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Asymptotic expansion of wave scattering in a periodic

2d-plane∗
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Abstract

We give a counter part of Sommerfeld outging radiation condition for waves propagating in a

2d periodic medium under generical assumptions and provide a uniqueness theorem for outgoing

solutions.

1 Introduction

Asymptotics of the outgoing Green function for the Helmholtz equation with periodic coefficients has

been given in [19] for frequencies lying in the first spectral band in any dimensions. We propose to

extend the formula in the 2d case to any frequency except for a set of isolated frequencies. Part of

this work reproduces the work [24] which the author just became aware by the time of submission of

this present work. Despite redundance of some ideas this work adresses many other points and partly

lies on [8].

We wish to solve the Helmholtz equation

(1) divpα∇uq ` k2βu “ f in R2

where f P L2pR2q is compactly supported, k real positive and α, β ą 0. The coefficients α and β are

bounded functions, periodic with common period. LetW “ r0, 2πs2 be a periodicity cell (Wigner-Seitz

cell) and B “ r0, 1s2 the fundamental periodicity cell of the reciprocical lattice (Brillouin zone).

∗The following article has been submitted to AIP Journal of mathematical physics. After publication if any, it would

be found at https://publishing.aip.org/resources/librarians/products/journals/
†vincent.lescarret@centralesupelec.fr
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We look for a formula for u by the mean of the absorption principle as in [19, 21]. A general

formula has been given in [21], Theorem 3.31 expressing u “ u1 ` u2 ` r where r P L2pR2q, uj P L2
loc

for j P t1, 2u. Then u1 is a residu while u2 is a principal Cauchy value. In Remark 3.33 of [21]

the author says that u1 is the leading term and that u2 is a corrector in some Lp space but Lemma

2.4 of [19] shows that this is wrong. Loosely speaking the term u2 removes the terms in u1 which

correspond to “incoming” waves and thus u1 ` u2 only keeps “outgoing” waves (see [7] for the idea in

the case of a periodic waveguide).

Our calculations closely follow those of [19] (which are based on the method used in the homo-

geneous (non periodic) case as for instance in Melrose [16] paragraph 1.7) but with two differences.

First instead of proving an analogue of Lemma 2.4 of [19] we just use Cauchy residu formula and thus

deal with contour complex deformation as in [9, 8]. Then contrary to [19] we consider any k2 above

the bottom of the essential spectrum of P “ ´ 1
β
divpα∇q. In [19], k2 lies on the first band and is

close enough to the bottom of the essential spectrum of P so that the level set on the first band is a

single smooth cycle (loop). Here generally several bands meet the level k2 and one requires a refined

analysis of the geometry of the level set. Of course ideas are known for a long time in crystallography

and in elasticity where level sets are called slowness surfaces (in 3d). See for instance [28, 3].

Before stating the main result let us start with a formal calculation and introduce the main

notations.

Let ε ą 0 and replace k2 in (1) by k2ε :“ k2 ` iε. Then applying the Bloch transform:

ûpx, ℓq “
ÿ

jPZ2

upx ` 2πjqe´iℓ¨px`2πjq

to equation (1) and using the commutational property of the Bloch transform (see [2]) we get

pdiv ` iℓ¨q pαp∇ ` iℓqûq ` k2εβû “ f̂ in W,

together with periodic boundary conditions on W . When α is piecewise continuous the underlying

operator P pℓq :“ ´β´1pdiv ` iℓqαp∇ ` iℓq is defined as the m-sectorial operator (see [12]) associated

to the sectorial sesquilinear form

ż

W

αp∇ ` iℓqup∇ ´ iℓqv̄dx on

H1
perpW q “ tv P H1

pW,βdxq, with periodic boundary conditions on BW u

We readily see that P pℓq is symmetric: P pℓq˚ “ P pℓ̄q and it is well-known [22] that it has a discrete

spectrum which we denote by tλnpℓquną0 (counting multiplicity) with λnpℓq real for real ℓ and we

denote by enpℓq the corresponding eigenvectors. Since P pℓq is defined through a sesquilinear form the

family P pℓq is analytic of type B (see [12], § 4.2, p.393) thus the functions ℓ Ñ λnpℓq are piecewise

analytic and continuous on C2. Besides, the Bloch variety

B “ tpℓ, λq P C3 such that Dn, λnpℓq “ λu

2



10 20 30 40 50 60

0

10

20

30

40

50

60

Figure 1: Bloch variety (left) and Fermi level F 0
k2 (right) with k “ 1.2 for α “ 1 ` 0.8 cospxq cospyq

and β “ 1.

is an analytic set because it is the null set of a regularized determinant which is an entire function,

see Appendix B where we recall and adapt [13] in this more general setting. See Figure 1 illustrating

the Bloch variety.

Expanding the solution in the Hilbert basis tenuną0 one has

(2) uεpxq “

ż

B

eiℓ¨x
ÿ

nPN˚

pf̂ , enpℓqqL2pW q

k2ε ´ λnpℓq
enpx, ℓqdℓ.

Only a finite number of terms in the sum have singular limit when ε goes to zero. We thus set

(3) Jk “ tn, Dℓ P B, λnpℓq “ k2u.

Let us introduce the main following geometrical objects:

• For complex λ let us set

Fλ “ tℓ P C2, Dn, λnpℓq “ λu “
ď

ną0

λ´1
n pλq.

which we refer to as the (complex) λ-Fermi level.

• For λ ą 0 we denote by Fλ the set Fλ X R2 which is periodic with B a periodicity cell.

• For λ ą 0 we put F 0
λ “ Fλ X B.

We give an example of F 0
k2 in Figure 1. With these notations we see that the terms in formula (2)

whose index belong to Jk are singular on F 0
k2 for ε “ 0. As in [16, 9] our aim to handle those singular

terms is to move B to C2 (actually a subset of B which is a tubular neighborhood of F 0
k2) and use

the residu formula. So we need to find a complex deformation of B avoiding the complex Fermi level
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Fk2ε
. To do so we describe a tubular neighborhood of F 0

k2 as a union of level sets. These level sets are

first indexed by λ in a small open intervall I containing k2. Then we deform I to a complex curve

avoiding k2ε .

This procedure can be done for all k2 except for the critical values of the band functions λn and a

subset of points of multiple eigenvalues (band crossing) which we call the set of singular crossing points

(see section 3.1, definition 3.4). The latter set is defined as the complementary set of regular crossing

points characterized by the fact that up to index relabelling, the (two or more) functions λj can be

continued analytically through the crossing. In the 1d real case band crossings are regular thanks to

Rellich eigenvalue relabelling theorem [23]. In the several dimensional real case this is true [14] except

for singular crossing points. We thus exclude the following sets

• the set σ0 of real critical values of the family tλnu,

• the set σ1 “ tλ P R, Dℓ P B | pℓ, λq is a singular crossing pointu.

That those sets are made of isolated points is a consequence of the stratified structure of the Bloch

manifold and the dimension 2 (see Section 3.1).

The set σ0 is called the set of ”Landau resonences” in [8] where it is shown to be made of isolated

points. In [8] an other set denoted by σ8 is also avoided but it matters only when one considers

the global holomorphic extention of the resolvent operator pP ´ zIq´1 from Imz ą 0 to a complex

neighborhood of R as an operator from L2
comp to L2

loc. In this paper we are not concerned with σ8

since we consider the resolvent in a small neighborhood of R only. It is shown in [8] that any point

of σ0 is a branch point for the resolvent associated to the equation (1). See section 7.2 where we

recall the related expression of the resolvent in the neighborhood of σ0 in this 2d case. Let us remark

that [8] does not address the issue of the assymptotic expansion of the resolvent but only its regularity

(holomorphy).

A direct consequence of [14], Theorem 6.7 is that σ1 is a set of isolated points of the real Bloch

variety and the tangent set of such a point is a (non-isotropic) cone which is not a cusp. This is

typically the case of Dirac cone [26]. Let us already say that the subsequent analysis takes advantage

of the fact that this set is made of isolated points and thus one needs to implement a missing step to

deal with higher dimensions where points of σ1 are generically non isolated.

2 Main results

Our first result is a generic formula for the leading part of the limit of uε as ε goes to zero. Generically

F 0
k2 is 1-dimensional or void. We address the former case (the latter is already well-known and

scattering does not take place). The formula we get is an integral on F 0
k2 corresponding to the limit

of the residu of the expression (2). The expression involves the spectral projector of P pℓq which is in

general position one dimensional and given by pf̂ , enpℓqqL2pW qenpx, ℓq for ℓ P λ´1
n pk2q. This expression

is false when λnpℓq is multiple.
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Figure 2: The set F`

k2pxq with x “ p1, 1q and α, k as in Figure 1.

In general position the set Ck2 of points in F 0
k2 at which two or more bands cross is generically

finite. Thus for ℓ P F 0
k2zCk2 there is a unique integer n P Jk such that ℓ P λ´1

n pk2q hence one can define

the following two functions a.e. in F 0
k2

(4) λ̃pℓq :“ λnpℓq and ẽpℓq :“ enpℓq.

