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Asymptotic expansion of wave scattering in a periodic
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Vincent Lescarret!

Université Paris Saclay,
Fédération de mathématiques de Centralesupelec, CNRS FR3487

March 29, 2024

Abstract

We give a counter part of Sommerfeld outging radiation condition for waves propagating in a
2d periodic medium under generical assumptions and provide a uniqueness theorem for outgoing

solutions.

1 Introduction

Asymptotics of the outgoing Green function for the Helmholtz equation with periodic coefficients has
been given in [19] for frequencies lying in the first spectral band in any dimensions. We propose to
extend the formula in the 2d case to any frequency except for a set of isolated frequencies. Part of
this work reproduces the work [24] which the author just became aware by the time of submission of
this present work. Despite redundance of some ideas this work adresses many other points and partly
lies on [§].

We wish to solve the Helmholtz equation

(1) div(aVu) + k*Bu = f in R?

where f € L*(R?) is compactly supported, k real positive and a, 8 > 0. The coefficients a and 3 are
bounded functions, periodic with common period. Let W = [0, 27]? be a periodicity cell (Wigner-Seitz

cell) and B = [0,1]? the fundamental periodicity cell of the reciprocical lattice (Brillouin zone).

*The following article has been submitted to AIP Journal of mathematical physics. After publication if any, it would

be found at https://publishing.aip.org/resources/librarians/products/journals/
tvincent.lescarret@centralesupelec. fr
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We look for a formula for u by the mean of the absorption principle as in [19, 21]. A general
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formula has been given in [21], Theorem 3.31 expressing u = u; + ug + r where r € L*(R?), u; € L7

for j € {1,2}. Then u; is a residu while us is a principal Cauchy value. In Remark 3.33 of [21]
the author says that u; is the leading term and that us is a corrector in some LP space but Lemma
2.4 of [19] shows that this is wrong. Loosely speaking the term wuy removes the terms in w; which
correspond to “incoming” waves and thus u; + us only keeps “outgoing” waves (see [7] for the idea in
the case of a periodic waveguide).

Our calculations closely follow those of [19] (which are based on the method used in the homo-
geneous (non periodic) case as for instance in Melrose [16] paragraph 1.7) but with two differences.
First instead of proving an analogue of Lemma 2.4 of [19] we just use Cauchy residu formula and thus
deal with contour complex deformation as in [9, 8]. Then contrary to [19] we consider any k? above
the bottom of the essential spectrum of P = —%div(aV). In [19], £ lies on the first band and is
close enough to the bottom of the essential spectrum of P so that the level set on the first band is a
single smooth cycle (loop). Here generally several bands meet the level £ and one requires a refined
analysis of the geometry of the level set. Of course ideas are known for a long time in crystallography
and in elasticity where level sets are called slowness surfaces (in 3d). See for instance [28] 3].

Before stating the main result let us start with a formal calculation and introduce the main
notations.

Let € > 0 and replace k% in (1) by k2 := k* + ie. Then applying the Bloch transform:

i(x,0) = ) u(z + 2mj)e )
jez2

to equation (1) and using the commutational property of the Bloch transform (see [2]) we get
(div + il-) ((V +il)a) + k2Bi = f in W,

together with periodic boundary conditions on W. When « is piecewise continuous the underlying
operator P({) := —7(div + il)a(V + if) is defined as the m-sectorial operator (see [12]) associated
to the sectorial sesquilinear form

J a(V + i)u(V —il)vdr  on
w

H! (W)= {ve H (W, Bdz), with periodic boundary conditions on oW}

per

We readily see that P(f) is symmetric: P(¢£)* = P(f) and it is well-known [22] that it has a discrete
spectrum which we denote by {\,(¢)},~0 (counting multiplicity) with A, (¢) real for real ¢ and we
denote by e, (¢) the corresponding eigenvectors. Since P(¢) is defined through a sesquilinear form the
family P(¢) is analytic of type B (see [12], § 4.2, p.393) thus the functions ¢ — \,({) are piecewise

analytic and continuous on C?. Besides, the Bloch variety

B = {(¢,)\) e C? such that In, \,({) = \}
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Figure 1: Bloch variety (left) and Fermi level ) (right) with k = 1.2 for & = 1 + 0.8 cos(x) cos(y)
and g = 1.

is an analytic set because it is the null set of a regularized determinant which is an entire function,
see Appendix [B| where we recall and adapt [13] in this more general setting. See Figure [1| illustrating
the Bloch variety.

Expanding the solution in the Hilbert basis {e,},~¢ one has

(2) f Y f en(t W)en(x,e)de.

neN#*

Only a finite number of terms in the sum have singular limit when ¢ goes to zero. We thus set
(3) J ={n, I e B, \, () = k).
Let us introduce the main following geometrical objects:

e For complex A let us set

Fr={eC3n,0(0) = A} = [ A

n>0

which we refer to as the (complex) A-Fermi level.
e For A\ > 0 we denote by F\ the set F\ n R? which is periodic with B a periodicity cell.
e For A > 0 we put F{ = F)\ n B.

We give an example of Fi» in Figure I With these notations we see that the terms in formula
whose index belong to J; are singular on F, for £ = 0. As in [16, 9] our aim to handle those singular
terms is to move B to C? (actually a subset of B which is a tubular neighborhood of F}%) and use

the residu formula. So we need to find a complex deformation of B avoiding the complex Fermi level
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Fiz. To do so we describe a tubular neighborhood of F, ,?2 as a union of level sets. These level sets are
first indexed by A in a small open intervall I containing k2. Then we deform I to a complex curve
avoiding k2.

This procedure can be done for all k? except for the critical values of the band functions ), and a
subset of points of multiple eigenvalues (band crossing) which we call the set of singular crossing points
(see section , definition . The latter set is defined as the complementary set of reqular crossing
points characterized by the fact that up to index relabelling, the (two or more) functions \; can be
continued analytically through the crossing. In the 1d real case band crossings are regular thanks to
Rellich eigenvalue relabelling theorem [23]. In the several dimensional real case this is true [14] except

for singular crossing points. We thus exclude the following sets
e the set oy of real critical values of the family {\,},
e the set oy = {Ae R, 3¢ e B | (¢, ) is a singular crossing point}.

That those sets are made of isolated points is a consequence of the stratified structure of the Bloch
manifold and the dimension 2 (see Section [3.1)).

The set oy is called the set of ”Landau resonences” in [8] where it is shown to be made of isolated
points. In [8] an other set denoted by o, is also avoided but it matters only when one considers
the global holomorphic extention of the resolvent operator (P — 2I)~! from Imz > 0 to a complex

neighborhood of R as an operator from L?  to L? . In this paper we are not concerned with o

com. loc*
since we consider the resolvent in a small neighborhood of R only. It is shown in [§] that any point
of oy is a branch point for the resolvent associated to the equation . See section where we
recall the related expression of the resolvent in the neighborhood of oq in this 2d case. Let us remark
that [8] does not address the issue of the assymptotic expansion of the resolvent but only its regularity
(holomorphy).

A direct consequence of [I4], Theorem 6.7 is that oy is a set of isolated points of the real Bloch
variety and the tangent set of such a point is a (non-isotropic) cone which is not a cusp. This is
typically the case of Dirac cone [26]. Let us already say that the subsequent analysis takes advantage
of the fact that this set is made of isolated points and thus one needs to implement a missing step to

deal with higher dimensions where points of o; are generically non isolated.

