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Abstract

To our knowledge, the analysis of convergence rates for persistent diagram estimation from
noisy signals had remained limited to lifting signal estimation results through sup norm (or other
functional norm) stability theorems. We believe that moving forward from this approach can lead
to considerable gains. We illustrate it in the setting of Gaussian white noise model. We examine
from a minimax perspective, the inference of persistent diagram (for sublevel sets filtration).
We show that for piecewise Holder-continuous functions, with control over the reach of the
discontinuities set, taking the persistent diagram coming from a simple histogram estimator of
the signal, permit to achieve the minimax rates known for Hélder-continuous functions.

Introduction

Motivation

Inferring information from noisy signals is a central subject in statistics. Specifically, the recovery of
the whole signal structure has been extensively studied by the non-parametric statistics community.
When the signal is regular (e.g; belonging to a Holder, Sobolev or Besov space) rigorous minimax
study as long as tractable optimal procedures has been provided, forming a nearly exhaustive bench-
mark. For an overview, see Tsybakov] (2008)).

When facing more irregular signals, typically signals that are only piecewise continuous, the prob-
lem becomes significantly more difficult. Motivated by applications, later works have attempted to
explore this case. For an overview, refer to |Qiu (2005)). However, proposed methods suffer from
certain limitations : strong additional knowledge assumptions (e.g. suppose to known the number
of jumps, their locations or their magnitudes), restrict to low dimensional cases (only univariate or
bivariate signals), high computational costs or lack of rigorous and general statistical guarantees
over the risk. Additionally, due to the strong sensibility to point-wise discontinuity of the sup norm,
these works only consider Ly (or sometimes Ly, p < 4+o00) metric (less sensitive to topology). All
these problematic points motivate the exploration of looser descriptors that can be inferred more
easily.

In the last two decades, Topological Data Analysis has emerged as a powerful approach, offer-
ing new geometric tools for characterizing complex signals. Among these tools, persistent homology
has garnered significant attention. Represented through persistent diagrams (or barcodes), it has
proven to be a versatile descriptor, valuable from both practical and theoretical standpoints. Recent
research has focused on the estimation of such representations, opening up exciting opportunities
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to explore the statistical aspects of Topological Data Analysis. In this context, the model that
has received the most attention is the density model, initiated by the work of |[Bubenik and Kim
(2006)) in a simple parametric setting. Subsequently, efforts have been made to extend this model
to wider, non-parametric settings. Notable contributions include the work of |Balakrishnan et al.
(2012), which addresses the estimation of Betty numbers for smooth manifolds with different noise
models, and [Fasy et al.| (2014)), who provide confidence sets for persistence diagrams in a similar
context. Additionally, Chazal et al.| (2014) provide a minimax estimator while controlling the reg-
ularity of the density support.

The study of non-parametric regression or the Gaussian white noise model remains relatively un-
explored in the context of Topological Data Analysis. Advancements in this direction include the
works of [Bubenik et al.| (2009) and Bobrowski et al. (2017), as well as more recent contributions,
such as those by |Perez (2022)), albeit in a different direction.

The general approach followed in these works involves estimating the signal (or density), quantifying
the estimation error in sup-norm, Hausdorff distance, or Gromov-Hausdorff distance, and bounding
the bottleneck error on the diagram using stability theorems (Cohen-Steiner et al., |2005; (Chazal
et al.,[2009, 2016, 2012)). The power and importance of stability theorems are evident as they enable
the direct translation of convergence rates in sup-norm (or similar metrics) to convergence rates in
bottleneck distance over diagrams (under the assumption that the signal is ¢-tame). To further
underline the significance of stability theorems, some studies, such as |Bubenik et al| (2009) and
Chazal et al.| (2014]), demonstrate that these rates are minimax for typical function classes.

However, adopting these approaches may sacrifice efficiency and generality. One of the main interest
of the persistent diagram lies in its capacity to provide a more flexible representation compared to
the entire signal. Consequently, in certain cases, inferring the persistent diagram should be (strictly)
simpler. This observation serves as a crucial motivation to conduct finer analysis of the convergence
properties of persistent diagram estimator. Moreover, it highlights the broader appeal of utilizing
topological or geometrical descriptors, especially when conventional non-parametric techniques yield
unsatisfactory results. As mentioned earlier, such scenarios commonly arise when signals display
irregularities.

Framework

Regularity assumptions. For a set A C [0, 1]¢, we denote A its adherence, A° its interior, A its
boundary and A€ its complement. Let f : [0,1]¢ — R, we make the following assumption over f :

Al. fis a piecewise (L,a)—Holder-continuous function, i.e. there exist Mi, ..., M; open sets of
[0,1]¢ such that,

Mi = [0’ 1]d

l
=1

)

and for all i € {1,...,{} and z,y € M;,

[f (@) = f(y)l < Lijz —yl3.

A2. f verifies, Vzq € [0, 1],
liminf f(x) = f(xo)
xEILlJl M;—xo
In this context, two signals, differing only on a null set, are statistically undistinguishable. And
persistent homology is sensitive to point-wise irregularity, two signals differing only on a null set
can have very different persistent diagram. Assumption A2 prevents such scenario. Furthermore,



note that for any piecewise Holder-continuous function f, there exists a modification f verifying
Assumption A2 such that f and f coincide except on a null measure sets.

l
A3. |J 0M;n]0,1[? is a OV hypersurface, verifying, for R > 0,
i=1

1=

l l
reach <]O, 1090 U 8Mi> > R and d» <ﬂ U oM;N]0, 1[4, 8]0, 1]d> >R

i=1 i=1
where, for a set A C RY,

reach(A) = sup {r € R: Ve e R\A with dy({z}, A) < r, Ay € Ast. ||z —yll2 = d2({a:},A)}

and,

d2(A, B) = max (gﬁgg;g‘ £ yngsclelgylg]g || sz)
The reach is a curvature measure introduced by [Federer| (1959)). An intuitive way to approach it
is that if A has a reach R we can roll a ball of radius R along the boundary of A. Positive reach
assumptions are fairly common (and sometimes necessary) in statistical TDA (Balakrishnan et al.,
2012; Niyogi et al.l 2008) and geometric inference (Genovese et all 2012; Kim et al., [2016; |Aamari
and Levrard, |2017; |/Aamari et al 2019; |[Berenfeld et al., 2021)). Here, the first part of Assumption
A3 gives geometric control over the union of the boundary of the M; in the interior of [0, 1]¢, for
example it prevents cusps and multiple points to appear. Following the same idea, the second part
ensures that the discontinuities not appear too close from the boundary. The combination of As-
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Figure 1: Illustration of Assumption A3

sumptions A2 and A3 ensures that the persistence diagram of f is well-defined (see Appendix
Proposition @

We denote Sg(L, a, R) the set of such functions.

Statistical model. We considered the Gaussian white noise model given by the following stochastic
equation,
dth,...,td = f(tl, ooy td)dtl...dtd + 9th17~--,td (1)

with W a d—parameters Wiener field, f a signal in Sy(L, o, R) and 6 > 0 the level of noise. Model
is a classical model in non-parametric statistics.



Estimator. In this context, our goal is to estimate dgm(f), the persistent diagram of f (con-
sidering singular homology with coefficient in a field). The estimation procedures consist of simply
taking the persistent diagram induced by the sublevel sets of the signal estimated using histograms.

More formally, let A > 0 such that 1/h is an integer, consider G}, the regular orthogonal grid
over [0,1]? of step h and C}, the collection of all the closed hypercubes of side h composing G,. We
define, VA € R, the estimator of Fy = f~1(] — o0, A]), by,

]?,\,hz U H,WithCh,,\:{HEC’h such that / dX—/ )\§0}.
HECh H H

It is worth noting that F A, h represents the sublevel set indexed by A of the histogram estimator

of f. We then consider, for all s € {0,...,d}, V, the persistent module induced by the collection

of homology groups (H s (J?/\,hea)>/\ o equipped with inclusion induced maps and dgm(f) the
’ €

associated persistent diagrams. This procedure is illustrated by Figure [2| in the slightly different
setting of non-parametric regression with fixed design (see Appendix , this choice being more
convenient for simulations.

A natural question is how to calibrate the window-size h for signals. From the proof of Lemma
(see Appendix , a good choice is taking hg , such that,

d+a
h@,a

\/hg’a log (1 + h§7a>
1\ 772

+2a

he,a ~ (92 log <9>> .

In this framework, we study the convergence properties of the estimator dgm(f). We provide a
rigorous analysis of the convergence properties for the proposed estimator, showing that it achieves
the following rates for the bottleneck distance over the classes Sg(L, a, R).