Our first result is

Theorem 2.1. Let k be such that k2 R σ0 Y σ1 in general position. Let

F`

k2pxq “ tℓ P F 0
k2zCk2 , ∇λ̃pℓq ¨ x ą 0u.

Then uε converges to u in H1
loc expanding

(5) upxq “ 2iπ

ż

F`

k2
pxq

eiℓ¨x
pf̂pℓq, ẽpℓqqL2pW q

}∇λ̃pℓq}
ẽpx, ℓqσpdℓq ` Rpxq

where σ is the length measure on F`

k2pxq and R P H1pR2q.

See Figure 2 for an example of F`

k2pxq.

Since the integrand is quasiperiodic one can provide a full expansion of the integral as a series of

fractional powers of 1{|x| by the mean of the stationary phase method. However a difficulty arises

because F 0
k2 is generically not convex. Using the periodicity of the integrand with respect to the

Floquet variable ℓ one can arrange F 0
k2 as the union of close smooth curves or periodic smooth curves

(see Figure 4). Some curves are convex others have inflexion points ℓj.
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Figure 3: A closed component of F 0
k2 with the points ℓj and ℓnpθq P F`

k2pxq

The stationary phase method shows that critical points of the phase iℓ ¨ x are such that ∇λ̃ is

parallell to x at such points. Let us denote them by ℓn. Then ℓn is a function of θ “ argpxq and is well

defined as long as it does not meet any inflexion point. See Figure 3.2. Again for sake of simplicity

we adress the problem in general position assuming that inflexion points are non degenerated and two

inflexion points correspond to distinct angles θj. Let us thus denote by In Ă r0, 2πs the domain of ℓn

and denote by θj the angle for which for some n, ℓnpθjq “ ℓj. Finally let Nj be a small neighborhood

of θj which does not contain any other inflexion point.

Then the leading term in the expression of u expands asymptotically according to

Theorem 2.2. Let k as in Theorem 2.1.

1) For θ P r0, 2πszpYjNjq there holds for r “ }x} big

(6) upxq “
i
?
2π

?
r
e´iπ{4

ÿ

n“1

1Inpθqeiℓnpθq¨x pf̂pℓnq, ẽpℓnqqL2pW q

}∇λ̃pℓnq}κ
1{2
n

ẽpx, ℓnq ` R̃,

where κn is the curvature of F`

k2pxq at ℓn and R̃ P H1pR2q.

2) For θ P Nj with θj “ Īn1 X Īn2

(7) upxq “
eiℓj ¨x

r1{3

´

αjAipr
2{3γjpθ ´ θjqqẽpℓj, xq `

βj
r1{3

Ai1pr2{3γjpθ ´ θjqqwjpxq

¯

`
i
?
2π

?
r
e´iπ{4

ÿ

nRtn1,n2u

eiℓn¨x pf̂pℓnq, ẽpℓnqqL2pW q

}∇λ̃pℓnq}κ
1{2
n

ẽpx, ℓnq ` R̃

where Ai is Airy’s function, aj, bj are non zero real, γjp0q “ 0, wj is periodic and belongs to H1pW q

and R̃ P H1pR2q.

Remark 2.3. In (7) the decay rate of the first term is Opr´1{2q because the oscillatory part of Airy

function Aipsq decays like Ops´1{4q.
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We expect that the remainder decreases more rapidely in the far. Actually R̃ “ R1 ` R2 where

R1 corresponds to terms in F´

k2 “ F 0
k2 ´ F`

k2 and R2 is related to the stationary phase theorem. We

prove that R1 decreases faster than any polynomial and R2 “ Opr´3{2q. However we don’t know how

to prove any better decrease result for R because it is a Bloch inverse transform whose integration set

meets σ1 if it is not empty. This prevents the use of the instationary phase theorem.

Definition 2.4. A solution to equation (1) is called an outgoing solution if there are finitely many

open intervals pInqn of r0, 2πs and a neighborhood N of the boundaries θj of these intervals such that

for θ P r0, 2πszN

(8) upxq “
1

?
r

ÿ

n

1Inpθqcnpθqeiℓn¨xẽpx, ℓnq ` R

where ℓn P F`

k2 and ∇λ̃pℓnq is parallell to x and R P H1pR2q while for θ P Nj a small neighborhood of

one extremity θj “ In1 X In2

(9)

u “
eix¨ℓj

r1{3

´

c̃jAipr
2{3γjpθ´θjqqẽpℓj, xq`

1

r1{3
Ai1pr2{3γjpθ´θjqqwjpxq

¯

`
1

?
r

ÿ

nRtn1,n2u

cnpθqeiℓn¨xẽpx, ℓnq`R

where ℓj “ ℓn1pθjq “ ℓn2pθjq, wj is a periodic fonction belonging to H1pW q and R P H1pR2q.

Uniqueness of outgoing solutions requires that P has no eigenvalue which is the case since the

spectrum of P is the union of λnpBq. However P may have singular spectrum corresponding to the

fact that one of the λn is flat on a non empty ball.

Assumption 2.5. For all n, λn is a non constant function on any open set.

Under this assumption the spectrum of P is purely essential [5]. Finally we need a technical

assumption to prove uniqueness in Rellich’s way: we need that the remainder is smooth enough to

consider the trace of ∇R along a circle. This is true if we assume

Assumption 2.6. The coefficient α is either lipschitz or discontinuous along smooth curves as in [15]

and in this case we also need f P L8.

Theorem 2.7. Under Assumptions 2.5 and 2.6 equation (1) has a unique outgoing solution.

3 Limiting absorption principle for the outgoing resolvent

To prove Theorem 2.1 we introduce a smooth cutoff function ψ which vanishes everywhere except in

a small neighborhood of k2 on which the set Jk remains constant.

Then let us split

(10) uε “ u1,ε ` u2,ε , u1,ε “

ż

B

ÿ

nPJk

ψpλnpℓqq
pf̂ , enpℓqqL2pW q

k2ε ´ λnpℓq
enpx, ℓqdℓ.

7



Let us first analyze u2,ε “ u ´ u1,ε. By definition of ψ there is a constant c ą 0 such that

1 ´ ψpλnpℓqq

|k2ε ´ λnpℓq|
ă c{λnpℓq @n

so the Bloch transform

û2,εpx, ℓq “
ÿ

nPN˚

p1 ´ ψpλnpℓqqq
pf̂ , enpℓqqL2pW q

k2ε ´ λnpℓq
enpx, ℓq

belongs to L2pB;H1pW qq. Thus u2,ε P H1pR2q (see Appendix A where we collected some classical

results about Floquet-Bloch transform on Sobolev spaces).

To analyze and compute the limit of u1,ε when ε goes to zero we need to modify the integration

set B to avoid Fk2ε
for all positive ε close to zero. This was done by C. Gerard [8] in a theoretical

way using a complex displacement according to Pham [20]. Since the Fermi levels are parameterized

by λ, a complex displacement amounts to choosing a homotopy for λ from an interval around k2 to a

half loop in the lower complex plane. This allowed to extend the validity of the resolvant associated

to (1) in a neighborhood of the real axis but no formula was given to compute the integral defining

u1,ε (except in the difficult case k2 P σ0).

Here on the contrary in order to compute the limit when ε goes to zero we push λ to the upper

complex plane over k2ε and use Cauchy residu formula.

Before going to the details we need more information about the topology of the level sets F 0
k2 and

explain how to continuously deform it to Fλ when λ goes to the complex domain. This is the aim of

the next subsections.

3.1 Geometry of a Fermi level

Let us recall some general facts (see [29]). Since the Bloch variety is an analytic set it possesses a

Whitney stratification. This stratification is by regularity and dimension:

B “ Br
Y Bˆ,

where Br is the regular part of B which is open and locally a 2d-manifold and Bˆ the complementary

set. The latter is a subset of the points where λn are multiple. Indeed, by analytic perturbation

theory, any point pℓ, λnpℓqq where λn is simple defines locally a manifold and thus is a regular point

of B. Again Bˆ “ pBˆqr Y Bˆˆ where pBˆqr is locally a 1d-manifold and any connected component

of Br, pBˆqr,Bˆˆ is called a stratum. It is a basic result from [27] that the number of strata is locally

finite.

Lemma 3.1. The set σ0 is locally finite.

Proof. Any stratum of Br is the graph of a unique analytic function λn whose critical values are

isolated by [25]. Any stratum S of lower dimension is the graph of finitely many (generically two)

8



crossing bands λj1 “ . . . “ λjn . Since S is a manifold the restriction of λk, k P tj1, . . . , jnu to the set

S is holomorphic and thus has at most a finite number of critical points. Finally 0 dimensional strata

are isolated. Thus σ0 is locally finite.

We call singular stratum a stratum of Bˆ. Singular strata are in general position the sets of

intersection of two bands λnj
, j “ 1, 2 which are simple outside the intersection set.

This is a finite dimensional problem for which we can use analyticity results about roots of hermi-

tian matrices.