2 Main results

Our first result is a generic formula for the leading part of the limit of u. as € goes to zero. Generically
FY, is 1-dimensional or void. We address the former case (the latter is already well-known and
scattering does not take place). The formula we get is an integral on F}, corresponding to the limit
of the residu of the expression . The expression involves the spectral projector of P(¢) which is in
general position one dimensional and given by ( 1, en(0))r2ewyen(x, €) for £ € A1 (k?). This expression

is false when A, (¢) is multiple.



Figure 2: The set F}5(z) with = (1,1) and «, k as in Figure .

In general position the set Ci2 of points in F, 1?2 at which two or more bands cross is generically
finite. Thus for £ € Fi%\Cy2 there is a unique integer n € Ji such that ¢ € A, *(k?) hence one can define

the following two functions a.e. in F},

(4) MO = M\(€) and  &(0) := e, (0).
Our first result is

Theorem 2.1. Let k be such that k* ¢ oq U o, in general position. Let

Fh(z) = {le F\Cre, V() -z > 0}.

Then u. converges to u in H._ expanding
. it (00, 8(0) 2w .
(5) u(z) = 227?] L ¢ = ( )e(a:,é)a(dﬁ) + R(x)
Fh (@) VA

where o is the length measure on F5(x) and R € H'(R?).

See Figure 2| for an example of F(z).

Since the integrand is quasiperiodic one can provide a full expansion of the integral as a series of
fractional powers of 1/|z| by the mean of the stationary phase method. However a difficulty arises
because FY, is generically not convex. Using the periodicity of the integrand with respect to the
Floquet variable ¢ one can arrange F, ,?2 as the union of close smooth curves or periodic smooth curves

(see Figure . Some curves are convex others have inflexion points ;.
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Figure 3: A closed component of Fp, with the points £; and £,(0) € F}},(z)

The stationary phase method shows that critical points of the phase if - # are such that V. is
parallell to x at such points. Let us denote them by ¢,,. Then ¢, is a function of § = arg(z) and is well
defined as long as it does not meet any inflexion point. See Figure Again for sake of simplicity
we adress the problem in general position assuming that inflexion points are non degenerated and two
inflexion points correspond to distinct angles 6;. Let us thus denote by I,, < [0,27] the domain of 4,
and denote by 6; the angle for which for some n, £,,(0;) = £;. Finally let N be a small neighborhood
of 6; which does not contain any other inflexion point.

Then the leading term in the expression of u expands asymptotically according to

Theorem 2.2. Let k as in Theorem [2.1]
1) For 0 € [0,27]\(u;N;) there holds for r = |z| big

w(z) = V2T i eiﬁn(G)-x(f(g ), €(ln)) 2w
(6) (2) NG ;lhn(e) T

where k, is the curvature of Fi(x) at £, and R € H'(R?).

2) For 6 € N; with 0; = I,, N I,

é(x,ly) + R,

ezéj T

1) ula) = S (s A0~ 6,))e(ty,2) + %3 A0~ 6y ()
§ 2T it (F (), €(6)) 2w

r A ) R

n¢{ni,na}
where Ai is Airy’s function, a;,b; are non zero real, v;(0) = 0, w; is periodic and belongs to H* (W)

and R € H'(R?).

Remark 2.3. In @ the decay rate of the first term is O(r~"2) because the oscillatory part of Airy
function Ai(s) decays like O(s™4).



We expect that the remainder decreases more rapidely in the far. Actually R = Ry + Ry where
Ry corresponds to terms in Fy, = FO F3 w2 and Ry is related to the stationary phase theorem. We
prove that Ry decreases faster than any polynomial and Ry = O(r=/?). However we don’t know how
to prove any better decrease result for R because it is a Bloch inverse transform whose integration set

meets oy if it is not empty. This prevents the use of the instationary phase theorem.

Definition 2.4. A solution to equation is called an outgoing solution if there are finitely many
open intervals (I,), of [0,27] and a nezghborhood./\f of the boundaries 6; of these intervals such that

for 0 € [0, 27 ]\N
(8) u(w) = %;hn(e)cn(e ¢z, ) + R

where €, € F;5 and V)\(E ) is parallell to x and R € H'(R?) while for 6 € N a small neighborhood of
one extremity 0; = I,,, N I,

(9)
61:1: ZJ 1

w= " (A0 0-0)e, w>+1—/3Az<2/3w<0—0j>>wj<x>)+7 S () e (w, 0,)+ R

n¢{ni,nz}
where £; = Uy, (0;) = lny(0;), w; is a periodic fonction belonging to H(W) and R € H'(R?).

Uniqueness of outgoing solutions requires that P has no eigenvalue which is the case since the
spectrum of P is the union of \,(B). However P may have singular spectrum corresponding to the

fact that one of the )\, is flat on a non empty ball.
Assumption 2.5. For all n, )\, is a non constant function on any open set.

Under this assumption the spectrum of P is purely essential [5]. Finally we need a technical
assumption to prove uniqueness in Rellich’s way: we need that the remainder is smooth enough to

consider the trace of VR along a circle. This is true if we assume

Assumption 2.6. The coefficient « is either lipschitz or discontinuous along smooth curves as in [15]

and in this case we also need f e L®.

Theorem 2.7. Under Assumptz’ons and equation has a unique outgoing solution.

3 Limiting absorption principle for the outgoing resolvent

To prove Theorem we introduce a smooth cutoff function ¥ which vanishes everywhere except in
a small neighborhood of k? on which the set .J, remains constant.

Then let us split

(10) Ue = U e + Uge J Z (A f7 en( ;\1(5;‘/) en(x, 0)dl.

TLEJk
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Let us first analyze us. = v — u1 .. By definition of ¢ there is a constant ¢ > 0 such that

1= 9(Aa(6))

= 0] <c/A(l) ¥n

so the Bloch transform

(ﬁ en(@)w(w)
kg - )‘n(g)

e, €) = D (1= (M)

neN*

en(z,0)

belongs to L?(B; H'(W)). Thus uy. € H'(R?) (see Appendix [A| where we collected some classical

results about Floquet-Bloch transform on Sobolev spaces).

To analyze and compute the limit of u; . when e goes to zero we need to modify the integration
set B to avoid Fj2 for all positive € close to zero. This was done by C. Gerard [§] in a theoretical
way using a complex displacement according to Pham [20]. Since the Fermi levels are parameterized
by A, a complex displacement amounts to choosing a homotopy for A from an interval around k2 to a
half loop in the lower complex plane. This allowed to extend the validity of the resolvant associated
to in a neighborhood of the real axis but no formula was given to compute the integral defining
u1. (except in the difficult case k* € op).

Here on the contrary in order to compute the limit when € goes to zero we push A\ to the upper
complex plane over k2 and use Cauchy residu formula.

Before going to the details we need more information about the topology of the level sets F, and
explain how to continuously deform it to F, when A goes to the complex domain. This is the aim of

the next subsections.

3.1 Geometry of a Fermi level

Let us recall some general facts (see [29]). Since the Bloch variety is an analytic set it possesses a

Whitney stratification. This stratification is by regularity and dimension:

B=B"uB",

where B" is the regular part of B which is open and locally a 2d-manifold and B> the complementary
set. The latter is a subset of the points where A, are multiple. Indeed, by analytic perturbation
theory, any point (¢, A\,(¢)) where A, is simple defines locally a manifold and thus is a regular point
of B. Again B* = (B*)" u B** where (B*)" is locally a 1d-manifold and any connected component
of B, (B*)",B** is called a stratum. It is a basic result from [27] that the number of strata is locally
finite.

