

(
F̂hθ,α/4

λ+
(
L(2αdα/2(2+5α)+dα/2(3α+2α+3))+4||W ||cube,hθ,α

)
hαθ,α,hθ,α

)
ψλ = j6,λ ◦ j5,λ ◦ j4,λ

We now show that ψ and ϕ induce an interleaving between V̂
hθ,α
f,s and Vs,f . More precisely, we show

that the following diagrams commute, for all λ < λ
′ . For compactness of notation let,

K1 = L
(
2αdα/2 (2 + 5α) + dα/2(3α + 2α + 3)

)
+ 4||W ||cube,hθ,α

and
K2 = L

(
2αdα/2 (1 + 3α)

)
+ ||W ||cube,hθ,α .

Hs

(
F̂hθ,α/4
λ,hθ,α

)
Hs

(
F̂hθ,α/4

λ′ ,hθ,α

)

Hs

(
Fλ+K2hαθ,α

)
Hs

(
Fλ′+K2hαθ,α

)
ϕλ

v̂λ
′

λ,hθ,α

ϕ
λ
′

v
λ
′
+K2h

α
θ,α

λ+K2h
α
θ,α

(6)

Hs (Fλ) Hs

(
Fλ′
)

Hs

(
F̂hθ,α/4
λ+K1hαθ,α,hθ,α

)
Hs

(
F̂hθ,α/4

λ′+K1hαθ,α,hθ,α

)ψλ

vλ
′

λ

ψ
λ
′

v̂
λ
′
+K1h

α
θ,α

λ+K1h
α
θ,α

,hθ,α

(7)

Hs

(
F̂hθ,α/4
λ,hθ,α

)
Hs

(
F̂hθ,α/4

λ+(K1+K2)hαθ,α,hθ,α

)

Hs

(
Fλ+K2hαθ,α

)
ϕλ

ψλ+K2h
α
θ,α

v̂
λ+(K1+K2)h

α
θ,α

λ,hθ,α

(8)
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Hs (Fλ) Hs

(
Fλ+(K1+K2)hαθ,α

)

Hs

(
F̂hθ,α/4
λ+K1hαθ,α,hθ,α

)

v
λ+(K1+K2)h

α
θ,α

λ

ψλ
ϕλ+K1h

α
θ,α (9)

• Diagram 6 : We can rewrite the diagram as (unspecified maps are simply induced by set
inclusion),

Hs

(
F̂hθ,α/4
λ,hθ,α

)
Hs

(
F̂hθ,α/4

λ′ ,hθ,α

)

Hs

(
Kλ+||W ||cube,hθ,αh

α
θ,α,

√
dhθ,α

)
Hs

(
Kλ′+||W ||cube,hθ,αh

α
θ,α,

√
dhθ,α

)

Hs

(
Gλ+||W ||cube,hθ,αh

α
θ,α,

√
dhθ,α

)
Hs

(
Gλ′+||W ||cube,hθ,αh

α
θ,α,

√
dhθ,α

)

Hs

(
Fλ+K2hαθ,α

)
Hs

(
Fλ′+K2hαθ,α

)

j2,λ j
2,λ

′

By inclusions, the upper and lower faces commute. And, as j2,λ and j2,λ′ comes from defor-
mation retracts, the central face also commutes. Hence, all faces of Diagram 6 commute and
consequently Diagram 6 commutes.

• Diagram 7 : it can be decomposed similarly to Diagram 6, one can check that the same
reasoning then applies.

• Diagram 8 : Let C ∈ Cs

(
F̂hθ,α/4
λ,hθ,α

)
and [C] its classes in Hs

(
F̂hθ,α/4
λ,hθ,α

)
. The morphism ϕλ

maps [C] to [C
′
] with C ′ the retraction of C in Kλ+||W ||cube,hθ,αh

α
θ,α,2

√
dhθ,α

via the deformation

retract constructed in the proof of Proposition 1. And ψλ+K2hαθ,α
maps [C

′
] to [C

′′
], with

C
′′ the retraction of C ′ in Nλ+(K2+||W ||cube,hθ,α )hαθ,α),

√
dhθ,α

given in Proposition 2. Assertion

3 of Proposition 4 ensures that the support of the retraction of C onto C
′ is included in

F̂hθ,α/4

λ+(K1+K2)hαθ,α,hθ,α
. And Assertion 4 ensures that the support of the retraction of C ′ onto C ′′

is also included in F̂hθ,α/4

λ+(K1+K2)hαθ,α,hθ,α
. Hence, C and C ′′ are homologous in F̂hθ,α/4

λ+(K1+K2)hαθ,α,hθ,α

and Diagram 8 commutes.

• Diagram 9 : Let C ∈ Cs (Fλ), ψλ maps [C] to [C
′
], with C

′ the retraction of C via the
retraction of Proposition 2. And, as Mλ,2

√
dhθ,α

is included in Gλ+K1hαθ,α,2
√
dhθ,α

, ϕλ+K1hαθ,α
,

behave as an inclusion induced map, mapping [C
′
] to [C

′
]. From Proposition 2, the retraction

of C on C
′ has its support included in Fλ+(K1+K2)hαθ,α

. Thus, C and C
′ are homologous in

Fλ+(K1+K2)hαθ,α
and Diagram 9 commutes.

