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Here, we investigate the maximum power and efficiency of thermoelectric generators 

through devising a set of protocols for the isothermal and adiabatic processes of 

thermoelectricity to build a Carnot-like thermoelectric cycle, with the analysis based 

on fluctuation theorem (FT). The Carnot efficiency can be readily obtained for the 

quasi-static thermoelectric cycle with vanishing power. The maximum 

power-efficiency pair of the finite-time thermoelectric cycle is derived, which is 

found to have the identical form to that of Brownian motors characterized by the 

stochastic thermodynamics. However, it is of significant discrepancy compared to the 

linear-irreversible and endoreversible-thermodynamics-based formulations. The 

distinction with the linear-irreversible-thermodynamics case could result from the 

difference in the definitions of Peltier and Seebeck coefficients in the thermoelectric 

cycle. As for the endoreversible thermodynamics, we argue the applicability of 

endoreversibility could be questionable for analyzing the Carnot-like thermoelectric 

cycle, due to the incompatibility of the endoreversible hypothesis that attributes the 

irreversibility to finite heat transfer with thermal reservoirs, though the distinction in 

the mathematical expressions can vanish with the assumption that the ratio of 

thermoelectric power factors at the high and low temperatures (𝛾) is equal to the 

square root of the temperature ratio, 𝛾 = √𝑇L 𝑇H⁄  (this condition could significantly 

deviate from the practical case). Lastly, utilizing our models as a concise tool to 

evaluate the maximum power-efficiency pairs of realistic thermoelectric material is 

presented with a case study on the n-type Silicon.   

Key words: Thermoelectric, Maximum power, Efficiency, Irreversible, 
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Thermodynamics, Fluctuation theorem 

 

I. Introduction 

Thermoelectricity has long been a highly active research topic, which holds a 

great potential to create solid-state energy converters capable of converting heat into 

electricity without moving components [1][2][3]. Furthermore, thermoelectric 

generator (TEG) can also serve as very crucial paradigmatic model for the researches 

of irreversible thermodynamics, like Onsager reciprocal relations (ORRs) [4], and the 

efficiency at maximum power [5], etc.  

Currently, the linear-irreversible thermodynamics has been the major tool for 

analyzing TEGs and set the fundamental principles of thermoelectric research [2][6], 

which adopts the linear phenomenological relations within the framework of ORRs. 

As for the maximum power and the corresponding efficiency of thermoelectricity, 

Tab. 1 gives the widely-recognized formulations based on the linear-irreversible 

thermodynamics: the maximum power, 𝑃Max_LIRR, is proportional to the power factor 

(PF, denoted by the symbol PF), the square of temperature difference (𝑇H − 𝑇L)
2, and 

a factor 1/4, while the efficiency (denoted by 𝜂LIRR) at max power is the half of 

Carnot efficiency (𝜂C).  

The other theoretical tool should be endoreversible thermodynamics [7][8]. Its 

core assumption, that is, the endoreversibility, reads: the irreversibility emerges 

merely owing to the finite heat exchange with heat reservoirs, while working 

substance is internally reversible and thus able to convert heat to work under Carnot 



4 

 

efficiency. This methodology has been extensively employed to handle various 

finite-time heat-engine cycles (mainly the fluid-based-mechanical-work systems) [8], 

and has derived the Curzon-Ahlborn (CA) efficiency (𝜂CA, presented in Tab. 1) that is 

widely deemed to be generic for varied types of heat engines including TEGs [9][10]. 

