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A B S T R A C T

In this paper, a numerical approach able to evaluate the sound power emitted by a non-
cavitating flexible marine propeller blade is proposed. With asymptotic expansions and order
of magnitude analysis, two main phenomena are identified: the so-called propulsion and
vibroacoustic phenomenon. The propulsion phenomenon is nonlinear and models the lift
generation along the blade. It creates a pre-stress and a pre-strain on a deformed configuration
on which the blade vibrates and emits sound waves. The vibroacoustic phenomenon is linearized
and has no retroaction on the first static phenomenon. This simplified model allows to solve
the fully coupled fluid–structure system in order to compute the radiated noise of a pre-stressed
blade.

1. Introduction

In 2004, the International Maritime Organization (IMO) expressed a concern on the effect of underwater anthropogenic noises
on the maritime environment and its fauna. In 2014, the IMO released a statement affirming that ship’s noise can and should be
mitigated. Stealth is also a major design challenge for today’s warship, low level of radiated noise ensures a strategic advantage
in combat. Hydrodynamic noise derived from flow induced vibrations of propeller blades is one of the phenomenon that must be
mitigated in order to achieve a sufficient level of stealthiness (Smith and Rigby, 2022).

In this paper, a numerical approach able to evaluate the sound power emitted by a non-cavitating flexible marine propeller
blade is proposed. These vibrations can come from the machinery or hydrodynamic pressure fluctuations especially at high speed
revolutions per minute. The turbulent boundary layer imposes a fluctuating pressure on the wetted surface of the blade (Goody,
2004) and may cause annoying vibrations of the structure. These vibrations are then transmitted back to the fluid as sound waves
which can be detected by marine wildlife and sonars. Visco-elastic films are able to transform vibration energy into heat thus, they
considerably reduce the radiated noise level of underwater structures (see for example Rouleau et al. (2018, 2012) and Leblond and
Sigrist (2016)). These materials’ characteristics depend on their state of pre-strain and pre-stress. Therefore, in order to compute with
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Nomenclature

Solid and Fluid

0 Initial configuration
1 Intermediate configuration
2 Actual configuration
𝑭 20 Gradient of mapping 𝝓20
𝑭 10 Gradient of mapping 𝝓10
𝑭 21 Gradient of mapping 𝝓21
𝐽20 Jacobian of 𝑭 20
𝐽10 Jacobian of 𝑭 10
𝐽21 Jacobian of 𝑭 21
𝒏0 Wet surface normal on configuration 0
𝒏1 Wet surface normal on configuration 1
𝒏2 Wet surface normal on configuration 2
𝑝 Fluid pressure
𝑝1 Propulsion part of the fluid pressure
𝑝2 Vibroacoustic part of the fluid pressure
𝑺 Piola–Kirchhoff II tensor
𝒙0 Solid position in configuration 0
𝒙1 Solid position in configuration 1
𝒙2 Solid position in configuration 𝑪2

𝜌f Density of the fluid
𝜌 Propulsion part of the density of the fluid
𝜌2 Vibroacoustic part of the density of the fluid
𝝈f Fluid stress tensor
𝝈f
1 Propulsion part of the fluid stress tensor

𝝈f
2 Vibroacoustic part of the fluid stress tensor

𝝈s Solid stress tensor
𝝈s
1 Propulsion part of the solid stress tensor

𝝈s
2 Vibroacoustic part of the solid stress tensor

Order of magnitudes

L Length of the blade
𝑝acc Order of magnitude of the vibroacoustic pressure
𝑝prop Order of magnitude of the propulsion pressure
𝐺 Shear modulus of the blade’s material
𝜌𝑠 Density of the solid
𝑣∞ Incident velocity field
𝜔 Vibration pulsation
𝜔𝑝 Angular velocity of the propeller

sufficient accuracy the radiated noise of a damped, rotating propeller blade, there is a need for a specific fluid–structure approach.
This approach needs to take into account:

1. lift generation
2. nonlinear pre-stress and pre-strain of the lifting surface
3. linear vibration of the structure
4. added mass and added rigidity of the water to the structure
5. noise propagation in the fluid

The turbulence, cavitation and flow induced noises are not in the scope of this work. However, such phenomena can generate
important noise emissions and would therefore need specific studies. The aim of this paper is developing a model that could also
2

be used in an industrial environment. The considered marine propeller is used in a specific regime:
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• to avoid cavitation, the velocity at blade tip is limited: 𝐿𝜔𝑝 ≲ 40 m s−1

• the incident velocity 𝒗∞, which is linked to the vessel’s speed is of the order of 10 m s−1

• the frequency of vibration ranges within [100, 5000] Hz

The literature covers fully coupled approaches that take into account both the fluid induced deformation and the noise emission of
the deformed solid in air, the main applications are airplane’s lifting surfaces and helicopter’s blade. However, the noise computation
of marine structures deals with different physical phenomena and different regimes, the Mach number of the incident flow is very
small compared to one. In Choi et al. (2022), a Reynold Average Navier–Stokes (RANS) with k-𝜔 turbulence model (Wilcox, 2008)
fluid solver is coupled to a Finite Element Method (FEM) elastic solver. The noise field is computed using a Ffowcs Williams and
Hawkings (FW-H) formulation (Testa et al., 2018) coupled to a FEM model of the propeller. As the structure is considered elastic
and linear regarding geometry, this approach cannot take into account the pre-strain generated by material nonlinearity. In most
work, a choice is made between studying the non linear large deformation fluid–structure interaction and studying small structural
vibrations in a weakly compressible fluid. Both phenomena are rarely studied as a whole.

The literature on fluid–structure interaction problem of lifting surfaces in incompressible flow is well furnished and is an active
area of research. Many approaches co-exist with different objectives. Depending on the quantity of interest (pressure field, structural
criteria, etc.), the effort might be put on the fluid model or on the solid model. In George and Ducoin (2021), the Direct Numerical
Simulation (DNS) method is used to solve the incompressible fluid flow around a non rotating foil. The foil is simply modeled as a
single degree of freedom equation. In this work, many fluid phenomena ranging from lift generation to turbulence can be computed.
However, not much can be said about the foil’s physics, the flow being considered incompressible, the noise radiation cannot be
computed. In Pernod et al. (2017) an Unsteady Reynolds Averaged Navier–Stokes (URANS) turbulence model is used coupled to a
nonlinear FEM. Both the fluid and structural solvers need to be coupled using Arbitrary Lagrangian Eulerian (ALE) method (Hirt et al.,
1974). In this work as well, as the fluid is incompressible, the noise radiation cannot be computed using this method. However, it
allows to acquire deep insight into both the flow (lift generation and turbulence) and the reaction of the structure. In the work (Lin
and Lin, 1996), a Vortex Lattice Method (VLM) is coupled to nonlinear FEM. The structure is modeled by 3D shells. The VLM models
the flow around a wing or a blade using a square vortex and horseshoe vortex distribution on the camber surface. It is therefore
easy to couple with shell elements which also describe the camber surface. In Kim et al. (2021), a VLM is also coupled to nonlinear
FEM. Here, 20 nodes hexahedral elements are used. These elements allow to compute more complex stresses criterion. However,
a projection operation must be carried out to transfer the 2D pressure field from the VLM to the 3D FEM mesh. In Young (2008),
the authors used a 3D Boundary Element Method (BEM) coupled with finite element method. The BEM uses the wetted surface mesh
which simplifies the projection operation of the pressure field on the FEM mesh. These three approaches focus on the lift induced
load and its effect on the structure. Once again, the flow being incompressible and therefore the speed of sound being infinite, it is
not possible to directly compute the radiated noise. There is at least two solutions for this problem: the sound propagation could
be taken into account by modeling a compressible fluid which has a finite speed of sound and therefore can model propagation
phenomenon. The other approach is to model separately the noise propagation with another model. In the case of underwater
blades, the speed of sound is much higher than the incident flow velocity. This leads to numerical difficulties as the solver has to
accurately represent phenomena with very different orders of magnitude. That is why a separated approach will be considered in
this manuscript.

In Hoareau et al. (2022) small vibrations of a structure in contact with a fluid are decoupled from a static pre-stressed state
using an asymptotic expansion. The fluid is considered incompressible and therefore the radiated noise cannot be computed from
the model. However, the model is able to take into account the effect of a nonlinear pre-stress and a pre-strain on small linear
vibrations.

The interaction between a vibrating elastic structure and an acoustic fluid at rest can be tackled by monolithic formulation as
described in Morand and Ohayon (1995), Sigrist (2015, 2022), Leblond (2022) and Meyer and Maxit (2022). The 𝑢−𝜓 formulation
of Everstine (1981) uses a velocity potential for the description of the fluid domain and the displacement in the structural domain,
it has the advantages of leading to a symmetric matrix formulation without the need for an extra degree of freedom in the fluid, it
leads to smaller matrices. This approach models the fluid as an inviscid, linear, potential and weakly compressible acoustic fluid. The
structural vibrations are considered small and the problem can be considered linear. The fluid and structure equations are naturally
coupled at the wetted surface by boundary conditions. The pre-stress and pre-strain of the structure are not taken into account.

Therefore some approaches are able to compute the nonlinear fluid–structure interaction between a lifting surface and an
incompressible flow. Because compressibility of the fluid is ignored in these approaches, they cannot compute noise related
quantities. Other approach allows to computation of the radiated noise through a vibroacoustic linear framework that does not
take into account the pre-stress or pre strain of the structure. To avoid costly design iteration between blade thrust performance and
blade stealthiness, a unified method could be used. In the case of marine propeller, the high speed of sound makes the computation of
both sound emission and lift generation by a unique general solver complex from the numerical point of view. There is a huge range
of order of magnitude that needs to be covered. In this paper, a simplified two step approach able to take into account both the large
transformation induced by lifting flows and noise propagation of the deformed blade is proposed. This simplified methodology can
be applied in an industrial context and does not need to engage in specific numerical development in existing tools, the solvers are
used as black boxes and features existing in most codes are used. With asymptotic expansions and dimensional analysis, two main
phenomena influencing the radiated noise level are identified and partially uncoupled, (i) the fluid–structure interaction associated
to the nonlinear large structural displacement and lift induction and (ii) the vibroacoustic problem linearized at this previous state
of deformation.
3
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Fig. 1. Rotating propellers axis of references.