The commutativity of diagrams 7,6,8 and 9 means that V̂
hθ,α
f,s and Vf,s are (K1+K2)h

α
θ,α interleaved,
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and thus we get from the algebraic stability theorem (Chazal et al., 2009) that,

db

(
dgm

(
V̂
hθ,α
f,s

)
,dgm (Vf,s)

)
≤ (K1 +K2)h

α
θ,α

and as it holds for all s ∈ N,

sup
f∈Sd(L,α,R)

db

(
d̂gm(f), dgm(f)

)
≤ (K1 +K2)h

α
θ,α.

Now, using Lemma 4, this implies that,

P

(
sup

f∈Sd(L,α,R)
db

(
d̂gm(f), dgm(f)

)
≥ thθ,α

)
≤ P (K1 +K2 ≥ t)

= P

(
||W ||cube,hθ,α ≥

t− L
(
2αdα/2 (2 + 5α) + dα/2(3α + 2α + 3)

)
− L

(
2αdα/2 (1 + 3α)

)
5

)

≤ C0 exp

−C1

(
t− L

(
dα/2 (10α + 6α + 3α + 4× 2α + 3)

)
5

)2


≤ C0 exp

(
2C1

(
L
(
dα/2 (10α + 6α + 3α + 4× 2α + 3)

)
5

t

))

× exp

−C1

(
L
(
dα/2 (10α + 6α + 3α + 4× 2α + 3)

)
5

)2
 exp

(
−C1

25
t2
)

and the result follows.

From this result, we can derive from this result bounds in expectation.

Theorem 1. Let p ≥ 1,

sup
f∈Sd(L,α,R)

E
(
db

(
d̂gm(f),dgm(f)

)p)
≲ hpαθ,α

Proof. The sub-Gaussian concentration provided by Proposition 5, gives that, for all t > 0,

P

db
(
d̂gm(f),dgm(f)

)
hαθ,α

≥ t

 ≤ C̃0 exp
(
−C̃1t

2
)

Now, we have,

E

db
(
d̂gm(f),dgm(f)

)p
hpαθ,α


=

∫ +∞

0
P

db
(
d̂gm(f), dgm(f)

)p
hpαθ,α

≥ t

 dt

≤
∫ +∞

0
C̃0 exp

(
−C̃1t

2/p
)
dt < +∞.
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2.4 Adaptivity

The previous procedure depends strongly on the regularity parameter α as we calibrate the window
size h taking account of it. Thus, the procedure is not adaptive to the regularity. In the following,
we propose an estimation procedure, based on the previous one, that is adaptive with respect to
α. Moreover, we show that this adaptive procedure achieves the same rates as the one given by
Theorem 1.

We follow the Lepskii’s method (Lepskii, 1991). Suppose that we know an upper bound on the
parameter L, denoted L and 0 < αmin ≤ α ≤ αmax. It is sufficient to work on regular grid
αmin = α1 < α2 < ... < αN = αmax with N ≃ log

(
1
θ

)
, as, for all 1 < j ≤ N ,

log

(
h
αj−1

θ,αj−1

h
αj

θ,αj

)
=

(
αj−1

2αj−1 + d
− αj

2αj + d

)
log

(
θ log

(
1

θ

))
≃

log
(
θ log

(
1
θ

))
log(θ)

≃ 1.

We consider the Lepskii’s estimator defined by,

d̂gm(f)
∗
= d̂gm(f)α̂

with

α̂ = max

{
α ∈ {α1, ..., αN} :

db(d̂gm(f)α, d̂gm(f)α′ )

hαθ,α
< c0 for all α

′ ≤ α

}
.

c0 a sufficiently large constant depending on d, L, αmin and αmax. The notation d̂gm(f)α̂ refer to
the estimator d̂gm(f) for the window size hθ,α, as it will play a role in this section, we highlight the
dependence in α.

Theorem 2. Let p ≥ 1,

sup
(L,α)∈[0,L]×[αmin,αmax]

sup
f∈Sd(L,α,R)

E

db
(
d̂gm(f)

∗
,dgm(f)

)p
hpαθ,α

 ≲ 1.

Proof. We want to apply Corollary 1 of Lepskii (1992), in our case, the only difficulty is to check
assumption A3b. It then suffices to show that, for all α′ ∈ [αmin, αmax], there exists c0 > 0 such
that,

lim sup
θ→0

log(1/θ)2

hαmax
θ,αmax

sup
α<α′

P

(
db(d̂gm(f)α, dgm(f))

hαθ,α
> c0

)
= 0. (10)

Now as shown in the proof of Proposition 5, for sufficiently small θ,

db(d̂gm(f)α, dgm(f)) ≤ (K1 +K2)h
α
θ,α.

Thus, for sufficiently small θ, using the concentration from Lemma 4,

P

(
db(d̂gm(f)α, dgm(f))

hαθ,α
> c0

)

P

(
||W ||cube,hθ,α ≥

c0 − L
(
dα/2 (10α + 6α + 3α + 4× 2α + 3)

)
5

)
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≤ 2

(
1

hθ,α

)d
exp

−1

2

(
c0 − L

(
dα/2 (10α + 6α + 3α + 4× 2α + 3)

)
5

)2

log

(
1 +

1

hdθ,α

) .