Lemma 3.1. The set o is locally finite.

Proof. Any stratum of B" is the graph of a unique analytic function A, whose critical values are

isolated by [25]. Any stratum S of lower dimension is the graph of finitely many (generically two)
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crossing bands A;, = ... =\, . Since S is a manifold the restriction of Ay, k€ {j1,...,jn} to the set
S is holomorphic and thus has at most a finite number of critical points. Finally 0 dimensional strata
are isolated. Thus oy is locally finite. ]

We call singular stratum a stratum of B*. Singular strata are in general position the sets of
intersection of two bands A,;, j = 1,2 which are simple outside the intersection set.

This is a finite dimensional problem for which we can use analyticity results about roots of hermi-
tian matrices.

Let us proceed in details. First we consider the finite dimensional (matrix) reduction of P(¢) as
follows. Since the spectrum of P (/) is discrete and locally finite one can introduce the spectral projector
on the finite dimensional vector space associated to a finite set of eigenvalues (cf. Kato [12] p.369 and
386). For (¢, ) € B with Ay a multiple eigenvalue, let us denote by (¢, A\g) the eigenprojection on
the total eigenspace of P({) associated to the eigenvalue branches A,;, j =1 or 2 in a neighborhood

of X\g. It reads
1

-1
w(l, No) = % C(/\O)(P(é) —zI) " dz,

where C'(\g) is a closed curve in the complex plane which encircles only A for ¢ = ¢,. Since P({) is an

analytic familly of operators this projector is complex analytic on a small neighborhood of ¢y. Let us

then set T'(¢) = P({)w(¢, \g) which is a finite dimensional operator. Since 7 is analytic T is analytic

too. Thus T'(¢) reads as a 2 x 2 hermitian matrix with complex analytic coefficients. We cannot use

1d Rellich’s result [23] about the analytical continuation of eigenvalues of hermitian matrices. In this

2d case one needs to discuss the dimension of the crossing set
M :={\, = A} n Vo

in a neighborhood Vj of ¢ (see [I8] paragraph 2.3 for a general discussion). Restricting ourself to real
¢ the authors in [14] give a complete result extending [23] for the analytic continuation of roots of

hermitian matrices. In our situation it can be reformulated according to the following

Theorem 3.2 ([14]). Assume X ¢ 0¢. Either dimM = 1 then X, for j € {1,2} can be relabelled in
such a way that they become (real) analytic functions on Vi past the crossing. The same relabelling
applies to the associated eigenvectors. Fither dim M = 0 and then {y is an isolated nodal point which

is not a cusp and whose tangent cone lies outside a cone of slope maza/minf.

Proof. When M is a subset of (B*)" this is [14], Theorem 6.6. When M < B**, upon reducing V;,
M is the isolated point ¢y and the tangent space of A, at {y is a cone which is a basic property of

analytic spaces. More precisely let us give the matrix representation of T'(¢):

(e b0\ at) - () d0)  b(o) Ca(0) + ()
(11) T() — Mol = <b( ) = (b(@ _d(@), a(f) = =52

where a, b, ¢ are analytic functions satisfying a(¢y) = b({y) = c({y) = 0. The eigenvalues of the last

matrix are £+/d? + b> whose tangent set at £y is a (non isotropic) cone and ¢, is not a cusp because
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the minimal homogeneity degree of the roots is 1. Finally by Appendix Lemma the function A\,
has a gradient bounded by max «/minf.
]

Remark 3.3. The tangent cone about a nodal point can’t be vertical and flat because otherwise \g € 0.

Definition 3.4. The first case in the previous theorem will be referred to as regular crossing. We
denote by o, the set of points ¢ corresponding to the second case of the theorem. If k* ¢ oq U oy we call
FY, a regular Fermi level. For such k let us denote by (pu,, v,) the analytically reordered eigenfunctions

and eigenvectors.

Since ), is defined in R? the function pu,, is piecewise defined on a subset D of R? avoiding the set
of preimages of critical points og and nodal points o;.

By analytic extension theorem p, extends analytically in a complex neighborhood of D. Since
A\, are piecewise holomorphic in C2, pu, is thus still piecewise defined in term of )\, in a complex

neighborhood of its domain of analyticity. Contrary to (\,, e,) the functions (u,, v,) are not periodic.

3.2 Unfolding a regular real Fermi level

For real k the fiber F22 is a real stratified set and upon taking supp(t)) small enough, the stratification
remains invariant. Generically the fiber is a one dimensional set, with finitely many 1d and 0d strata:
1d strata are connected analytic curves ¢, and 0Od strata are isolated points corresponding to the
crossing of generically two band functions and thus the meeting point of two curves ¢, N ¢;.

Let us now recall the well-known but non written fact that a Fermi level is actually the folding of
closed or periodic analytic curves. To see this we make use of the extended Fermi level Fj» which is
periodic with B as a unit cell in R?. Thus every ¢, < F}, is repeated by translation of periods of B

in Fk2.

Definition 3.5. Let ¢ be a connected curve in Fy2. We say that c is periodic modulo B if ¢ has no

boundary or if the vector joining the extremities of ¢ is a linear integer combination of the periods of

B.

Lemma 3.6. There is a familly (1), of translations by periods of B such that the union over n of the

translated arcs ¢, o 7, can be concatenated into closed or periodic (modulo B) analytic curves €;(k*)
Of Fk2 .

Proof. See Figure . Let us construct such a set €’ (k?) and prove its analyticity.

Let ¢ be a connected analytical component of F,SQ. It is related to some p,. Either it is a closed
curve in B and then ¢ = ¢’ (k?) or both end points (E;, F») belong to dB. Since p,, is piecewise defined
in terms of the (A,), we generically have E; € X, '(k?) and E, € A} (k?) for some nq,ny (which can
be equal). Let Ef € 0B such that E>E} is a period of B.
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Assume that c is the only curve arriving at E. This means that ), is analytic around Es and by
periodicity there is an other curve ¢ arriving at E) such that translating it by Ef}FE, it is an analytic
continuation of c.

Assume that two curves ¢, s meet at Ey. This means that s is associated to \,, around E, and
An, and A, meet at Ey. Then by periodicity of \,, and \,, there are two curves ¢, s’ arriving at EY.
The choice of the good continuation is by analyticity. Indeed pu, continues analytically through FEs
thus one of the translated ¢/, s’ is associated to u, and thus an analytical continuation of c.

LB, ... We claim
that the first redundance modulo B must be E; modulo B. Indeed each new connected component

Repeating this procedure one gets a sequence of boundary points Ey, Fs, ..

which is added to €' (k*) under construction is a translated component of Fj. Moreover there is a
finite number of such components. If the first redundance is £; with j > 1 then this would mean that
there is some B-periodic subset ¢’ (k?) of ¢’ (k?) which does not go through E; but this is wrong since
we can reverse the procedure and see that F; comes from Ej.

]
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Figure 4: Unfolding the Fermi level for k = 1.2 (left) leads (right) to 65(k?) = ¢, 61(k*) = ¢; and

%5 (k*) = Uagj<oc; using B-translations (red curve)

Remark 3.7.
e From the proof we see that each € (k?) is associated to one u; and we denote it by €;(k?).

e On Figure[f] we only have closed curves in an extended Brillouin zone.