2. Phenomena separation

In this paper, we will consider a rotating propeller with a constant rotation speed 𝜔𝑝 around a fixed axis 𝒆𝑥, the incident velocity
is uniform and will be noted 𝒗∞ (see Fig. 1). The coupled fluid–structure interaction equations are written in the rotating frame and
read:

• Low mach approximation of the compressible Navier–Stokes equations of an isentropic fluid written in Eulerian formulation,
for each 𝒙 ∈ 𝛺𝑓 :

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝜌𝑓𝒗 + ∇
(

𝜌𝑓𝒗⊗ 𝒗
)

+ 2𝜌𝑓𝜔𝑝𝑹 𝒗 + 𝜌𝑓
(

𝜔𝑝𝑹
)2 𝒙 = ∇ ⋅ 𝝈𝑓 (a)

𝜕𝑡𝜌𝑓 + ∇ ⋅ (𝜌𝑓𝒗) = 0 (b)
𝜌𝑓 = 𝑓 (𝑝) (c)

(1)

with 𝒗, 𝝈𝑓 , 𝑝 and 𝜌𝑓 representing respectively the fluid velocity, stress, pressure and density. The matrix 𝑹 is the linear rotation
operator: 𝒙 ↦ 𝒆𝑧 ∧ 𝒙. The constant rotation speed adds two pseudo-forces: a centrifugal force

(

𝜔𝑝𝑹
)2 𝒙 and a Coriolis force

2𝜔𝑝𝑹 𝒗. Eq. (1)a is the conservation of momentum, Eq. (1)b is the continuity equation and Eq. (1)c is the isentropic equation
of state of the fluid.

• nonlinear structural equation written on the actual configuration, for each 𝒙 ∈ 𝛺𝑠 :

𝜌𝑠
(

𝜕2𝑡 𝒖 + 2𝜔𝑝𝑹𝜕𝑡𝒖 +
(

𝜔𝑝𝑹
)2 𝒙

)

= ∇ ⋅ 𝝈𝑠 (2)

with 𝒖 and 𝝈𝑠 representing respectively the displacement and the stress. With no translation of the rotation axis and constant
rotation velocity, two pseudo-forces arise: a Coriolis force 2𝜔𝑝𝑹𝜕𝑡𝒖 and a centrifugal force

(

𝜔𝑝𝑹
)2 𝒙.

• These equations are coupled by the boundary conditions:
{

𝝈𝑠𝒏 = 𝝈𝑓𝒏 on 𝜕𝛺𝑠 (a)
𝜕𝑡𝒖 = 𝒗 on 𝜕𝛺𝑠 (b) (3)

where 𝒏 is the outwards normal vector of the structure’s wetted surface. Eq. (3)a represents the continuity of the normal stress,
Eq. (3)b is the no-slip condition of the fluid. The incident flow 𝒗∞ in the non rotating frame is homogeneous and constant
(see Fig. 1).

The computation of radiated noises can be split into two main phenomena that can be partially uncoupled. The first phenomenon
will be called the propulsive phenomenon, it is responsible for the lift generation on each blade and the propulsion of the ship. In a
general setting, the displacement of the structure can be important (Taketani et al., 2013; Muller and Pécot, 2017) and a nonlinear
structure model is required. The velocity of the fluid is of the order of 𝒗∞ therefore the fluid is low Mach and can be considered
incompressible. The second phenomenon is called vibroacoustic phenomenon, it takes into account small vibrations of the pre-stress
and pre-strain structure. These vibrations generate pressure waves of small amplitudes into the fluid, this phenomenon can be
considered linear.

2.1. Configurations of the blade

As the structural equation is nonlinear and written in Lagrangian formulation, the notion of configuration becomes of utmost
importance. The structural domain 𝛺𝑠 evolves with the application of mechanical loads and boundary conditions. The transformation
is described relative to a given reference domain 0, usually this reference configuration is the state of the solid at rest. At a given
time 𝑡, every point 𝒙0 ∈ 0 in the structural domain suffers a transformation through a bijection 𝝓(𝒙0, 𝑡), this bijection defines an
associated transformed configuration. As displayed in Fig. 2, 3 configurations are considered in this work:
4

• The initial configuration 0, which is the reference configuration.
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Fig. 2. The three configurations (initial, intermediate and actual) of the propeller.

• The deformed configuration 1, which is an intermediate configuration represents the deformed blade resulting from the lift
generation.

• The actual configuration 2, which is the actual configuration that takes into account both the deformation of the blade
resulting from lift generation and the deformation resulting from the blade vibrations.

perators (∇⋅, ∇, etc...) written on configuration 0 (respectively 1, 2) will be indexed 0 (respectively 0, 2). The bijections between
ach configuration read:

• 𝒙1 = 𝝓10(𝒙0, 𝑡) the bijection between the initial configuration 0 and the configuration 1. The displacement therefore reads
𝒖1 = 𝒙1 − 𝒙0. Its gradient reads 𝑭 10 = Id + ∇0𝒖1, and its Jacobian determinant is written 𝐽10.

• 𝒙2 = 𝝓21(𝒙1, 𝑡) the bijection between the configuration 1 and the actual configuration. The displacement therefore reads
𝒖2 = 𝒙2 − 𝒙1. Its gradient reads 𝑭 21 = Id + ∇1𝒖2 and its Jacobian determinant is written 𝐽21.

• 𝒙2 = 𝝓20(𝒙0, 𝑡) the bijection between the initial configuration 0 and the current configuration 2. The displacement therefore
reads 𝒖2 = 𝒙2 − 𝒙0 = 𝒖1 + 𝒖2. Its gradient reads 𝑭 20 = Id+∇0𝒖2 = 𝑭 21𝑭 10 and its Jacobian determinant is written 𝐽20 = 𝐽21𝐽10.

.2. Examination of the orders of magnitudes of each terms

The marine propeller is considered to operate under the following regime:

• The length of the blade 𝐿 is over 1 m.
• To avoid cavitation, the velocity at blade tip is limited: 𝐿𝜔𝑝 ≲ 40 m s−1 where the propeller rotation speed 𝜔𝑝 is considered

constant.
• The incident velocity 𝒗∞, which is linked to the vessel’s speed is of the order of 10 m s−1, it is also considered constant.
• The speed of sound in the water is 𝑐 = 1500 m∕s, and the reference density is 𝜌 = 1000 kg/m3.
• The frequency of vibration ranges within [100 Hz, 5 kHz], therefore the associated angular frequency 2𝜋𝑓 ≫ 𝜔𝑝.

he fluid pressure field can be split into two contributions. A pressure field contribution 𝑝1 associated to the propulsion phenomenon
nd linked to the lift generation, it is of the order of magnitude 𝑝𝑝𝑟𝑜𝑝 = 𝜌𝑣2∞ ∼ 105 Pa. A pressure field contribution 𝑝2 associated to
he vibro-acoustic phenomenon and linked to the underwater noise radiation which is of the order of magnitude 𝑝𝑎𝑐𝑐 ∼ 100 Pa for
160 dB noise power. Each quantity (solid displacement, fluid velocity, strain, etc.) is split into two contributions (a propulsion

ontribution, written with index 1 and vibroacoustic contribution, written with index 2). They are written in non-dimensional form:
̃ represents the non-dimensional form of quantity 𝑋.

ime scales in the fluid. The time scales in the fluid of each phenomenon is also different: the propulsion phenomenon is assumed
o have a time scale 𝑡1 equal to 𝐿∕𝑣∞ and the propulsion phenomenon is assumed to have a time scale 𝑡2 equal to 𝐿∕𝑐. In the
onsidered regime, 𝑡2 ∼ 10−3 s and 𝑡1 ∼ 0.1, as there is two order of magnitude between these two time scales, for each quantity 𝑋
f the fluid the time derivative operators is split as follow: 𝜕𝑡𝑋 = 𝑣∞∕𝐿0𝜕𝑡1𝑋1 + 𝑐∕𝐿𝜕𝑡2𝑋2. The non-dimensional form is obtain by
ividing by 𝑣∞∕𝐿 :

𝜕𝑡𝑋 = 𝜕𝑡1𝑋1 +
1

𝜕𝑡2𝑋2

where  = 𝑣∞∕𝑐 is the mach number of the flow.

ime scales in the solid. No assumption is made on the time scale of the solid in the propulsion phenomenon, the time scale of the
ibroacoustic phenomenon is 1∕𝜔.
5
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Fluid stress. The fluid stress is assumed to be of the order of magnitude of the pressure fields: 𝝈𝑓 = 𝑝𝑝𝑟𝑜𝑝𝝈̃
𝑓
1 + 𝑝𝑎𝑐𝑐 𝝈̃

𝑓
2 , the fluid stress

s then divided by 𝑝𝑝𝑟𝑜𝑝 to get a non-dimensional form:

𝝈̃𝑓 = 𝝈̃𝑓1 + 𝜂𝝈̃𝑓2 (4)

here 𝜂 = 𝑝𝑎𝑐𝑐∕𝑝𝑝𝑟𝑜𝑝 is the ratio of order of magnitude between the propulsion and vibroacoustic pressure fields.

luid velocity. The propulsion fluid velocity’s order of magnitude is assumed to be equal to 𝑣∞. The equation of a linear acoustic fluid
s 𝜌𝜕𝑡𝒗 = −∇𝑝 therefore the acceleration field in the acoustic wave propagation is related to the pressure gradient, that is why the
ibro-acoustic phenomenon velocity field order of magnitude is assumed to be equal to 𝑝𝑎𝑐𝑐∕(𝜌𝑐). Therefore 𝒗 = 𝑣∞𝒗̃1 + 𝑝𝑎𝑐𝑐∕(𝜌𝑐)𝒗̃2.
he velocity field is therefore divided by 𝑣∞ to get the non-dimensional form:

𝒗̃ = 𝒗̃1 +
𝑝𝑎𝑐𝑐
𝜌𝑐𝑣∞

𝒗̃2

= 𝒗̃1 + 𝜂𝒗̃2

Fluid density. The propulsion fluid density is assumed to be constant and equal to 𝜌 the reference fluid density, the propulsion
phenomenon is assumed to be incompressible. An asymptotic expansion of the equation of state (1)c is performed around 𝑝1:
𝜌𝑓 = 𝑓 (𝑝1) + 𝜕𝑝𝑓 (𝑝1)𝑝2. The derivative 𝜕𝑝𝑓 (𝑝1) is the square of the sound celerity in the fluid 𝑐2, the order of magnitude of the
vibroacoustic density is therefore assumed to be equal to 𝑝𝑎𝑐𝑐∕𝑐2. Therefore 𝜌𝑓 = 𝜌 + 𝑝𝑎𝑐𝑐∕𝑐2𝜌̃2, the fluid density is divided by 𝜌 to
get the non-dimensional form:

𝜌̃𝑓 = 1 +
𝑝𝑎𝑐𝑐
𝜌𝑐2

𝜌̃2

= 1 + 𝜂2𝜌̃2

Structural displacement. The structural displacement part of the propulsion phenomenon is the result of an equilibrium between the
fluid pressure field and the deformable solid stiffness, it is assumed that the blade will mainly suffer a bending motion, therefore
the order of magnitude of the propulsion phenomenon displacement field is 𝑝𝑝𝑟𝑜𝑝𝐿∕𝐺 where 𝐺 is the shear modulus of the blade’s
material. As there is a continuity of the velocity field between the fluid and the solid, the order of magnitude of the displacement
field of the vibroacoustic phenomenon is 𝑝𝑎𝑐𝑐∕(𝜌𝐿𝜔𝑐). Therefore 𝒖 = 𝑝𝑝𝑟𝑜𝑝𝐿∕𝐺𝒖̃1 + 𝑝𝑎𝑐𝑐∕(𝜌𝐿𝜔𝑐)𝒖̃2, the displacement field is divided
by 𝑝𝑝𝑟𝑜𝑝𝐿∕𝐺 to get the non-dimensional

𝒖̃ = 𝒖̃1 +
𝑝𝑎𝑐𝑐
𝑝𝑝𝑟𝑜𝑝

𝐺
𝜌(𝐿𝜔)𝑐

𝒖̃2

= 𝒖̃1 + 𝜂𝒖̃2

here  = 𝐺
𝜌𝑣2∞

is the ratio bending modulus to incident pressure field and  = 𝑣∞
𝐿𝜔 .