≤ 2

(
1

hθ,α

)d
exp

(
−1

2

(
c0/5− 6L

√
d
)2

log

(
1 +

1

hdθ,α

))

≲

(
θ2 log

(
1

θ

)) dα
d+2α

(
1
2(c0/5−6L

√
d)

2−1
)

Thus, for sufficiently big c0 (depending only on αmin, αmax, L, d),

P

(
db(d̂gm(f)α, dgm(f))

hαθ,α
> c0

)
= o

(
hαmax
θ,αmax

log
(
1
θ

)2
)
.

Hence 10 is verified and Corollary 1 of Lepskii (1992) gives the desired result.

3 Lower bounds

In this section we prove that the rates obtained in the previous section are optimal, in the minimax
sense in the non-adaptive and adaptive case, by proving Theorem 3.

Theorem 3. Let p ≥ 1

inf
̂dgm(f)

sup
f∈Sd(L,α,R)

E
(
db

(
d̂gm(f), dgm(f)

)p)
≳

(
θ2 log

(
1

θ

)) pα
d+2α

.

Where the infimum is taken over all the estimator of dgm(f).

Proof. The proof follows standard methods to provide minimax lower bounds, as presented in section
2 of Tsybakov (2008). The idea is, for any rθ = o

((
θ2 log

(
1
θ

)) α
d+2α

)
, to exhibit a finite collection

of function in Sd(L,α,R) such that their persistence diagrams are two by two at distance 2rθ but
indistinguishable, with high certainty.

We propose such a collection, let

f0(x1, ..., xd) =
L

2
|x1|α

and for m integer in [0, ⌊1/h⌋],

fh,m(x1, ..., xd) = f0 − L (hα − ||(x1, ..., xd)−m/⌊1/h⌋(1, ..., 1)||α∞)+

f0 and the fh,m are (L,α)−Hölder-continuous and thus belong to Sd(L,α,R) for all R > 0.

We have dgm(f0) = {(0,+∞)} and for all 0 < m < ⌊1/h⌋, integer,

dgm(fh,m) =

{
(0,+∞),

(
L

2

(
m

⌊1/h⌋

)α
− Lhα,

L

2

(
m

⌊1/h⌋

)α
− L

2
hα
)}

.

Thus, for all 0 < m ̸= m
′
< ⌊1/h⌋, integers,

db (dgm(f0),dgm(fm,h)) ≥
Lhα

2
and db

(
dgm(fm,h), dgm(fm′ )

)
≥ Lhα

2
.
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We set rθ = Lhα

4 , then,

db

(
dgm(f0),dgm(f

d,h,mk
′
,α
)
)
≥ 2rθ and db

(
dgm(fh,m),dgm(fh,m′ )

)
≥ 2rθ.

For a fixed signal f , denote Pθf the product distribution of the noisy trajectory X define in model 1.

From section 2 of Tsybakov (2008), it now suffices to show that if rθ = o
((
θ2 log

(
1
θ

)) α
d+2α

)
, then,

1⌊
1
h

⌋
− 2

∑
0<m<⌊1/h⌋

χ2
(

Pθfh,mPθf0

)
=

1⌊
1
h

⌋
− 2

∑
0<m<⌊1/h⌋

EPθ
f0

(dPθfh,m
dPθf0

)2
− 1 (11)

converges to zero when θ converges to zero.

By Cameron-Martin formula, for all 0 < m < ⌊1/h⌋, integer,

dPθfh,m
dPθf0

= exp

(∫
[0,1]d

θ(fh,m − f0)(t1, ..., td)dWt1,...,td −
1

θ2
∥fh,m − f0∥22

)
.

We denote Hm the hypercube defined by ||(x1, ..., xd)−m/⌊1/h⌋(1, ..., 1)|| ≤ h

EPθ
f0

(dPθfh,m
dPθf0

)2


= exp

(∫
[0,1]d

1

θ2
(fh,m − f0)

2(t1, ..., td)dt1...dtd

)

= exp

(
L2

θ2

∫
Hm

(hα − ||(t1, ..., td)−m/⌊1/h⌋(1, ..., 1)||α2 )
2 dt1...dtd

)
≤ exp

(
L2

θ2

(∫
Hm

h2αdt1...dtd +

∫
Hm

||(t1, ..., td)−m/⌊1/h⌋(1, ..., 1)||2α2 dt1...dtd

))
≤ exp

(
2L2

θ2

∫
Hm

h2αdt1...dtd

)
≤ exp

(
2L2

θ2
h2α+d

)
.

Hence, if
(
θ2 log

(
1
θ

)) 1
d+2α ≪ h, we have that 11 converges to zero. Consequently, if rθ = o

((
θ2 log

(
1
θ

)) α
d+2α

)
,

then
(
θ2 log

(
1
θ

)) 1
d+2α ≪ h and we get the conclusion.