>0

which implies that we can take,

Contribution

Theorem 1. Letp > 1,
p 1 di%
s E(dy (dem(f), dgm(f))") (92 log (0)> .
feSa(L,o,R)

Furthermore, we establish that these rates are optimal, in the minimax sense, over the classes
Sd(L7 «, R)

Theorem 3. Letp > 1,
p 1\ 7+2=
Lri sup E (db <dgm(f),dgm(f)> > 2 <92 log <9>> .
dgm(f) feSa(L,a,R)

Interestingly, these rates coincide with the well-known minimax rates obtained on Hoélder spaces.
Up to a multiplicative constant, there is no additional cost for considering signal in Syg(L, v, R). It
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Figure 2: Numerical illustration of the estimation procedures in the setting of the non-parametric
regression (see Appendix. f(z,y) = cos(2mx) sin(27x) +1 (5,1 /2)24(y—1/2)2<1/8, © = 0.1, n = 2500,
h = 1/4(log(n)/n)/*.



demonstrates the gain of breaking free from usual analysis approach in TDA and the robustness
to discontinuities of persistent diagram estimation. Also, as such irregularities are challenging to
handle for signal estimation, these results promote the use of persistent diagram while processing
noisy (irregular) signals.

The adaptivity to regularity is discussed. Applying Lepskii’s method (Lepskii, |1991), we derive
an adaptive procedure (see Section that achieves the established minimax rates.

Following the same idea, we propose an estimator tailored for the non-parametric regression setting,
with fixed design. We show that, also in this context, our estimator achieves minimax rates over

the classes Sy(L, o, R) (see Appendix |C]).

1 Background on persistent homology

We first recall the required background on persistent homology, focusing on the case of persistent
homology from sublevel sets of real functions. This section does not pretend to give an exhaustive
exposition to persistent homology, but simply introduce the essential formalism to follow this paper.
For an extensive overview, see Chazal et al.| (2016)).

The construction introduced here exploited the concept of homology, and especially singular homol-
ogy. For an introduction to (singular) homology, the reader can refer to Hatcher (2000)).

1.1 Filtrations and persistence modules

The idea behind persistence homology is to encode the evolution of the topology (in the homology
sense) of a nested family of topological spaces, called filtration. As we are moving along indices,
topological features (connected components, cycles, cavities, ...) can appear or die (existing con-
nected components merge, cycle or cavities are filled, ...). Two keys to formalize this idea, that we
use along this paper, are the notions of filtration and of persistence module.

Definition 1. Let A C R be a set of indices. A filtration over A is a family (ICy),c, of topological
spaces satisfying, VA, N € A, A < N
Ky C Ky

The typical filtration that we will consider in this paper is, for a function f : R¢ — R, the family of
sublevel sets (Fy)ycgr-

Definition 2. Let A C R be a set of indices. A persistence module over A is a family V = (V)),ca
of vector spaces equipped with linear application v} : Vy — Vy/ such that, VA < N < X' € A,

vy =id

and

" ! "
vy ovy =3 .

The typical persistent modules that we will consider in this paper is, for a function f : R? = R and

s € N, the family of homology groups V¢ = (H (F))),cr equipped with v§ the linear application

induced by the inclusion F) C Fy. To be more precise, in this paper, Hy(.) is the singular homology
functor in degree s with coefficient in a field (typically Z/2Z). Hence, H, (Fy) is a vector space.



1.2 Module decompositions, persistent diagrams and ¢—tameness

Persistent diagram (or equivalently barcode) permits to summarize and represent, discretely, the
algebraic structure of a persistent module. Still, this is not possible for all persistent modules. As
shown in |Chazal et al. (2016), if V verifies a g—tameness assumption, persistent diagrams can be
defined. The notion of g—tameness is used in this paper to prove that the diagrams we consider are
well-defined.

Definition 3. A persistence module V is said to be g-tame if VA < X € A, rank (vf\‘/) is finite.

By extension, when considering the persistent modules (V¢ s)sen coming from the sublevel sets fil-
tration of a real functions f, we say that f is g—tame if V¢, is for all s € N.

To avoid technical definitions, in a more restrictive but illustrative case, to define persistence
diagram. The basic idea being that, if we can then decompose persistent modules as a sum of
elementary bricks, called interval modules. The persistent diagram can, in this case, be directly
derive from this decomposition.

Definition 4. Let I an interval (possibly unbounded) of R and I' = TN A. A persistence module
V is a interval module on I’ if,

e Vy=Rif A€ I' and V) = {0} otherwise
o forall \ <X\, v} =idif \,\ €I and v} = 0 otherwise.

Hence, the structure of interval modules is simple and completely encoded by the extremities of

I' = [b,d)(NA). Conditions to ensure existence of a decomposition of a persistence module into sum
of interval modules,
Ve @ (6,41 (2)
jed

can be found in |Chazal et al. (2016) (see theorem 1.4). Assuming we have a decomposition such
as [2 the structure of V is completely described by the extremities (b;,d;) of each interval in the
decomposition. Thus, the associated persistent diagram can be defined simply as the collection of
couples of such extremities. Intuitively, The lower extremity b; corresponds to the birth time of a
topological feature, d; to its death time, and d; — b; represents its lifetime.

Definition 5. Let V a persistence module that can be decomposed as in[2] The associated persistent
diagram is,

dgm (V) = {(bj,d;),j € J} CR’.

Barcodes are another popular representation that consider the collection of segments [b;,d;] in-

stead of the collection of points (bj,d;) in R®. Barcodes and persistent diagrams are equivalent
representations.

Figure 3: Function filtered by its sublevels, the associated barcode and persistent diagram.



1.3 Bottleneck distance, interleaved modules and stability

In order to compare persistent diagrams, we need a distance. A popular such distance, due to
its stability property, is the bottleneck distance. This distance is defined as the infimum over all
matching between points in diagrams, of the maximal sup norm distance between two matched
points. In order to be able to consider matching between diagrams not containing the same number
of points, the diagonal is added to diagrams. This distance will be used in this work to evaluate the
quality of our estimation procedures.

Definition 6. The bottleneck distance between two persistent diagrams D1 and D is,

dy (D1, D2) = sup |[p — v(P)|]oo

inf
7€lpeD,
with T" the set of all bijection between D and Dy (both enriched with the diagonal).

Another notion that will be the key to prove our upper bounds, is the notion of interleaving between
persistent modules. We use especially the fact that if two modules are e—interleaved, then the
bottleneck distance between their diagram is upper bounded by ¢ in bottleneck distance.

o -0
([ ]
°
T ]
multiplicity 2 s g
[ J

e D,

Figure 4: Optimal matching for the bottleneck distance between D; and Ds.

Definition 7. Two persistence modules V. = (Vy),c;cg and W = (Wy),c;cr are said to be e-
interleaved if there exists two families of applications ¢ = (¢a)ycrcr and ¥ = (Y1) yercr Where
Ox Vi = Wige, ¥yt Wy — Ve, and for all A < X the following diagrams commutes,

z N
U wy

¢>AJ/ l%/ T/’/\l \V’A’
W)\Jrs 7 W)\’—i-s V)\+£ / V)\’—i-s
wi ke v
v;\"'k w§‘+2‘5
Vi V)\+25 W, ’ W/\+25
h %MLE k 4%5
Wie Viate

Theorem (algebraic stability (Chazal et al., 2009)). Let V and W two g—tame persistent
modules. If V and W are e—interleaved then,

dp (dgm(V),dgm(W)) < e



In the context of sublevel persistence, a direct consequence of this theorem, is the following theorem.
This result was already established in particular cases in Cohen-Steiner et al.| (2005|) and |Barannikov
(1994).

Theorem (sup norm stability). Let f and g two real-valued q-tame function, for all s € N

dp (dgm (Vf,S) ydgm (Vg5)) < [|f — 9l|oo-

This property is often used to upper bounds the errors (in bottleneck distance) of "plug-in" esti-
mators of persistence diagrams. It is important to note that this sup norm stability is weaker, and
adopting such approaches may result in a loss of efficiency and generality.

2 Upper bounds

This section is devoted to the proof of Theorem [[] The strategy to prove this theorem is to
construct an interleaving between the estimated and true persistent modules, to then apply the
algebraic stability theorem (Chazal et al., 2009). In the case where two filtrations, F! and F?2,
verify for an € > 0 and all A € R, ]:){ C ]:erE C f}\+2€, an e—interleaving is directly given taking
the inclusion induced morphisms between associated modules. Also notes that in this case, if F!
and F2 comes from the sublevel sets of functions f; and fo, it implies that f; and fo are € close
in sup norm. Thus, in our case, doing so is not possible, due to potential arbitrary large errors in
neighborhoods of the discontinuity sets. To overcome this difficulty, we investigate the geometric
behavior of true and estimated sublevel sets, especially around discontinuities.