Let us proceed in details. First we consider the finite dimensional (matrix) reduction of P pℓq as

follows. Since the spectrum of P pℓq is discrete and locally finite one can introduce the spectral projector

on the finite dimensional vector space associated to a finite set of eigenvalues (cf. Kato [12] p.369 and

386). For pℓ, λ0q P B with λ0 a multiple eigenvalue, let us denote by πpℓ, λ0q the eigenprojection on

the total eigenspace of P pℓq associated to the eigenvalue branches λnj
, j “ 1 or 2 in a neighborhood

of λ0. It reads

πpℓ, λ0q “
1

2iπ

ż

Cpλ0q

pP pℓq ´ zIq
´1dz,

where Cpλ0q is a closed curve in the complex plane which encircles only λ0 for ℓ “ ℓ0. Since P pℓq is an

analytic familly of operators this projector is complex analytic on a small neighborhood of ℓ0. Let us

then set T pℓq “ P pℓqπpℓ, λ0q which is a finite dimensional operator. Since π is analytic T is analytic

too. Thus T pℓq reads as a 2 ˆ 2 hermitian matrix with complex analytic coefficients. We cannot use

1d Rellich’s result [23] about the analytical continuation of eigenvalues of hermitian matrices. In this

2d case one needs to discuss the dimension of the crossing set

M :“ tλn1 “ λn2u X V0

in a neighborhood V0 of ℓ0 (see [18] paragraph 2.3 for a general discussion). Restricting ourself to real

ℓ the authors in [14] give a complete result extending [23] for the analytic continuation of roots of

hermitian matrices. In our situation it can be reformulated according to the following

Theorem 3.2 ([14]). Assume λ0 R σ0. Either dimM “ 1 then λnj
for j P t1, 2u can be relabelled in

such a way that they become (real) analytic functions on V0 past the crossing. The same relabelling

applies to the associated eigenvectors. Either dimM “ 0 and then ℓ0 is an isolated nodal point which

is not a cusp and whose tangent cone lies outside a cone of slope maxα{minβ.

Proof. When M is a subset of pBˆqr this is [14], Theorem 6.6. When M Ă Bˆˆ, upon reducing V0,

M is the isolated point ℓ0 and the tangent space of λnj
at ℓ0 is a cone which is a basic property of

analytic spaces. More precisely let us give the matrix representation of T pℓq:

(11) T pℓq ´ λ0I “

˜

apℓq bpℓq

bpℓq cpℓq

¸

“
apℓq ´ cpℓq

2
`

˜

dpℓq bpℓq

bpℓq ´dpℓq

¸

, dpℓq “
apℓq ` cpℓq

2

where a, b, c are analytic functions satisfying apℓ0q “ bpℓ0q “ cpℓ0q “ 0. The eigenvalues of the last

matrix are ˘
?
d2 ` b2 whose tangent set at ℓ0 is a (non isotropic) cone and ℓ0 is not a cusp because

9



the minimal homogeneity degree of the roots is 1. Finally by Appendix Lemma C.1 the function λn

has a gradient bounded by maxα{minβ.

Remark 3.3. The tangent cone about a nodal point can’t be vertical and flat because otherwise λ0 P σ0.

Definition 3.4. The first case in the previous theorem will be referred to as regular crossing. We

denote by σ1 the set of points ℓ corresponding to the second case of the theorem. If k2 R σ0 Yσ1 we call

F 0
k2 a regular Fermi level. For such k let us denote by pµn, vnq the analytically reordered eigenfunctions

and eigenvectors.

Since λn is defined in R2 the function µn is piecewise defined on a subset D of R2 avoiding the set

of preimages of critical points σ0 and nodal points σ1.

By analytic extension theorem µn extends analytically in a complex neighborhood of D. Since

λn are piecewise holomorphic in C2, µn is thus still piecewise defined in term of λn in a complex

neighborhood of its domain of analyticity. Contrary to pλn, enq the functions pµn, vnq are not periodic.

3.2 Unfolding a regular real Fermi level

For real k the fiber F0
k2 is a real stratified set and upon taking supppψq small enough, the stratification

remains invariant. Generically the fiber is a one dimensional set, with finitely many 1d and 0d strata:

1d strata are connected analytic curves cn and 0d strata are isolated points corresponding to the

crossing of generically two band functions and thus the meeting point of two curves cn X cj.

Let us now recall the well-known but non written fact that a Fermi level is actually the folding of

closed or periodic analytic curves. To see this we make use of the extended Fermi level Fk2 which is

periodic with B as a unit cell in R2. Thus every cn Ă F 0
k2 is repeated by translation of periods of B

in Fk2 .

Definition 3.5. Let c be a connected curve in Fk2. We say that c is periodic modulo B if c has no

boundary or if the vector joining the extremities of c is a linear integer combination of the periods of

B.

Lemma 3.6. There is a familly pτnqn of translations by periods of B such that the union over n of the

translated arcs cn ˝ τn can be concatenated into closed or periodic (modulo B) analytic curves Cjpk
2q

of Fk2.

Proof. See Figure 4. Let us construct such a set C pk2q and prove its analyticity.

Let c be a connected analytical component of F 0
k2 . It is related to some µn. Either it is a closed

curve in B and then c “ C pk2q or both end points pE1, E2q belong to BB. Since µn is piecewise defined

in terms of the pλnqn we generically have E1 P λ´1
n1

pk2q and E2 P λ´1
n2

pk2q for some n1, n2 (which can

be equal). Let E 1
2 P BB such that E2E

1
2 is a period of B.

10



Assume that c is the only curve arriving at E2. This means that λn2 is analytic around E2 and by

periodicity there is an other curve c1 arriving at E 1
2 such that translating it by E 1

2E2 it is an analytic

continuation of c.

Assume that two curves c, s meet at E2. This means that s is associated to λn3 around E2 and

λn2 and λn3 meet at E2. Then by periodicity of λn2 and λn3 there are two curves c1, s1 arriving at E 1
2.

The choice of the good continuation is by analyticity. Indeed µn continues analytically through E2

thus one of the translated c1, s1 is associated to µn and thus an analytical continuation of c.

Repeating this procedure one gets a sequence of boundary points E1, E2, . . . , Ej, . . .. We claim

that the first redundance modulo B must be E1 modulo B. Indeed each new connected component

which is added to C pk2q under construction is a translated component of F 0
k2 . Moreover there is a

finite number of such components. If the first redundance is Ej with j ą 1 then this would mean that

there is some B-periodic subset C 1pk2q of C pk2q which does not go through E1 but this is wrong since

we can reverse the procedure and see that Ej comes from E1.
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Figure 4: Unfolding the Fermi level for k “ 1.2 (left) leads (right) to C0pk2q “ c0, C1pk
2q “ c1 and

C2pk
2q “ Y2ďjď9cj using B-translations (red curve)

Remark 3.7.

• From the proof we see that each C pk2q is associated to one µj and we denote it by Cjpk
2q.

• On Figure 4 we only have closed curves in an extended Brillouin zone.

• BCjpk
2q ‰ H if there is a unit vector ı̂ such that the line t̂ı, t P R does not meet F 0

k2. In other

words k2 lies in a partial gap of P in the direction ı̂. In particular this may happen when bands

overlap artificially.
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• The curves may cross or may be tangent (see Figure 3.2) but this does not make any difference

in the subsequent analysis since k2 R σ1 and thus the crossing of different µj is regular.
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Figure 5: Real Fermi level F 0
k2 for k “ 1.06 (left) and k “ 1.081 (right, folded)

3.3 Complex extension of a regular real Fermi level

In view of letting k complex we want to extend the definition of Cjpk
2q to a complex neighborhood of

k2.

Lemma 3.8. Let k P R and let ℓj,0ptq, t P r0, 1s be a global (real) parameterization of a curve Cjpk
2q

in R2. Then for complex λ close to k2 one defines Cjpλq through a family of parameterizations ℓjpt, λq,

t P r0, 1s such that Bℓj{Bλ “ ∇µj{p∇µj ¨ ∇µjq and ℓjpt, k
2q “ ℓj,0ptq for all t P r0, 1s.

Proof. First ℓj is well-defined because away from σ0 Y σ1 the function µj is analytic and ∇µjpk
2q ‰ 0

so one can apply Cauchy-Lipshitz’s Theorem with parameter t and show that there exists a complex

ball Bk2 independent of t such that ℓjpt, λq exists for λ P Bk2 .

Let us show that µjpℓjpt, λqq “ λ for all λ in Bk2 . For this we just need to show that the initial

parameterization is carried along the flow. We compute and find for all t P r0, 1s

B

Bλ
µjpℓjpt, λqq “ 1 with µjpℓjpt, k

2
qq “ k2.