4 Discussion

To date, statistical studies of Topological Data Analysis tools have predominantly relied on lift-
ing known results from signal (or density) estimation using sup norm (or Hausdorff, or Gromov-
Hausdorff) stability. However, this work represents a step forward, breaking free from this ap-
proach. We provide a finer analysis of the plug-in histogram estimator, showing that it achieves
minimax convergence rates on the classes Sd(L,α,R) that coincide with the known ones for Holder-
continuous signals. These classes contain irregular functions that pose challenges for conventional
non-parametric techniques. Beyond the results shown here, it opens a new path to think and ana-
lyze persistent homology inference, showing that it allows relaxation of regularity assumptions over
considered signals.
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It then raises questions about further relaxations of the regularity assumptions. A first direction is
investigating how assumption A1 can be made more local, controlling the regularity only around
the locations of birth and death of topological features. In Dasgupta and Kpotufe (2014) and Jiang
and Kpotufe (2017) it is shown that local maxima (and equivalently minima) of a density can be
inferred under weak local assumptions. This implies that, for univariate signals, it is possible to
achieve the usual convergence rates for persistence diagram inference solely under local regularity
assumptions. Understanding how this can be generalized motivates future works. In a parallel vein,
we believe that there is room to consider the potential relaxation assumption A3. One plausible
approach involves controlling the µ-reach, as defined in Chazal et al. (2006), of the discontinuities
set. This would extend significantly our results, allowing to handle, for example, signals with sets
of discontinuities featuring multiple points and cusps. Still, as illustrated in Figure 5, in this case, a
plug-in estimator from histogram will fall short. In this case we may need to move beyond plug-in
estimation.
One can also wonder if the methods and convergence rates established here for the Gaussian white
noise model extend to other popular and richer models. In this direction, we show in Appendix
C how they can be extended to the non-parametric regression model with fixed regular design.
Inspired by potential application to modes detection, as sketched for example in Genovese et al.
(2015), extending these results to the density model motivates future work in this direction.

Figure 5: λ−sublevel cubical approximation for f the function defined as 0 on the hatched area
and K outside (for arbitrarily large K) and λ = K/4. The cycle in red is problematic, as it has
a lifetime of CK (C an absolute constant). The discontinuity set has here a positive µ−reach for
small µ.
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A Proof for q−tameness

This section is devoted to prove the claim that the persistence diagrams we consider and estimated
persistence diagrams we propose are well-defined, by proving that the underlying persistent modules
are q−tame.

Lemma 5. Let f ∈ Sd(L,α,R). ∀s ∈ N, ∀h < R
2 , there exist a morphism ϕ such that, ∀λ ∈ R,

Hs (Fλ) Hs

(
Fλ+L(1+3α)hα

)
Hs

(
Fh
λ

) ϕλ
(12)

is a commutative diagram (unspecified map come from set inclusions).

Proof. Let ϕ̃λ : Hs (Kλ,h) → Hs (Gλ,h) the morphism associated to the deformation retract from
Proposition 1. We also denote i1,λ : Hs

(
Fh
λ

)
→ Hs (Kλ,h) the morphism induced by the inclusion

Fh
λ ⊂ Kλ,h and i2,λ : Hs (Gλ,h) → Hs

(
Fλ+L(1+3α)hα

)
the morphism induced by the inclusion

Gλ,h ⊂ Fλ+L(1+3α)hα , also provided by Proposition 1. We take ϕλ = i2,λ ◦ ϕ̃λ ◦ i1,λ. Diagram 12
then is (unspecified maps are the one induced by set inclusion),

Hs (Fλ) Hs

(
Fλ+L(1+3α)hα

)
(F1) (F2) (F3)

Hs

(
Fh
λ

)
Hs (Kλ,h) Hs (Gλ,h)i1,λ

i2,λ

ϕ̃λ

(13)

Faces (F1) and (F3) simply commutes by inclusion. Face (F2) commutes as ϕ̃λ is induced by a
deformation retract. Each faces of diagram 13 are commutative, hence diagram 13 (and equivalently
diagram 12) is commutative.

Proposition 6. Let f ∈ Sd(L,α,R) then f is q-tame.

Proof. Let s ∈ N and Vs,f the persistent module (for the s−th homology) associated to the sublevel
filtration, F and for fixed levels λ < λ

′ let denote vλ
′

λ the associated map. Let λ ∈ R and h < R
2 . By

Lemma 5, vλ+L(1+3α)hα

λ = ϕλ ◦ ĩλ, with ĩλ : Hs (Fλ) → Hs

(
Fh
λ

)
. And, due to sublevel thickening

by h, Fλ ⊂ Fh
λ , and consequently ĩλ is of finite rank. Thus, vλ+(

√
d+1)αLhα

λ is of finite rank for all
0 < h < R

2 . As for any λ < λ
′
< λ

′′ , vλ
′′

λ = vλ
′′

λ′
◦ vλ

′

λ we then have that vλ
′

λ is of finite rank for all
λ < λ

′ . Hence, f is q-tame.

Proposition 7. Let f ∈ Sd(L,α,R) then, for all s ∈ N, V̂hs,f is q-tame.