° 5%(/{:2) #  if there is a unit vector © such that the line ti, t € R does not meet F,SQ. In other
words k? lies in a partial gap of P in the direction i. In particular this may happen when bands

overlap artificially.
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e The curves may cross or may be tangent (see Figure but this does not make any difference

in the subsequent analysis since k* ¢ o1 and thus the crossing of different p; is regular.

60~ 60
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Figure 5: Real Fermi level F}, for k = 1.06 (left) and k& = 1.081 (right, folded)

3.3 Complex extension of a regular real Fermi level

In view of letting k complex we want to extend the definition of €;(k?) to a complex neighborhood of

k2.

Lemma 3.8. Let k € R and let £;0(t), t € [0,1] be a global (real) parameterization of a curve €;(k?)
in R?. Then for complex X close to k* one defines €;(\) through a family of parameterizations £;(t, \),
t € [0,1] such that 00;/ON = V;/(Vuj - Vig) and €;(t, k*) = €;0(t) for all t € [0,1].

Proof. First {; is well-defined because away from o U oy the function y; is analytic and Vi, (k%) # 0
so one can apply Cauchy-Lipshitz’s Theorem with parameter ¢ and show that there exists a complex
ball %> independent of ¢ such that ¢;(¢, \) exists for A € Hjea.

Let us show that 11;(¢;(¢,\)) = A for all X in ;2. For this we just need to show that the initial

parameterization is carried along the flow. We compute and find for all ¢ € [0, 1]

0 .
kil A) =1 with (G2, k) = k.

Thus p;(¢;(t,A\)) = A for any X in a small neighborhood of k? and ¢ € [0, 1]. O
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3.4 Complex displacement about a regular k*-Fermi level
3.4.1 Representation formula

Let us resume the guideline presented just before section [3.1] Let us pick a peculiar k2 ¢ og U o, and
denote by K the support of ¢ which we take so small that the topology of FY does not change for
A€ K. The domain of integration of u; . is W := ., {£ € B, ¥(\.(€)) # 0}. This set also reads as

a union of disjoint Fermi levels: U n | J,_, FY. From the previous section we have:

UR=UU %0 modulboB

AeK 7 AeK

For future use let us denote by

i=Jgm, and ZF=])F=JA

AeK MK 7

Since \,, €%, (z,-) and (f( ), en(-))L2(wy are B-periodic and recalling we get

ZJ z€$¢ f e”( ;ZL(Z()W)en(ZE,E)dE

- f etep((¢ >>—A )

(12) ~Sw; with w; = J et (3 (0) AW o e
J

Since %;(\) is associated to one function p; one has € = v; (recall definition [3.4). Then let

us use the explicit parameterization ¢; of €;(\) according to Lemma and compute its Jacobian

determinant (here A is real). First from p;(¢;(¢,\)) = A we have Vy; - 0,¢; = 0 and Vy; - 00, = 1

hence

|det(0,l; OxE;)| = w2V iy - Oxly =

Finally

A x|
YT e k:?f(—)/\ L(A) \;M(f( b esE) eyl 2)dtd)

In what follows we consider any w; so we drop the index j.

3.4.2 Light area and shadow

(L)

Before pushing A to the complex plane note that e is a quasi-periodic function with respect to

x. When X is complex then ¢ is complex and the sign of

o(t, A) :=L(t,\) -z
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can change along % () and thus the asymptotic behaviour of w changes drastically. We thus need to
caracterize the zeros of this function for ) in a small neighborhood of k2.

For complex A = 7 4 1y with y close to zero we use Cauchy-Riemann relations to deduce the sign
of Sp. Since the parameterization £(t, -) is holomorphic and real for y = 0 the sign of S for y going
to zero is given by the sign of 9,3¢ - x which is also the sign of 0,¢ -z for y = 0. Now by definition of
the parameterization £ one has 0,0 - x = (V- x)/|Vu|* for y = 0 thus the sign of Jp when y is close
to zero is given by that of V- .

With the homogeneous case in mind we want to reproduce the proof of the asymptotic expansion
as in [16]. Thus we split €’ (k?) in three parts :

e a part %, around the shadow transition (i.e. Vu((t, k%)) -z ~ 0)

e and two other parts * such that +3¢ > 0 for € > 0 or equivalently such that =V u(¢(t, k?))-x >
0.

Because the set 1 = 1 is small we perform this splitting uniformly with respect to A € K.

Let us introduce a partition of unity on &' (k?):

L =1o(t) + y(t) +¥_(t) with £ Vu-2>0 on supp(¢y).
So w = wy + w, (x) + w_(x) with for 5 € {0, +}

13 wi= [ P gan g = | (1) (F(0)0(0)) o (€ ) 120

= dt.
Kk k2= 0 ‘VH’

3.4.3 Complex displacement

We now consider each term ws and isolate the leading part.

e For w, we can choose the integration path in the first integral going above the residue. For this
let I = K be such that ¢ = 1 on I. Then let us consider y* a curve homotopic to I, encircling k? for

¢ small enough. See Figure [3.4.3]

Figure 6: The contour "

Then the integrand ¢, is holomorphic in the region surrounded by v and I. Indeed, ) = 1 and

Lemma (3.8| provides a holomorphic extension of the jacobian determinant in a neighborhood of K

14



which reads +det(d:¢, 0,¢) (with fixed sign on K). By the Cauchy-residu formula we get

. 9+(A) 9+(A)
(14) Wy = 227Tg+ (/{?3) + o ¢<)\)kjg——/\d)\ + J:y+ k‘g——/\d)\
where .
02 = [ e ({0, 0O)anyell ) o)

e Similarly, for w_ we choose a path v~ going below the real axis so that there is no residu:

w_(z) = K\jw(x) gg(fldx + L é‘(fldx.

The previous expressions show that w, have limit when ¢ goes to zero and g, (k?) contributes to

formula .

e As for wy one can take the limit when ¢ goes to zero. This limit involves a principal value:

1

Lo 1 s
cbokz—a P\ TR

. . (A
1 = —imgo(ky
1 wo imgo(ky) + vp e Y Jo

where the principal value is bounded.

The limit thus reads

(A)dA,

4 Boundedness of the residual

Theorem 4.1. The functions wy, wy — 2iwg, (k?) and w_ belong to H'(R?) uniformly with respect
to e (small).

Proof. Let us first consider wy and set
(15) pfl,x) = (f(0),v(0)) 2wyo(¢,x)  and Dy := £ det(d,L, OxL).

The choice of + is such that D, > 0 for real A\. Formula reads

I hY
wy = L JO ey (t) l;g(_))\p f(0,2)Dy dtd\.

In view of letting |z| go to infinity Let us redefine the phase as ¢ = ¢(¢t,\) - z/|z|. It is real and
instationnary. Indeed, differentiating the relation u(¢(t,r)) = r with respect to t we get V- 6,4 = 0.
Recalling that ¢ is defined by d\¢ = Vu/|Vu|* we thus get

(16) 0,0 - Nl = 0.

Thus the gradient of the phase ¢ does not vanish anywhere. Actually on the support of ¢y we have
Orp # 0 since Vu(¢) and x are approximately orthogonal thus ¢,/ and z are approximately collinear.

We can thus integrate by parts with respect to t.

15



Let us note that the amplitude is also oscillatory since it is quasi periodic with respect to £.
Integrating by parts requires to differentiate f with respect to ¢ and since 0, f = —iﬁ we need to
take f in weighted L? space or even in the Schwarz space if one wants to get a full series expansion of
wp in inverse powers of |z|.