2.1 Thicken and shrunk true sublevel sets and retraction properties

This section provides two retraction properties : Propositions [I] and [2 Propositions [I] states that
thickened true sublevel sets are included in slightly larger sets that can be retracted by deformation
into true sublevel sets (up to on controlled errors on the associated indices). And Proposition
that state that the true sublevel sets are included in a slightly larger sets that can be retracted
on the shrunken true sublevel sets (up to on controlled errors on the associated indices). As ho-
mology is invariant under deformation retracts, these deformation retracts provides some flexibility
and margin of error to approximate sublevel "roughly" while preserving the topological information.

Denotes, for a set A C R and b > 0, we denote,
Ab = {x eR%st. dy (2, A) < b}

and
A-b — <(A¢:)b)c'

As, by Assumption A3, we have,

l
reach (U oM;N]0, 1[d> > R.

i=1
Theorem 4.8 of [Federer (1959) ensure that for every = € [0,1]¢ at (Euclidean) distance strictly
smaller than R of ]0, 1[N U OM; there exists a unique closest point in ]0, 1[%N U OM;, denoted

i=1 =1
&(x). Furthermore, £ is a continuous function.

To prove Proposition |1} we use the following lemma (see proof in Appendix .



Lemma 1. Let x € [0,1]%. If d> (v,0M;M]0,1[%) < & then &(z) € OM;N]0, 1[2.
Proposition 1. For all 0 < h < % there exists a collection of spaces G = (Gan)\cg Such that

V)\ € R, f)\ - g)\7h C F)\+L(1+3a)ha and,

Kan=Fvul U é@)]] cry

JJES)\’h

with
1 h
SA,h = (U 8Miﬂ]0,1[d> \]:,\_,_Lha ﬂ]‘—;\l
i=1

retracts by deformation onto Gy 4.

Proof. First, note that if x belongs to |J [z,&(x)] then z is at distance a most A from the union
xGSx’h

of (M;)i=1,..1, and thus ||z — £(z)||2 < h which proves that Ky, C ]—'fh.

Fyxpn: Kan % [0,1] = Ky, the map define by,
z —¢(x) >
Tz = &(@)]]2

ifre U [z,&x)]NM; and ds (§(x), M; N Fayrne) > 2h — ||z — &(x)]|2, i € {1, ...,1}, else,

a:ES,\JL

Fun(z,t) = (1 —t)z +1 <§(w) + (2 — do (E(x), M; N Frshe))

F)\’h(a}, t) = X.

We denote Gy j, = Im(z — F) p(z,1)). As F) C ( U [a:,ﬁ(:r)]) s Fa CGan-

Z‘ESA,;L

By definition of Gy p,
Fxp(z,1) € Gap, Vzekyy

and by definition of F) 3,
F)\,h(.%',()) =z, Vr € K:)\’h

Let z € |J [z, &(x)] N M; verifying da (§(z), M; N Fairrne) > 2h — ||z — £(z)||2. Remark that
Z‘ES)\,}L

Fyp(z,t) € [x,&(x)] for all ¢ € [0,1], in particular, this implies that {(F4(x,1)) = &(z) thus

Fyxn(Fxp(z,1),1) = Fy p(x,1). In other cases, by construction Fy ,(z,1) = 2. Hence,

F)\7h(.’,1:‘, 1) =x, Vxé€ g)\yh.

The proof for the continuity of F)j is rather technical and provided in Lemma |§| in Appendix @
Then F) j, is a deformation retract onto Gy .

Let now prove that Gy, C Fay(1430)he- Let z € Ky, and suppose z € M; N[0, 1]4.

Ifxé¢ U [z&x)], Frp(r,1) = z and the definition of Sy and assumption A2 ensures that
Z'ES)\,h
S f)\+Lh°‘ .

Ifze U [z,&(z)] and 2h —da (&(x), M; N Fagppe) > 0, as Fi p(x,1) € [z,&(zx)], we have
JCES)\,;L

do (F)\ﬁ(l', 1), M; N f)\+Lha) < 3h.

10



By Lemma é(z) € OM;N)0, 1[4, thus, [z,&(x)] C€ M; and in particular F) ,(z,1) € M;. Assump-
tions A1 and A2 then ensures that,

Fyn(z,1) € Faypi430)ne-

Ifxee U [z,&)] and 2h —da (§(x), M; N Faypne) < 0, then, Fy p(z,1) = &(z). Let € > 0, there
:EES)\’h

exists j € {1,...,1}, i # j and y € Fx N Mj, such that ||z —y|l» < h+e. Hence, by Lemma [1]
é(z) € 0M;N]0, 1[4 and ||€(z) — y||2 < 2h + ¢. Assumptions A1 and A2 then ensures that,
§() € Fagr(14(2+e))he
as it holds for all € > 0,
Fyn(z,1) = &(7) € Fajyrat20)he-
Finally, combining cases, G n C FaLL(1432)he- O

Proposition 2. For all 0 < h < % there exists a collection of spaces M = (./\/l>\7h))\€R such that
VAER, Fy " C Mg C Fy g ey ppe and,

Nyp = FaU U [z, van(2)] | C Fatrne

xGPA,h
with

. h
Py = (U oOM;N]o, 1[d> \f;fQLha N Fx

i=1

and vy, the continuous extension over Py of,

( <h—d2 <acLlJ aMm]o,l[d>> . hoo
T+ ;:1 ($ - 5(1:)) 9 fo € < aMzm]O, 1[d> \ U GMZ
yh(az) = d2 <$7_U1 aMm]O,l[d> i=1 i=1
1 h
T, if v ¢ (U oM;N]0, 1[d>
N i=1

retracts by deformation onto My j,.

Proof. The construction of the deformation retract is inspired by Lemma 14 of |Kim et al.| (2020). Let
l
x € Py N U OM;N)0, 1[¢. Assumption A3, ensures that Py ;, C]0, 1[%. And it does not allow multiple
i=1

l
points, thus it ensures that there exists 4, j € {1, ...,{} such that Ba(z,h) N |J OM) C OM; UOMj.
k=1
Furthermore, this conditions also ensures that we can roll a ball of radius h along dM;N]0, 1[¢ in
M; and along dM;N]0,1[? in M;. Hence,

Bg(l’, h) Cc M; U Mj U (8Mz N an)

Now, If

Bay(x,h) N FxN M; # () and By(z,h) N Fx N M; #0
then by assumptions A2 and A1, By(z,h) C Fayphe and thus z € .F/\_tha. Hence, Ba(x, h)NPy 1N
M; = 0 or Ba(x,h) NPy N M; = (. Without loss of generality, let suppose Ba(z, h) NPy N M; = 0.

11



!
Assumption A3 impose that |J 9M;N]0,1[¢ is a C"! hypersurface and thus ensures that, for all
i=1
r € M;n]0, 1[4, %\14111 Yn(y) exists. We can then define vy 5 (z) = limyenr,—2 71 (y). And, doing so
yeM;—x

!
for all z € Py, N |J 0M;N]0, 1[¢ extends continuously yy(z) to Py p.
=1

()

Let, Hyp, : Ny p % [0,1] = Ny 5, defined by,

et =1 =0zt <%,h($) + (3h — da (yan(@), (:)° O Frgarne)) , o 13(2) >

e =y (@)l]2
tee U [o,9n@)]0 M and dy (yan(@), (M) N Fasorne) = 30— |lo —an(@)ll2, i € {1,...,1},
:EGP)\yh
else,
H)“h(l',t) =X.

:EEP)Mh

and let My, = Im(z — H) p(z,1)). As f;h C ( U [m,7A7h($)]> , f;h C My 4. Note that,

by definition of M p,
Hyp(x,1) € Myp, Ve eN

and by definition of Hyy,
Hyp(z,0) =z, VzeNy,
Letz € | [z,7n(x)]NM; verifying dy (%\,h(fﬂ)» (M;)°n fA+2Lhﬂ) > 3h—||x—vyxn(2)||2, by con-
IEP/\ﬂh
struction H) p(x,t) € [z, v n(2)] for all ¢t € [0, 1], in particular this implies that vy 5 (Hxp(z,1)) =
n(2). Thus, Hy p(Hxn(x,1),1) = Hy p(x,1). In other cases Hy (z,1) = x. Hence,

H/\’h(.’L', 1) =ux, Vxé€ M)\ya.
The proof of the continuity of H)  is rather technical and provided by Lemma m in Appendix @
Then H) j, is a deformation retract onto My .

—h

Let’s now prove that M ; C ]:/\+L(2+5a)ha' Let z € Ny, and suppose x € M; N0, l]d.