Proof. Let h > 0 and λ ∈ R. F̂λ,h is a union of hypercubes of the regular grid Gh, thus, Hs

(
F̂λ,h

)
is finite dimensional. Thus V̂s,f is q-tame by Theorem 1.1 of Crawley-Boevey (2012).
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B Proofs of technical lemmas

B.1 Proof of the continuity of Fλ,h

This section is devoted to the proof of the deformation retract Fλ,h, introduced in the proof of
Proposition 1.

Lemma 6. Let h > 0 and λ ∈ R, Fλ,h is continuous.

Proof. Let δ, δ′ > 0, x, y ∈ Kλ,h such that ||x − y||2 ≤ δ and t, s ∈ [0, 1] a such that |t − s| ≤ δ
′ .

Let’s check the different cases.

We begin by the cases where x ∈ M i and y ∈ M j , i ̸= j. Then ||x− ξ(x)||2 ≤ δ, ||y − ξ(y)||2 ≤ δ,
and thus, ||ξ(x)− ξ(y)||2 ≤ 2δ.

• if x ∈
⋃

x∈Sλ,h

[x, ξ(x)]∩Mi and d2 (ξ(x),Mi ∩ Fλ+Lhα) ≥ 2h−||x−ξ(x)||2, and if (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+ >

0, for sufficiently small δ, we would have,

||x− ξ(x)||2 ≤ δ < (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+

which is contradictory. Hence, we can suppose (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+ = 0. Then, as
Fλ,h (ξ(x), t) = ξ(x)

||Fλ,h(x, t)− Fλ,h(ξ(x), t)||2 = (1− t)||x− ξ(x)||2 ≤ δ.

• Otherwise, Fλ,h(x, t) = x, and directly,

||Fλ,h(x, t)− Fλ,h(ξ(x), t)||2 = ||x− ξ(x)||2 ≤ δ.

following the same reasoning we also have,

||Fλ,h(y, s)− Fλ,h(ξ(y), s)||2 ≤ δ.

Then,

||Fλ,h(x, t)− Fλ,h(y, s)||2 ≤ ||Fλ,h(x, t)− Fλ,h(ξ(x), t)||2
+ ||Fλ,h(ξ(x), t)− Fλ,h(ξ(y), s)||2
+ ||Fλ,h(ξ(y), s)− Fλ,h(y, s)||2

≤ 2δ + ||ξ(x)− ξ(y)||2 ≤ 4δ

And the conclusion follows in this case. From now, we suppose that x, y ∈Mi.

• If x /∈
⋃

x∈Sλ,h

[x, ξ(x)] or d2 (ξ(x),Mi ∩ Fλ+Lhα) ≥ 2h− ||x− ξ(x)||2 and y /∈
⋃

x∈Sλ,h

[x, ξ(x)] or

d2 (ξ(y),Mi ∩ Fλ+Lhα) ≥ 2h− ||y − ξ(y)||2. Then, directly,

||Fλ,h(x, t)− Fλ,h(y, s)||2 = ||x− y||2 ≤ δ.

• If x ∈
⋃

x∈Sλ,h

[x, ξ(x)] and d2 (ξ(x),Mi ∩ Fλ+Lhα) ≥ 2h− ||x− ξ(x)||2, and y /∈
⋃

x∈Sλ,h

[x, ξ(x)].

Then, y ∈ Fλ+2Lhα . Thus,

d2 (ξ(x),Mi ∩ Fλ+Lhα) ≤ ||x− ξ(x)||+ ||x− y||2 ≤ h+ δ
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and,
2h− d2 (ξ(x),Mi ∩ Fλ+Lhα) ≥ h− δ ≥ ||x− ξ(x)|| − δ.

Consequently, ∥∥∥∥ξ(x) + (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+
x− ξ(x)

||x− ξ(x)||2
− x

∥∥∥∥
2

≤ δ

Then,

||Fλ,h(x, t)− Fλ,h(y, s)||2

=

∥∥∥∥(1− t)x+ t

(
ξ(x) + (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+

x− ξ(x)

||x− ξ(x)||2

)
− y

∥∥∥∥
2

≤ ||x− y||2 +

∥∥∥∥ξ(x) + (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+
x− ξ(x)

||x− ξ(x)||2
− x

∥∥∥∥
2

≤ 2δ.

• If x ∈
⋃

x∈Sλ,h

[x, ξ(x)] and d2 (ξ(x),Mi ∩ Fλ+Lhα) ≥ 2h − ||x − ξ(x)||2 and y ∈
⋃

x∈Sλ,h

[x, ξ(x)]

and d2 (ξ(y),Mi ∩ Fλ+Lhα) < 2h− ||y − ξ(y)||2. Then,

2h− d2 (ξ(x),Mi ∩ Fλ+Lhα) = 2h− d2 (ξ(y),Mi ∩ Fλ+Lhα)
+ d2 (ξ(y),Mi ∩ Fλ+Lhα)− d2 (ξ(x),Mi ∩ Fλ+Lhα)

≥ 2h− d2 (ξ(y),Mi ∩ Fλ+Lhα)− ||ξ(x)− ξ(y)||2
≥ ||y − ξ(y)||2 − ||ξ(x)− ξ(y)||2
≥ ||x− ξ(x)||2 − 2||ξ(x)− ξ(y)||2 − ||x− y||2.