Thus µjpℓjpt, λqq “ λ for any λ in a small neighborhood of k2 and t P r0, 1s.
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3.4 Complex displacement about a regular k2-Fermi level

3.4.1 Representation formula

Let us resume the guideline presented just before section 3.1. Let us pick a peculiar k2 R σ0 Y σ1 and

denote by K the support of ψ which we take so small that the topology of F 0
λ does not change for

λ P K. The domain of integration of u1,ε is Ψ :“
Ť

nPJk
tℓ P B, ψpλnpℓqq ‰ 0u. This set also reads as

a union of disjoint Fermi levels: Ψ X
Ť

λPK F
0
λ . From the previous section we have:

ď

λPK

F 0
λ “

ď

j

ď

λPK

Cjpλq modulo B

For future use let us denote by

Aj :“
ď

λPK

Cjpλq, and F “
ď

λPK

F 0
λ “

ď

j

Aj

Since λn, e
iℓ¨xenpx, ¨q and pf̂p¨q, enp¨qqL2pW q are B-periodic and recalling (4) we get

u1,ε “
ÿ

nPJk

ż

B

eiℓ¨xψpλnpℓqq
pf̂ , enpℓqqL2pW q

k2ε ´ λnpℓq
enpx, ℓqdℓ

“

ż

F

eiℓ¨xψpλ̃pℓqq
pf̂ , ẽpℓqqL2pW q

k2ε ´ λ̃pℓq
ẽpx, ℓqdℓ,

“
ÿ

j

wj with wj “

ż

Aj

eiℓ¨xψpλ̃pℓqq
pf̂ , ẽpℓqqL2pW q

k2ε ´ λ̃pℓq
ẽpx, ℓqdℓ.(12)

Since Cjpλq is associated to one function µj one has ẽ “ vj (recall definition 3.4). Then let

us use the explicit parameterization ℓj of Cjpλq according to Lemma 3.8 and compute its Jacobian

determinant (here λ is real). First from µjpℓjpt, λqq “ λ we have ∇µj ¨ Btℓj “ 0 and ∇µj ¨ Bλℓj “ 1

hence

|detpBtℓj Bλℓjq| “
|Btℓj|

|∇µj|
∇µj ¨ Bλℓj “

|Btℓj|

|∇µj|
.

Finally

wj “

ż

K

ψpλq

k2ε ´ λ

ż

Cjpλq

eiℓ¨x

|∇µj|
pf̂pℓq, vjpℓqqL2pW qvjpℓ, xqdℓdλ.

In what follows we consider any wj so we drop the index j.

3.4.2 Light area and shadow

Before pushing λ to the complex plane note that eiℓpt,λq¨x is a quasi-periodic function with respect to

x. When λ is complex then ℓ is complex and the sign of

φpt, λq :“ ℓpt, λq ¨ x
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can change along C pλq and thus the asymptotic behaviour of w changes drastically. We thus need to

caracterize the zeros of this function for λ in a small neighborhood of k2.

For complex λ “ τ ` iy with y close to zero we use Cauchy-Riemann relations to deduce the sign

of ℑφ. Since the parameterization ℓpt, ¨q is holomorphic and real for y “ 0 the sign of ℑφ for y going

to zero is given by the sign of Byℑℓ ¨ x which is also the sign of Bτℓ ¨ x for y “ 0. Now by definition of

the parameterization ℓ one has Bτℓ ¨ x “ p∇µ ¨ xq{|∇µ|2 for y “ 0 thus the sign of ℑφ when y is close

to zero is given by that of ∇µ ¨ x.

With the homogeneous case in mind we want to reproduce the proof of the asymptotic expansion

as in [16]. Thus we split C pk2q in three parts :

• a part C0 around the shadow transition (i.e. ∇µpℓpt, k2qq ¨ x « 0)

• and two other parts C ˘ such that ˘ℑϕ ą 0 for ε ą 0 or equivalently such that ˘∇µpℓpt, k2qq¨x ą

0.

Because the set ψ “ 1 is small we perform this splitting uniformly with respect to λ P K.

Let us introduce a partition of unity on C pk2q:

1 “ ψ0ptq ` ψ`ptq ` ψ´ptq with ˘ ∇µ ¨ x ą 0 on supppψ˘q.

So w “ w0 ` w`pxq ` w´pxq with for β P t0,˘u

(13) wβ “

ż

K

ψpλq

k2ε ´ λ
gβpλqdλ, gβpλq “

ż 1

0

eiℓ¨xψβptq pf̂pℓq, vpℓqqL2pW qvpℓ, xq
|Btℓ|

|∇µ|
dt.

3.4.3 Complex displacement

We now consider each term wβ and isolate the leading part.

‚ For w` we can choose the integration path in the first integral going above the residue. For this

let I Ă K be such that ψ “ 1 on I. Then let us consider γ` a curve homotopic to I, encircling k2ε for

ε small enough. See Figure 3.4.3.

γ +

K

ψ = 1

●

k
2

ε

Figure 6: The contour γ`

Then the integrand g` is holomorphic in the region surrounded by γ` and I. Indeed, ψ “ 1 and

Lemma 3.8 provides a holomorphic extension of the jacobian determinant in a neighborhood of K
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which reads ˘detpBtℓ, Bλℓq (with fixed sign on K). By the Cauchy-residu formula we get

(14) w` “ 2iπg`pk2εq `

ż

KzI

ψpλq
g`pλq

k2ε ´ λ
dλ `

ż

γ`

g`pλq

k2ε ´ λ
dλ

where

g`pk2εq “

ż

C XF`

k2
pxq

ψ`e
iℓ¨x

pf̂pℓq, vpℓqqL2pW qvpℓ, xq
1

|∇µ|
σpdℓq.

‚ Similarly, for w´ we choose a path γ´ going below the real axis so that there is no residu:

w´pxq “

ż

KzI

ψpλq
g´pλq

k2ε ´ λ
dλ `

ż

γ´

g´pλq

k2ε ´ λ
dλ.

The previous expressions show that w˘ have limit when ε goes to zero and g`pk2q contributes to

formula (5).

‚ As for w0 one can take the limit when ε goes to zero. This limit involves a principal value:

lim
εÑ0

1

k2ε ´ λ
“ vp

ˆ

1

k20 ´ λ

˙

´ iπδk20 .

The limit thus reads

lim
εÑ0

w0 “ ´iπg0pk
2
0q ` vp

ż

K

ψpλq

k20 ´ λ
g0pλqdλ,

where the principal value is bounded.

4 Boundedness of the residual

Theorem 4.1. The functions w0, w` ´ 2iπg`pk2εq and w´ belong to H1pR2q uniformly with respect

to ε (small).

Proof. Let us first consider w0 and set

(15) pfpℓ, xq “ pf̂pℓq, vpℓqqL2pW qvpℓ, xq and Dℓ :“ ˘ detpBtℓ, Bλℓq.

The choice of ˘ is such that Dℓ ą 0 for real λ. Formula (13) reads

w0 “

ż

K

ż 1

0

eix¨ℓψ0ptq
ψpλq

k2ε ´ λ
pfpℓ, xqDℓ dtdλ.

In view of letting |x| go to infinity Let us redefine the phase as φ “ ℓpt, λq ¨ x{|x|. It is real and

instationnary. Indeed, differentiating the relation µpℓpt, rqq “ r with respect to t we get ∇µ ¨ Btℓ “ 0.

Recalling that ℓ is defined by Bλℓ “ ∇µ{|∇µ|2 we thus get

(16) Btℓ ¨ Bλℓ “ 0.

Thus the gradient of the phase φ does not vanish anywhere. Actually on the support of ψ0 we have

Btφ ‰ 0 since ∇µpℓq and x are approximately orthogonal thus Btℓ and x are approximately collinear.

We can thus integrate by parts with respect to t.
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Let us note that the amplitude is also oscillatory since it is quasi periodic with respect to ℓ.

Integrating by parts requires to differentiate f̂ with respect to ℓ and since Bℓf̂ “ ´ixxf we need to

take f in weighted L2 space or even in the Schwarz space if one wants to get a full series expansion of

w0 in inverse powers of |x|.

In order to prove that w0 P L2pR2q we need to integrate twice by parts because |x|´1 R L2pR2zBp0, 1qq.

Because ψ0 has compact support we get

w0 “

ż

R`

ψprq

k2ε ´ r

ż 1

0

´1

|x|2
ei|x|φ

ˆ

Bt
1

Btφ

˙2

¨

˝ψ0ptqpfpℓ, xqDℓ
loooooooomoooooooon

h

˛

‚dtdr.

The second derivative pBt
1

Btφ
q2h expresses as a sum of terms of the form

GptqpBa
t φqbBc

tpfBd
tDℓ

pBtφqe
, pa, b, c, d, eq P N5 b ` c ` d ď 2, a ď 3, e ď 4,

where G is bounded. Since ℓ is analytic with respect to t, Ba
t φ and Bd

tDℓ are bounded and Btφ is lower

bounded as we explained above. The only term left is Bc
tpf for which one needs to estimate Bc

ℓpf .

More precisely, there is a constant κ such that

|x|
2
|w0| ď κ}pfp¨, xq}W 2,1pDq, where D “

ď

λPK

C pλq.

