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STRONGLY INVOLUTIVE SELF-DUAL POLYHEDRA

JAVIER BRACHO1, LUIS MONTEJANO2, ERIC PAULI3,
AND JORGE L. RAMÍREZ ALFONSÍN4

Abstract. A polyhedron is a graph which is simple, planar and 3-
connected. In this note, we classify the family of strongly involutive
self-dual polyhedra. The latter is done by using a well-known result
due to Tutte characterizing 3-connected graphs. We also show that
this special class of polyhedra self-duality behaves topologically as
the antipodal mapping. These self-dual polyhedra are related with
several problems in convex and discrete geometry including the
Vázsonyi problem.

1. Introduction

A planar and 3-connected graph G = (V,E) can be drawn in essen-
tially one way on the sphere or the plane. This fundamental fact is a
result of the work of Whitney [14]. It tells us that we not only have the
sets V and E defined, but that the set F of faces is also determined,
and furthermore the dual graph G∗ is well defined. The dual graph G∗
is the graph whose vertex set V ∗ is the set of faces F of G, and two
new vertices in G∗ are connected by an edge if and only if the faces
that define them are adjacent in G.

In this class of graphs, each face f is determined by its boundary
walk, that is, a cyclically ordered sequence (v1, v2, · · · , vk) consisting
of the vertices (and the edges) that are in the closure of the region
defining the face f (see [5]). In this sense we can say that u incides on
f , if it is any of the elements v1, v2, · · · , vk of the cycle defining the face
f . We denote this situation simply by u ∈ f . From Steinitz’s theorem
([12]) we know that it is the same to talk about polyhedra in the sense
of convex polytopes and to talk about these graphs, so we will refer to
them as polyhedra. A polyhedron is a graph G that is simple (without
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loops and multiple edges), planar and 3-connected.

A polyhedron P is said to be self-dual if there exists an isomorphism
of graphs τ : P → P∗. This isomorphism is called a duality isomor-
phism. There may be several of these duality isomorphisms and each
of them is a bijection between vertices and faces of P , such that adja-
cent vertices correspond to adjacent faces. We are interested in such
an isomorphism that satisfies two more properties:

(1) For each pair u, v of vertices, u ∈ τ(v) if and only if v ∈ τ(u).
(2) For every vertex v, we have that v /∈ τ(v).

Such an isomorphism will be called a strong involution. If P is a
self-dual polyhedron admitting a strong involution τ , we will say that
P is a strongly involutive polyhedron.

Strongly involutive self-dual polyhedra are very common, like for ex-
ample wheels on n-cycles with n odd and hyperwheels on n-cycles with
n-even (see [11]). In fact the relevance of strongly involutive self-dual
polyhedra is partially related with the famous Vázsonyi problem. Let
T be a finite set of points of diameter h in Euclidean d-space. Char-
acterize those sets T for which the diameter is attained a maximal
number of times as a segment of length h with both endpoints in T . Y.
S. Kupitz et al. [6], call these sets extremal configurations. For d = 3,
if T is an extremal configuration and V is the intersection of balls of
radius h with centers in points of T , a facial structure can be defined
on the boundary of V that is strongly self-dual in the sense that it ad-
mits an duality isomorphism that is involution and is fixed-point free
when acting as an automorphism of the first barycentric subdivision
of the boundary cell complex of V (see [6]). Indeed, this unusual con-
nection between discrete and convex geometry attracted the attention
of several mathematicians to this and other related problems. See, for
example L. Lóvasz [7], L. Montejano and E. Roldán-Pensado [9], L.
Montejano et al. ([10]) and the work of Bezdek et al. [2]. For more
about the Vázsonyi problem see [8].

In order to have a good understanding of strongly involutive self-dual
polyhedra, we will use a result due to Tutte [13] establishing that every
3-connected graph is either a wheel (a cycle where every vertex is also
connected with a central vertex o) or it can be obtained from a wheel
by a finite sequence of two operations: adding an edge between any
pair of vertices and splitting a given vertex v, with degree δ(v) ≥ 4,
into two new adjacent vertices v′ and v′′ in such a way that the new
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graph obtained is still 3-connected.

In the following section we briefly summarize the notions and nota-
tion in relation with the above Tutte’s result restricted to the case of
simple and planar graphs. In [1], Grünbaum and Barnette used this
idea for giving two proofs of Steinitz’s Theorem. In Section 3, we show
our main results that classify the strongly involutive self-dual polyhe-
dra. Finally, in Section 4, we give a geometric interpretation of strong
involutions by proving that such a duality is topologically equivalent
to the antipodal mapping on the sphere.