Ife¢ U [z,7n(2)], directly, F(l,2) =z € .F)\_fQLha.
wEP,\,h

Ifze U [1’77)\7}1(1‘)] and 3h — do (’)/)\7h($), (Ml)c ﬁf)\+2Lha) > 0, then there exists z € M; N
.Z‘EP)\’}L
Frtorhe, j # i such that ||z — z||o < 3h thus |[Hyp(z,1) — 2|[2 < 4h. Also, by assumption

A3, Bo(Hyp(x,1),h) C M; U M;. Thus, by assumption A1l and A2, Boy(Hy p(z,1),h) N M; C
.F)\+L(2+5a)ha and BQ(H)\7}L(IE7 1), h) NM,; C 'F)\+L2D‘ha7 thus,

Hyn(z,1) € f;fL(2+5“)h""

Ifze U [z, yn(x)] and 3h —do (’y,\,h(ac), (M;)n .F)\+2Lha) < 0, then Hy p(x,1) = v\ n(x) and
xGP)\yh
thus Bo(Hy p(z,1),h) C M;. As ||z — v pll2 < h, it follows that,
H/\,h(xv 1) € f)\_ngaha-

From the same reasoning, it also follows that [z, vy ()] C Frirre and hence Ny j C Fayphe-

Combining all cases, it follows that My ; C ‘F;fL(2+5a)ha' O
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2.2 Compatibility with the histogram estimator

In this section, we provide two additional key properties : Propositions[3|and [l These results allow
using the deformation retracts from Proposition |1 and Proposition |2 to construct the interleaving
we are looking for.

We define,

W (H)|
w cube,h = SUP —F—— 7=~
Wi o WL (H))

with w(r) = \/rlog(14+1/r), W(H) = [,;dW and L the Lebesgue measure. Before proving
Propositions [3| we state the following lemma, which proof can be found in Appendix [B]

Lemma 2. Let f:[0,1]* = R. Let H C F§
Ch, . We then have that,

/
hga m Chg,a and H C F)‘_HWchbe,hg’aha m

+||W||cube,h97a 0,

/dX—/)\>()cmd/ dX—/)\<O.
H H H H

Proposition 3. Let f:[0,1]? — R. For all A € R,

0,

—Vdhp, o

JT_' \/ahe,a
)‘7‘|W||cube,h9’ahgya

C Fxhoa © T Xt Wileaserng 15 o

Proof. Let x € fﬁﬁhe’a

)‘7HWchbe,h9’ahgt’a

and H the hypercube of C} containing x. We then have,

H C I Wlleuseny 1

Hence, by Lemma , Sy dX — [; A <0, thus,
H C f,\,hg’a.

Vdhg o

C
Now, let x € (f)\+|W||cube,h9 ahg,a> , and H the hypercube of C}, containing x. We then have,

C
H C P Wileuseng o150

Hence, by Lemma , S dX — [ A >0, thus,
HC ]?ihea

and Proposition [3] is proved. O

Propositions [3[locate the estimated sublevel sets (up to shifts) between the true shrunken and thick-
ened sublevel sets. It allows building, from the deformation retracts of Proposition [1, a morphism
from the estimated persistent modules to the true one. And, It allows building, from the defor-
mation retracts of Proposition [2] a morphism from the true persistent modules to the estimated one.

A key that will ensure that those morphisms induce, in deed, an interleaving, is that the defor-
mation retracts, restricted to the estimated sublevel sets have their supports (again, up to shifts) in
estimated sublevel sets. This is a direct consequence of Proposition [d Before proving it, we provide
a technical lemma which proof can also be found in Appendix [B]

13



Lemma 3. Let K,h > 0 such that Kh < R. There ezists a constant Cy (depending only on K, d
and R) such that for alli € {1,...,1} and z € (OM;N)0, l[d)QKh N M;, we have,

dy (Bs (£(x), Kh) N M;, By (€(z), Kh) N P) < Cyh?

. 1
Proposition 4. Let A\ € R, 0 < C < Vd, K </d and z € F N By ( oM;N]0, 1[d,Kh97a). For
=1

with

1
sufficiently small 6, we have,

’\Chg,a
[z, €(z)] “7:)\+(2||Wl\cube,h9’a+(K+\/3)O‘L)h8‘,a7h0,a )

and

[0 k0,0 ()] C T 311 W ey o+ (DA V) K /2B (4)

Proof. Without loss of generality we can suppose z € M;. Let Hy € Cp, , » the hypercube containing

x and denote z its center. Suppose there exist y € [z,£(z)] such that y ¢ HIChG’”‘ and without loss

of generality, we can suppose that for an arbitrarily small e, [y — e,y +¢] C [z,£(z)] is contained in
Hjy an hypercube of Cp, ,, we denote z2 its center. We have,

(x —y, 21 — x2) = (¥ — 21,1 — T2) + ||21 — 223 + (y — 2, 71 — T2)

As xz € Hq, then,
|z — 2|3

(x — 21,21 — 22) > 5

As, y € Hy \ chhe’“, for sufficiently small 6,

l|z1 — zo]l3 | Chi,

2 2v/d

(y — x9,21 —x2) > —

and thus, as ||z — y||2 < ||z — &(2)|]2 < Khgq,

< ) > < z—y >> Cha  _ Chya
T — X2 ) =, X1 — X2 ) 2 > .
|z — &(2)|]2 |z = yll2 2Wd||z —ylls ~ 2KVd
This implies that, for all z € H; N P,
Chyg o
By | 24+ (21 — x9), : c P. 5
2( (w1 — x2) 2K\/E) (5)

—Coh? / /
Let z € H, 2o M;, by Lemma there exists z in H; N P such that ||z — 2 ||2 < Cghga. And
by [}

/ ChQOc
By | z + (21 — x2), : c P.
2( (21 = 22) 2K\/&)
Chy.a

) 2
2K\/Eh0’a > QCQh&a,

Then, by Lemma for 6 sufficiently small for

, Che -
By (2 + (z1 — 2), C2h3 ,, cB( + (z1 — 32), ’O‘—Ch2a>CMi.
2 (2 + (z1 — x2), Cohg ) 2| 2 + (21 — 22) YN 2hg,
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Consequently, for 0 sufficiently small, L (Hy N M;) > L(Hy N M;). Now, as Hy C Hl(K+\/a)h9’“

assumption A1l and A2 implies that,

/ AX — f+ / Fo [ aw
Ho HoNM; HQQMic Ho

<[ R VD)) [ (L VD))
HiNM; HiNM;

)

+0 dW + 0 aw — 0 aw
Hy H> H;

< A+ (K + VA)* L+ 2|[W||cute g ) .0 1
by the choice made for hg . Thus, Hy C ]:/\+(2\|W||wbe g o HKAVDOLING oo’ and |3| follows.

By construction, yx gp, () is a distance Khg, from {(x) and thus at distance at most Khg o
from z. By Proposition Y\ Khgo(T) € Frt+LKeng - By construction, B(Va,khg o (%), Kho o) C M,;,

and thus, as K > V/d,

_\/EhQ [e%
Mthoo(®) € Fy (Lo an/2)ng

Proposition [3] then gives,
IAKR0 0 (B) C FAL Lo 2 Wleube g o 15 o

Hence, by

~

[, Yx Kk o (%)) C [E(2), Y0 KRy o ()] C TNt GIWlleubeung o HL(E+VD+K+dI2)h5  hoa
which proves [4] O

2.3 Main results

Now equipped with Propositions [I] [2} [3] and [ we have all the ingredients to establish our main
results. We formalize the reasoning descrlbe in the beginning of this section, constructing, for all
s € N, an Chg o-interleaving between V "0 and the true persistence module V¢, induced by the
filtration F to provide a concentration bound Proposition [5] from which follows Theorem [I}

Before proving our main results, we provide concentration results on ||W||cupe,n, used in the proof

of Proposition [f
1\¢ 1 1
%% 2
P([Wl|cube,n > t) <2 <h> exp <—2t log <1 + hd>>

Consequently, there exists two constants Cy and Cy depending only on d such that, for all h < 1,

Lemma 4.

P (HWchbe,h < t) < Chexp (—Cth) .

Proof. The proof essentially follows from the fact that for all A > 0 and H hypercube of side h,
WIH) s a standard Caussian.

X
(i ) < () e (5 >




<h) (W > hyle <1+hld>>
o oA )

Now, take ¢ > /8, then t?/4 + 2 < t2. Thus,

1\¢ 1, 1
P(||W||cube,h2t) <2 E exp —§t log 1—}-m

<2 <}1l>dexp (—(t2/8 +1)log <1 - hld)>

< 2exp(—t?/8).

Hence, for all ¢ > 0,
P (||W]leube,n > t) < 2€ X exp(—t*/8).

Proposition 5. There exists Co and C such that, for allt > 0,

P ( sup  dp (dm)ydgm(f» >t (02 log <1)> d+2a> < Cyexp (_éltz) :
FeSa(La,R) 0

Proof. The strategy is to construct an interleaving between the persistent module V, ; and the mod-

ule induced by the filtration (.7? Aho °‘>)\ . It suffices to show the result for small 6 (up to rescaling
~ @/ xe
Cp). Hence, suppose that 6 is such that 2\/&h9’a < % and Proposition {4 holds for C' = 1/4.