The half of Carnot efficiency, predicted by the linear-irreversible thermodynamics, is 

regarded as the lower-bound of the CA efficiency formulation through its Taylor 

expansion with respect to 𝜂C [10]. Much work has been conducted for recovering the 

CA efficiency in the framework of irreversible thermodynamics (linear and nonlinear) 

[5][9][10][11][12]. As for thermoelectricity, Apertet recovered the CA efficiency for a 

TEG in the limit of pure “external dissipation” [5]; Kaur et al. [12] constructed a TEG 

under the endoreversible assumption, by introducing the finite heat transfer relations 

between the TEG and heat reservoirs, and found that the use of Newton’s cooling law 

can yield the CA efficiency. Additionally, as presented in Tab 1, the maximum power 

expressions obtained by these two methodologies hold significant difference: the 

endoreversible one (𝑃Max_CA) is proportional to the square of the difference between 

the square root of temperature (√𝑇H −√𝑇L)
2
 and an effective heat conductance 𝐾T 

determined by the specifics of the system. The maximum power of the endoreversible 

TEG by Kaur et al. [12] is of the identical temperature dependence, and its effective 

heat conductance 𝐾T is merely dependent on the heat transfer coefficient rather than 

any thermoelectric coefficients (i.e., Seebeck or Peltier).  

Furthermore, another distinct formulation for the efficiency at maximum power is 

derived for varied Brownian motors on the basis of stochastic thermodynamics 
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[13][14], 𝜂ST, as listed in Tab.1. Esposito et al. [15] proved that for the finite-time 

Carnot cycles not involving stochasticity, the lower and upper bounds of 𝜂ST 

expression could be recovered under two limiting conditions, and the CA efficiency 

was also obtained in the case of symmetric dissipation. Particularly for 

thermoelectricity, Esposito et al. investigated a quantum-dot Carnot engine that 

undergoes the TEG-equivalent process using the master equation for the stochastic 

dynamics, and reached the similar conclusions to their previous work [10]. Moreover, 

following the methodology of phenomenological relations in irreversible 

thermodynamics, Apertet et al. [5] derived 𝜂ST corresponding to the case of pure 

“internal dissipation” of a TEG. As for the maximum power based on the stochastic 

thermodynamics (𝑃Max_ST, listed in Tab. 1), it holds the same temperature dependence 

as 𝑃Max_LIRR, with distinct factors (1/8 in 𝑃Max_ST and 1/4 in 𝑃Max_LIRR), while the 

exact relation between the thermoelectric PF and the term (∆𝑆)2𝛽𝑀 remains to be 

clarified. Regarding the obvious discrepancy between 𝑃Max_ST and 𝑃Max_CA, further 

investigation is also needed. 

In the present work, we build a Carnot-like thermoelectric cycle through devising 

a set of protocols for the isothermal and adiabatic processes of thermoelectricity, 

which can serve a benchmark theoretical model to study the thermoelectric 

conversion. Its maximum power and corresponding efficiency in the case of 

finite-time operation are analyzed based on the fluctuation theorem (FT)  

[16][17][18][19]. Entropy production plays a key role when investigating the 

finite-time thermodynamic cycles [13][20]. Under some mild assumptions essentially 
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involving the microscale time reversal symmetry, the FT has been proven to be a 

powerful and generic theoretical tool to study the properties of the entropy production 

for various systems that are driven arbitrarily far from equilibrium states 

[16][17][18][19][21]. By contrast, some relatively strong assumptions regarding the 

thermoelectric transport process mechanisms, which may limit the generality, are 

generally required when employing the other theoretical methods: the 

ORR-constrained linear phenomenological relations for linear-irreversible 

thermodynamics [4][6], the formulation of the finite heat exchange with heat 

reservoirs for endoreversible thermodynamics [12], and the dynamic equations (e.g. 

the master equation) for stochastic thermodynamics [10]. Furthermore, the 

discrepancy for the formulations of maximum power and efficiency obtained from the 

different methodologies is discussed for thermoelectricity. Lastly, as a case study, the 

proposed models are applied to the n-type Silicon for estimating its maximum 

power-efficiency pairs. 

 

TABLE 1 Expressions of the maximum power and the corresponding efficiency.   

 Max power 
Efficiency at 

Max power 
Refs. 

Linear 

irreversible 
𝑃Max_LIRR =

1

4
𝑃F(𝑇H − 𝑇L)

2 𝜂LIRR =
1

2
𝜂C 

Goupil et al. [6] 

Benenti et al. 