In order to prove that wy € L?(R?) we need to integrate twice by parts because |z|~! ¢ L*(R*\B(0,1)).

Because 1y has compact support we get

2
wy — Y(r) f L ity @L) o(t)pf (£, x) D | dtdr.

R+ 1%2 —TJo |57U|2 Osp -

g

The second derivative (&tﬁ)Qh expresses as a sum of terms of the form

G(t)(0}9) O5pfo] Dy
(Orp)e ’

where G is bounded. Since /£ is analytic with respect to ¢, 0% and 02D, are bounded and ;¢ is lower

(a,b,c,d,e) e N’ b+c+d<2, a<3, e<4,

bounded as we explained above. The only term left is dfpf for which one needs to estimate djpf.

More precisely, there is a constant s such that

[2wn] < Klpf (@) lwaapy, where D= | JEN).

AeK

Lemma 4.2. There is a periodic function ¢ > 0, g, € L*(W) such that for any k € N

lo;pf (2, )y < q@) <) Fliegey, (&) = A/1+ |z,

See the proof of the lemma below dealing with a complex extension of this result.

From the previous estimate we finally get the existence of a positive constant ¢ such that
lwol 2z < el{x)? fll2m2).
Next, estimating |Vwp|2 is equivalent to estimating [/aVwy|s but
|vVaVuwal; = (Pwo, wo)> < max u(€) w3
since P commutes with the integrals and Pv = pwv.

Let us now turn to w, = wy — 2img, and w_. So we consider

Ii ' 1T 'l/} §R
Wy = LﬂJK\]JO e £¢+(t) k;_ ;pf(g(t, )‘)>-T)ngtd/\_

The main change is due to complex values and the fact that on the support of ¢, the phase ¢ = (-x/|z|
is not instationnary with respect to ¢ but it is instationnary with respect to A. Indeed the real part
of the phase for A € T is a small perturbation of its values for A € I and for such real A the vector

O\l is collinear to Vu which is not orthogonal to z.
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Let us remark that when the phase takes negative real values these are of order of the imaginary
part of v which is small since we need to remain in the domain of analyticity of u. So we do not use
the exponential decrease but the nonstationarity of the phase. To integrate by parts we just need to
provide enough regularity by choosing the contour v* u (K\I) smooth enough. Integrating twice by
parts with respect to A we get

b = e 1L () [ 0(t, \), 2) Dydtd

Let A(s), s € I be a parameterization of the curve v* u (K\I) and let ¢(t,s) = £(t, A(s)). Also let
¢ (A) = C(A) n{¢" # 0}. Then ¢ is a diffeomorphism from A := [0, 1] x K to [ J,c,+ € () because
S is small and for A = Id it is so by . Then we can estimate w, by

~ c .
[2[*[@4 (@) < —pf(&: ) lweaa), = dist(y", &2).
Lemma 4.3. There is a periodic function ¢ > 0, g€ L*(W) and a constant ¢ > 0 such that
[0Epf (2, @)l Licay < gla)]| < - > eSO ] 2 ).

Proof. Let us show the lemma for £ = 0 (for bigger k the proof is similar because Oh = —@;h) e
being holomorphic and periodic on A it is bounded in a small complex neighborhood of the Brillouin

zone. Hence v is bounded too and pf can be estimated by

Ipf (x, 8oy < lo(@, @)r2a) |00 8) a2y | F (8| 2w xa)-
Since v is holomorphic with respect to ¢ it is bounded in A so that the first term is a L?(W) periodic
function of x. For the second term notice that |e(f)| 2wy (hence |v(€)] r2w)) is identically equal to
1 on the real line and continuous by Lebesgue continuity theorem.
Finally we give a crude estimate of | f(¢)] r2wxa) as follows. First

|f Z ’f T+ 271,”)‘ max |3@||z+2mn| _ |f|h( ) where h(:c) — omax|3¢]|z|

nez?

Then setting g = |f|h one has

2
19(0) By Z f (2 + 27n)g(x + 2mm) < (Z|9|L2w+2m>

and

H< >gHL2 W+2mn)
ZHQHL2(W+27rn x Z i

<n>

n

Now applying Cauchy-Schwarz inequality the last term is bounded by c7®/6(-)g[72ge)- Finally
1 F (@) z2wxa) < p(I)em?/6]{Hg]3 2(r2y Where pi(I) is the measure of A.
UJ

From the previous estimate and since ¢ is a diffeomorphism one has maxp |S¢| < ca hence
[ [z ey < 5“<$>3€m“f“L2(R2)-

This estimate shows that one must take f exponentially decaying for w, to belong to L?*(R?). The

same estimate holds for w_. O
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5 Asymptotic behavior

Let us now turn to the far field asymptotics of the residus g, (k?). The latter is an oscillatory integral
whose phase is stationary on €+ (k%) = €(k*) n {¢, # 0} when dyp = 0 - x/|z| = 0. Since ¢ is
analytic as a function of ¢ € [0, 1] it has finitely many extrema. Let ¢, and ¢, = {(t.) be a critical
point (resp. value). Since ¢ depends on 6 = arg(x), t, is a function of . For comparison purpose
recall that in the homogeneous case (i.e. « and [ constant) there is just one curve ¥ which is a
circle. There is one outgoing stationary point ¢t = 6 defined on [0,27[. When % is not convex or
not closed then t, is only defined on a subintervall I, of [0,27[. A point ¢, on a convex part of €
moves anti-clockwise as € increases while points on concave parts move clockwise. The extremities
of I, correspond to inflexion points of € and there dt,/df is infinite and two critical values merge or
emerge.

The derivative 0%y is related to the curvature of 4. Indeed, since  and ;¢ are orthogonal we

have

(17) Ot = il x k|0

Ol
B
where k is the curvature. When the curvature vanishes the phase degenerates. This is a well known
situation in optics: if the phase is first order degenerated then it is cubic and the integral around
this inflexion point is a Airy function [I]. Let 6, be such an inflexion point and x a test function
supported about t, such that x(t.) = 1. Let us split g, = g+« + g+ where g, is defined like g, but
replacing pf = (f,v)v by xpf. From [I0] Theorem 7.7.18 there are functions «, vy and w, and w,
such that ra(6,) = x - Ly, v(0,) = 0 and for 6 in a neighborhood of 6, (orthogonal direction to d:¢(t,)
the following asymptotics holds

eiroz(@)

(18) gus(r) =~ (Az'(v(e)r?/?’) #(2) + %Az( (O)r )y ( >) +0 (ri/z)

where O(r®) is with respect to L* norm. Actually [10] is true for pf not depending on x. However the
formula still holds true because = can be considered as a parameter and pf is a bounded (periodic)
function of . From Appendix and we find that a(f) = l.a/|x| and w, = dyv where d, is
a non zero coefficient. Moreover there is a full Taylor expansion in powers 1/7/3+" and 1/r?3*" and
the exponent in the O() term is one order bigger than the fisrt term. As for the first term its order is

/4" Note that non degenerate critical

O(r~/?) because the oscillatory part of Ai and As’ decays like r~
points also give O(r~"/2) amplitude. Only the ”far field” pattern is different since Ai is exponentially
decaying for positive arguments.