.3. Equation of the structure

The structural equations of the propulsion phenomenon on one hand and of the vibraoacoustic phenomenon on the other hand
re determined in this subsection. First Equation (2) is written on the initial configuration, that way the divergence operator is
ritten on the configuration 0 and all geometrical variations are taken into account in the appropriate stress tensor, it reads:

𝜌𝑠
(

𝜕2𝑡 𝒖 + 2𝜔𝑝𝑹𝜕𝑡𝒖 +
(

𝜔𝑝𝑹
)2 𝒙

)

= ∇0 ⋅ 𝑷 (𝒖) (5)

here 𝑷 is the Piola–Kirchhoff I (PK I) tensor, it represents stress of the current configuration projected on the initial configuration,
t is linked to the Cauchy stress tensor using relation 𝑷 = 𝐽−1

20 𝝈
𝑠𝑭 𝑇

20. Because a majority of the constitutive laws are written in terms
f Piola–Kirchhoff II (PK II) tensor 𝑺, and in finite element method, the interior force vector operator is written as a function of
ensor 𝑺. Therefore it is convenient to rewrite PK I tensor as a function of PK II using the relation 𝑷 (𝒖) = 𝑭 20(𝒖)𝑺(𝒖). Recall from
aragraph 2.2 that ‖𝒖2‖∕‖𝒖1‖ ∼ 𝜂, in the specific regime 𝜂 = 10−3, then 𝒖2 has a order of magnitude much smaller than
1 and a linearization is legitimate. Let 𝒖 = 𝒖1 + 𝜇𝒖̃2, where 𝜇 = 𝜂𝑝𝑝𝑟𝑜𝑝𝐿∕𝐺 is the order of magnitude of 𝒖2 relative to 𝒖1, the
symptotic expansion is carried out following the steps:

• The Piola–Kirchhoff II tensor can be linearized in 𝜇: 𝑺(𝒖) = 𝑺(𝒖1) + 𝜇d𝑺𝒖1 (𝒖̃2) + (𝜇2) where d𝑺𝒖1 is the differential of 𝑺 at
point 𝒖1. The Piola–Kirchhoff I can therefore be expanded as follows:

𝑷 (𝒖) = 𝑭 1(𝒖2)𝑭 0(𝒖1)𝑺(𝒖1 + 𝒖2)

=
[

(Id + 𝜇∇1𝒖̃2)𝑭 0
]

[

𝑺(𝒖1) + 𝜇d𝑺𝒖1 (𝒖̃2) + (𝜇2)
]

= 𝑭 0𝑺(𝒖1) + 𝜇
[

𝑭 0d𝑺𝒖1 (𝒖̃2) + (∇1𝒖̃2)𝑭 0𝑺(𝒖1)
]

+ (𝜇2)

= 𝑷 1 + 𝜇𝑷̄ 2 + (𝜇2)

• The acceleration is expanded as follows:
2 ( )2 2 ( )2 2 ̃ ̃

( )2 ̃
6

𝜕𝑡 𝒖 + 2𝜔𝑝𝑹𝜕𝑡𝒖 + 𝜔𝑝𝑹 𝒙 = 𝜕𝑡 𝒖1 + 2𝜔𝑝𝑹𝜕𝑡𝒖1 + 𝜔𝑝𝑹 𝒙1 + 𝜇(𝜕𝑡 𝒖2 + 2𝜔𝑝𝑹𝜕𝑡𝒖2 + 𝜔𝑝𝑹 𝒖2)
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Two sets of equations can therefore be deduced, the terms of order 0 in 𝜇 give the structural propulsion equation written on
configuration 0:

𝜌𝑠
(

𝜕2𝑡 𝒖1 + 2𝜔𝑝𝑹𝜕𝑡𝒖1 +
(

𝜔𝑝𝑹
)2 𝒙1

)

= ∇0 ⋅ 𝑷 1 (6)

sing relation 𝝈𝑠1 = 𝐽−1
0 𝑷 1𝑭 𝑇

0 , Eq. (6) can be written on the intermediate configuration 1. The tensor 𝝈𝑠1 is the Cauchy tensor of
he propulsion phenomenon.

𝜌𝑠
(

𝜕2𝑡 𝒖1 + 2𝜔𝑝𝑹𝜕𝑡𝒖1 +
(

𝜔𝑝𝑹
)2 𝒙1

)

= ∇1 ⋅ 𝝈𝑠1 (7)

he terms of order 1 in 𝜇 gives the vibroacoustic equation. On the initial configuration 0 it reads:

𝜌𝑠
(

𝜕2𝑡 𝒖2 + 2𝜔𝑝𝑹𝜕𝑡𝒖2 +
(

𝜔𝑝𝑹
)2 𝒖2

)

= ∇0 ⋅ 𝑷 2 (8)

here 𝑷 2 = 𝜇𝑷̄ 2, using again relation 𝝈𝑠2 = 𝐽−1
0 𝑷 2𝑭 𝑇

0 , Eq. (6) can be written on the intermediate configuration 1 and in the Fourier
pace, it yields:

𝜌𝑠
(

−𝜔2𝒖2 + 2𝜔𝑝𝜔𝑖𝑹𝒖2 +
(

𝜔𝑝𝑹
)2 𝒖2

)

= ∇1 ⋅ 𝝈𝑠2 (9)

s 𝜔 ≪ 𝜔𝑝 in the considered regime, the inertial forces can be neglected and the equation in the structural domain becomes:

− 𝜌𝑠𝜔2𝒖2 = ∇1 ⋅ 𝝈𝑠2 (10)

he tensor 𝝈𝑠2 is a pseudo-Cauchy stress tensor, as it represents the stress of the vibroacoustic phenomenon on the intermediate
onfiguration, it has two contributions namely:

• the material stress which takes into account the phenomenon linked to the constitutive law of the material via the differential
of 𝑺 and reads: 𝝈m

2 = 𝐽−1
0 𝑭 0d𝑺𝒖1 (𝒖2)𝑭

𝑇
0

• the geometrical stress, which factors in the pre-stress of the structure, it reads: 𝝈g
2 = (∇1𝒖2)𝝈1(𝒖1)

t is worth noting that the linearized vibroacoustic stress tensor is not symmetric on configuration 1. However, in weak form, this
tress tensor is associated to the operator 𝑊 int

2 (𝒗, 𝒖2) = ∫𝛺1
𝝈g
2(𝒖2) ∶ ∇1𝒗 which is symmetric (meaning 𝒗 and 𝒖2 are interchangeable)

herefore leading to a symmetric matrix formulation.

.4. Equation of the fluid

The fluid equations for the propulsion and vibroacoustic phenomenon are then determined in this section. First the conservation
f momentum (Eq. (1)a) is rewritten in convective form using the conservation of mass (Eq. (1)b), this equation reads:

𝜌𝑓
(

𝜕𝑡𝒗 + (𝒗 ⋅ ∇)𝒗 + 2𝜔𝑝𝑹𝒗 +
(

𝜔𝑝𝑹
)2 𝒙

)

= ∇ ⋅ 𝝈𝑓 (11)

t is then written in non-dimensional form using notation from Section 2.2:

𝜌̃
(

𝜕𝑡𝒗̃ + (𝒗̃ ⋅ ∇)𝒗̃ + 2
𝐽
𝑹𝒗̃ +

(𝑹
𝐽

)2
(𝒙̃0 +

𝑝𝑝𝑟𝑜𝑝
𝐺

𝒖̃)
)

= ∇̃⋅𝝈̃𝑓 (12)

where 𝐽 = 𝑣∞∕(𝐿0𝜔𝑝) is the advance ratio. The non-dimensional quantities are then split between a propulsion contribution and a
vibroacoustic contribution:

(1 + 𝜂2𝜌̃2)
(

𝜕𝑡1𝒗1 +
1

𝜕𝑡2 (𝜂𝒗2)+ ((𝒗̃1 + 𝜂𝒗2) ⋅ ∇)(𝒗̃1 + 𝜂𝒗2) +

2
𝐽
𝑹(𝒗̃1 + 𝜂𝒗2) +

(𝑹
𝐽

)2
(𝒙̃0 +

𝑝𝑝𝑟𝑜𝑝
𝐺

𝒖̃1 + 𝜂 𝒖̃2)
)

= ∇̃⋅𝝈̃𝑓1 + 𝜂∇̃⋅𝝈̃𝑓2 (13)

Recall from Section 2.3 that 𝜂 ≪ 1 and as in this regime  ≪ 1 and  ≪ 1, the propulsion and vibroacoustic are therefore
of different order of magnitude. Order 0 in 𝜂 in Eq. (13) is identified with the equation of momentum balance of the propulsion
phenomenon, it reads in dimensional form:

𝜌
(

𝜕𝑡𝒗1 + (𝒗1 ⋅ ∇)𝒗1 + 2𝜔𝑝𝑹𝒗1 +
(

𝜔𝑝𝑹
)2 𝒙

)

= ∇ ⋅ 𝝈𝑓1 (14)

The vibroacoustic phenomenon is identified with order 1 in 𝜂, in non-dimensional form it reads:
(

𝜕𝑡2𝒗2 +[(𝒗̃1 ⋅ ∇)𝒗2]𝑠𝑦𝑚 + 2
𝐽

𝑹𝒗2 +
( 1
𝐽
𝑹
)2

𝒖̃2
)

=

∇̃⋅𝝈̃𝑓2 −2𝜌̃2

(

𝜕𝑡1𝒗1 + (𝒗̃1 ⋅ ∇)𝒗̃1 +
2
𝐽
𝑹𝒗̃1 +

(𝑹
𝐽

)2
(𝒙̃0 +

𝑝𝑝𝑟𝑜𝑝
𝐺

𝒖̃1)
)

(15)

where [(𝒗̃1 ⋅ ∇)𝒗2]𝑠𝑦𝑚 = (𝒗̃1 ⋅ ∇)𝒗2 + (𝒗̃2 ⋅ ∇)𝒗1. As 𝐽 ∼ 1,  ≪ 1 and  ≪ 1, the vibroacoustic momentum balance can be simplified
nd reads:

̃ ̃ ̃ 𝑓
7

𝜕𝑡2𝒗2 = ∇⋅𝝈2 (16)
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In dimensional form, it reads:

𝜌𝜕𝑡𝒗2 = ∇ ⋅ 𝝈𝑓2 (17)

ote that in the specific regime considered, the forcing terms coming from the propulsion phenomenon flow can be neglected. In
ow Mach regime, there is no retroaction of the propulsion phenomenon on the sound wave generation.