2. Tutte’s Theorem for polyhedra.

In this section we summarize the main ideas and terminology of a
recursive classification of spherical polyhedra. These results are de-
duced from Tutte’s work and the details can be found in [4]. Let G be
a polyhedron and e = (uv) any edge of G. We write G\e for the graph
obtained from G by deleting e. We write G/e for the graph obtained
from G\e by identifying its endpoints u and v in a single vertex uv. In
the same way, given any subset X of V , we write G\X for the graph
obtained from G by ommiting the elements of X and any edge such
that one of its endpoints is an element of X. We will say that e = (uv)
can be deleted if G\e is a polyhedron and we say that e = (uv) can be
contracted if G/e is a polyhedron. We will say that X is an n−cutting
set if it has n vertices and G\X is not connected.

According to Tutte’s terminology, we will say that an edge e is essen-
tial if neither G\e nor G/e are polyhedra. In other words, e is essential
if it cannot be deleted and it cannot be contracted.

Theorem 1. [4] The following statements are equivalent.

(1) G is a wheel.
(2) Every edge is essential.
(3) Every edge is on a triangular face and has one of its endpoints

of degree 3.

This result can be rephrased as follows.

Remark 2. Every polyhedron is either a wheel or it can be obtained
by a wheel by adding new edges within faces of the polyhedron or its
dual’s. Equivalently: if a polyhedron is not a wheel there is always a
not essential edge, this means, an edge we can delete or contract in
order to obtain a new polyhedron with one fewer edge.
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In this way we can reduce any polyhedron by a finite sequence of this
operations until we obtain a wheel. It happens that one can obtain dif-
ferent wheels from a given polyhedron by selecting different sequences
of non essential edges.

3. Strongly involutive polyhedra.

Throughout this section, we let P = (V,E, F, τ) be a strongly invo-
lutive self-dual polyhedron and (ab) ∈ E any edge of P . By definition
τ(a) and τ(b) are adjacent faces of P , thus there must be an edge
(xy) ∈ E such that τ(a) ∩ τ(b) = (xy) and condition (1) of strong
involution implies that τ(x) ∩ τ(y) = (ab). We will write τ(ab) for the
edge (xy). We will say that (ab) is a diameter if and only if a ∈ τ(b)
(and therefore b ∈ τ(a)).

Lemma 3. If (ab) and (xy) are both diameters, then P is the tetrahe-
dron K4.

Proof. From the hypotheses we deduce a ∈ τ(x) ∩ τ(y) ∩ τ(b) and
x ∈ τ(a) ∩ τ(b) ∩ τ(y), then {a, x} ⊂ τ(y) ∩ τ(b) but from the 3-
connectivity, the intersection of any two faces must be empty, a single
vertex or a single edge, thus (ax) is an edge, otherwise {a, x} is a
2-cutting set. Analogously, (bx) is an edge. In the same way, (ya)
and (yb) are edges. It follows that the induced graph on these four
vertices is K4. In addition, we have the faces τ(a), τ(b), τ(x) and τ(y)
are triangles. Suppose there exist additional vertices. Take any vertex
v ∈ V \{a, b, x, y} such that v is connected to some vertex in {a, b, x, y}
by an edge. Assume, without loss of generality, that (av) is an edge.
This is a contradiction because in that case face τ(a) should form a
cycle with at least four edges. �

Lemma 4. If (ab) is a diameter and (xy) is not, then {a, b, x} and
{a, b, y} are 3-cutting sets of P.

Proof. From the hypotheses we can deduce that (τ(a) ∪ τ(b)) \ (xy)
and (τ(x) ∪ τ(y)) \ (ab) are cycles whose intersection is the set {a, b},
then we can observe that (τ(a) ∪ τ(b)) \ (xy)) ∪ (ab) is the union of
two cycles γ1, γ2 whose intersection is the edge (ab) and thus P \ γ1
consists of two connected pieces R1, R2 and also P \ γ2 consists of two
connected pieces S1, S2. Since τ(x) ∩ τ(y) = (ab) = γ1 ∩ γ2, we may
assume τ(x) \ (ab) ⊂ R1 ∩ S1 and τ(y) \ (ab) ⊂ R2 ∩ S2. Let be
w ∈ (τ(y) \ (ab)) \ γ1 ⊂ R2 ∩S2. It exists because otherwise τ(y) = γ1,
and therefore x ∈ τ(y), a contradiction since (xy) is not a diameter.
Analogoulsy, let be u ∈ (τ(x)\ (ab))\γ2 ⊂ S1∩R1. Then in the graphs
P\{a, b, y} and P \{a, b, x}, the vertices u and w are disconnected. �
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Theorem 5. If P is not a wheel, then there exists an edge e satisfying
the three following conditions:

(1) e is not on a triangular face,
(2) e is not in a 3-cutting set and
(3) e is not a diameter.

Proof. Since P is not a wheel then, by Theorem 1, there is a not es-
sential edge, say e that can be either deleted or contracted.

In fact we ensure, since P is self-dual, there is an edge that can
be contracted, otherwise we can take an edge e that can be deleted
and the corresponding dual edge e∗ can be contracted in P∗ which is
isomorphic to P . Without loss of generality we may assume e can be
contracted in P .

We may now check that e verifies the three desired conditions.

(1) e is not in a triangle. Otherwise, if e were contracted then P/e
would have parallel edges (which is not possible since P/e is simple).

(2) e is not in any 3-cutting set. Otherwise, if e were contracted
then P/e would have a 2-cutting set (which is not possible since P/e
is 3-connected).

(3) e is not a diameter. Indeed, if e were a diameter then we would
have that edge τ(e) cannot be a diameter (otherwise, by Lemma 3,
P must be a tetrahedron, that is, a 3-wheel, which is not the case)
and thus, by Lemma 4, e would be in a 3-cutting set, which is not
possible. �

Theorem 6. Let e = (ab) be an edge which is neither on a trian-
gular face nor in a 3-cutting set nor a diameter. Then, the graph
[P/(ab)]\τ(ab), denoted by P� = P�ab, is a strongly involutive self-dual
polyhedron.

Proof. Since (ab) satisfies the three properties of last theorem, then
P/(ab) is a polyhedron, and therefore its dual P\τ(ab) is also a poly-
hedron. We will show that P� is a polyhedron. Indeed, it is simple
and planar. We need it to be 3-connected. If it were not, then it would
have a 2-cutting set {m,n}. Since τ(a) and τ(b) are the faces such
that τ(a) ∩ τ(b) = τ(ab) we may observe that one of the elements in
{m,n} is in τ(a) and the other is in τ(b). Let’s supose m ∈ τ(a) and
n ∈ τ(b). Furthermore the vertex a = b, denoted by ab must be one of
the elements in {m,n}, otherwise {m,n} would be a 2-cutting set of
P\τ(ab), a contradiction. This implies that in P , a ∈ τ(b) (and there-
fore b ∈ τ(a)), so (ab) would be a diameter, which is not by hypothesis.
Finally, by definition, P� is self-dual and it is strongly involutive with
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isomorphism τ �(u) = τ(u) for every u /∈ {a, b} and with τ �(a = b)
the face obtained by the union of τ(a) and τ(b) when edge (xy) is
deleted. �

By the above theorem, we can define the remove-contract operation
in any strongly involutive polyhedron which is not a wheel: there is at
least one edge (ab) that we can contract and at the same time remove
the edge τ(ab) in order to obtain a new strongly involutive polyhe-
dron. We can apply this operation repeatedly in order to finish with
a strongly involutive wheel (with odd number of vertices in the main
cycle). Conversely, we can start with such a wheel and then diagonal-
izing faces and splitting their corresponding vertices carefully in order
to expand a strongly involutive polyhedron. By diagonalizing we mean
that given a face that is not a triangle, we add a new edge within the
face joining two non-consecutive vertices.

In the above terms, Theorem 6 gives the following.

Corollary 7. Every strongly involutive self-dual polyhedra is either a
wheel or it can be obtained from an odd wheel by a finite sequence of
operations consisting in diagonalizing faces of the polyhedron and its
dual’s simultaneously.

4. Topological interpretation.

In this section we are going to consider topological embeddings of a
given graph G on the surface S2. By Whitney’s Theorem we know that
if G is simple, planar and 3-connected, then any two such embeddings
are equivalent in the sense that the set of faces (and their adjacencies)
is fully determined only by the graph (they are independent of the
embedding). It is an interesting fact that with these conditions we can
choose one of these embeddings in such a way that any automorphism
of the graph of P acts as an isometry of S2. We will write this important
fact as follows.