Lemma 4.2. There is a periodic function q ą 0, q|W P L2pW q such that for any k P N

}B
k
ℓ pfpx, ¨q}L1pDq ď qpxq}xxy

kf}L2pR2q, xxy “
a

1 ` |x|2.

See the proof of the lemma 4.3 below dealing with a complex extension of this result.

From the previous estimate we finally get the existence of a positive constant c such that

}w0}L2pR2q ď c}xxy
2f}L2pR2q.

Next, estimating }∇w0}2 is equivalent to estimating }
?
α∇w0}2 but

}
?
α∇w0}

2
2 “ pPw0, w0q2 ď max

ℓPB
µpℓq}w0}

2
2

since P commutes with the integrals and Pv “ µv.

Let us now turn to w̃` “ w` ´ 2iπg` and w´. So we consider

w̃` “

ż

γ`YKzI

ż 1

0

eix¨ℓψ`ptq
ψpℜλq

k2ε ´ λ
pfpℓpt, λq, xqDℓdtdλ.

The main change is due to complex values and the fact that on the support of ψ` the phase φ “ ℓ¨x{|x|

is not instationnary with respect to t but it is instationnary with respect to λ. Indeed the real part

of the phase for λ P γ` is a small perturbation of its values for λ P I and for such real λ the vector

Bλℓ is collinear to ∇µ which is not orthogonal to x.
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Let us remark that when the phase takes negative real values these are of order of the imaginary

part of γ` which is small since we need to remain in the domain of analyticity of µ. So we do not use

the exponential decrease but the nonstationarity of the phase. To integrate by parts we just need to

provide enough regularity by choosing the contour γ` Y pKzIq smooth enough. Integrating twice by

parts with respect to λ we get

w̃` “ ´

ż

γ`YpKzIq

ż 1

0

1

|x|2
e´i|x|φψ`ptq

ˆ

Bλ
1

Bλφ

˙2
ψpλq

k2ε ´ λ
pfpℓpt, λq, xqDℓdtdλ

Let λpsq, s P I be a parameterization of the curve γ` Y pKzIq and let ϕpt, sq “ ℓpt, λpsqq. Also let

C `pλq “ C pλq X tψ` ‰ 0u. Then ϕ is a diffeomorphism from ∆ :“ r0, 1s ˆK to
Ť

λPγ` C `pλq because

ℑλ is small and for λ “ Id it is so by (16). Then we can estimate w̃` by

|x|
2
|w̃`pxq| ď

c

α3
}pfpϕ, ¨q}W 2,1p∆q, α “ distpγ`, k2εq.

Lemma 4.3. There is a periodic function q ą 0, q P L2pW q and a constant c ą 0 such that

}B
k
ℓ pfpx, ϕq}L1p∆q ď qpxq} ă ¨ ą

k`1 emax |ℑϕ||¨|f}L2pR2q.

Proof. Let us show the lemma for k “ 0 (for bigger k the proof is similar because Bℓĥ “ ´ixxh). e

being holomorphic and periodic on ∆ it is bounded in a small complex neighborhood of the Brillouin

zone. Hence v is bounded too and pf can be estimated by

}pfpx, ϕq}L1p∆q ď }vpx, ϕq}L2p∆q}vp¨, ϕq}L8p∆;L2pW qq}f̂pϕq}L2pWˆ∆q.

Since v is holomorphic with respect to ℓ it is bounded in ∆ so that the first term is a L2pW q periodic

function of x. For the second term notice that }epℓq}L2pW q (hence }vpℓq}L2pW q) is identically equal to

1 on the real line and continuous by Lebesgue continuity theorem.

Finally we give a crude estimate of }f̂pϕq}L2pWˆ∆q as follows. First

|f̂pϕq| ď
ÿ

nPZ2

|fpx ` 2πnq|emax |ℑϕ||x`2πn|
“ y|f |hp0q where hpxq “ emax |ℑϕ||x|.

Then setting g “ |f |h one has

}ĝp0q}
2
L2pW q “

ÿ

n,m

ż

W

gpx ` 2πnqgpx ` 2πmq ď

˜

ÿ

n

}g}L2pW`2πnq

¸2

and
ÿ

n

}g}L2pW`2πnq ď c
ÿ

n

}x¨yg}L2pW`2πnq

ă n ą
.

Now applying Cauchy-Schwarz inequality the last term is bounded by cπ2{6}x¨yg}2L2pR2q
. Finally

}f̂pϕq}L2pWˆ∆q ď µpIqcπ2{6}x¨yg}2L2pR2q
where µpIq is the measure of ∆.

From the previous estimate and since ϕ is a diffeomorphism one has maxD |ℑϕ| ď cα hence

}w̃`}L2pR2q ď
c

α3
}xxy

3ecα|¨|f}L2pR2q.

This estimate shows that one must take f exponentially decaying for w̃` to belong to L2pR2q. The

same estimate holds for w´.
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5 Asymptotic behavior

Let us now turn to the far field asymptotics of the residus g`pk2q. The latter is an oscillatory integral

whose phase is stationary on C `pk2q “ C pk2q X tψ` ‰ 0u when Btφ “ Btℓ ¨ x{|x| “ 0. Since φ is

analytic as a function of t P r0, 1s it has finitely many extrema. Let t˚ and ℓ˚ “ ℓpt˚q be a critical

point (resp. value). Since φ depends on θ “ argpxq, t˚ is a function of θ. For comparison purpose

recall that in the homogeneous case (i.e. α and β constant) there is just one curve C which is a

circle. There is one outgoing stationary point t “ θ defined on r0, 2πr. When C is not convex or

not closed then t˚ is only defined on a subintervall I˚ of r0, 2πr. A point ℓ˚ on a convex part of C

moves anti-clockwise as θ increases while points on concave parts move clockwise. The extremities

of I˚ correspond to inflexion points of C and there dt˚{dθ is infinite and two critical values merge or

emerge.

The derivative B2
tφ is related to the curvature of C . Indeed, since x and Btℓ are orthogonal we

have

(17) B
2
tφ “ B

2
t ℓ ˆ

Btℓ

|Btℓ|
“ κ|Btℓ|

2

where κ is the curvature. When the curvature vanishes the phase degenerates. This is a well known

situation in optics: if the phase is first order degenerated then it is cubic and the integral around

this inflexion point is a Airy function [1]. Let θ˚ be such an inflexion point and χ a test function

supported about t˚ such that χpt˚q “ 1. Let us split g` “ g`˚ ` g̃` where g`˚ is defined like g` but

replacing pf “ pf̂ , vqv by χpf . From [10] Theorem 7.7.18 there are functions α, γ and w˚ and w̃˚

such that rαpθ˚q “ x ¨ ℓ˚, γpθ˚q “ 0 and for θ in a neighborhood of θ˚ (orthogonal direction to Btℓpt˚)

the following asymptotics holds

(18) g`˚pxq “
eirαpθq

r1{3

ˆ

Aipγpθqr2{3
qw˚pxq `

1

r1{3
Ai1pγpθqr1{3

qw̃˚pxq

˙

` O

ˆ

1

r3{2

˙

where Oprsq is with respect to L8 norm. Actually [10] is true for pf not depending on x. However the

formula still holds true because x can be considered as a parameter and pf is a bounded (periodic)

function of x. From Appendix (24) and (25) we find that αpθq “ ℓ˚x{|x| and w˚ “ d˚v where d˚ is

a non zero coefficient. Moreover there is a full Taylor expansion in powers 1{r1{3`n and 1{r2{3`n and

the exponent in the Opq term is one order bigger than the fisrt term. As for the first term its order is

Opr´1{2q because the oscillatory part of Ai and Ai1 decays like r´1{4. Note that non degenerate critical

points also give Opr´1{2q amplitude. Only the ”far field” pattern is different since Ai is exponentially

decaying for positive arguments.

To get formula (6) of theorem 2.2 we resume the index j (of the curve Cj) which we dropped

in section 3.4. Take k as in Theorem 2.1 and denote by ℓjp the finitely many inflexion points of

the curve Cj. Denote by tjn the (finitely many) critical points of φj and ℓjn “ ℓjptjnq P C `
j pk2q

the related Floquet numbers. These are analytic functions of θ P Ijn where Ijn is an open intervall

whose extremities are the angles θjp associated to the ℓjp. Then for θ away from the θjp the following
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asymptotics holds

(19) gj`px, k2q “ i
?
2πe´iπ{4

ÿ

n

1Ijnpθqeiℓjn¨x pf̂pℓjnq, vjpℓjnqqL2pW q

pB2
tφjptjn, k2q|x|q1{2

vjpℓjn, xq
|Btℓjptjnq|

|∇µjpℓjnq|
` R2

As for θ about θjp let n1 and n2 be the index of the intervals Ijn whose mutual end is θjp. Then

splitting gj` “ gj`˚ ` g̃j` as above we find

(20) gj`px, k2q “ i
?
2πe´iπ{4

ÿ

nRtn1,n2u

1Ijnpθqeiℓjn¨x pf̂pℓjnq, vjpℓjnqqL2pW q

pB2
tφjptjn, k2q|x|q1{2

vjpℓjn, xq
|Btℓjptjnq|

|∇µjpℓjnq|

`
ÿ

p

eix¨ℓjp

r1{3

ˆ

c̃jAipγjppθ ´ θjpqr2{3
qvjpx, ℓjpq `

1

r1{3
Ai1pγjppθ ´ θjpqr2{3

qw̃jppxq

˙

` R2

In both casesR2 “ Opr´3{2q. In particular it belongs toH1pR2q. Using (17) and recalling (14),(12),(10)

and keeping one index on a bigger range we arrive at (6),(7).