To get formula (6]) of theorem we resume the index j (of the curve %;) which we dropped
in section . Take k as in Theorem and denote by £;, the finitely many inflexion points of
the curve €. Denote by t;, the (finitely many) critical points of o; and £;, = £;(t;n) € €, (k?)
the related Floquet numbers. These are analytic functions of 6 € I}, where [}, is an open intervall

whose extremities are the angles ;, associated to the £;,. Then for § away from the 6;, the following

18



asymptotics holds

2 k) — iy/Bre—i itya )0y D)y (o 00 (0)
(19) gyl ) = Wm0 b O e 2 G *

As for 6 about 0;, let n; and ny be the index of the intervals I;, whose mutual end is ¢;,. Then

splitting g;+ = g+« + g;+ as above we find

(2, k) =i e i/ . (B)e ]nx<f( n), V(4 ))Lz(W)v‘ i @ 1045 (tjn)|
0 gk =i Y, A O e o G
+Z <CJAZ Vip(0 — Ojp)r /3)7}] (xagjp) 7‘11/3 Ai/(%'p(e — 0jp)r 2/3)wjp( )) + Ry

In both cases Ry = O(r~%2). In particular it belongs to H'(R?). Using and recalling (14)),(12),(L0)

and keeping one index on a bigger range we arrive at @,.

6 Uniqueness

Let u be an outgoing solution of according to Definition with f = 0 (no source term). As-
sumption about the regularity of the coefficients entails that Vu is continuous except across (the
smooth) discontinuity of a. Then the same holds for R since the leading terms (of u) are continuous.

This allows to integrate VR on a curve. Then uniqueness will follow from
Lemma 6.1. Ast goes to infinity
0 )2 ~
21 P Al (0)) -1id ew|? 1
( ) ( uucht ZJ‘ /Befk (fk(e))) \Y (k( )) n U+Zak|ck| +O()

kl

where C is the circle of radius t and Sy the part of the unit circle related to I, and €, X are defined
in (4) and ag > 0.

Proof. Integrating by part in the disk D; of radius ¢ and taking the imaginary part yields
0 = S(Pu,u)r2(p,) = S(dpu, u)r2(c,)-

Let us examine this last expression expanding wu according to E . @ First to avoid explicit

bounds in evaluating integrals let us introduce a partition of unity of [0, 27[:
Z Xk + Z Xk =1
k K’

where the union of the supports of the yy is [0, 27r[\N and the support of \; is N with N slightly
bigger than N}, centered at 6, and mutually disjoint. Put

%xk<e>Ck<e>ei@k<9>'zvk<x,w))

o uk(a:) =
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eir-Ly Ly

1
e For 6 € N set tx(x) = ¢ Xk Ai(r 2/3%(0 — 1)) vg(x, L) + —=Ai'(r 2/3’yk(9 — O)) i (2, )
rl/3 r1/3

With these notations and @ read
= Zuk +Z’l]k/ + R.
k K

Let us break (ad,u,u)r2(c,) accordingly :

1. To(t) = (a&nR, R)LQ(Ct) 2. Tk(t) = (a&nR, uk)L2(Ct) or (a&nuk, R)LQ(Ct)
3. ,-Ej = (Oéanui,Uj)Lz(Ct) where IZ- M Ij # @ 4. Tk = (oz@nR, ak)LQ(Ct) or (a&nak, R)LQ(Ct)
5. Tij = (a&nui,ﬁj)p(ct) or (a&nﬁi,uj')[g(ct) 6. Tf = (a&nﬂi,ai)p(@)

1. Let us first consider the term Ty(t). Since R € H' and is piecewise continuous the function Tj
is integrable and continuous on R* so lim;,o, f(t) = 0.

2. Then we have Ty(t) = o(1) because uj, € L*(C,) uniformly with respect to ¢ and [VR|12(c,) is
continuous and belongs to L*(R™). Similarly (ad,uk, R)r2(c,) = o(1).

3. First compute the gradient of u; with respect to x. Since uy is given by a profile depending on

1,0, x let us set ug(x) = Ug(r,0,x) and let us use the chain rule

1
Vuk(x) = (9,«Uk(7“, 9,]3)57« + ;agUkéb + V.U

ewT [ crp(6) . 1.
Vug(r) = N XkVk€r + Cu(0) Xk (Vo + ily) vy, + 59(Ckxkvk) €p

Observe that thanks to the condition of stationary phase 0pe?+(®)=

= 0. Hence
Ti; = JC Xi(@)xj(ﬁ)acgc] gt (it )((V + 14;(0))v; - M) vjdo + O(t™), where § = arg(o)

For j # i we use the stationary phase theorem as we did in the proof of theorem 3.1 to show that
the integral is of lower order. Indeed using polar coordinates the phase ¢(6) = te,(6) - (¢; — ¢;) has
derivative
t¢'(0) = €l — ;) + E:(6; = 1)

where by definition ¢, () -x = 0 for all k. Then assuming as in Theorem [2.2f that the phase is a Morse
function it has at most a finite number of stationary points. Hence the integral is O(t~1/2).

For ¢ = j let us set p;(z,0) = a(x)7(0) - (Vi +il;(0))v(x, €;(0))v;(x, ¢;(0)) which we consider for
any 6 and z (not only for § = x/|x|). This is a periodic function with respect to  which belongs to

L*(W x I;) thanks to the assumption on a. Rescaling by t we get
Ty = [ % OLe0),(5.0)do(w) + 01,
From [4] p.94 when ¢ goes to infinity the latter converges to
J, @@ oo

20



Indeed one can uniformly approximate p; by smooth trigonometric polynomial for which the limit
holds using stationary phase theorem. Using identity in Appendix and definition 4| gives the

formula of the lemma.

4. First uy, is a sum of two terms

Uk = Ug1 + Ug2

where the second term is decaying quiker than the first for large r. So it is enough to deal with the
first. To show that T}, = o(1) we proceed as for T}, showing that 7y, belongs to L?(C;) uniformly with

respect to t:
2w

k2 < |6k|2|vk(£k)|00t1/3j;) X0 (0) Ai® (71,(0)¢*°) .

Since Ai(—p) ~ |p|~/* the last integral is of order t=/3. Hence T} = o(1).
+0
5. Hiding gy in a O(t™/3) term we get

- a@)a (s . o _ _
o= [ 2O 06 (Fortith 6 o, ) 7)Ao (=0 o, ) +O(t™)
When the phase is stationnary at ), then the leading term has amplitude #1=%/6=%2 Ai(7, (0)t¥3) =
O(t~2). Otherwise it is O(t7}).

6. As in step 3 we first compute

eix-ék

Va:akl = Ekik(Q)mAz(%(Q — Qk)T2/3)(v + zﬁk)vk(x,ﬁk) + O(T73/2).

shifting by 0 and setting p, = a(x)é, - (V, + ily)wxwy yields

21

(Qlnina, i) 12(cy) = |ck|2t1/3f X3(0) A% (t*3,(0))pr(z, 0)d6 + O(t 7).
0

Using again the periodicity of p, with respect to x as in 3. we can adapt the stationary phase method
to each frequency of p; giving an integral of size O(¢t~'/3) if the phase is non stationary and O(t~/4)

if it is stationary. So only the mean value of py contributes at infinity:

2T
(@i, )2y = [P (9E(L) E6)) [ TRONPARE 2 (0) VAL - &:60)d8 + o(1)
0
When ¢ goes to infinite the last integral converges to de:\(ﬁk) which is positive because d > 0

-
and 1 is close to €,(6;) which is collinear and directed like VA(£,). O

Proof of theorem[2.7. Take two outgoing solutions of and denote by w their difference. It is an
outgoing solution of Pw = 0. Let us still denote by ¢, and ¢ its asymptotic coefficients (according
to (8) and (). Since VA(0y)-n > 01in Sy the previous lemma implies that ¢ (6) = 0 almost everywhere
and ¢y = 0. Thus w € H'(R?) but since the spectrum of P is purely essential from Assumption
it follows that w = 0. [

21



7 Singular Fermi levels

7.1 Nodal point

Let us denote by Ao = A a point of 1. We claim that the resolvent R(z) := (P —z)~": L2, — L,
about such a point is continuous but not holomorphic, a fact that was not mentioned by [§]. Indeed

let us consider again which is the case of two bands meeting non critically at a single point ¢
which I assume to be 0.