Hence,∥∥∥∥ξ(x) + (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+
x− ξ(x)

||x− ξ(x)||2
− x

∥∥∥∥
2

≤ ||x− y||2 + 2||ξ(x)− ξ(y)||2

And thus, we have,

||Fλ,h(x, t)− Fλ,h(y, s)||2

=

∥∥∥∥(1− t)x+ t

(
ξ(x) + (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+

x− ξ(x)

||x− ξ(x)||2

)
− y

∥∥∥∥
2

≤ ||x− y||2 +

∥∥∥∥ξ(x) + (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+
x− ξ(x)

||x− ξ(x)||2
− x

∥∥∥∥
2

≤ 2||x− y||2 + 2||ξ(x)− ξ(y)||2
≤ 2δ + 2||ξ(x)− ξ(y)||2

and we conclude by continuity of ξ.

• Finally, if x ∈
⋃

x∈Sλ,h

[x, ξ(x)] and d2 (ξ(x),Mi ∩ Fλ+Lhα) ≥ 2h − ||x − ξ(x)||2 and y ∈⋃
x∈Sλ,h

[x, ξ(x)] and d2 (ξ(y),Mi ∩ Fλ+Lhα) ≥ 2h− ||y − ξ(y)||2. Then,

||Fλ,h(x, t)− Fλ,h(y, s)||2

=

∥∥∥∥(1− t)x+ t

(
ξ(x) + (2h− d2 (ξ(x),Mi ∩ Fλ+Lhα))+

x− ξ(x)

||x− ξ(x)||2

)
−(1− t)y − t

(
ξ(y) + (2h− d2 (ξ(y),Mi ∩ Fλ+Lhα))+

y − ξ(y)

||y − ξ(y)||2

)∥∥∥∥
2

and the conclusion follows again, in this case by continuity of ξ.
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All possible cases have been checked, the proof is complete.

B.2 Proof of the continuity of Hλ,h

This section is devoted to the proof of the deformation retract Hλ,h, introduced in the proof of
Proposition 2.

Lemma 7. Let h > 0 and λ ∈ R, Hλ,h is continuous.

Proof. Let δ, δ′ > 0, x, y ∈ Kλ,h such that ||x− y||2 ≤ δ. t, s ∈ [0, 1] a such that |t− s| ≤ δ
′ . Let’s

check the different cases.

• If x ∈ M i and y /∈ M i. Assumptions A3 ensures that for sufficiently small δ, there exists
j ∈ {1, ..., l}, with y ∈Mj such that,

B2(x, h) ⊂ B2(y, 2h) ⊂Mi ∪Mj .

By Assumption A1 and A2, this implies that B2(x, h) ⊂ Fλ+L2αhα and thus x ∈ F−h
λ+L2αhα .

From the same reasoning, it follows that y ∈ F−h
λ+L2αhα . Hence,

||Hλ,h(x, t)−Hλ,h(y, s)||2 = ||x− y||2 ≤ δ.

From now, we can suppose that x, y ∈Mi.

• If x /∈
⋃

x∈Pλ,h

[x, γλ,h(x)] ∩ Mi or d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
≥ 3h − ||x − γλ,h(x)||2 and

y /∈
⋃

x∈Pλ,h

[x, γλ,h(x)]∩Mi or d2 (γλ,h(y),Mi ∩ Fλ+2Lhα) ≥ 3h− ||y− γλ,h(y)||2, then directly,

||Hλ,h(x, t)−Hλ,h(y, s)||2 = ||x− y||2 ≤ δ.

• If x ∈
⋃

x∈Pλ,h

[x, γλ,h(x)] ∩Mi and d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
≥ 3h − ||x − γλ,h(x)||2 and

y /∈ ((∂Mi∩]0, 1[d)h)◦, then, d2
(
x, ∂Mi∩]0, 1[d

)
≥ h − δ and thus ||x − γλ,h(x)||2 ≤ δ. As

Hλ,h(x, 1) ∈ [x, γλ,h(x)], we have,

||Hλ,h(x, 1)−Hλ,h(y, 1)||2 = ||Hλ,h(x, 1)− y||2 ≤ ||x− y||2 + ||x−Hλ,h(x, 1)||2 ≤ 2δ.

If x ∈
⋃

x∈Pλ,h

[x, γλ,h(x)] ∩Mi and d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
≥ 3h − ||x − γλ,h(x)||2 and

y ∈

( ⋃
x∈Pλ,h

[x, γλ,h(x)]

)c
∩
((
∂Mi∩]0, 1[d

)h)◦. Then, y ∈ F−h
λ+2Lhα . Thus, for sufficiently

small δ there exists z ∈ (M i)
c ∩B2(y, h) and,

d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
− 2h ≤ ||x− y||2 ≤ δ.