6 Uniqueness

Let u be an outgoing solution of (1) according to Definition 3.4 with f “ 0 (no source term). As-

sumption 2.6 about the regularity of the coefficients entails that ∇u is continuous except across (the

smooth) discontinuity of α. Then the same holds for R since the leading terms (of u) are continuous.

This allows to integrate ∇R on a curve. Then uniqueness will follow from

Lemma 6.1. As t goes to infinity

(21) ℑpPu, uqL2pCtq “
ÿ

k

ż

Sk

|ckpθq|2

pβẽpℓkpθqq, ẽpℓkpθqqq2
∇λ̃pℓkpθqq ¨ n⃗ dσ `

ÿ

k1

αk1 |c̃k1 |
2

` op1q

where Ct is the circle of radius t and Sk the part of the unit circle related to Ik and ẽ, λ̃ are defined

in (4) and αk1 ą 0.

Proof. Integrating by part in the disk Dt of radius t and taking the imaginary part yields

0 “ ℑpPu, uqL2pDtq “ ℑpαBnu, uqL2pCtq.

Let us examine this last expression expanding u according to 3.4((8),(9)). First to avoid explicit

bounds in evaluating integrals let us introduce a partition of unity of r0, 2πr:

ÿ

k

χk `
ÿ

k1

χ̃k1 “ 1

where the union of the supports of the χk is r0, 2πrzN and the support of χ̃k1 is N 1
k with N 1

k slightly

bigger than Nk centered at θk and mutually disjoint. Put

• ukpxq “
1

?
r
χkpθqckpθqeiℓkpθq¨xvkpx, ℓkpθqq
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• For θ P N 1
k set ũkpxq “ c̃kχ̃k

eix¨ℓk

r1{3

´

Aipr2{3γkpθ ´ θkqqvkpx, ℓkq `
1

r1{3
Ai1pr2{3γkpθ ´ θkqqw̃kpx, ℓkq

¯

With these notations (8) and (9) read

upxq “
ÿ

k

uk `
ÿ

k1

ũk1 ` R.

Let us break pαBnu, uqL2pCtq accordingly :

1. T0ptq “ pαBnR,RqL2pCtq 2. Tkptq “ pαBnR, ukqL2pCtq or pαBnuk, RqL2pCtq

3. Tij “ pαBnui, ujqL2pCtq where Ii X Ij ‰ H 4. T̃k “ pαBnR, ũkqL2pCtq or pαBnũk, RqL2pCtq

5. T̃ij “ pαBnui, ũjqL2pCtq or pαBnũi, ujqL2pCtq 6. T 7

i “ pαBnũi, ũiqL2pCtq

1. Let us first consider the term T0ptq. Since R P H1 and is piecewise continuous the function T0

is integrable and continuous on R` so limtÑ8 fptq “ 0.

2. Then we have Tkptq “ op1q because uk P L2pCtq uniformly with respect to t and }∇R}L2pCtq is

continuous and belongs to L2pR`q. Similarly pαBnuk, RqL2pCtq “ op1q.

3. First compute the gradient of uk with respect to x. Since uk is given by a profile depending on

r, θ, x let us set ukpxq “ Ukpr, θ, xq and let us use the chain rule

∇ukpxq “ BrUkpr, θ, xqe⃗r `
1

r
BθUke⃗θ ` ∇xUk

∇ukpxq “
eiℓk¨x

?
r

ˆ

´
ckpθq

r
χkvke⃗r ` ckpθqχkp∇x ` iℓkqvk ` Bθpckχkvkq

1

r
e⃗θ

˙

.

Observe that thanks to the condition of stationary phase Bθe
iℓkpθq¨x “ 0. Hence

Tij “

ż

Ct

χipθqχjpθq
αcic̄j
t

eix¨pℓi´ℓjq
pp∇x ` iℓipθqqvi ¨ n⃗qv̄jdσ ` Opt´1

q, where θ “ argpσq

For j ‰ i we use the stationary phase theorem as we did in the proof of theorem 3.1 to show that

the integral is of lower order. Indeed using polar coordinates the phase ϕpθq “ te⃗rpθq ¨ pℓi ´ ℓjq has

derivative

t´1ϕ1
pθq “ e⃗θpℓi ´ ℓjq ` e⃗rpℓ

1
i ´ ℓ1

jq.

where by definition ℓ1
kpθq ¨x “ 0 for all k. Then assuming as in Theorem 2.2 that the phase is a Morse

function it has at most a finite number of stationary points. Hence the integral is Opt´1{2q.

For i “ j let us set pjpx, θq “ αpxqn⃗pθq ¨ p∇x ` iℓjpθqqvjpx, ℓjpθqqv̄jpx, ℓjpθqq which we consider for

any θ and x (not only for θ “ x{|x|). This is a periodic function with respect to x which belongs to

L8pW ˆ Ijq thanks to the assumption on α. Rescaling by t we get

Tjj “

ż

Sj

χjpθq|cjpθq|
2pjptx, θqdσpxq ` Opt´1

q.

From [4] p.94 when t goes to infinity the latter converges to
ż

Ij

χjpθq|cjpθq|
2pj0pθqdθ.
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Indeed one can uniformly approximate pj by smooth trigonometric polynomial for which the limit

holds using stationary phase theorem. Using identity (23) in Appendix and definition 4 gives the

formula of the lemma.

4. First ũk is a sum of two terms

ũk “ ũk1 ` ũk2

where the second term is decaying quiker than the first for large r. So it is enough to deal with the

first. To show that T̃k “ op1q we proceed as for Tk showing that ũk1 belongs to L
2pCtq uniformly with

respect to t:

}ũk}
2
L2pCtq ď |c̃k|

2
}vkpℓkq}8t

1{3

ż 2π

0

χ̃2
kpθqAi2pγkpθqt2{3

qdθ.

Since Aip´ρq „
`8

|ρ|´1{4 the last integral is of order t´1{3. Hence T̃k “ op1q.

5. Hiding ũk2 in a Opt´1{3q term we get

T̃ik “ c̃k

ż

Ct

αpxqci
t5{6

χipθqχkpθqeix¨pℓi´ℓkq
pp∇x`iℓipθqqvipx, ℓipθqq¨n⃗qAipγkpθ´θkqt2{3

qv̄kpx, ℓkqdσ`Opt´1{3
q

When the phase is stationnary at θk then the leading term has amplitude t1´5{6´1{2Aipγkp0qt2{3q “

Opt´1{2q. Otherwise it is Opt´1q.

6. As in step 3 we first compute

∇xũk1 “ c̃kχ̃kpθq
eix¨ℓk

r1{3
Aipγkpθ ´ θkqr2{3

qp∇ ` iℓkqvkpx, ℓkq ` Opr´3{2
q.

shifting by θk and setting pk “ αpxqe⃗r ¨ p∇x ` iℓkqwkw̄k yields

pαBnũk1, ũk1qL2pCtq “ |ck|
2t1{3

ż 2π

0

χ̃2
kpθqAi2pt2{3γkpθqqpkpx, θqdθ ` Opt´1

q.

Using again the periodicity of pk with respect to x as in 3. we can adapt the stationary phase method

to each frequency of pk giving an integral of size Opt´1{3q if the phase is non stationary and Opt´1{4q

if it is stationary. So only the mean value of pk contributes at infinity:

pαBnũk1, ũk1qL2pCtq “ |c̃k|
2
pβẽpℓkq, ẽpℓkqq

ż 2π

0

χ̃2
kpθqt1{3Ai2pt2{3γkpθqq∇λ̃pℓkq ¨ e⃗rpθqdθ ` op1q

When t goes to infinite the last integral converges to dk∇λ̃pℓkq ¨ w⃗ which is positive because dk ą 0

and w⃗ is close to e⃗rpθkq which is collinear and directed like ∇λ̃pℓkq.

Proof of theorem 2.7. Take two outgoing solutions of (1) and denote by w their difference. It is an

outgoing solution of Pw “ 0. Let us still denote by ck and c̃k1 its asymptotic coefficients (according

to (8) and (9)). Since∇λ̃pℓkq¨n ą 0 in Sk the previous lemma implies that ckpθq “ 0 almost everywhere

and c̃k1 “ 0. Thus w P H1pR2q but since the spectrum of P is purely essential from Assumption 2.5

it follows that w “ 0.
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7 Singular Fermi levels

7.1 Nodal point

Let us denote by λ0 “ k20 a point of σ1. We claim that the resolvent Rpzq :“ pP ´ zq´1 : L2
comp Ñ L2

loc

about such a point is continuous but not holomorphic, a fact that was not mentioned by [8]. Indeed

let us consider (11) again which is the case of two bands meeting non critically at a single point ℓ0

which I assume to be 0.