Then the band functions are of the form
A+ (0) = g(l) £ /a?(f) + b2(0)

where ¢, a, b are analytic, a or b do not vanish identically and the three functions vanish at ¢,. Note
that if we consider the touching bands together this gives an arc analytic function [14], Theorem 7.2.
Next since A+ are non critical at ¢, it implies that the minimal degree of Taylor’s expansion of

a® + b? has to be less or equal to two thus a or b has to be linear at first order. We thus consider the

)\i(g):)\oiy/g%—i-g%m, m e N*.

With z € C close to A\ the leading term of the resolvent w;(z,z) (it corresponds to u;. when

following functions

z = Ao + ic) reads

+ (A (0))

z— o+ A0+ z—Xo— A5+ 65"
For simplicity let us choose ¢ = 1[\,—a,ng+a]- Let us first consider the case m = 1 and use polar

1pux PU, $> prr(pU,QI) dod
(%) Llf <Z—)\0+p+2—>\0—/) papet

z2—A\o
z—Xotp

u (z,z) = Lf e (pf-(pu, x)—pfy(pu, ) dpdquZf f ”’”( z*(fou fg + Zﬁ&poui),) dpdu

Ul(I,Z> _ JB eig.z (¢(/\_(£)) pf ( ) pf—i—(gv ZL‘) )dﬁ

coordinates

Expanding p/(z — Ao £ p) = £1 F

gives

The stationary phase method shows that the first term belongs to H'(R?) (exactly as for wy).
Turning to the second term from [I4], Theorem 7.2 pf; are arc analytic functions so there is a

function ¢f(p, u, ) analytic with respect to p in a neighborhood of 0 such that

pfi(ipuax> = Qf(ip7u7x)

Taking the opposite of u in the integral involving pf_ and then expressing pfy in terms of ¢f one

finds that the second term in the previous expression of u(x, z) reads

u (v, z) = ZLI (fag(p, w)dp + Jag(p, u)dp) du, (p,u) = o qf(p,u, )

0 0 Z=Xo—p
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This expression defines a function of z log(z) because the integrals in p do not combine into one integral
running through 0 (similarly as in the homogeneous case). So the resolvent is indeed continuous but

not holomorphic about Ag.

Remark 7.1. This expansion differs from the homogeneous case (P = —A) for which the resolvent
about 0 expands R(z) = Pylog(z) + P + O(zlog(z)) where P; are finite rank operators in L*(R?)
(see [11]). One could wonder why there is such a difference thinking of 0 as a nodal point of the
characteristic manifold of —A. This is of course because the characteristic manifold is the set of
(w, &) (where & is the Fourier variable) such that w = +[¢|, hence X\ = [£]2. So 0 belongs to oq (see
next paragraph).

Now for k close to kg the Fermi curve contains a curve ¥ which is a small circle whose curvature
is proportional to 1/|k — ko|. In view of formula (6]) taking the limit k& — ko shows that the leading
term whose index is related to € vanishes. Thus if the Fermi level does not intersect any other band
then the resolvent about Ay belongs to O((z — Ag) log(z — Ao)).

For m > 1 odd letting £3* = y, we set back to the case m = 1 up to the jaccobian |y |"™~! /m which
is integrable about 0 even and arc-analytic. So the previous resolvent expansion holds. However the
previous consideration about the curvature does not hold since it vanishes in the direction (1, 0) so ()
does not hold and one needs to adapt item 2 of theorem with a higher order Airy-like function. It

is very likely that the O(1) term in the resolvent expansion does not vanish.

7.2 Generical critical point

Critical points do not contribute to outgoing waves since the speed vanishes at this point but such
points are responsible for some singularity of the resolvent which is logarithmic in the generic 2D case.
This situation has been addressed to any dimension by C. Gerard in [§] Theorem 3.6. However the
generality of the quoted paper makes it difficult to understand the way the solution is computed. We
thus wish to give a very short calculation to give an insight of the result of [8] when A\ € o is a non
degenerated Morse critical point of A\, at £ = 0. In such a case let us write )\, as a quadratic form
M (€) = Ao + (A(€)¢,0) where the brackets denote the scalar product in R? and A is a smooth 2 by
2 matrix which does not vanish at ¢ = 0. Let us approximate ¢ by the characteristic function of a

small neighborhood V; of 0. Then choosing A. = A\g + ic we get

o ilx 1/}<€) o i\/EST 1
Ure = Le PN /\n(g)pf(é, x)dl = Jvo/ﬁe P (A<S\/g)sjs)pf(5 e, x)ds.

For e small and 0 < @ < 1/2 the main contribution reads

1
r109)], =

Whatever the signature of A(0) the integral diverges like O(In(¢)) as € goes to zero. If one replaces

Ae by A in a complex neighborhood of Ay and considers vy as a function of A one readily sees that v,
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is a 2-sheaves analytic function diverging logarithmically at A\y. This corresponds to the expression of

the outgoing resolvent given in [§] Corollary 4.2 where one branch of the resolvent expands as follows
(P=X)" = Eo(N) + Cln(A = Xo)(M(Xo) + (A = Ao) Ex (X))

where C' is a constant, M is a finite dimensional operator and E; are holomorphic operators about
Ao-

8 Greater dimensions

When the dimension d is greater than 2 the set of points of crossing in a Fermi level is generically of
dimension d — 2. One can still use (4)) since the latter set is negligible in the Fermi Level. So if for a
Fermi level there is only normal crossing then one can straightforwardly extend Theorem 2.1, 2.2 and
2.3.

From [14] the set of points of singular crossing is a d — 2 dimensional set so we expect o to be of
non zero Lebesgue mesure and needs to be considered for every k. Theorem 7.2 of [14] says that in
this case there are blowing ups with smooth centers such that crossing eigenvalues become analytic.

So theoretically one can compute u as in paragraph [7.1]
Appendix

A Floquet-Bloch transform and Sobolev spaces

Let f € S(R?) (Schwarz space). Then its Floquet-Bloch transform defined by
flz,0) = Z f(x + 2mn)e~ ¢ @+2mm)
nez?

is periodic with respect to x and quasi-periodic with respect to £:
f(x,é + a;) = em'“jf(x,ﬁ),

where a;, j € {1,2} are the unit vectors. Then the inverse Floquet-Bloch transform reads

f(z) = JB et f(x, 0)dl.

The Floquet-Bloch transform extends by density to f € L?(R?) and Parceval identity holds so that
fe LW x B) and
Hf||L2(R2) = ||fHL2(B><W)-

Then the identity (0, f)(x,f) = (O, + ;) f(x,£) for j € {1,2} entails that there is a constant ¢ > 1
such that

1 R
EHfHH"(RZ) < | fll2mmwy) < | fllam ).
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Here we used the notation
L*(B,H"(W)) := {he L*(W x B), ¢jhe L*(W x B), je{l,...,n}}.
Finally the identity (x]/?)(x,ﬁ) = ﬁgjf(ac,ﬁ) for j € {1,2} implies
" £l 2@y < el flz2owsan sy,

where L?(W; H"(B)) is defined in a similar way as L?(B; H"(W)).