The continuity equation (Eq. (1)b) is now considered and is written in non-dimensional form:
1

𝜕𝑡2 (𝜂

2𝜌̃2) + ∇̃⋅((1 + 𝜂2𝜌̃2)(𝒗̃1 + 𝜂𝒗̃2)) = 0 (18)

as  ≪ 1 an 𝜂 ≪ 1 the propulsion and vibroacoustic phenomenon have different order of magnitudes, therefore the propulsion
ontinuity equation is the order 0 in 𝜂, it reads in dimensional form:

∇ ⋅ 𝒗1 = 0 (19)

The order 1 in 𝜂 is identified with the vibroacoustic continuity equation, it reads:

𝜕𝑡2 𝜌̃2 + ∇̃⋅(𝜌̃2𝒗̃1) + ∇̃⋅𝒗̃2 = 0 (20)

As ≪ 1, this equation can be simplified, it reads in dimensional form:

𝜕𝑡𝜌2 + ∇ ⋅ 𝒗2 = 0 (21)

2.5. Boundary conditions

The boundary condition can also be simplified by expanding each terms in orders of 𝜂. The order 0 gives the propulsion
contribution and order 1 gives the vibroacoustic contribution. Recall form Eqs. (3)a and (3)b, the two boundary conditions involved
in the fluid–structure interaction problem read on the actual configuration 2:

• the dynamic condition: 𝝈𝑠𝒏2 = 𝝈𝑓𝒏2 on 𝜕𝛺𝑠;
• the kinematic condition: 𝜕𝑡𝒖 = 𝒗 on 𝜕𝛺𝑠

2.5.1. Dynamic condition
In order to take into account the change in geometry, the asymptotic expansion of the dynamic condition must be carried out

on the initial configuration 0. Normal 𝒏2 of the wetted surface on the actual configuration 2 is related to the normal 𝒏0 of the
wetted surface in the initial configuration 0 in relation 𝒏2d𝑠2 = 𝐽20𝑭 −𝑇

20 d𝑠0, where d𝑠2 (respectively 𝑑𝑠0) is an infinitesimal surface
element on the actual configuration (respectively the initial configuration). Therefore, the dynamic condition can be written on the
initial configuration 0. First Equation (3)a is multiplied on both sides by d𝑠2 it reads: 𝝈𝑠𝒏2d𝑠2 = 𝝈𝑓𝒏2d𝑠2. Then by using relation
2d𝑠2 = 𝐽20𝑭 −𝑇

20 𝒏0d𝑠0, it can be written on the initial configuration, it reads:

𝐽20𝝈𝑭 −𝑇
20 𝒏0d𝑠0 = 𝐽20𝝈𝑓𝑭 −𝑇

20 𝒏0d𝑠0 (22)

Using the relation between Piola–Kirchhoff I and the Cauchy tensor: 𝑷 = 𝐽20𝝈𝑠𝑭 −𝑇
20 𝒏0, Eq. (22) can be simplified:

𝑷𝒏0d𝑠0 = 𝐽20𝝈𝑓𝑭 −𝑇
20 𝒏0d𝑠0 (23)

ach term of Eq. (23) can be split into a vibroacoustic contribution and propulsion contribution, using the previous sections
otations, it reads:

• the Piola–Kirchhoff I tensor: 𝑷 = 𝑝𝑝𝑟𝑜𝑝(𝑷̃ 1 + 𝜂𝑷̃ 2) using the 2.3 PK I decomposition and 𝑷 being assumed to be of the
order of 𝑝𝑝𝑟𝑜𝑝.

• the fluid stress: 𝝈𝑓 = 𝑝𝑝𝑟𝑜𝑝
(

𝝈̃𝑓1 + 𝜂𝝈̃𝑓2
)

• the Jacobian determinant:

𝐽20(𝒖) = 𝐽21(𝒖2)𝐽10(𝒖1)

= 𝐽10(𝒖1)det
(

Id + 𝜂∇̃1𝒖̃2
)

= 𝐽10(𝒖1)(1 + 𝜂Tr
(

∇̃1𝒖̃2
)

) + 𝑂(𝜂2)

≃ 𝐽10(𝒖1)(1 + 𝜂Tr
(

∇̃1𝒖̃2
)

)

• the gradient tensor term:

𝑭 −𝑇
20 (𝒖) =

(

𝑭 21(𝒖2)𝑭 10(𝒖1)
)−𝑇

=
(

𝑭 10(𝒖1)
)−𝑇 (

Id + 𝜂∇1𝒖̃2
)−𝑇

=
(

𝑭 10(𝒖1)
)−𝑇 (

Id − 𝜂(∇̃1𝒖̃2)𝑇
)

+ 𝑂(𝜂2)
( )−𝑇 ( ̃ ̃ 𝑇 )
8

≃ 𝑭 10(𝒖1) Id − 𝜂(∇1𝒖2)
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The dynamic condition in non-dimensional form therefore reads:

(𝑃1 + 𝜂𝑷̃ 2)𝒏0d𝑠0 = 𝐽10
(

𝝈̃𝑓1
(

1 + 𝜂
(

Tr
(

∇̃1𝒖̃2
)

− 𝑭 −𝑇
10 ∇̃1𝒖̃2𝑭 𝑇

10
))

+ 𝜂𝝈̃𝑓2
)

𝑭 −𝑇
10 𝒏0d𝑠0 (24)

n the specific regime considered, 𝜂 ≪ 1, 𝜂 ≪ 1 and 𝜂≪ 1, the propulsion and vibroacoustic phenomenon contributions to
he boundary conditions have different order of magnitudes and order 0 in 𝜂 is identified with the propulsion dynamic condition,
n dimensional form it reads:

𝑷 1𝒏0d𝑠0 = 𝐽10𝝈
𝑓
1 𝑭

−𝑇
10 𝒏0d𝑠0 (25)

sing relation 𝒏1d𝑠1 = 𝐽10𝑭 −𝑇
10 𝑵d𝑠0 that links the normal on configuration 1 to the normal on configuration 0, Eq. (25) reads:

𝑠
1𝒏1d𝑠1 = 𝝈𝑓1 𝒏1d𝑠1 This relation being true for every infinitesimal surface d𝑠1, it can be simplified:

𝝈𝑠1𝒏1 = 𝝈𝑓1 𝒏1 (26)

The dynamic condition of the vibroacoustic phenomenon is identified with order 1 in 𝜂, it reads in non-dimensional form:

𝑷̃ 2𝒏0d𝑠0 = 𝐽10
(

𝝈̃𝑓1
(

Tr
(

∇̃1𝒖̃2
)

− 𝑭 −𝑇
10 ∇̃1𝒖̃2𝑭 𝑇

10
)

+ 𝝈̃𝑓2
)

𝑭 −𝑇
10 𝒏0d𝑠0 (27)

n the considered regime,  ∼ 1 and  ≪ 1, therefore the boundary condition can be simplified. It reads in dimensional form:

𝑷 2𝒏0d𝑠0 = 𝐽10𝝈
𝑓
2 𝑭

−𝑇
10 𝒏0d𝑠0 (28)

sing again relation 𝒏1d𝑠1 = 𝐽10𝑭 −𝑇
10 𝑵d𝑠0, Eq. (28) can be written on configuration 1 and it reads: 𝝈2𝒏1d𝑠1 = 𝝈𝑓2 𝒏1d𝑠1, this relation

eing true for every infinitesimal surface d𝑠1, the boundary condition becomes:

𝝈2𝒏1 = 𝝈𝑓2 𝒏1 (29)

.5.2. Kinematic condition
This condition is linear in 𝒖 and 𝒗 therefore the separation is straightforward:

• the kinematic condition of the propulsion phenomenon reads:

𝜕𝑡𝒖1 = 𝒗1 sur 𝜕𝛺𝑠 (30)

• and the kinematic condition of the vibroacoustic phenomenon reads:

𝜕𝑡𝒖2 = 𝒗2 sur 𝜕𝛺𝑠 (31)

.6. Simplified equations

In this section, the problem of a radiating marine propeller was modeled by taking into account two main phenomena:

1. the propulsion phenomenon, which gives the deformed geometry and the pre-stress in the structure
2. the vibroacoustic phenomenon, which models the propagation of sound waves in the fluid due to the vibration of the

immersed blade.

These two phenomena are partially decoupled, they can be sequentially solved: the propulsion phenomenon results gives the
re-strain and the pre-stress as input to the vibroacoustic phenomenon’s equations. From now on the propulsion phenomenon will
e considered stationary in the rotating frame. Moreover, the viscous phenomena are neglected and the fluid stress tensor becomes
𝑓
1 = −𝑝1Id. Because of this simplification, the propulsion kinematic condition must be simplified to an impermeability condition:
𝜕𝑡𝒖1,𝒏1⟩ = ⟨𝒗1,𝒏1⟩ on 𝜕𝛺𝑠. The full set of equations of the propulsion phenomenon becomes :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌
(

(𝒗1 ⋅ ∇)𝒗1 + 2𝜔𝑝𝑹𝒗1 +
(

𝜔𝑝𝑹
)2 𝒙

)

= −∇𝑝1 in 𝛺𝑓

∇ ⋅ 𝒗1 = 0 in 𝛺𝑓

𝜌𝑠
(

𝜔𝑝𝑹
)2 𝒙1 = ∇1 ⋅ 𝝈𝑠1 in 𝛺𝑠

𝝈1𝒏1 = −𝑝1𝒏1 on 𝜕𝛺𝑠

0 = ⟨𝒗1,𝒏1⟩ on 𝜕𝛺𝑠

(32)

The vibroacoustic problem is linear and the velocity of the fluid derives from a potential : 𝒗2 = ∇𝜓2 (see Everstine (1981)). The
iscous terms are also neglected in the vibroacoustic stress tensor and: 𝝈𝑓2 = −𝑝2Id, therefore kinematic condition is also simplified
o an impermeability condition: ⟨𝜕𝑡𝒖2,𝒏2⟩ = ⟨𝒗2,𝒏2⟩ on 𝜕𝛺𝑠. The structure suffers a surface pressure 𝑝excit load which originates
9

rom the incident flow’s turbulence pressure. In the Fourier space, the set of equation of the vibroacoustic phenomenon is:
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Fig. 3. Iterative Neumann/Neumann algorithm used to couple the fluid solver and structure solver.