Then the band functions are of the form

λ˘pℓq “ gpℓq ˘
a

a2pℓq ` b2pℓq

where g, a, b are analytic, a or b do not vanish identically and the three functions vanish at ℓ0. Note

that if we consider the touching bands together this gives an arc analytic function [14], Theorem 7.2.

Next since λ˘ are non critical at ℓ0 it implies that the minimal degree of Taylor’s expansion of

a2 ` b2 has to be less or equal to two thus a or b has to be linear at first order. We thus consider the

following functions

λ˘pℓq “ λ0 ˘

b

ℓ21 ` ℓ2m2 , m P N˚.

With z P C close to λ0 the leading term of the resolvent u1px, zq (it corresponds to u1,ε when

z “ λ0 ` iε) reads

u1px, zq “

ż

B

eiℓ¨x

˜

ψpλ´pℓqq
pf´pℓ, xq

z ´ λ0 `
a

ℓ21 ` ℓ2m2
` ψpλ`pℓqq

pf`pℓ, xq

z ´ λ0 ´
a

ℓ21 ` ℓ2m2

¸

dℓ.

For simplicity let us choose ψ “ 1rλ0´α,λ0`αs. Let us first consider the case m “ 1 and use polar

coordinates

u1px, zq “

ż

S1

ż α

0

eiρu¨x

ˆ

pf´pρu, xq

z ´ λ0 ` ρ
`
pf`pρu, xq

z ´ λ0 ´ ρ

˙

ρdρdu.

Expanding ρ{pz ´ λ0 ˘ ρq “ ˘1 ¯ z´λ0

z´λ0˘ρ
gives

u1px, zq “

ż

S1

ż α

0

eiρu¨x
ppf´pρu, xq´pf`pρu, xqq dρdu`z

ż

S1

ż α

0

eiρu¨x

ˆ

´
pf´pρu, xq

z ´ λ0 ` ρ
`
pf`pρu, xq

z ´ λ0 ´ ρ

˙

dρdu

The stationary phase method shows that the first term belongs to H1pR2q (exactly as for w0).

Turning to the second term from [14], Theorem 7.2 pf˘ are arc analytic functions so there is a

function qfpρ, u, xq analytic with respect to ρ in a neighborhood of 0 such that

pf˘p˘ρu, xq “ qfp˘ρ, u, xq.

Taking the opposite of u in the integral involving pf´ and then expressing pf˘ in terms of qf one

finds that the second term in the previous expression of u1px, zq reads

u1px, zq “ z

ż

S1

ˆ
ż ´α

0

gpρ, uqdρ `

ż α

0

gpρ, uqdρ

˙

du, gpρ, uq “ eiρu¨x qfpρ, u, xq

z ´ λ0 ´ ρ
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This expression defines a function of z logpzq because the integrals in ρ do not combine into one integral

running through 0 (similarly as in the homogeneous case). So the resolvent is indeed continuous but

not holomorphic about λ0.

Remark 7.1. This expansion differs from the homogeneous case (P “ ´∆) for which the resolvent

about 0 expands Rpzq “ P0 logpzq ` P1 ` Opz logpzqq where Pj are finite rank operators in L2pR2q

(see [11]). One could wonder why there is such a difference thinking of 0 as a nodal point of the

characteristic manifold of ´∆. This is of course because the characteristic manifold is the set of

pω, ξq (where ξ is the Fourier variable) such that ω “ ˘|ξ|, hence λ “ |ξ|2. So 0 belongs to σ0 (see

next paragraph).

Now for k close to k0 the Fermi curve contains a curve C which is a small circle whose curvature

is proportional to 1{|k ´ k0|. In view of formula (6) taking the limit k Ñ k0 shows that the leading

term whose index is related to C vanishes. Thus if the Fermi level does not intersect any other band

then the resolvent about λ0 belongs to Oppz ´ λ0q logpz ´ λ0qq.

Form ą 1 odd letting ℓm2 “ y2 we set back to the casem “ 1 up to the jaccobian |y2|
1{m´1{m which

is integrable about 0 even and arc-analytic. So the previous resolvent expansion holds. However the

previous consideration about the curvature does not hold since it vanishes in the direction p1, 0q so (6)

does not hold and one needs to adapt item 2 of theorem 2.2 with a higher order Airy-like function. It

is very likely that the Op1q term in the resolvent expansion does not vanish.

7.2 Generical critical point

Critical points do not contribute to outgoing waves since the speed vanishes at this point but such

points are responsible for some singularity of the resolvent which is logarithmic in the generic 2D case.

This situation has been addressed to any dimension by C. Gerard in [8] Theorem 3.6. However the

generality of the quoted paper makes it difficult to understand the way the solution is computed. We

thus wish to give a very short calculation to give an insight of the result of [8] when λ0 P σ0 is a non

degenerated Morse critical point of λn at ℓ “ 0. In such a case let us write λn as a quadratic form

λnpℓq “ λ0 ` pApℓqℓ, ℓq where the brackets denote the scalar product in R2 and A is a smooth 2 by

2 matrix which does not vanish at ℓ “ 0. Let us approximate ψ by the characteristic function of a

small neighborhood V0 of 0. Then choosing λε “ λ0 ` iε we get

u1,ε “

ż

B

eiℓ¨x
ψpℓq

λε ´ λnpℓq
pfpℓ, xqdℓ “

ż

V0{
?
ε

ei
?
εs¨x 1

i ´ pAps
?
εqs, sq

pfps
?
ε, xqds.

For ε small and 0 ă α ă 1{2 the main contribution reads

pfp0, xq

ż

V0{εα

1

i ´ pAp0qs, sq
ds.

Whatever the signature of Ap0q the integral diverges like Oplnpεqq as ε goes to zero. If one replaces

λε by λ in a complex neighborhood of λ0 and considers v0 as a function of λ one readily sees that v0
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is a 2-sheaves analytic function diverging logarithmically at λ0. This corresponds to the expression of

the outgoing resolvent given in [8] Corollary 4.2 where one branch of the resolvent expands as follows

pP ´ λq
´1

“ E0pλq ` C lnpλ ´ λ0qpMpλ0q ` pλ ´ λ0qE1pλqq

where C is a constant, M is a finite dimensional operator and Ej are holomorphic operators about

λ0.

8 Greater dimensions

When the dimension d is greater than 2 the set of points of crossing in a Fermi level is generically of

dimension d ´ 2. One can still use (4) since the latter set is negligible in the Fermi Level. So if for a

Fermi level there is only normal crossing then one can straightforwardly extend Theorem 2.1, 2.2 and

2.3.

From [14] the set of points of singular crossing is a d´ 2 dimensional set so we expect σ1 to be of

non zero Lebesgue mesure and needs to be considered for every k. Theorem 7.2 of [14] says that in

this case there are blowing ups with smooth centers such that crossing eigenvalues become analytic.

So theoretically one can compute u as in paragraph 7.1.

Appendix

A Floquet-Bloch transform and Sobolev spaces

Let f P SpR2q (Schwarz space). Then its Floquet-Bloch transform defined by

f̂px, ℓq “
ÿ

nPZ2

fpx ` 2πnqe´iℓ¨px`2πnq

is periodic with respect to x and quasi-periodic with respect to ℓ:

f̂px, ℓ ` ajq “ eix¨aj f̂px, ℓq,

where aj, j P t1, 2u are the unit vectors. Then the inverse Floquet-Bloch transform reads

fpxq “

ż

B

eiℓ¨xf̂px, ℓqdℓ.

The Floquet-Bloch transform extends by density to f P L2pR2q and Parceval identity holds so that

f̂ P L2pW ˆ Bq and

}f}L2pR2q “ }f̂}L2pBˆW q.

Then the identity {pBxj
fqpx, ℓq “ pBxj

` iℓjqf̂px, ℓq for j P t1, 2u entails that there is a constant c ą 1

such that
1

c
}f}HnpR2q ď }f̂}L2pB,HnpW qq ď c}f}HnpR2q.
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Here we used the notation

L2
pB,Hn

pW qq :“ th P L2
pW ˆ Bq, B

j
ℓh P L2

pW ˆ Bq, j P t1, . . . , nuu.

Finally the identity zpxjfqpx, ℓq “ Bℓj f̂px, ℓq for j P t1, 2u implies

}|x|
nf}L2pR2q ď c}f̂}L2pW ;HnpBqq,

where L2pW ;HnpBqq is defined in a similar way as L2pB;HnpW qq.

B Analyticity of the Bloch variety

Let us recall briefly Kuchment’s results [13] about the analyticity of B. For elliptic operators of the

form T :“
ř

|α|ď2m bαpxqBα with smooth coefficients bα, Theorem 3.1.7 ([13]) shows the analyticity of

B. Thanks to the smoothness of the coefficients one can use a parametrix which allows to show that

the operator T pℓq resulting from the application of the Floquet-Bloch transform to T and acting on

H2pBq is Fredholm with null index.