Hence, ∥∥∥∥γλ,h(x) + (3h− d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
))

+

x− γλ,h(x)

||x− γλ,h(x)||2
− x

∥∥∥∥
2

≤ δ

and,

||Hλ,h(x, t)−Hλ,h(y, s)||2

=

∥∥∥∥(1− t)x+ t

(
γλ,h(x) +

(
3h− d2

(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
))

+

x− γλ,h(x)

||x− γλ,h(x)||2

)
− y

∥∥∥∥
2

≤
∥∥∥∥γλ,h(x) + (3h− d2

(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
))

+

x− γλ,h(x)

||x− γλ,h(x)||2
− x

∥∥∥∥
2

+ ||x− y||2

≤ 2δ
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• If x ∈
⋃

x∈Pλ,h

[x, γλ,h(x)] ∩Mi and d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
≥ 3h − ||x − γλ,h(x)||2 and

y ∈
⋃

x∈Pλ,h

[x, γλ,h(x)] ∩Mi and d2 (γλ,h(y),Mi ∩ Fλ+Lhα) < 3h− ||y − γλ,h(y)||2, then,

3h− d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
≥ ||y − γλ,h(y)||2 − ||γλ,h(x)− γλ,h(y)||2
≥ ||x− γλ,h(x)||2 − 2||γλ,h(x)− γλ,h(y)||2 − ||x− y||2

Thus,

||Hλ,h(x, t)−Hλ,h(y, s)||2

=

∥∥∥∥(1− t)x+ t

(
γλ,h(x) +

(
3h− d2

(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
))

+

x− γλ,h(x)

||x− γλ,h(x)||2

)
− y

∥∥∥∥
2

≤
∥∥∥∥γλ,h(x) + (3h− d2

(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
))

+

x− γλ,h(x)

||x− γλ,h(x)||2
− x

∥∥∥∥
2

+ ||x− y||2

≤ 2||γλ,h(x)− γλ,h(y)||2 + 2||x− y||2
≤ 2δ + 2||γλ,h(x)− γλ,h(y)||2

and we conclude, in this case, by continuity of γλ,h.

• Finally, if x ∈
⋃

x∈Pλ,h

[x, γλ,h(x)]∩Mi and d2
(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
)
≥ 3h−||x−γλ,h(x)||2

and y ∈
⋃

x∈Pλ,h

[x, γλ,h(x)] ∩Mi and d2 (γλ,h(y),Mi ∩ Fλ+Lhα) ≥ 3h− ||y − γλ,h(y)||2, then,

||Hλ,h(x, t)−Hλ,h(y, s)||2

=

∥∥∥∥(1− t)x+ t

(
γλ,h(x) +

(
3h− d2

(
γλ,h(x), (M i)

c ∩ Fλ+2Lhα
))

+

x− γλ,h(x)

||x− γλ,h(x)||2

)
−(1− t)y − t

(
γλ,h(y) +

(
3h− d2

(
γλ,h(y), (M i)

c ∩ F−h
λ+Lhα

))
+

y − γλ,h(y)

||y − γλ,h(y)||2

)∥∥∥∥
2

and again the conclusion, follows in this case, by continuity of γλ,h.

All possible cases have been checked, the proof is complete.

B.3 Proof of Lemma 3

Proof. Let B1 the Euclidean closed ball centered in ξ(x) + R x−ξ(x)
∥x−ξ(x)∥2

of radius R and B2 the

Euclidean closed ball centered in ξ(x) − R x−ξ(x)
∥x−ξ(x)∥2

of radius R. By Assumption A3, B1 ⊂ Mi

and B2 ⊂ M c
i . Then, the Hausdorff distance between B2 (ξ(x),Kh) ∩Mi and B2 (ξ(x),Kh) ∩ P

is upper bounded by the Hausdorff distance between union of sphere ∂B1 ∪ ∂B2 intersected with
B2 (ξ(x),Kh) and the intersection with B2 (ξ(x),Kh) of the hyperplane,

P =

{
z ∈ [0, 1]d s.t.

〈
z,

x− ξ(x)

∥x− ξ(x)∥2

〉
=

〈
ξ(x),

x− ξ(x)

∥x− ξ(x)∥2

〉}
.

By symmetry, this distance is equal to the Hausdorff distance between ∂B1 ∩ B2 (ξ(x),Kh) and
P ∩B2 (ξ(x),Kh).

Now, let x ∈ ∂B1 \ {ξ(x)}, and p(x) its projection on P . Let Q the plane containing x, p(x)
and ξ(x), Q intersects ∂B1 into a circle C of radius R and intersects P into a line D tangent to
C. The problem then simplify to upper bounding the distance between a circle and a tangent line
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around the intersection point. Without loss of generality, we can suppose that we are in R2, C
being the circle of radius R centered at (0, R) and D the line y = 0 (tangent to C at (0, 0)). In
B((0, 0), Ch), as Ch < R, C can be described as,

C =
{
(x, y) ∈ B((0, 0), Ch) s.t. y = R−

√
R2 − x2

}
.

Hence the distance between C and D in B((0, 0), Ch) is upper bounded by,

R−
√
R2 − (Ch)2 =

C2

2R
h2 +O(h3)

and the result follows.