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜌𝑠𝜔2𝒖2 + ∇1 ⋅ 𝝈2 = 0 in 𝛺𝑠

(

𝜔
𝑐

)2
𝜓2 + 𝛥𝜓2 = 0 in 𝛺𝑓

𝑖𝜔 ⟨𝒖2,𝒏⟩ = ⟨∇𝜓2,𝒏⟩ on 𝜕𝛺𝑠

𝝈2𝒏 = 𝑖𝜔𝜌𝑓𝜓2𝒏 on 𝜕𝛺𝑠

𝝈2𝒏 = −𝑝excit𝒏 on 𝛤 excit

(33)

3. Solver for the propulsion problem

3.1. Iterative resolution

The fluid/structure equations of the propulsion phenomenon are strongly coupled and nonlinear. Due to the fluid load, the change
in geometry between the initial configuration 0 and the configuration 1 can be significant. The fluid equations are written on the
configuration 1 and therefore depends on the displacement of the structure which is computed by solving a nonlinear structure
problem. Let  and  be the fluid and structure solvers, (𝒖1, 𝑝1) the displacement and the fluid pressure, the system of equations
to solve can be written in a symbolic manner:

{

𝑝1 =  (𝒖1)
𝒖1 = (𝑝1)

(34)

Here  is related to the first and second equations of the system (32), and  is related to the third equation of the system (32).
The system (34) is solved using an iterative method described in Fig. 3. This algorithm is used both in Kim et al. (2013)

and Kalumuck et al. (1995). In these works the algorithm was used in transient problems, time stepping and numerical damping
had to be cautiously tuned. In the steady case under consideration, such aspect need not be taken into account. The solution (𝒖1, 𝑝1)
is approached by a sequence (𝒖𝑘1 , 𝑝

𝑘
1) defined by:

• 𝒖01 = 0
• 𝑝𝑘1 =  (𝒖𝑘−11 )
• 𝒖𝑘1 = (𝑝𝑘1)

The iterations are stopped when the relative error ‖𝒖𝑘1 − 𝒖𝑘−11 ‖∕‖𝒖𝑘−11 ‖ is smaller than a given error 𝜖 = 10−5. If this sequence
is convergent, its limit is solution of the fluid/structure coupled problem. The fluid and structural solvers are coupled by the solid
boundary condition (): 𝝈𝑠1𝒏1 = −𝑝1𝒏1 and the fluid boundary condition (): ⟨𝒗1,𝒏1⟩ = 0. This algorithm is non intrusive, the
fluid and structure solvers are black box that can be changed at will. However, there is no general proof of convergence and this
coupling algorithm is known to fail in some cases. In the specific regime studied, the convergence was achieved using relaxation in
a few iteration (less than 15).
10
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Fig. 4. Schematic defining the notation used in the blade element method.

3.2. Fluid solver, blade element method

The fluid equations of the propulsion phenomenon are the incompressible Navier and Stokes equations, the computation of
pressure distributions and global forces is well documented and many simplified approach exists. In this study a complete and
precise incompressible fluid model is not needed and the blade element method (Glauert, 1935) is used. It is a simplified method
used in pre-design studies of propellers. The interaction between blades and the flow around the axis of the blades are deemed
negligible. The blades are cut along the radial axis and each blade sections of infinitesimal thickness d𝑟 are considered independent
from one another. They are modeled as a 2D section immersed in a 2D flow. The propulsion phenomenon is therefore split into
independent bi-dimensional lifting flow computation (see Fig. 4).

The reference axis system of a blade is denoted :
(

𝒆𝑥, 𝒆𝑦, 𝒆𝑙
)

where 𝒆𝑙 is the direction of the spar and 𝒆𝑥 is the rotation axis. The
incident flow generated by the ship motion reads 𝑣∞𝒆𝑥 and the rotation speed of the propeller 𝜔𝑝 is constant. The bi-dimensional
sections are characterized by a chord 𝑐(𝑟), a rake angle 𝜃𝑔𝑒𝑜𝑚 and a pressure coefficient 𝐶𝑝 that needs to be computed.

The section at distance 𝑟 from the hub suffers a flow with a velocity norm 𝑣𝑎 =
√

𝑣2∞ + (𝜔𝑝𝑟)2 and an angle of attack 𝛼𝑎 = 𝛼−𝜃geom
where angle 𝛼 is derived from the relation 𝛼 = arctan2

(

𝑣𝑦, 𝑣𝑥
)

, with:

• 𝑣𝑦 = 𝑟𝜔𝑝
• 𝑣𝑥 = 𝑣∞

The local pressure is computed using the following relation: 𝑝1 =
1
2𝜌𝑣

2
𝑎𝐶𝑝

(

𝑟, 𝛼𝑎(𝑟), 𝑣𝑎(𝑟)
)

.2.1. Bidimensional fluid solver
The fluid is modeled as a perfect fluid, potential solutions are considered and the singularity superposition method is applied

as in Xfoil Drela, 1989 or Katz and Plotkin, 2001). Two elementary solutions are used: the vortex of intensity 𝛾 and of velocity
otential 𝜙𝑣 and masses of intensity 𝜎 and of velocity potential 𝜙𝑚. The vortex singularities models in a straightforward fashion lift
henomenon. The velocity potential of the flow around a section  is:

𝛷(𝑥, 𝑦) = 𝑣𝑎(cos(𝛼𝑎)𝑥 + sin(𝛼𝑎)𝑦) + ∫
𝛾(𝑠)𝜙v(𝑥, 𝑦, 𝑠)𝑑𝑠 + ∫

𝜎(𝑠)𝜙m(𝑥, 𝑦, 𝑠)𝑑𝑠 (35)

here vortex density 𝛾 and masses density 𝜎 are the unknown to be computed.
The Annexe A shows how Eq. (35) is discretized and how the vortex and mass density are determined. The velocity field can

hen be computed and Bernoulli law gives the pressure coefficient at each point (𝑥, 𝑦): 𝐶𝑝(𝑥, 𝑦) = 1 −
(

𝑣(𝑥, 𝑦)∕𝑣∞
)2. As the fluid

s considered inviscid, the drag coefficient 𝐶𝑑 = ∫ 𝑝 ⟨𝒏, 𝒆𝑥⟩ = 0. The Kutta–Joukowski theorem gives a very convenient way of
omputing the local lift coefficient: 𝐶𝑙 =

2𝛤
𝑉∞

where 𝛤 = ∫ 𝛾(𝑠)d𝑠

.2.2. Numerical solving process
The blade element method therefore simplifies the fluid problem resolution by splitting the 3D problem into multiple 2D

roblems. This method can be coupled to a finite element method solver , following these two steps:

1. First of all, the section must be extracted from the 3D mesh of the blade (eventually deformed with a displacement field 𝒖1).
The sections are extracted by computing the intersections of the surface element of the mesh with a cylinder centered on the
hub and of radius 𝑟 (see Fig. 5). This operation is not numerically costly and does not constraint the 3D mesh of the blade.

2. On each section computed, the flow (𝑣𝑎, 𝛼) is computed, the matrix equation (62) is constructed and solved. The pressure
field evaluated on each section is projected onto the whole mesh.
11
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Fig. 5. Extraction of the blade sections.

These steps constitute the fluid solver  :

𝑝1 =  (𝒖1) (36)

3.3. Structure solver, finite element method

The nonlinear structure problem is solved using the finite element method, this resolution is based on the weak form of the
equation which reads on configuration 1:

Find 𝒖1, for all 𝒗

∫𝛺𝑠
𝜌
⟨

(

𝜔𝑝𝑹
)2 (𝒙0 + 𝒖1

)

, 𝒗
⟩

+ ∫𝛺𝑠
𝝈1(𝒖1) ∶ 𝒗 = ∫𝜕𝛺𝑠

⟨𝑝1𝒏1(𝒖1), 𝒗⟩ (37)

Three operators are considered:

1. The gyroscopic operator

𝑊𝑔(𝒖1, 𝒗) = ∫𝛺𝑠
𝜌
⟨

(

𝜔𝑝𝑹
)2 (𝒙0 + 𝒖1

)

, 𝒗
⟩

(38)

2. The internal stress power operator

𝑊𝑖𝑛𝑡(𝒖1, 𝒗) = ∫𝛺𝑠
𝝈1(𝒖1) ∶ 𝒗 (39)

3. The external stress power operator

𝑊𝑒𝑥𝑡(𝒖1, 𝒗) = ∫𝜕𝛺𝑠
⟨𝑝1𝒏(𝒖1), 𝒗⟩ (40)

The internal and external stress power operators are nonlinear with respect to the displacement 𝒖1 and the pressure field is modeled
by a follower load meaning that 𝑝 = 𝑝◦𝜙20. The Appendix B shows how Eq. (37) is discretized in weak form using finite method. At
a given hydrodynamic pressure load 𝑝, the nonlinear static problem reads:

Find 𝑼 1, such that:
⟨

𝑭 𝑖𝑛𝑡 (𝑼 1
)

,𝑽
⟩

+ ⟨𝑲𝑐𝑼 1,𝑽 ⟩ =
⟨

𝑭 𝑒𝑥𝑡 (𝑼 1
)

,𝑽
⟩

− ⟨𝑭 𝑔 ,𝑽 ⟩ for all 𝑽 (41)

As Eq. (41) must be true for all 𝑽 , it can be expressed as a nonlinear vector equation:

𝑭 𝑖𝑛𝑡 (𝑼 1
)

+𝑲𝑐𝑼 1 = 𝑭 𝑒𝑥𝑡 (𝑼 1
)

− 𝑭 𝑔 (42)

This equation is then solved by a Newton–Raphson algorithm, these operations compose the structure operator :
12
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4. Solver for the vibroacoustic problem

4.1. Monolithic formulation

The vibroacoustic phenomenon equations (Eq. (33)) can be solved with finite element method in a monolithic 𝑢 − 𝜓 formu-
lation (Everstine, 1981). To take into account an infinite fluid domain, the BGT (Bayliss et al., 1982) conditions are used on the
boundary 𝛤∞ of the spherical fluid domain of radius 𝑅:

⟨∇𝜓2,𝒏1⟩ +
( 𝑖𝜔
𝑐

+ 1
𝑅

)

𝜓2 = 0 (44)

The monolithic 𝑢 − 𝜓 finite element method is used. As the displacement 𝒖2 is small, the actual configuration 2 and the
intermediate configuration 1 are very close to one another and the weak formulation of the problem is solved on configuration 1:

• Find 𝒖2, such as:

− 𝜔2
∫𝛺𝑠

𝜌𝑠 ⟨𝒖2, 𝒗⟩ + ∫𝛺𝑠
𝝈2 ∶ ∇𝒗 + 𝑖𝜔∫𝜕𝛺𝑠

𝜌𝜓2 ⟨𝒗,𝒏1⟩ = ∫𝛤 excit
𝑝excit

⟨𝒗,𝒏1⟩ for all 𝒗 (45)

• Find 𝜓2, such as:

− 𝜔2
∫𝛺𝑓

𝜌
𝑐2
𝜓2𝜙 + ∫𝛺𝑓

𝜌∇𝜓2∇𝜙 +
(

𝑖𝜔 + 𝑐
𝑅

)

∫𝛤∞

𝜌
𝑐
𝜓2𝜙 − 𝑖𝜔∫𝜕𝛺𝑠

𝜌 ⟨𝒖2,𝒏1⟩𝜙 = 0 for all 𝜙 (46)

4.2. Structural equations

The structural equation (Eq. (45)) has three operators written on configuration 1 that need to be discretized:

• Mass bilinear form: 𝑚(𝒖2, 𝒗) = ∫𝛺𝑠 𝜌𝑠 ⟨𝒖2, 𝒗⟩
• Stress power bilinear form: 𝑊 (𝒖2, 𝒗) = ∫𝛺𝑠 𝝈2(𝒖2) ∶ ∇1𝒗
• Fluid–structure coupling bilinear form: 𝑐(𝜓2, 𝒗) = ∫𝜕𝛺𝑠 𝜌𝜓2 ⟨𝒗,𝒏⟩
• The imposed pressure linear form: 𝑓 (𝒗) = ∫𝛤 excit 𝑝excit

⟨𝒗,𝒏⟩

The mass, coupling and imposed pressure operator can be discretized on configuration 1 as:

𝑚(𝒖2, 𝒗) ⇒ ⟨𝑴𝑼 2,𝑽 ⟩

𝑐(𝜓2, 𝒗) ⇒ ⟨𝑪𝜳 2,𝑽 ⟩

and

𝑓 (𝒗) ⇒
⟨

𝑷 excit,𝑽
⟩

Matrices 𝑴 and 𝑪 are called mass matrix and coupling matrix and 𝑷 excit the force vector.
The stress power operator must be considered here with extra care. The stress tensor 𝝈2 has two contribution: a geometrical one

and material one. Therefore the operator is split into two contributions:

𝑊 (𝒖2, 𝒗) = ∫𝛺𝑠
1
𝐽0

𝑭 0d𝑺𝒖1 (𝒖2)𝑭
𝑇
0 ∶ 𝜖(𝒗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑊 mat

+∫𝛺𝑠
(

∇1𝒖2
)

𝝈1 ∶ ∇1(𝒗)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑊 geom

(47)

The operator 𝑊 mat can be rewritten on configuration 0 and reads:

𝑊 mat(𝒖2, 𝒗) = ∫𝛺𝑠
d𝑺𝒖1 (𝒖2) ∶ 𝑬𝑣(𝒖1, 𝒗) (48)

where, 𝑬𝑣(𝒖1, 𝒗) = 1∕2(𝑭 𝑇
0 ∇1𝒗 + (∇1𝒗)𝑇𝑭 0) (see Appendix B). Using the following relations:

• ∇1𝒖2 = (∇0𝒖2)𝑭 −1
0

• ∇1𝒗 = (∇0𝒗)𝑭 −1
0

• 𝑨𝑪𝑇 ∶ 𝑩 = 𝑨 ∶ 𝑩𝑪

the geometrical contribution can be rewritten as 𝑊 geom(𝒖2, 𝒗) = ∫𝛺𝑠 (∇0𝒖2)𝑺(𝒖1) ∶ 𝑭 𝑣. The symmetry of tensor 𝑺 yields:

𝑊 geom(𝒖2, 𝒗) = ∫𝛺𝑠
𝑺(𝒖1) ∶

1
2
(

(∇0𝒖2)𝑇∇1𝒗 + (∇1𝒗)𝑇∇0𝒖2
)

= ∫𝛺𝑠
𝑺(𝒖1) ∶ d𝑬𝑣

𝒖1
(𝒖2, 𝒗)
13
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Therefore, the stress power operator has the following expression on configuration 0:

𝑊 (𝒖2, 𝒗) = ∫𝛺𝑠
d𝑺𝒖1 (𝒖2) ∶ 𝑬𝑣(𝒖1, 𝒗) + 𝑺(𝒖1) ∶ d𝑬𝑣

𝒖1
(𝒖2, 𝒗) (49)

This is the same expression as in Eq. (67), the stress power operator of the vibroacoustic phenomenon 𝑊 (𝒖2, 𝒗) is the differential
of the internal stress power operator d𝑊 int

𝒖1
(𝒖2, 𝒗). In most finite element method software, a features that computes this operator

lready exists, no specific costly numerical development is therefore needed, note that this operator must be built on the initial
onfiguration 0 (in other word on the undeformed mesh). The discretized structural equation in weak form therefore reads:

Find 𝑼 2, such that:

−𝜔2
⟨𝑴𝑼 2,𝑽 ⟩ + 𝑖𝜔 ⟨𝑪𝜳 2,𝐕⟩ +

⟨

𝑲 int(𝑼 1)𝑼 2,𝑽
⟩

=
⟨

𝑷 excit,𝐕
⟩

for all 𝑽 (50)

The corresponding strong formulation takes the form of the following matrix system:

− 𝜔2𝑴𝑼 2 + 𝑖𝜔𝑪𝜳 2 +𝑲 int(𝑼 1)𝑼 2 = 𝑷 excit (51)

4.3. Fluid equations

The fluid equation in weak form has four bilinear operators that need to be discretized, on configuration 1. They take the form:

• fluid mass bilinear form 𝑔(𝜓2, 𝜙) = ∫𝛺𝑓
𝜌
𝑐2
𝜓2𝜙 which is discretized into:

𝑔(𝜓2, 𝜙) ⇒ ⟨𝑮𝜳 2,𝜱⟩

• fluid rigidity bilinear form ℎ(𝜓2, 𝜙) = ∫𝛺𝑓 𝜌∇(𝜓2)∇(𝜙) which is discretized into:

ℎ(𝜓2, 𝜙) ⇒ ⟨𝑯𝜳 2,𝜱⟩

• impedance bilinear form 𝑞(𝜓2, 𝜙) = ∫𝛤∞
𝜌
𝑐 𝜓2𝜙 which is discretized into:

𝑞(𝜓2, 𝜙) ⇒ ⟨𝑸𝜳 2,𝜱⟩

• fluid–structure coupling bilinear operator 𝑐(𝜙, 𝒖2) = ∫𝜕𝛺𝑠 𝜌 ⟨𝒖2,𝒏1⟩𝜙 which is discretized into:

𝑐(𝜙, 𝒖2) ⇒
⟨

𝑪𝑇𝑼 2,𝜱
⟩

he discretized fluid problem then reads:
Find 𝜳 2, such as:

−𝜔2
⟨𝑮𝜳 2,𝜱⟩ + 𝑖𝜔

(

−
⟨

𝑪𝑇𝑼 2,𝜱
⟩

+ ⟨𝑸𝜳 2,𝜱⟩

)

+ ⟨𝑯𝜳 2,𝜱⟩ + 𝑐
𝑅

⟨𝑸𝜳 2,𝜱⟩ = 0 for all 𝜱 (52)

The corresponding strong formulation yields the following matrix system:

− 𝜔2𝑮𝜳 2 + 𝑖𝜔
(

−𝑪𝑇𝑼 2 +𝑸𝜳 2
)

+𝑯𝜳 2 +
𝑐
𝑅
𝑸𝜳 2 = 0 (53)

4.4. Numerical solving method

The combination of matrix system ((51), (53)) gives the symmetric monolithic formulation of the vibro-acoustic phenomenon:
[

−𝜔2
(

𝑴 𝟎
𝟎 −𝑮

)

+ 𝑖𝜔
(

𝟎 𝑪
𝑪𝑇 −𝑸

)

+
(

𝑲 tan(𝐔1) 𝟎
𝟎 −𝑯 − 𝑐

𝑅𝑸

)

]

(

𝐔2
Ψ2

)

=
(

𝐏excit

𝟎

)

(54)

. Numerical application of the methodology

This methodology is implemented in an in-house python (Van Rossum and Drake, 2009) library. The procedures of code_aster
EDF, 1989) are used for the assembly of the structural and vibroacoustic matrix systems which are solved using MUMPS (Amestoy
t al., 2002). The blade element method was implemented in python using NumPy (Harris et al., 2020) for all vectorizable
peration and Cython (Behnel et al., 2011) when vectorization was not possible. All computations are parallelized using OpenMP
rotocols (Chandra et al., 2001).

This formulation is applied to a simplified one meter long blade with NACA0006 sections. The chord of the sections varies in
linear way: the root is 250 mm long and the blade tip is 75 mm long. The geometry of the blade is fairly simple but remains

epresentative of a real propeller blade. Fig. 6(a) shows the CAD of the blade.
The blade suffers the following static flow:

• ship’s velocity: 𝑣∞ = 8 m s−1
−1
14

• rotation velocity: 𝜔𝑝 = 0.8 rad s
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Fig. 6. CAD of the propeller and base mesh used in every computation.

Table 1
Material and fluid properties of the test case.
Water Aluminum Hyperelastic material

𝜌𝑓 1000 kg m−3 𝐸 65 GPa 𝐶10 0.238 MPa
𝑐0 1500 m s−1 𝜈 0.36 𝐶01 0.532 MPa

𝜌 2500 kg m−3 𝐾 2.1 GPa
Constitutive law Saint-Venant Kirchhoff 𝜌 1400 kg m−3

Constitutive law Mooney–Rivlin

The hub is 0.2 m long, therefore the angle of attack at the tip blade is 8◦, the tip section is therefore under the stall limit and
the flow remains unseparated. The harmonic excitation is simplified in this numerical application, a uniform pressure is applied
on one side of the blade between 0.9 m and 1 m. The fluid is water, the blade is made of aluminum and a film of visco-elastic
material is inserted inside the blade, its shape and position within the blade is shown in Fig. 6(a). Table 1 gives the materials and
fluid properties used.

The simplified geometry of the structure allows to test the proposed numerical approach, while being representative of the end
application. The visco-elastic material has frequency-dependent moduli in the Fourier space, However, for the sake of simplicity
these variation will not be taken into account: in this work the focus is put on the effect of the pre-stress and pre-strain on the
vibrational characteristics. The damping characteristics of the hyper-visco-elastic layer is the object of a companion paper. The
propulsion problem is solved twice using two different algorithms. First a weak coupling computation is done, the fluid solver and
structural solver are chained, and the retroaction of the blade’s deformation on the flow is neglected. Then an iterative strong coupling
computation is carried out, the simple iterative coupling algorithm is applied until convergence. The vibroacoustic problem is solved
on three different configurations:

• First on the reference configuration, a classical 𝑢 − 𝛹 system is solved on the undeformed mesh.
• Then on the configuration 1 without pre-stress and without pre-strain, a classical 𝑢−𝛹 system is solved on the deformed mesh.

The configuration 1 is computed by the solving of system (34)
• At last, on configuration 1 taking into account the pre-stress and pre-strain generated by the propulsion phenomenon

computation. The system (34) is first solved to compute the deformed mesh and the pre-stress tensor. Then the modified
𝑢 − 𝛹 system (54) is solved.

5.1. Propulsion phenomenon

For both the weakly coupled and strongly coupled computations, 50 hydrodynamic sections are extracted from the mesh. In
the strongly coupled computation, this extraction must be carried out at each iteration, which remained cheap compared to the
individual fluid (62) and structural (42) problem resolution. The strongly coupled computation converges to a relative error of
5 10−4 on the displacement field in 9 iterations. At each iteration, the structure solver initializes the Newton–Raphson algorithm
with the previous solution, this allows to decrease significantly the total computation time.