Lemma 8. [11, Lemma 1] (Isometric embedding lemma.) There
exists an embedding i : G → S2 such that for every σ ∈ Aut(G) there
exists an isometry σ̃ of S2 satisfying i ◦ σ = σ̃ ◦ i.

Our goal for now is to interpret geometrically the strong involutions.
In the rest of the section G is the underlying graph (simple, planar and
3-connected) of a strongly involutive self-dual polyhedron P .
Let us define G� the graph of squares of G as follows:

V (G�) = V (G) ∪ F (G) ∪ E(G) and
E(G�) = {(ve) : v ∈ V (G), e ∈ E(G), v ∈ e}∪

{(ec) : e ∈ E(G), f ∈ F (G), e ∈ f}.



STRONGLY INVOLUTIVE SELF-DUAL POLYHEDRA 7

It is easy to observe that G� is a 3-connected simple planar graph
and therefore it can be drawn on the sphere in such a way that any
automorphism of G� is an isometry. We can suppose G� is embedded in
that way and we will abuse of notation making no distintion between
G� and its image under the embedding. By definition, the faces of G�
are all quadrilaterals of the form (vafb), where v ∈ V (G), a, b ∈ E(G)
and f ∈ F (G).

Theorem 9. Let τ be a strong involution of P. Then τ̃ is the antipodal
mapping α : S2 → S2, α(x) = −x.

Proof. First we can observe that τ is an automorphism of G� and con-
dition (1) of strong involution implies τ 2 = id. Therefore, τ̃ (given in
Lemma 8) must be an involution as isometry. There are three possible
involutive isometries of the sphere: a reflection through a line (a spher-
ical line), a rotation by π

2
and the antipodal mapping (a good reference

is [3]). Only the antipodal mapping has no fixed points, so we will
show that τ̃ cannot have fixed points. We will proceed by contradic-
tion, supposing τ̃ has a fixed point and then we will conclude there
exists a vertex v such that v ∈ τ(v).
If τ is a reflection through a plane H, let us consider v ∈ V (G),
a, b ∈ E(G) and f ∈ F (G) such that H intersects the quadrilateral
Q = (vafb) in its interior. The only points of the edges of quadri-
lateral Q can intersect H are a and b, so H ∩ S2 = l where l is the
spherical line through a and b, thus we must have τ(v) = f that means
v ∈ τ(v).
If τ is a rotation in a line PP ′ (P, P ′ antipodal points on the sphere),
let Q = (vafb) be a quadrilateral containing P . If P is the center (the
barycenter) of the quadrilateral, then since τ is a duality, it must send
v into f , but then τ(v) = f , which means v ∈ τ(v). If P is a or b, say
P = a, then the edge (va) is sent to an edge (af ′) where f ′ is a face
of G, distinct from f and containing v, but then the quadrilateral Q′
corresponding to v and f ′ we have τ(v) = f ′, which means v ∈ τ(v).
This concludes the proof. �

As a consequence of Theorem 9 we obtain the following.

Corollary 10. For a strongly involutive self-dual polyhedron there is
only one duality which is a strong involution.
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[1] D. W. Barnette and B. Grünbaum, On Steinitz’s Theorem concerning
convex 3.polytopes, Lecture Notes in Mathematics 110 (1968), 27–40.



8 BRACHO, MONTEJANO, PAULI, AND RAMÍREZ ALFONSÍN

[2] K. Bedzdek, Z. Lángi, M. Naszódi and P. Papez, Ball-polyhedra, Discret.
Comput. Geom. 38 (2007), 201-230.

[3] D. A. Brannan, M. F. Esplen and J.J. Gray. Geometry - 2nd ed., Cam-
bridge, 2012.

[4] Eric Pauli, Poliedros autoduales fuertemente involutivos, Tesis Doctoral.
UNAM. 2020

[5] J. L. Gross and T. W. Tucker. Topological Graph Theory, Wiley Inter-
science, New York, 1987.

[6] Y. S. Kupitz, H. Martini and M. A. Perles, Ball polytopes and the
Vázsonyi problem, Acta Mathematica Hungarica 126(1-2) (2010), 99–
163.
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2Instituto de Matemáticas, UNAM campus Juriquilla
E-mail address: luis@im.unam.mx
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