C Extension to non-parametric regression

The model 1 proves to be valuable for establishing theoretical results. However, it has a limitation as
it assumes the observation of a complete trajectory, making it less popular for practical applications.
In this section, we focus on proposing extensions to another essential non-parametric model with
greater practical interest: non-parametric regression. The proofs of the main results are essentially
the same, we detail only the few differences.

We consider the classical non-parametric regression setting (with fixed regular design), observing
n = Nd points,

Xi = f(xi) + σεi

with xi a point on the regular Nd grid Gn over [0, 1]d, σ the level of noise and εi a standard Gaussian
variable. In this context, we define,

F̂λ,h =
⋃

H∈Ch,λ

H, with Ch,λ =

H ∈ Ch such that
1

|{xi ∈ H}|
∑
xi∈H

Xi ≤ λ

 .

The key here to lift the convergence results established in Section 2 in this context is to show an
analogous inclusion from the one obtained in Proposition 3, then the exact same reasoning applies.
All we have to provide is similar noise control. For h > 0, let denote the variable,

Nh =

max
H∈Ch

∣∣∣∣∣ 1
|{xi∈H}|

∑
xi∈H

σεi

∣∣∣∣∣√
2σ2

log(1/hd)
⌊Nh⌋d

Lemma 4 bis. Let h > 1/N,

P (Nh ≥ t) ≤ 2

(
1

h

)d
exp

(
−t2 log

(
1/hd

))
.

Proof. Let h > 1/N and H ⊂ [0, 1]d be a closed hypercube of side h. As the (εi)i=1,...,n are i.i.d and
standard Gaussian variables, we have, for all H ∈ Ch,

P

∣∣∣∣∣∣ 1

|{xi ∈ H}|
∑
xi∈H

σεi

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
−|{xi ∈ H}|t2

2σ2

)
.
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And thus, as the number of point in any H ∈ Ch is at least to ⌊hN⌋d,

P

∣∣∣∣∣∣ 1

|{xi ∈ H}|
∑
xi∈H

σεi

∣∣∣∣∣∣ ≥ t

 ≤ 2 exp

(
−⌊hN⌋dt2

2σ2

)
.

Now, by union bound, using |Ch| = 1/h,

P

max
H∈Ch

∣∣∣∣∣∣ 1

|{xi ∈ H}|
∑
xi∈H

σεi

∣∣∣∣∣∣ ≥ t

 ≤ 2

(
1

h

)d
exp

(
−⌊hN⌋dt2

2σ2

)
.

and the result follows.

In particular, as in Lemma 4, it follows that Nh is sub-Gaussian, more precisely there exists C0 and
C1 depending only on d such that, for all h,

P (Nh ≥ t) ≤ C0 exp(−C1t
2).

Let now choose, hn,α such that,

hαn,α >

√
log
(
1/hdn,α

)
⌊Nhn,α⌋d

thus, we can choose,

hn,α ≃
(
log(n)

n

) 1
d+2α

.

With this choice we obtain the following key lemma.

Lemma 2 bis. Let f : [0, 1]d 7→ R. Let H ⊂ Fc
λ+

√
2σ2Nhn,αh

α
n,α

∩Chn,α and H ′ ⊂ F
λ−

√
2σ2Nhn,αh

α
n,α

∩
Chn,α. We then have that,

1

|{xi ∈ H}|
∑
xi∈H

Xi > λ and
1

|{xi ∈ H ′}|
∑
xi∈H′

Xi < λ.

Proof. Let consider here the case where in H
′ ⊂ F

λ−
√
2σ2Nhn,αh

α
n,α

(The proof being the same in
both cases). We have,

1

|{xi ∈ H ′}|
∑
xi∈H′

Xi

=
1

|{xi ∈ H ′}|
∑
xi∈H′

f(xi) + σεi

≤ λ−
√
2σ2Nhn,αh

α
n,α +Nhn,α

√
2σ2

√
log
(
1/hdn,α

)
⌊Nhn,α⌋d

< λ

By the choice made for hn,α.

Using Lemma the Lemma 2 bis instead of Lemma 2 in the proof of Proposition 3, we obtain the
following analogous proposition.
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Proposition 3 bis. Let f : [0, 1]d → R. For all λ ∈ R,

F−
√
dhθ,α

λ−
√
2σ2Nhn,αh

α
n,α

⊂ F̂λ,hn,α ⊂ F
√
dhn,α

λ+
√
2σ2Nhn,αh

α
n,α

We define V̂hf,s and d̂gm(f) in the exact same way we did for the Gaussian White Noise model.
Again, we can show that this module is q-tame applying the same ideas used in the proofs of Propo-
sition 7.

Having the inclusion given by Proposition 3 bis, the reasoning from the proof of Proposition 5
gives,

Proposition 5 bis. There exists C̃0 and C̃1 such that, for all t > 0,

P

(
sup

f∈Sd(L,α,R)
db

(
d̂gm(f),dgm(f)

)
≥ t

(
log(n)

n

) α
d+2α

)
≤ C̃0 exp

(
−C̃1t

2
)
.

From this, we obtain, as in Section 2, upper bounds for estimation. This bound can be shown to
be minimax also in this setting (adapting the proof of Theorem 3). Adaptivity also follows as in
Section 2.4.
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