To measure the true deformation of the section, the normalized section is analyzed. It corresponds to a section normalized by its
chord and represented with its leading edge put at the origin and its trailing edge at point (1, 0). The Fig. 7(a) shows a comparison
between normalized blade tip sections extracted from the initial configuration and configuration  . The pure deformation of the
15
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Fig. 7. Effect of the fluid/structure interaction on the structural deformation.

section remains small, it shows However, a positive camber increase. Fig. 7(b) displays the section as extracted from the mesh,
the full deformation of the section is mainly a translation and a blade angle (about −1.3◦) is added to the section. This change in
blade angle is significant and a modification of the local load is expected. Fig. 8 shows the evolution of the coefficient of lift 𝐶𝐿
along the wingspan. As expected, the load of the strongly and weakly coupled computations are quite different. In weakly coupled
computation the geometry of the blade is not deformed, the angle of attack 𝛼 at each section 𝑧 is arctan(𝑧𝜔∕𝑉∞) ∼ 𝑧𝜔∕𝑉∞ and in the
attached flow regime, the NACA 0006 lift coefficient can be approached by 𝐶𝐿 = 2𝜋𝛼, therefore the load is almost linear with 𝑍
coordinate. The load of the strongly coupled computation is not linear with 𝑧, the positive camber increase creates a lift generation
increase at the root of the blade. Closer to the tip of the blade, this effect is mitigated by the negative blade angle and the lift
generation is much lower than in the chained computation. Here the deformation of the blade has a overall negative effect on the
performances.

From the structural point of view, the displacement of the wingtip is about 130 mm which is significant and the viscoelastic layer
suffers a 3% strain. The global movement is a flexion of the blade, the viscoelastic film However, suffers a shear in the 𝑥𝑧 plane.
Fig. 7(c) shows a comparison of the deformed and initial structure.

5.2. Vibroacoustic phenomenon

The vibroacoustic phenomenon is studied on the frequency range [100, 200] Hz with a 0.05 Hz frequency step. A global hysteric
damping of 0.01% added. Three computations were carried on different configuration and different modeling hypothesis:

• [I] Configuration 0
• [II] Configuration 1, no pre-stress or pre-strain (small perturbation hypothesis)
• [III] Configuration  , with pre-stress and pre-strain
16
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Fig. 8. Adimensional local lift coefficient along the blade’s spar for the strongly and weakly coupled computation.

Fig. 9. Frequency response function on the reference configuration, the deformed configuration without pre-strain and without pre-stress and on the deformed
configuration with both pre-stress and pre-strain. The modal deformation on the reference configuration is displayed for each peak.

We use a common base mesh for all the configurations, it is computed on the initial configuration surrounded by a sphere of fluid.
The mesh for the deformed configuration is computed using the pseudo material method (Boncoraglio et al., 2021). Fig. 6(b) shows
the base mesh used in all computations, it is made of ∼2.3 105 nodes and ∼1.7 105 quadratic tetrahedral elements with 10 points. The
Fig. 10 shows the sound power spectrum of the three computations. The displacement field of each modes is displayed. The first and
third modes are bending modes and the second mode is a torsion mode. The computation [I] and [III] shows significant differences
in the sound power spectrum. On configuration 1, the torsion mode is shifted towards lower frequencies and the bending modes
are shifted towards higher frequency. The amplitudes are also globally higher on this configuration. The computations [II] and [III]
gives similar results is this case. Therefore the change of geometry is the main effect at play here, the pre-strain and pre-stress shifts
the power spectrum towards slightly higher frequencies. The same conclusions can be drawn from the frequency response function
displayed in Fig. 9.

5.3. Discussion

The most critical steps of the methodology were compared to experimental studies in order to evaluate the different hypothesis.
Composite blades were built and tested in Ecole Centrale Nantes tow tank, the deformation (using fiber Bragg grating sensors)
17
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Fig. 10. Sound power computed on the reference configuration, the deformed configuration without pre-strain and without pre-stress and on the deformed
configuration with both pre-stress and pre-strain. The modal deformation on the reference configuration is displayed for each peak.

Fig. 11. Comparison between the experimental results and the numerical computations on the monolithic blade.

and hydrodynamic forces (using a hydrodynamic balance) are compared. A first conference paper was submitted to CSMA
2024 (Rakotomalala et al., 2024), a correlation between experimental and numerical data is proposed regarding the so-called
propulsion phenomenon. Figs. 11(a) and 11(b) are extracted from this conference paper.

They show that if the simplified element method yields lift and drag very different from the measured data, a more sophisticated
lifting line blade element method can match the measurement on lift and drag data. Using this improved fluid model, the strongly
coupled algorithm is also able to compute deformations along the blade that matches the measured data.

Another experiment was carried out to evaluate the simplified formulation of the stress tensor for vibration under pre-stress and
pre-strain. Composite plates were built and tested on an in-house experimental setup that allows to measure the FRF of these plates
with a given torsional pre-strain. This is the subject of a dedicated article currently being written.

This paper aims at presenting a simplified model that can be used to compute a specific noise contribution of a propeller in a
specific industrial problem. The fluid model was simplified to large extend to illustrate the methodology, a more sophisticated fluid
model could be used. However, for the specific propeller geometry and operating conditions considered, the hypothesis of a lifting
line model is reasonable and representative of the physics at stake.

6. Conclusions and perspectives

This approach aims at representing both the large deformation of the structure and its small vibrations in the fluid in a simplified
manner. Therefore both the steady nonlinear interaction between an incompressible fluid and a structure and the noise radiated by
small vibrations of the pre-stressed structure can be computed as a whole. Effects of the change in geometry and material stress
on the vibrations can then be evaluated. Within the hypothesis of this study, the approach was mathematically proven to be valid.
The propeller suffers two main phenomena: the propulsion phenomenon which takes into account the nonlinear strain due to the
lift generation along the section of the propeller and the vibroacoustic phenomenon which describes the linear interaction between
18
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the vibrating structure and the acoustic fluid on the pre-strained and pre-stressed structure. The two phenomena are chained: the
propulsion phenomenon resolution gives the pre-strain and pre-stress as input for the vibroacoustic phenomenon which does not
have a retro-action on the nonlinear problem. This approach was implemented in a python library and illustrated on a simplified
blade geometry. The noise emission of a deformed flexible propeller blade can be significantly different from its emission at rest.
The geometrical deformation seems to be of first order whereas the pre-stress seems to be of second order in the case of metallic
propeller’s blade.

In this approach, the vibrations of the structure are caused by given oscillating pressures applied a surface of the blade chosen
n order to stimulate the different modes of the structure. This pressure field is not physical but give ideas on the acoustical
ignature of the blades in a straightforward manner. In reality, the excitation comes from the pressure fluctuations of the turbulent
oundary layer, two approaches could be considered. First, the fluctuating pressure fields could be computed using fully resolved
ES computation, the pressure field would therefore be deterministic. It would However, require to carry out a very expensive
omputation for each change of steady state of the blade. This problem could be tackled by the construction of a metamodel of the
luctuating pressure field using a limited number of LES computations in an offline phase. Another approach could be to carry out
tochastic computations using turbulent pressure spectrum models.

This model needs as input a constitutive law for the damping material that takes into account the material nonlinear
tatic properties and the linear vibrations characteristics around the static pre-stressed and pre-strained configuration. Such an
yper-visco-elastic constitutive law must therefore be determined, which is the topic of a companion paper.

The computation time of the propulsion phenomenon are reasonable because of the simplified fluid model used, However, the
ibroacoustic phenomenon computation complexity can be off-putting as the number of degrees of freedom can be important
n an industrial geometry and the frequency range considered can be huge, reduction model methods like proper orthogonal
ecomposition, reduce basis (Maday and Stamm, 2013) and neural networks might be used to lower the computational costs.
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Appendix A. Bidimensional fluid solver

The 2D flow around the blade section derives from a potential:

𝛷(𝑥, 𝑦) = 𝑣𝑎(cos(𝛼𝑎)𝑥 + sin(𝛼𝑎)𝑦) + ∫
𝛾(𝑠)𝜙v(𝑥, 𝑦, 𝑠)𝑑𝑠 + ∫

𝜎(𝑠)𝜙m(𝑥, 𝑦, 𝑠)𝑑𝑠 (55)

where 𝛾 and 𝜎 are vortex and mass distribution that needs to be determined. The lifting section  is discretized in 𝑁 panels, for
0 ≤ 𝑖 ≤ 𝑁−1, panels 𝑖 is the segment (𝒙𝑖,𝒙𝑖+1), panel 𝑁−1 represents the trailing panel (𝒙𝑁−1,𝒙0). In this paper, only thick trailing
edge is considered therefore 𝒙𝑁−1 ≠ 𝒙0. The density 𝛾 is approached by a linear function on each panel and function 𝜎 is taken as
constant with value 𝜎te on the trailing edge panel. The sum ∫ 𝜎(𝑠)𝑑𝑠 must be null as the section neither create nor consume fluid,
therefore we take 𝜎

|𝑖 = −𝜎te 𝑙𝑁−1
𝑙𝑖

where 𝑙𝑖 is the length of panel 𝑖

Remark. The index 𝑖 + 1 will be taken as its congruence modulo N. This allows to take into account the trailing edge panel in a
straightforward manner (see Fig. 12).
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Fig. 12. Section discretized in panels.

The potential is therefore split on each panel 𝑖:

𝛷(𝑥, 𝑦) = 𝑣𝑎(cos(𝛼𝑎)𝑥 + sin(𝛼𝑎)𝑦) +
𝑁−1
∑

𝑖=0
∫𝑖

𝛾(𝑠)𝜙v(𝑥, 𝑦, 𝑠)𝑑𝑠 + ∫𝑖
𝜎(𝑠)𝜙m(𝑥, 𝑦, 𝑠)𝑑𝑠

= 𝑣𝑎(cos(𝛼𝑎)𝑥 + sin(𝛼𝑎)𝑦) +
𝑁−1
∑

𝑖=0
𝛷v
𝑖 (𝑥, 𝑦) +

𝑁−1
∑

𝑖=0
𝛷m
𝑖 (𝑥, 𝑦)

here 𝛷v
𝑖 (respectively 𝛷m

𝑖 ) is the panel 𝑖 contribution to the vortex (respectively to the mass). Each panel 𝑖 is parameterized
sing its curvilinear abscissa 𝑠 normalized in the interval [−1, 1], and each point of a panel is approached by 𝒙(𝑠) = 𝒙𝑖+1−𝒙𝑖

2 𝑠+ 𝒙𝑖+1+𝒙𝑖
2

On each panel 𝑖 the density of vortex is linear with respect to 𝑠: 𝛾
|𝑖 (𝑠) =

𝛾𝑖+1−𝛾𝑖
2 𝑠+ 𝛾𝑖+1+𝛾𝑖

2 , the vortex contribution 𝛷v
𝑖 therefore

reads:

𝛷v
𝑖 (𝑥, 𝑦) =

𝑙𝑖
4𝜋 ∫

1

−1
𝛾(𝑠)𝜃(𝒙 − 𝒙𝑠)𝑑𝑠 (56)

where 𝜃(𝒓) is the angle between 𝒓 and a given axis of reference 𝒆𝑥 Fig. 13 shows that angle 𝜃 depends on the panel angle 𝜃𝑖 and the
local coordinates (𝑥̄, 𝑦̄) in the reference axis of the panel:

𝜃(𝒙 − 𝒙𝑠) = 𝜃𝑖 + arctan2(𝑦̄, 𝑥̄ − 0.5𝑙𝑖𝑠) (57)

The contribution of 𝛷v
𝑖 to the panel 𝑖 therefore reads:

𝛷𝑣
𝑖 (𝑥, 𝑦) =

𝛾𝑖+1 + 𝛾𝑖
2

𝜙v+
𝑖 (𝑥, 𝑦) +

𝛾𝑖+1 − 𝛾𝑖
2

𝜙v-
𝑖 (𝑥, 𝑦) (58)

where

• 𝜙v+
𝑖 (𝑥, 𝑦) = 𝑙𝑖

4𝜋 ∫ 1
−1 𝜃𝑖 + arctan2(𝑦̄, 𝑥̄ − 0.5𝑙𝑖𝑠)𝑑𝑠

• 𝜙v-
𝑖 (𝑥, 𝑦) =

𝑙𝑖
4𝜋 ∫ 1

−1 arctan2(𝑦̄, 𝑥̄ − 0.5𝑙𝑖𝑠)𝑠𝑑𝑠

On each panel 𝑖, the mass density is constant with value 𝜎𝑖, the contribution 𝛷𝑚
𝑖 therefore reads:

𝛷m
𝑖 (𝑥, 𝑦) = 𝜎𝑖𝜙

m
𝑖 (𝑥, 𝑦) (59)

where: 𝜙m
𝑖 (𝑥, 𝑦) =

𝑙𝑖
8𝜋 ∫ 1

−1 ln(𝑦̄
2 + (𝑥̄ − 0.5𝑙𝑖𝑠)2)𝑑𝑠

The velocity field is the spatial gradient of the potential:

𝒗(𝑥, 𝑦) = 𝑣∞
(

cos(𝛼)𝒆𝑥 + sin(𝛼)𝒆𝑦
)

+
𝑁−1
∑

𝑖=0

𝛾𝑖+1 + 𝛾𝑖
2

𝒗+𝑖 (𝑥, 𝑦) +
𝑁−1
∑

𝑖=0

𝛾𝑖+1 − 𝛾𝑖
2

𝒗−𝑖 (𝑥, 𝑦)

+
𝑁−2
∑

𝑖=0
−𝜎te𝑙𝑁−1𝒗m

𝑖 (𝑥, 𝑦) + 𝜎
te𝒗m

𝑁−1(𝑥, 𝑦)

here for 𝑎 ∈ [+,−,m], 𝒗a = 𝜕 𝜙a𝒕 + 𝜕 𝜙a𝒏
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Fig. 13. Focus on a panel.

emark. Integrals 𝜙𝑎𝑖 have an analytical expression, these expressions are then derived against 𝑥̄ and 𝑦̄. It is important to carry out
the computation in that order as the inversion of derivation and integral is generally not allowed on a neighborhood of the section.

The velocity of the fluid is constrained by the impermeability condition on the section: ⟨𝒗1,𝒏1⟩ = 0. This expression is imposed
on collocation points 𝒙𝑐𝑖 situated at the centers of each panels, 𝑁 equations are determined, giving the matrix system of equations:

𝑨v𝜸 + 𝜎te𝒂m = 𝑵 (60)

where 𝑣𝑎𝑛,𝑖𝑗 =
⟨

𝒗𝑎𝑗 (𝑥
𝑐
𝑖 , 𝑦

𝑐
𝑖 ),𝒏𝑖

⟩

for each 𝑎 ∈ [+,−,m] and:

• [

𝑨v]
𝑖𝑗 =

𝑣+𝑛,𝑖(𝑗+1)+𝑣
−
𝑛,𝑖(𝑗+1)

2 +
𝑣+𝑛,𝑖𝑗−𝑣

−
𝑛,𝑖𝑗

2
• [

𝒂m]

𝑖 =
∑𝑁−2
𝑗=0 −𝑙𝑁−1𝑣m

𝑛,𝑖𝑗 + 𝑣
m
𝑛,𝑖(𝑁−1)

• [

𝑵m]

𝑖 = −𝑣∞
(

cos(𝛼)𝑛𝑖|𝑥 + sin(𝛼)𝑛𝑖|𝑦
)

This system cannot be solved as it is of shape 𝑁 × (𝑁 + 1), it is due to the fact that the circulation around a closed object is not
etermined in a perfect flow, the empirical Kutta condition (Katz and Plotkin, 2001) that reads:

𝛾0 + 𝛾𝑁−1 = 0 (61)

dds an equation and impose the value of the circulation, the equation becomes:

⎛

⎜

⎜

⎜

⎜

⎝

𝑨v 𝒂m

1 0 ... 0 1 0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

𝛾0
⋮

𝛾𝑁−1
𝜎te

⎞

⎟

⎟

⎟

⎟

⎠

= 𝑣∞

⎛

⎜

⎜

⎜

⎜

⎝

cos(𝛼)

⎛

⎜

⎜

⎜

⎜

⎝

𝑛0|𝑥
⋮

𝑛𝑁−1|𝑥
0

⎞

⎟

⎟

⎟

⎟

⎠

+ sin(𝛼)

⎛

⎜

⎜

⎜

⎜

⎝

𝑛0|𝑦
⋮

𝑛𝑁−1|𝑦
0

⎞

⎟

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎟

⎠

(62)

Appendix B. Propulsion structural problem discretization

B.1. Internal stress power operator

The two following paragraphs made extensive use of Hoareau et al. (2022). The internal stress power operator is discretized on
the initial configuration, rewritten on configuration 0 it reads:

𝑊 int(𝒖1, 𝒗) = 𝐽10(𝑿)𝝈1(𝒖1) ∶ 𝝐(𝒗) (63)
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where 𝝐(𝒗) = 1
2

(

∇1𝒗 + (∇1𝒗)𝑇
)

is the virtual deformation tensor. The Cauchy tensor 𝝈1 and the Piola–Kirchhoff I tensor 𝑺1 are
linked by the expression: 𝝈1 = 𝐽−1

10 𝑭 10𝑺1𝑭 𝑇
10. Using 𝝐 symmetry, the double contraction 𝝈1 ∶ 𝝐 then reads:

𝐽10𝝈1 ∶ 𝝐 = 𝑺1 ∶
(

𝑭 𝑇
10𝝐𝑭 10

)

(64)

The virtual deformation on configuration 0 is noted: 𝑬𝑣 = 𝑭 𝑇
10𝝐𝑭 10, it can be rewritten with derivative on the initial

configuration:

𝑬𝑣 = 1
2
(

𝑭 𝑇
10∇0𝒗 + (∇0𝒗)𝑇𝑭 10

)

(65)

The internal stress power operator then reads:

𝑊 int(𝒖1, 𝒗) = ∫𝛺𝑠
𝑺(𝒖1) ∶ 𝑬𝑣(𝒖1, 𝒗) (66)

The numerical procedure used to solve the nonlinear structure problem needs the differential of operator 𝑊 𝑖𝑛𝑡. This expression can
be computed by linearization of operator 𝑊 𝑖𝑛𝑡(𝒖1 + 𝜹𝒖, 𝒗) in 𝜹𝒖, its expression then reads:

d𝑊 int
𝒖1

(𝜹𝒖, 𝒗) = ∫𝛺𝑠
d𝑺𝒖1 (𝜹𝒖) ∶ 𝑬𝑣(𝒖1, 𝒗) + 𝑺(𝒖1) ∶ d𝑬𝑣

𝒖1
(𝜹𝒖, 𝒗) (67)

where d𝑬𝑣
𝒖1
(𝜹𝒖, 𝒗) = 1

2

(

(∇0𝜹𝒖)𝑇∇0𝒗 + (∇0𝒗)𝑇∇0𝜹𝒖
)

. These operators are then discretized using the finite element method, the
internal stress operators then reads:

𝑊 int(𝒖1, 𝒗) ⇒
⟨

𝑭 int(𝑼 1),𝑽
⟩

(68)

and the differential operator reads:

d𝑊 int
𝒖1

(𝜹𝒖, 𝒗) ⇒
⟨

𝑲 int(𝑼 1)𝜹𝑼 ,𝑽
⟩

(69)

where 𝑼 1, 𝜹𝑼 and 𝑽 are displacement nodal vectors, 𝑭 int(𝑼 1) is the internal stress nodal force vector and 𝑲 int(𝑼 1) is the internal
forces contribution to the tangential rigidity matrix

B.2. External stress power operator

The following pressure field 𝑝 is taken into account by external stress operator 𝑊 ext(𝒖1, 𝒗), it is nonlinear in 𝒖1 because the
normal vector 𝒏1 depends on the geometry. The differential of 𝑊 ext(𝒖1, 𝒗) can be computed by linearization of 𝑊 ext(𝒖1 + 𝜹𝒖, 𝒗),

𝑑𝑊 ext
𝒖1

(𝜹𝒖, 𝒗) = ∫𝜕𝛺𝑠
𝑝1

⟨

d𝒏𝒖1 (𝜹𝒖), 𝒗
⟩

(70)

he external stress operator 𝑊 ext and its differential 𝑑𝑊 ext are discretized using the finite element method, their expression does
ot need to be rewritten on the initial configuration 0 as each surface element on configuration 1 can be parameterized using the
eference element in a straightforward manner. The discretized external stress operator reads:

𝑊 ext(𝒖1, 𝒗) ⇒
⟨

𝐅ext(𝑼 1),𝑽
⟩

(71)

nd the discretized differential reads:

d𝑊 ext
𝒖1

(𝜹𝒖, 𝒗) ⇒
⟨

𝑲ext(𝑼 1)𝜹𝑼 ,𝑽
⟩

(72)

ector 𝑭 𝑒𝑥𝑡(𝑼 1) is the external stress nodal force vector and 𝑲𝑒𝑥𝑡(𝑼 1) is the external forces contribution to the tangential rigidity
atrix

.3. Gyroscopic operator

The gyroscopic operator can be split into two contributions:

• A linear form that takes into account the rigid body centrifugal forces:

𝑊 g
𝑟 (𝒗) = ∫𝛺𝑠

𝜌𝑠
(

𝜔𝑝𝑹
)2

⟨𝑿, 𝒗⟩ (73)

• A bilinear form that takes into account the deformation of the structure

𝑊 g
𝑑 (𝒖1, 𝒗) = ∫𝛺𝑠

𝜌𝑠
(

𝜔𝑝𝑹
)2

⟨𝒖1, 𝒗⟩ (74)

These operator are also discretized using the finite element method:

𝑊 g
𝑟 (𝒗) ⇒ ⟨𝑭 𝑟,𝑽 ⟩ (75)

nd
g

22

𝑊𝑑 (𝒖1, 𝒗) ⇒ ⟨𝑵𝑼 1,𝑽 ⟩ (76)
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