Note that for all A € R, ]?/\,he,a is a union of hypercube of Cj, , hence its p-reach (see defini-
tion in |Chazal et al.| (2006)) is lower bounded by hg o /2 for all © < 1/2. Hence, Theorem 12 of Kim

et al.| (2020) ensures that fh/ deformation retracts onto .7?>\7h97a. Then, the module V, ; can be
thought as the module 1nduced by the filtration (.7? /}\l ZZ/ 4)/\ . Let,
IALCNeY c

hGa/4
I Hs <‘F >_>H (’CA+|W||cube,h0,ahg,a,mh9,a)

4

. . . Ahgya/
the map induced by the inclusion .7:)\7h0’a C IC)H’HWchbe,hg’a B . 2V/dho,o

J2,a ¢ HS <IC)\+|W|cube,h9a g‘a,Q\/aheya> — Hs (g/\+|W|cube,h9a gta72\/3h0ﬂ>

induced by the deformation retract of Proposition [1} and,

3ot Hs <gA+|Wcube,hgyahgya,%/&he,) — Hy <‘7:A+L<2ada/2(1+3a)+|W||cub57h9’a)h§“’a)
the map induced inclusion following again Proposition [I] We then define,
h0 a/4)
Ox: ( Ao ) 7 Hs <]:A+L(2ada/2(1+3a>+|W||cube,h9,a)hg:a>
By = J3.1 0 Jax 0 Jix
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This gives us the first module morphism. Let construct the second one. Let,

Jax: He (Fn) = Hy (N)\,\/ﬁhg,a>

the map induced by the inclusion Fy C N. Ay o

Jsa: Hg (N/\,\/Ehe,a> — H, (MA,\/ahg,J

the map induced by the deformation retract of Proposition [2] and,

- +he a/4
joo: H (M ) S H :
* 7 AWVdhg o T\ (B (20de 2 (24 50) a2 (3042548) )+ 4IW lleute g, )15 B0,

: . . ~hy o4
induced by the inclusion M, 5.~ CF o/
) 0,a A (L(Qada/Q(2+5a)+da/2(3a+2a+3))+4”W||cube,h9 a)hg,a’heva

the combination of Proposition [3] and 2] We then define,

, from

- ’\he a/4
cH (F)) — Hs | F 7
(05N s (Fa) s ( >\+(L(gada/z(2+5a)+da/z(3a+2a+3))+4W|wbe,h0’a>hg,a,h9,a>

Y\ = J6,\ O J5.\ O JaN

@

We now show that ¢ and ¢ induce an interleaving between \7?03 and Vg . More precisely, we show

that the following diagrams commute, for all A < \'. For compactness of notation let,
Ki=1L <2ada/2 (2 4+ 5%) + da/2(3a 490 4 3)) + 4[W || cube,ho. o

and
KQ =L (2cxda/2 (1 + 3(1)) + HW”cube,hg,a'

/

~hg o /4 YN ko0 ~hg o /4
: :
H (ﬂ,hm) Hy fx’,hea

N N (6)
)\/+K2h8‘7a

UN+Kahg
—’>
H, <.7:)\+K2h3}a> H, (FX-&-thg"&)

’
A

UX
H, (Fy) H; (]:/\/)
N Y (7)
AA/+K1h3’a
v o
H ﬁh97&/4 A-~_K1].L9,o¢’h‘970‘ H ﬁh9,a/4
S\ AMELRG he o s N+K1h§ hoa
ﬁ)\+(K1 +K2)hg‘7a
Ahé,a/4 )\,h97a N Ah&,a/4
HS (’F)\,hg,a ) ’ H‘s ‘F)\+(K1+K2)hg"a,h9’a
N 1/’,\+K2hg¢’a (8)

H, (J:)\—i-Kg hg . )
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A-(K1+Kp)h§
'U

]:>\+(K1+K2)h0 a)

\ d)V ?)

hg /4

>\+K1h ho Q

6,a

e Diagram |§| : We can rewrite the diagram as (unspecified maps are simply induced by set
inclusion),

ho,a /4 N 2ho,o /4
(fA hea> » H (fx/,he,a)

! J

_—
HS <IC)‘+ chube,hg’ahaa:\/ghe,a> Hs (K’\l+||W||cube,h97ahgav\/&h0,a>

J2,x Jo N

v hg

« % «
Hs <g/\+|W ‘cube,h&a hg,av\/ahﬁ,a> HS (g>‘,+|W||cube,h9,ah9’aa\/ah0,a>

H (Frrrs, ) 1 (P, )

By inclusions, the upper and lower faces commute. And, as jo \ and j, L\ comes from defor-
mation retracts, the central face also commutes. Hence, all faces of Dlagram [6] commute and
consequently Diagram [6] commutes.

Diagram [7] : it can be decomposed similarly to Diagram [6] one can check that the same
reasoning then applies.

Dlagraml Let C € Cy (th “/4) and [C] its classes in H, (ﬁfigf) The morphism ¢,

maps [C] to [C'] with C” the retraction of C' in K via the deformation

)‘+||W||cube hg, ahg Q)Q\/ahe,
retract constructed in the proof of Proposmonl And ¥y, Kahg, Maps [C'] to [C"], with

C" the retraction of C in NA+ (Kot Wleupens 08 )/dho.
cube,hg o )9 .«

of Proposition 4 I ensures that the support of the retraction of C' onto C is included in

h0 a/4
]:)\—&—(Kl—i—Kz)h&

0,a

given in Prop081t10nl Assertion

hoo And Assertion [4 ensures that the support of the retraction of C” onto C”

=ho o /4 7 he,o/4
is also included in F A (K1 +K2)he . Hence, C'and C" are homologous in .7-" M (K1 +K2)he

0,

h9 o hG,a

0,0

and Diagram [§] commutes.

Diagram |§| : Let C € Cy(Fy), ¥, maps [C] to [C], with C’ the retraction of C via the
retraction of Proposition And, as /\/l/\72\/gh9’a is included in g)&thg"a’Qﬂhe’a, ¢A+K1h3,a’
behave as an inclusion induced map, mapping [C'] to [C”]. From Proposition [2| the retraction
of C' on C' has its support included in Far(Ki+ K2)hg - Thus, C and €’ are homologous in
FAt(K14K2) hg . and Diagram |§| commutes.

The commutativity of diagrams and |§| means that V "0.0 and V s are (K1 + Ka)hg  interleaved,

18



and thus we get from the algebraic stability theorem (Chazal et al., 2009) that,

dy (dgm (Vi) dgm (Vy,) ) < (K + Ka)hg,,
and as it holds for all s € N,

sup s (dgm(f),dgm(f)) < (K1 + Ka)h,.
fe€Sqa(L,a,R)

Now, using Lemma [4] this implies that,

P ( sup )db (d@),dgm(f)) > th@ﬂ)

feSqa(L,a,R
<P(K1+ Ky >t)

t — L (29d%/2 (2 + 5%) + d/2(3% 4 2% + 3)) — L (2%d*/% (1 + 3°
=P (”Wchbe,hgﬂ > ( ( ) ( )) ( ( ))

5

t—L(da/2(100‘+60‘+3“+4><2“4—3)))2

S Co exp —Cl ( 5

L (d®/? (10% + 6% 4+ 3% + 4 x 29 + 3
§C’oexp (201( ( ( + i e + )) t))

5

L(da/2(10°‘+6°‘+3°‘+4><2°‘+3))>2 < e 2)
5 exp | ——=1

X exp —Cl (
and the result follows.
From this result, we can derive from this result bounds in expectation.

Theorem 1. Let p > 1,

jesaliomi (c (dem(F), dgm(f)”) < b,

Proof. The sub-Gaussian concentration provided by Proposition 5] gives that, for all ¢ > 0,

d (dgm(f), dgm(f) )

@
h@,a

>t | < Cyexp (—élt2>

Now, we have,

s (dgm(F), dgm(f))”

P
h9,a

—

voo [ dy (dgm(7), dgm(f) )"
0 0,c

+oo N
< / Coexp <—Clt2/"> dt < +00.
0
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2.4 Adaptivity

The previous procedure depends strongly on the regularity parameter v as we calibrate the window
size h taking account of it. Thus, the procedure is not adaptive to the regularity. In the following,
we propose an estimation procedure, based on the previous one, that is adaptive with respect to
«a. Moreover, we show that this adaptive procedure achieves the same rates as the one given by
Theorem [1

We follow the Lepskii’s method (Lepskii, {1991)). Suppose that we know an upper bound on the

parameter L, denoted L and 0 < amin < o < amax. It is sufficient to work on regular grid
Qmin = @1 < @2 < ... < AN = Qmax With N ~ log (é), as, forall 1 < j < N,

gt . . 1 log (61log (4
log 0’@7‘1 = < e B > log <9 log <)> ~ —og( o8 (9)) ~ 1.
oa, 20j_1+d 205 +d 6 log(#)

We consider the Lepskii’s estimator defined by,

— % —

dgm(f) =dgm(f)s

with

—_—

& = max {a € {o,...,an}: db(dgm(fi;;’ dgm(f),)
0,«

< ¢ for all o ga}.

co a sufficiently large constant depending on d, L, cpin and apay. The notation dgm(f) 4 refer to

the estimator dgm(f) for the window size hg o, as it will play a role in this section, we highlight the
dependence in .