B Analyticity of the Bloch variety

Let us recall briefly Kuchment’s results [13] about the analyticity of B. For elliptic operators of the
form T := 3}, <o, ba(2)0% with smooth coefficients by, Theorem 3.1.7 ([13]) shows the analyticity of
B. Thanks to the smoothness of the coefficients one can use a parametrix which allows to show that
the operator T'(¢) resulting from the application of the Floquet-Bloch transform to 7" and acting on
H?(B) is Fredholm with null index.

Here our operator P(¢) is of divergence form and with non smooth coefficients. We cannot make use
of a parametrix as used in [I3] but Theorem 3.1.7 mainly requires a holomorphic family of Fredholm
operators with null index (see p. 118). The opertor P(¢) is Fredholm because it is of compact resolvent
type (standard use of Lax-Milgram Lemma and analytic Fredholm theorem) from H (W) to L*(W)
with

HW)={ue H', (W),a(Vu+il) € Hy(W)}

per

where Hg;,, (W) is the subspace of L*(W) of W-periodic functions whose divergence belongs to L?(W).
Then since P(¢) is symmetric for real ¢ its deficiency index is zero.
The proof of Theorem 3.1.7 needs to be changed because P({) does not map Sobolev spaces to
themselves. Moreover the domain of P(¢) (as operator) depends on ¢ since it requires that a(V + i)
belongs to Hg;,(W). We thus consider p(f) the associated sesquilinear form on H'(W) which we

expand:
p(0)(u,v) = (aVu, Vv)y + il {(au, Vv)y — (aVu,v)s} + 2(au, v)s, u,ve HY(W).
We decompose it as a sum of three forms p(¢) = py + ilp; + (¢> — 1)py with
po(u,v) = (aVu,Vou)g + (au,v)s, pi(u,v) = (au, Vu)s — (aVu,v)s, po(u,v) = (au,v)s.

Since p; is not sectorial on L?(W) we consider those forms as bounded forms on H,,.(W,a). By

Riesz-lemma there are associated operators Fy, P, and P, defined on H;QT(W, «) endowed with the

scalar product py. Those operators thus satisty po(Pju,v) = p;(u,v). In particular Py = Id. Then

denoting by P({) the operator associated to p(¢) we have
P(l) = I +ilP, + (> —1)P, and observe that ker(P(()) < ker(P(()).
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Thus it is enough to prove Theorem 3.1.7 replacing P(£) by P(¢). One thus only needs to prove that

P; are Schatten class operators on H;er(W, «). This is greatly eased by making use of the operator

5% := (P(0) + «)~! for which there holds
po(S%u,v) = po(Su, Sv) = (u,v);, and P, = S*a.

Lemma B.1. S is a Schatten class operator in HY, (W, ).

per

Proof. First S is compact because if we take a bounded sequence u,, € H' (W, ) then by Rellich

per

theorem there is a subsequence (still denoted by u,) such that u, converges to some u in L*(W).
Then let us show that Swu, converges in H! (W, ). We have

per
1S (un = w)lin, (way = Po(S(un — ), S(un = u)) = un — ul

which converges to zero.

Then showing that S is a Schatten class operator can be achieved by comparing S to S :=
(1 — A)~Y/2 which is so in H_ (W, 1). This a simple use of minmax principle. O

per

As a consequence P, is a Schatten class operator.
Lemma B.2. P, is a Schatten class operator of order p > 2.
Proof. Let us split P, = Pj; — Pjp with
pi1(u,v) = (qu, Vu)a, and pra(u,v) = (aVu,v)s

one cannot easily represent P;; and show that it is compact. However we remark that P;; = P.
Indeed

po(Priu,v) = pri(u,v) = (au, Vv)z = pra(v, u) = po(u, Prav).
Then remarking that P, = S2a'V one sees that it is a Schatten class operator since SaV is bounded

on H!, (W,a). Then so is Pj; by duality.

per

]

C Estimates in Bloch space

The following lemma gives an upper bound for the slope of the real Bloch variety. The calculation
is reminiscent of geometric optics [6] and links the gradient of the band function with the metric. It

proves in particular that nodal points of the Bloch variety are not cusps.

Lemma C.1. For alln > 1

(22) IVA/ Anl () < max a/ min 5.
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Proof. Let us expand P(/):
BP(f) = (div + if)a(V + if) = divaV + il(Va + aV) — |(]*.

Setting P, = Va + oV and then differentiating the relation P(¢)e, () = —BA,({)e,(¢) with respect
to £ we get
(P(€) = M\u(0))Vien () + (1P + 20a) + BV, (0))en(€) = 0.

Scalarly multiplying by e, (¢) which is orthogonal to the first term and a unit vector of L*(WW) gives:
(23) VAL(0)(Ben, en) = —((iP1 + 20a)e,, e,) =23 (a(V + il)e,, e,)

Half of the last factor is bounded by ||a(V + if)e, |2 which is bounded by « times |4/a(V + il)e, |2 =

A (P(0)en, en) =/ n. O

D Scatering expansion under glancing/grazing Bloch vector

Pseudo-differential calculus has been carried out by Melrose and Taylor (see [17]). Here, in this basic
scattering approach we only need [I0] for adapatation of the stationary phase theorem.

Let us resume notations from begining paragraph 5. Denote by fy, = 0,f(t,) and let d6 be the
angle between x and the orthogonal of ¢;,. Also let @ = x/|z| and denote by @, = @(d6 = 0). Finally

put 0t =t — t,. Taylor expansion of ¢ with integral remainder about ¢, leads
(01, 60) = 0, - @ + @ - Ly (6t + a(68)%) + (68)%@ - G(0t), 1ty - G(0) # 0.

The coefficient a is a scale factor between 0:((t,) and 0?/((t,) since they are collinear. When 66 = 0
there holds , - Z* = 0 so using the variable T, given by the substitution Ty = 0t{/3i, - §(0t) the

phase reads
TS
©(6t, 00 =0) =L, - U + ?*

From [10] there is a change of variable T' = T'(Ty, 00) with T' = T, for §6 = 0 such that the phase

reads
3

©(0t,00) = a(f) + b(0)T + % with  a(0,) = 0y - U,, and b(0,) =0

To find T, a, b just write
. T3
o(0t,0) = ly - U+ (U L) Tuh(Ty) + m(H,T*)?*, m(0,T,) =

where {/3@, - G(0)h(0) = 1. Taking a = £, - @ and b = @ - £, h(0) we see that T is solution of a third
degree polynomial equation which has a unique solution for 7' ~ T}, small since

T <b(6) + T;) =T, <(b(9) hh((TO*)) - m(@,T*)%3> .
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Hence dT/dT, (T, = 0) = 1.
Using this substitution in the integral g, , and following Hormander’s proof of Theorem 7.7.18 one
finds

el bx , x -y 1, Tl B 1
(24) g+ = QWﬂT Ai 3%, 70) wy () + YE Ai B3, 0) Wy(z) | +O (m)
where w, (resp. W, ) is the zeroth (resp. first) order Taylor expansion in the variable T" of the integrand
in g, (after t — T substitution). One thus finds

(25) w,(z) = /31, -§<o><f<f*>,vw*»mm%vw*,x)

(o) = 1 (70 0(0) o o (e ) ) 2= 0
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