Here our operator P pℓq is of divergence form and with non smooth coefficients. We cannot make use

of a parametrix as used in [13] but Theorem 3.1.7 mainly requires a holomorphic family of Fredholm

operators with null index (see p. 118). The opertor P pℓq is Fredholm because it is of compact resolvent

type (standard use of Lax-Milgram Lemma and analytic Fredholm theorem) from HpW q to L2pW q

with

HpW q “ tu P H1
perpW q, αp∇u ` iℓq P HdivpW qu

where HdivpW q is the subspace of L2pW q ofW -periodic functions whose divergence belongs to L2pW q.

Then since P pℓq is symmetric for real ℓ its deficiency index is zero.

The proof of Theorem 3.1.7 needs to be changed because P pℓq does not map Sobolev spaces to

themselves. Moreover the domain of P pℓq (as operator) depends on ℓ since it requires that αp∇ ` iℓq

belongs to HdivpW q. We thus consider ppℓq the associated sesquilinear form on H1pW q which we

expand:

ppℓqpu, vq “ pα∇u,∇vq2 ` iℓ tpαu,∇vq2 ´ pα∇u, vq2u ` ℓ2pαu, vq2, u, v P H1
pW q.

We decompose it as a sum of three forms ppℓq “ p0 ` iℓp1 ` pℓ2 ´ 1qp2 with

p0pu, vq “ pα∇u,∇vq2 ` pαu, vq2, p1pu, vq “ pαu,∇vq2 ´ pα∇u, vq2, p2pu, vq “ pαu, vq2.

Since p1 is not sectorial on L2pW q we consider those forms as bounded forms on H1
perpW,αq. By

Riesz-lemma there are associated operators P0, P1 and P2 defined on H1
perpW,αq endowed with the

scalar product p0. Those operators thus satisfy p0pPju, vq “ pjpu, vq. In particular P0 “ Id. Then

denoting by P̃ pℓq the operator associated to ppℓq we have

P̃ pℓq “ I ` iℓP1 ` pℓ2 ´ 1qP2 and observe that kerpP pℓqq Ă kerpP̃ pℓqq.
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Thus it is enough to prove Theorem 3.1.7 replacing P pℓq by P̃ pℓq. One thus only needs to prove that

Pj are Schatten class operators on H1
perpW,αq. This is greatly eased by making use of the operator

S2 :“ pP p0q ` αq´1 for which there holds

p0pS2u, vq “ p0pSu, Svq “ pu, vq2, and P2 “ S2α.

Lemma B.1. S is a Schatten class operator in H1
perpW,αq.

Proof. First S is compact because if we take a bounded sequence un P H1
perpW,αq then by Rellich

theorem there is a subsequence (still denoted by un) such that un converges to some u in L2pW q.

Then let us show that Sun converges in H1
perpW,αq. We have

}Spun ´ uq}
2
H1

perpW,αq “ p0pSpun ´ uq, Spun ´ uqq “ }un ´ u}
2
2

which converges to zero.

Then showing that S is a Schatten class operator can be achieved by comparing S to S̃ :“

p1 ´ ∆q´1{2 which is so in H1
perpW, 1q. This a simple use of minmax principle.

As a consequence P2 is a Schatten class operator.

Lemma B.2. P1 is a Schatten class operator of order p ą 2.

Proof. Let us split P1 “ P11 ´ P12 with

p11pu, vq “ pαu,∇vq2, and p12pu, vq “ pα∇u, vq2

one cannot easily represent P11 and show that it is compact. However we remark that P11 “ P ˚
12.

Indeed

p0pP11u, vq “ p11pu, vq “ pαu,∇vq2 “ p̄12pv, uq “ p0pu, P12vq.

Then remarking that P12 “ S2α∇ one sees that it is a Schatten class operator since Sα∇ is bounded

on H1
perpW,αq. Then so is P11 by duality.

C Estimates in Bloch space

The following lemma gives an upper bound for the slope of the real Bloch variety. The calculation

is reminiscent of geometric optics [6] and links the gradient of the band function with the metric. It

proves in particular that nodal points of the Bloch variety are not cusps.

Lemma C.1. For all n ą 1

(22) }∇
a

λn}L8pBq ď maxα{min β.
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Proof. Let us expand P pℓq:

βP pℓq “ pdiv ` iℓqαp∇ ` iℓq “ divα∇ ` iℓp∇α ` α∇q ´ |ℓ|2.

Setting P1 “ ∇α ` α∇ and then differentiating the relation P pℓqenpℓq “ ´βλnpℓqenpℓq with respect

to ℓ we get

pP pℓq ´ λnpℓqq∇ℓenpℓq ` ppiP1 ` 2ℓαq ` β∇λnpℓqqenpℓq “ 0.

Scalarly multiplying by enpℓq which is orthogonal to the first term and a unit vector of L2pW q gives:

(23) ∇λnpℓqpβen, enq “ ´ppiP1 ` 2ℓαqen, enq “ 2ℑpαp∇ ` iℓqen, enq

Half of the last factor is bounded by }αp∇ ` iℓqen}2 which is bounded by α times }
?
αp∇ ` iℓqen}2 “

a

pP pℓqen, enq “
?
λn.

D Scatering expansion under glancing/grazing Bloch vector

Pseudo-differential calculus has been carried out by Melrose and Taylor (see [17]). Here, in this basic

scattering approach we only need [10] for adapatation of the stationary phase theorem.

Let us resume notations from begining paragraph 5. Denote by ℓt˚ “ Btℓpt˚q and let δθ be the

angle between x and the orthogonal of ℓt˚. Also let u⃗ “ x{|x| and denote by u⃗˚ “ u⃗pδθ “ 0q. Finally

put δt “ t ´ t˚. Taylor expansion of ℓ with integral remainder about t˚ leads

φpδt, δθq “ ℓ˚ ¨ u⃗ ` u⃗ ¨ ℓ⃗t˚pδt ` apδtq2q ` pδtq3u⃗ ¨ g⃗pδtq, u⃗˚ ¨ g⃗p0q ‰ 0.

The coefficient a is a scale factor between Btℓpt˚q and B2
t ℓpt˚q since they are collinear. When δθ “ 0

there holds u⃗˚ ¨ ℓ⃗t˚ “ 0 so using the variable T˚ given by the substitution T˚ “ δt 3
a

3u⃗˚ ¨ g⃗pδtq the

phase reads

φpδt, δθ “ 0q “ ℓ˚ ¨ u⃗ `
T 3

˚

3
.

From [10] there is a change of variable T “ T pT˚, δθq with T “ T˚ for δθ “ 0 such that the phase

reads

φpδt, δθq “ apθq ` bpθqT `
T 3

3
with apθ˚q “ ℓ˚ ¨ u⃗˚, and bpθ˚q “ 0

To find T, a, b just write

φpδt, θq “ ℓ˚ ¨ u⃗ ` pu⃗ ¨ ℓ⃗t˚qT˚hpT˚q ` mpθ, T˚q
T 3

˚

3
, mpθ, T˚q “

u⃗ ¨⃗ g̃pT˚q

u⃗˚ ¨⃗ g̃pT˚q

where 3
a

3u⃗˚ ¨ g⃗p0qhp0q “ 1. Taking a “ ℓ˚ ¨ u⃗ and b “ u⃗ ¨ ℓ⃗t˚hp0q we see that T is solution of a third

degree polynomial equation which has a unique solution for T « T˚ small since

T

ˆ

bpθq `
T 2

3

˙

“ T˚

ˆ

pbpθq
hpT˚q

hp0q
` mpθ, T˚q

T 2
˚

3

˙

.
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Hence dT {dT˚pT˚ “ 0q “ 1.

Using this substitution in the integral g`, and following Hormander’s proof of Theorem 7.7.18 one

finds

(24) g` “ 2π
eix¨ℓ˚

r1{3

˜

Ai

˜

x ¨ ℓt˚

r1{3 3
a

3u⃗˚ ¨ g⃗p0q

¸

w˚pxq `
1

r1{3
Ai1

˜

x ¨ ℓt˚

r1{3 3
a

3u⃗˚ ¨ g⃗p0q

¸

w̃˚pxq

¸

` O

ˆ

1

r3{2

˙

where w˚ (resp. w̃˚) is the zeroth (resp. first) order Taylor expansion in the variable T of the integrand

in g` (after t Ñ T substitution). One thus finds

w˚pxq “
3

a

3u⃗˚ ¨ g⃗p0qpf̂pℓ˚q, vpℓ˚qqL2pW q

|Btℓpt˚q|

|∇µpℓ˚q|
vpℓ˚, xq(25)

w̃˚pxq “
1

i

d

dt

ˆ

pf̂pℓq, vpℓqqL2pW q

|Btℓ|

|∇µpℓq|

dδt

dT
vpℓ, xq

˙

pt “ t˚q
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