Theorem 2. Let p > 1,

dy (dgm(7)’,dgm(f))"
E 5
0,

sup sup < 1.

(L,@)€[0,L] X [@min,0max]  fE€Sa(L,a,R)

Proof. We want to apply Corollary 1 of [Lepskii (1992), in our case, the only difficulty is to check
assumption A3b. It then suffices to show that, for all a € [@min, Omax], there exists ¢g > 0 such

that,
log(1/60)2 dp(d d
lim sup 7Oga(ma/x) sup P at gm(f)aa, gm(f)) >co | =0. (10)
6—0 e,amax OC<OCI hG,a

Now as shown in the proof of Proposition [3], for sufficiently small 6,

—

dy(dgm(f),,dgm(f)) < (K1 + Ka2) hg o

Thus, for sufficiently small 6, using the concentration from Lemma [4]

o (db(dg/mﬁfu,dgmu» y CO)

«a
h9,a

co — L (d*? (10% + 6% 4 3% + 4 x 2% + 3)
P <||W||cube,hgya > ( 5 )
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IN

(LY (1 femTErar e rr raxz )\ (1
h0a P 2 5 °8 hga

)

1\? — 2 1
2 (hea) exp (— <00/5 - 6L\/g) log (1 + h((ia))
o (1(co/5—6Lvd)*~1
< (s (1)) T

6

IN
N[ —

Thus, for sufficiently big ¢y (depending only on amin, Cmax, L, d),

dy(dgm(F),,,dzm(f)) hiymes
P o — o | —2Qmex )
< B - ) ’ <1og<;>2>

Hence |10 is verified and Corollary 1 of [Lepskii| (1992)) gives the desired result. O

3 Lower bounds

In this section we prove that the rates obtained in the previous section are optimal, in the minimax
sense in the non-adaptive and adaptive case, by proving Theorem

Theorem 3. Let p > 1

inf sup | E (db <dg/mw),dgm(f)>p> 2 (02 log <;>>di§a .

Jss———

dgm(f) f€Sq(L,a,R
Where the infimum is taken over all the estimator of dgm(f).

Proof. The proof follows standard methods to provide minimax lower bounds, as presented in section
2 of [Tsybakov| (2008). The idea is, for any 1y = o ((92 log (%))m), to exhibit a finite collection

of function in Sy(L, a, R) such that their persistent diagrams are two by two at distance 2ry but
indistinguishable, with high certainty.

We propose such a collection, let
L
fO(xlv ooy l’d) = §|x1|a

and for m integer in [0, [1/h]],
frhm(@1, o 2q) = fo — L(R® = ||(z1, ..., zq) — m/[1/R)(1, ..., 1)]15) +

fo and the f, , are (L, a)—Hoélder-continuous and thus belong to Sy(L, cr, R) for all R > 0.

We have dgm(fo) = {(0,+00)} and for all 0 < m < |1/h], integer,

tenti) = {0200 (5 (1) 25 (i)~ 2°))

Thus, for all 0 < m # m’ < |1/h], integers,

d, (dem( o), dem(f01) > “o and dy (dgm(f ), dem( 7)) > o
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We set ry = %, then,

dp (dgm(f())adgm(fd7h7mk/ ’a)> > 2rg and dp (dgm(fh,m),dgm(fhym/» > 2ry.

For a fixed signal f, denote P? the product distribution of the noisy trajectory X define in model
From section 2 of [Tsybakov]| (2008), it now suffices to show that if 7y = o ((92 log (%)) ﬁ), then,

1 1 dP? 2
2 0 0 _ h,m
15 X ) g X () | w
h 0<m<|1/h] h 0<m<|1/h] fo
converges to zero when 6 converges to zero.
By Cameron-Martin formula, for all 0 < m < |1/h], integer,
g = XD O(frm — fo)(t1s s ta)dWey g — 251 fnm — foll2 | -
deO [0,1]d 9

We denote H,, the hypercube defined by ||(z1,...,xq) —m/[1/h|(1,...;1)|| < h

= exp / 1(fh,m—fo)Q(tl,...,td)dtl...dtd>
[0

92 /Hm (h® = ||(t1, ... ta) — m/|1/R)(1, ..., l)Hg‘)thl...dtd)

2L°
= / h2adt1...dtd>

(

< exp (g (/m h2*dty...dtg + /Hm ||(t1, ..., ta) — m/|1/h](1, ...,1)||§adt1...dtd>>
(
(

1 a
Hence, if (92 log (%)) d+2a < |, we have that converges to zero. Consequently, if ryg = o ((92 log ( )) m) ,

1
0
1
then (92 log (%)) d+2e <« h and we get the conclusion. O

4 Discussion

To date, statistical studies of Topological Data Analysis tools have predominantly relied on lift-
ing known results from signal (or density) estimation using sup norm (or Hausdorff, or Gromov-
Hausdorff) stability. However, this work represents a step forward, breaking free from this ap-
proach. We provide a finer analysis of the plug-in histogram estimator, showing that it achieves
minimax convergence rates on the classes Sy(L, o, R) that coincide with the known ones for Holder-
continuous signals. These classes contain irregular functions that pose challenges for conventional
non-parametric techniques. Beyond the results shown here, it opens a new path to think and ana-
lyze persistent homology inference, showing that it allows relaxation of regularity assumptions over
considered signals.
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It then raises questions about further relaxations of the regularity assumptions. A first direction is
investigating how assumption A1l can be made more local, controlling the regularity only around
the locations of birth and death of topological features. In|Dasgupta and Kpotufe| (2014) and |Jiang]
land Kpotufe| (2017) it is shown that local maxima (and equivalently minima) of a density can be
inferred under weak local assumptions. This implies that, for univariate signals, it is possible to
achieve the usual convergence rates for persistent diagram inference solely under local regularity
assumptions. Understanding how this can be generalized motivates future works. In a parallel vein,
we believe that there is room to consider the potential relaxation assumption A3. One plausible
approach involves controlling the p-reach, as defined in |Chazal et al.| (2006), of the discontinuities
set. This would extend significantly our results, allowing to handle, for example, signals with sets
of discontinuities featuring multiple points and cusps. Still, as illustrated in Figure[5] in this case, a
plug-in estimator from histogram will fall short. In this case we may need to move beyond plug-in
estimation.

One can also wonder if the methods and convergence rates established here for the Gaussian white
noise model extend to other popular and richer models. In this direction, we show in Appendix
[C] how they can be extended to the non-parametric regression model with fixed regular design.
Inspired by potential application to modes detection, as sketched for example in |Genovese et al.|
(2015), extending these results to the density model motivates future work in this direction.

Figure 5: A—sublevel cubical approximation for f the function defined as 0 on the hatched area
and K outside (for arbitrarily large K) and A\ = K/4. The cycle in red is problematic, as it has
a lifetime of CK (C an absolute constant). The discontinuity set has here a positive p—reach for
small p.
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A Proof for ¢—tameness

This section is devoted to prove the claim that the persistent diagrams we consider and estimated
persistence diagrams we propose are well-defined, by proving that the underlying persistent modules
are g—tame.

Lemma 5. Let f € Sy(L,o, R). Vs € N, Vh < %, there exist a morphism ¢ such that, V) € R,

Hg (F)) > Hy (Fasr(143)he)

~. (12)

H, (F})

is a commutative diagram (unspecified map come from set inclusions).

Proof. Let ¢y : Hy (KKxn) = Hs(Gxp) the morphism associated to the deformation retract from
Proposition (1L We also denote i1 ) : H, (]—" /{L) — Hy (K ) the morphism induced by the inclusion
]:f C Kxp and dgy : Hg(Grp) — Hs (f/\+L(1+3a ha) the morphism induced by the inclusion
Gxh C FryL(1432)he, also provided by Proposition We take ¢y = ig ) © by o i1,x. Diagram
then is (unspecified maps are the one induced by set inclusion),

H (Fatratseyne)
f\ (F2) (F3) i (13)
re— /C)\ h < gA h
1,

Faces (F1) and (F'3) simply commutes by inclusion. Face (F2) commutes as ¢y is induced by a
deformation retract. Fach faces of diagram [13|are commutative, hence diagram (and equivalently
diagram is commutative. O

Proposition 6. Let f € Sy(L,«, R) then f is g-tame.

Proof. Let s € N and V, ¢ the persistent module (for the s—th homology) associated to the sublevel
filtration, F and for fixed levels A < X let denote vi the associated map. Let A € Rand h < %. By
Lemma i‘JrL(H?’a)ha by o1y, with 7y : Hy (F) — Hs (]:h) And, due to sublevel thickening

/\+(f+1)aLh

by h, Fy C F? v, and consequently i )\ is of finite rank Thus, v} is of finite rank for all

0<h< 5 As for any A < N o<\ , v/\ = v/)\‘, o v)\ we then have that v>\ is of finite rank for all

A < X\ Hence, f is ¢-tame. O

Proposition 7. Let f € Sy(L,a, R) then, for all s € N, \A/gf s g-tame.

Proof. Let h >0 and A € R. ]/-:,\ﬁ is a union of hypercubes of the regular grid G, thus, Hy (]?,\7;1)
is finite dimensional. Thus \75’ 7 is g-tame by Theorem 1.1 of |Crawley-Boevey| (2012)). O
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B Proofs of technical lemmas

B.1 Proof of the continuity of F}

This section is devoted to the proof of the deformation retract F) , introduced in the proof of
Proposition [T}

Lemma 6. Let h > 0 and A € R, F)\, is continuous.

Proof. Let 6, § >0, z,y € Ky p, such that ||z — y||2 <6 and ¢, s € [0,1] a such that [t — s| < 5.

If 2 € My and y € My, i # j, then [[z — &(2)l]2 < 6, [ly — £(y)ll2 < 4, and thus, [[&(z) —
E)lla <20. Let z € |J [x,&(x)] N M; and do (&(x), M; N Fasphe) > 2h — ||z — &(2)||2, and if

CEES}Mh
(2h — dz (§(), M; N Faypne))y > 0, for sufficiently small 6, we would have,
|z —&(@)ll2 <6 < (2h — d2 (§(x), Mi O Fairhe)) 4

which is contradictory. Hence, we can suppose (2h —dz (§(x), M; N Fxippe)), = 0. Then, as
Fyn (§(z),t) = ()

[ Fxn(z;t) = Exp(§(@),8)]l2 = (1 = )]z — £(2)[|2 < 6.
Otherwise, F p(z,t) = x, and directly,
1 Fan(@,t) = Fan(§(z), D)2 = [lz — £(@)l|2 < 6.
following the same reasoning we also have,
1 n (s 8) = Fan(€(y), s)ll2 < 0.

Then,

[[Exn(@,t) — Fxn(y, s)ll2 < [[Fxn(z,t
+ |[Fxn(€

+ [[Fxn(€

<20 + [|§(z) -

T~ N —
8
~—
~

From now, we suppose that x,y € M;.

Ife ¢ U [z8@)] or da(§(x), MiN Fxyrne) = 2h — |lz — &()][2 and y ¢ U [z,£(2)] or

xES/\JL xeSA,h

d2 (&(y), M N Fayrne) = 2k — |ly — £(y)||2. Then, directly,
[ E (@, t) = Fan(y, s)ll2 = ||z — yl[2 < 4.

Ifze U [z &(x)]anddy(&(x), M; N Farrhe) > 2h—|jlz —&(z)||2, and y ¢ |J [z,€(x)]. Then,

$€S>\7h JJES)H}L
Y € FayLhe, thus,

dy (§(2), Mi N Fyyrne) < |l = (@) +lz —ylla <h +0

and,
2h —dp (&(z), M; N Fagrne) 2 h— 6 = [z — &(z)|| = 6.
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Consequently,

r—&@)
e = €(@)]]2

<4

2

§(z) + (2h — d2 (§(2), M; N FayLhe)) T

[[Fxn(w,t) — Fxn(y,s)ll2

| w8 )
'(1 — )+t (sm (2= da (§(@), Mi O Faerne))y 5<x>||2) ’

E(@) + (2h — da (&(x), My O Fagne)) m o

Then,

2

< le = ylls +‘

2
<29

Ifze U [z, &(x)] and dy(&(x), M; N Fapphe) = 2h — ||z —&(x)||]2 and y € | [z,&(x)] and

zESA 1 TESH\ K
da (€(y), M; 0 Fayrne) < 2h — |y — £(y)]||2- Then,
2h — da (§(w), My O Faypne) = 2h — da (§(y), Mi N Fayphe)
+da (§(y), Mi N Fayphe) — do (§(z), M; 0 Fayrhe)
> 2h — da (§(y), M; 0 Fasrne) — [z — yll2
> ly = &W)ll2 — [z — yll2
> ||z = &(@)]]2 — [I€(z) — EW)l[2 — 2[|lz — yll2-

Hence,

And thus, we have,

z —§(x)

£(x) + (2h — ds (&(z), M; N .7:,\+Lha))+ m -t

) < 2|z —yll2 + [1€(x) = £(W)]]2

[[Exn(@,t) = Fxn(y, s)ll2

| e —Ex)
'(1—t)x+t<£($)+(2h_d2 (§(z), M; 0 Fayrha)), Hx—{(m)\b) y

£(x) + (2h — do (E(z), Mi O Fagprne)), —— (z)

Hlla—€@llz
< 3llz —yll2 + [I€(@) ~ W)
<35+ [|¢(x) — €Iz

and we conclude by continuity of £.

2

< le = ylls +‘

2

Finally, if v € U [z,£(2)] and d2 (§(2), M; N Fayrpe) 2 2h—|lz—{(@)|pand y € U [2,8(2)]

LEES)Hh ZES}Hh
and dg (£(y), M; N Fasphe) = 2h — ||y — &(y)||2. Then,
[[Fxn(w,t) — FAn(y,s)ll2

\(1 et (s<x> (20— dy (&), Mi O Fay o)

z —¢(x)

* H:v—f(w)\lz>
y —£(y) )

Ty =)l

and the conclusion follows again in this case by continuity of &. O

1ty (ay) T (2h — dy (6(y), Mi O Fry o)

2
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B.2 Proof of the continuity of H),

This section is devoted to the proof of the deformation retract H) j, introduced in the proof of
Proposition

Lemma 7. Let h >0 and A € R, Hy , is continuous.

Proof. Let 6,8 >0, z,y € ICxp such that ||z —y|]2 < 6. t,s € [0,1] a such that |t — s < 5.

ifz € M; andy ¢ M;, Assumptions A3 ensures that for sufficiently small §, there exists j € {1, ...,1},
with y € M; such that, -

BQ(ZL‘, h) C Bg(y, Qh) C M; U Mj.
By Assumption A1l and A2, this implies that Ba(x,h) C Fripoape and thus x € ‘F)\_—fLQQhU" From
the same reasoning, it follows that y € F, N _sza e Hence,

[HHn(2,t) = Hxn(y, s)ll2 = [|z — yll2 < 6.

From now, we can suppose that x,y € Mj.

Ifz ¢ U [z,nn@)] N M ord (’y>\7h(x),(ﬂi)cﬁf)\+2Lha) > 3h — ||z — yan()||2 and y ¢

CEGP)\JL

U [z, mn(@)] N M or do (van(y), Mi N Fagarne) = 3h — [y — van(y)||2, then directly,
LUEP)\’h

[[Han(z,t) — Hxp(y, 8)l[2 = ||z —yll2 < 6.
fre U [z,mn@)] N M and do (van(x), (M) N Fagorne) > 3k — [z — mop(2)]2 and y ¢
CEEP)\yh

((0M;N]0, 1[)™)°, then, da (2, 0M;N]0,1[4) > h — & and thus ||z — YA p(2)||]2 < 6. As Hyp(z,1) €
[xa’)/)\,h(m)]v we havea

Hxn (2, 1) = Hxn(y, Dll2 = [[Hxn(z,1) = yll2 < [lz = yll2 + [z = Hxp(z, 1|2 < 26.

Ifze U [z,mn@)]NM and dy (vap(z), (M) N Fazorne) = 3h — ||z — 1ap(z)|2 and y €
z€P\ 1,

$€P)\,h
exists z € (M;)° N Ba(y, h) and,

c
( U [x,’yA’h(a;)]> N ((aMiﬂ]O, 1[d)h>o, then y € ]:,\_quha' Thus, for sufficiently small § there

da (van(@), (M;)° N Fagorne) — 2k < ||z — yl|2 < 6.

Hence,
T — YA h(T)

_ T T A <6
Tz = yan(@)]]2

2

Yon(@) + (Bh — da (van(z), (M;)° N Fajorne))

[ p (2, 8) = Hxn(y, )2

(1—t)z+t <7A,h(w) + (8h = da (yan (), (Mi)° 0 Fagarne)) | m> Y

and,

2

(@) + (3h = da (n (@) (BT,)° A Frganne)) , —— 20,

<
- ‘ Tl = yan(@)]]2

+ [z = yll2
2

<26
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Ifze U [z,mnl@)] N M and do (vn(z), (M) N Farorne) > 3h — ||z — yap(@)|]2 and y €
JJEP)\’h

U [z, (@)] N M; and do (van(y), Mi 0N Farpne) < 3h — ||y — van(y)]|2, then,
$EP/\7h

3h —da (yan(@), (M3)° N Fagorne) = ||y — Yar®)ll2 — |z — yll2
> |z = van(@)ll2 = [[7an(®) = Yan@)|l2 = 2||z — yl|2
Thus,

[[Hxn(2,t) — Hxn(y,s)]|2

(1—t)x+t <’Y)\,h(37) + (30 = da (yan(), (Mi)" N Frsazne)) m> Y
o pa@)
e = yan(@)]l2

2

X

(@) + (Bh = da (van(2), (M) N Fajarne)) + 1z =yl

S ‘
2

< n(®) = Yan @)z + 3[lz — yll2
<30+ |[van(®) = Yan(W)]|2

and we conclude, in this case, by continuity of vy p.

Finally, if z € U [z,ma(2)] N M; and dy (yan(2), (M) N Fagarne) > 3h — ||z — yan(2)]]2
z€P\ 1

andy e U [z, ()] N M; and do (yan(y), Mi 0 Fayrhe) > 3k — ||y — van(y)|]2, then,
xeP,\,h

([ Hxn(z,t) — Hxn(y, 8)||2

— | =t)x+1t ('m,h(w) + (30 — da (M n(@), (M) N Frsarne)) . M)
=ty =t (a0 + (30— o (alo) (F0° N £yl ) 2280 2

and again the conclusion, follows in this case, by continuity of ) 4. O

B.3 Proof of Lemma (1l

Proof. Let x € [0,1]¢ such that d (z, 0M;N]0,1[¢) = r < R/2. Let denote B, the Euclidean ball

centered in &(z) + h% of radius h. By theorem 4.8 of Federer| (1959), Vh < R,

l (&
Bup C (U dOM;N)0, 1[d> U{¢(2)}.

By definition of the closest point ||z — &(z)||s < da (z,0M;M)0,1[%) = r, and thus z € By,.
Consequently, By (z,7) C By ar. Now, as 2r < R,

1 C
Baar C (U 8Miﬂ]0,1[d> U {&(x)}

=1
and thus,
l &
By(z,71) C <U oM;N|o, 1[d> U {&(x)} -
i=1
By assumption By(z,7) N dM;N]0, 1[% 0, hence, &(z) € IM;N]0, 1[¢. O
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B.4 Proof of Lemma [2

Proof. Let consider here the case where in H C F, A=W leuverng . G (The proof being the same in

0,
both cases). Note that,
/ dX —/ A
H' H'

:/H/(f—A)jLG/H/dW

< W lleubesng o 2 o H |+ W cube,n o 0w (R )
< HWchbe,he,a (—hg:;a + Hw(hg,a)> <0

by the choice made for hg . O

B.5 Proof of Lemma 3

Proof. Let By the Euclidean closed ball centered in &(z) + R—=2E%— of radius R and By the

lz—&()ll,
Euclidean closed ball centered in &(x) — R”x g(( ))H of radius R. By Assumption A3, B; C M;

and By C M¢. Then, the Hausdorff distance between By (¢(x), Kh) N M; and By (£(z), Kh) N P
is upper bounded by the Hausdorff distance between union of sphere 0By U 0By intersected with
By (¢(x), Kh) and the intersection with Bs ({(x), Kh) of the hyperplane,

p= {z e [0,1)% s.t. <z, m> = <§(w), m»

By symmetry, this distance is equal to the Hausdorff distance between 0B N Bg ({(z), Kh) and
PN B2 (g(l‘)v Kh)

Now, let = € 9B \ {£(x)}, and p(x) its projection on P. Let @ the plane containing =, p(z)
and &(z), @ intersects dB; into a circle C' of radius R and intersects P into a line D tangent to
C. The problem then simplify to upper bounding the distance between a circle and a tangent line
around the intersection point. Without loss of generality, we can suppose that we are in R%, C
being the circle of radius R centered at (0, R) and D the line y = 0 (tangent to C' at (0,0)). In
B((0,0),Ch), as Ch < R, C can be described as,

C= {(ﬂs,y) € B((0,0),Ch) s.t. y = R — /R2 — x2} .

Hence the distance between C' and D in B((0,0),Ch) is upper bounded by,

— /R% — (Ch)? —h2+0(h3)

and the result follows. O

C Extension to non-parametric regression

The model[I] proves to be valuable for establishing theoretical results. However, it has a limitation as
it assumes the observation of a complete trajectory, making it less popular for practical applications.
In this section, we focus on proposing extensions to another essential non-parametric model with
greater practical interest: non-parametric regression. The proofs of the main results are essentially
the same, we detail only the few differences.
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We consider the classical non-parametric regression setting (with fixed regular design), observing
n = N points,
Xi= f(z;) + o&i

with x; a point on the regular N grid G, over [0, 1]%, o the level of noise and ; a standard Gaussian
variable. In this context, we define,

~ 1
Fap = U H, with Cj, » = { H € C}, such that ———— Z Xi <A
et {zi e HY| =,
h,X T; €

The key here to lift the convergence results established in Section [2] in this context is to show an
analogous inclusion from the one obtained in Proposition 3| then the exact same reasoning applies.
All we have to provide is similar noise control. For h > 0, let denote the variable,

1
max |—=z7 2. OE;
HeC, | HzicH]] o
Np =
20_210g(1/hd>

[NR]

Lemma 4 bis. Let h > 1/N,

P(Np,>t)<2 <i1L>dexp (—t2 log (1/hd>) .

Proof. Let h > 1/N and H C [0,1]¢ be a closed hypercube of side h. As the (€i)i=1,..n are 1.i.d and
standard Gaussian variables, we have, for all H € C},

1 € HY|t?
2052‘ >t)] <2exp <—M>

: 2
{z; € H}| h 20

And thus, as the number of point in any H € Cj, is at least to [hN|?,

1 hNN |42
Z ogil >t | <2exp (—H> .

: 2
{z; € H}| T 20
Now, by union bound, using |Cp,| = 1/h,

1 1\¢ | AN |2
P _— >t <2(- —— .
Heo, |{w: € HY| IBESIEE (h) eXp< 207 )

r,€H

and the result follows. O

In particular, as in Lemma 4] it follows that N}, is sub-Gaussian, more precisely there exists Cy and
(1 depending only on d such that, for all h,
P (Ny > t) < Coexp(—Cit?).

Let now choose, hy, o such that,

1 d
L (1/hd )
n,x LNhn7aJd

32



thus, we can choose,

= () 7

n

With this choice we obtain the following key lemma.

Lemma 2 bis. Let f :[0,1]% — R. Let H C F§+@thah%7aﬂ0hma and H C }—A—\/WNhn,ah%,am
Chy...- We then have that,
S ZX->)\and; > X<
i€ HY = {oem} & 107
7 xiEH

Proof. Let consider here the case where in H C FA*@Nhn,ah%,a (The proof being the same in
both cases). We have,

1
T Xi
{zi € H'}| Z
z,€H
1
LL‘Z'EH,

log (1/h )

< \— V202N, h% Ny, V202
— o hn,a n,o + hn,a o LNhn,ond

<A

By the choice made for hy, 4. O

Using Lemma the Lemma instead of Lemma [2] in the proof of Proposition 3| we obtain the
following analogous proposition.

Proposition 3 bis. Let f:[0,1]* = R. For all A € R,

—Vdho. o

= Vdhn, o
C F CcF i
A—V202 N, b8 o Ashna

A+V202 Ny, hS

We define \7? s and dgm(f) in the exact same way we did for the Gaussian White Noise model.
Again, we can show that this module is g-tame applying the same ideas used in the proofs of Propo-
sition [7

Having the inclusion given by Proposition the reasoning from the proof of Proposition [f
gives,

Proposition 5 bis. There exists C’o and C’l such that, for all t > 0,
— log(n) \ 7%\ _ 5
P swp  d(dgm(f) dgm(f)) > ¢ (2% < Coexp (~Cut?).
feSq(L,a,R) n

From this, we obtain, as in Section [2, upper bounds for estimation. This bound can be shown to
be minimax also in this setting (adapting the proof of Theorem . Adaptivity also follows as in
Section 2.41
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