[20] 

Endoreversible 𝑃Max_CA = 𝐾T(√𝑇H −√𝑇L)
2
 

𝜂CA

= 1 − √𝑇L 𝑇H⁄  

Hoffmann [8] 

Kaur et al. [12] 

Stochastic 𝑃Max_ST =
1

8
(∆𝑆)2𝛽𝑀(𝑇H − 𝑇L)

2 𝜂ST =
𝜂C

2 − 𝛽𝜂C
 

Schmiedl et al. 

[13] 

Fu et al. [14] 

𝑇H: high temperature; 𝑇L: low temperature; 𝑃F = 𝛼S
2 𝑅e⁄ : power factor; 𝛼S: Seebeck coefficient; 

𝑅e: electric resistance; 𝜂C = 1 − 𝑇L 𝑇H⁄ : Carnot efficiency; 𝐾T: an effective heat conductance 
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dependent on the system; ∆𝑆: entropy change; 𝛽: a ratio between the dissipative couplings of cold 

and hot reservoirs; 𝑀: a coefficient dependent on the system.  

 

II. Carnot-Like Thermoelectric Cycle 

Figure 1 illustrates the Temperature (T) – Entropy (S) diagram of Carnot cycle. 

For a TEG where the targeted thermoelectric system Ψ is assumed to hold constant 

volume, the thermoelectric cycle should involve four processes:  

A → B: Isothermal process at TH (the high temperature): As shown in Fig. 2, such 

process can be realized through keeping the targeted system Ψ in contact with a heat 

reservoir of temperature TH constantly, and sequentially connecting and disconnecting 

Ψ to a series of electrochemical potential reservoirs 𝜇𝑖=1,⋯𝑁 where 𝜇1 = 𝜇𝐴 and 

𝜇𝑁 = 𝜇𝐵, during a time interval τ , in analogy to Ref. [17]. The heat QAB is absorbed 

due to the Peltier effect, and the work WAB is extracted, which is calculated as,  

 𝑊AB = −∫ 𝜇(𝑡)𝑑𝑁(𝑡)
𝜏

0

= 𝑄AB − (𝑈B − 𝑈A) (1) 

where 𝜇(𝑡) is the targeted system’s electrochemical potential at the time t, and 𝑁(𝑡) 

is its charge number at the time t. When the time interval 𝜏 → ∞, this process can be 

regarded as quasistatic.   

B → C: Adiabatic process from TH to TL (the low temperature): As presented in Fig. 3, 

the targeted system Ψ is sequentially connected and disconnected to a series of 

reservoirs {𝑇,  𝜇}𝑖=1,⋯𝑁 with {𝑇,  𝜇}1 = {𝑇B,  𝜇B} and {𝑇,  𝜇}𝑁 = {𝑇C,  𝜇C}, during a 

time interval τadia. There are actually two means to keep the process ideally adiabatic, 

i.e. no heat exchange between the targeted system Ψ and the reservoirs: this state 
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transition happens instantaneously, 𝜏adia → 0, or the thermal resistance (RT) between 

Ψ and reservoirs is infinitely large, 𝑅T → ∞. In any one of these two cases, the 

extracted work is equal to the difference of internal energy between the states C and 

B, 

 𝑊BC = −(𝑈C − 𝑈B) (2) 

C → D: Isothermal process at TL: This process is operated following the identical 

protocol to A → B, with changing the heat reservoir temperature to TL and setting the 

electrochemical potential reservoirs as 𝜇1 = 𝜇C and 𝜇𝑁 = 𝜇D. Here, we assume the 

duration of C → D is the same as that of A → B. The heat QCD is released due to the 

Peltier effect, and the work WCD can also be calculated following Eq. (1), 

 𝑊AB = 𝑄CD − (𝑈D − 𝑈C) (3) 

D → A: Adiabatic process from TL to TH: It follows the operation of B → C with 

replacing the reservoirs as {𝑇,  𝜇}1 = {𝑇D,  𝜇D} and {𝑇,  𝜇}𝑁 = {𝑇A,  𝜇A}, during the 

time interval τadia. Similarly, the work is given by 𝑊DA = −(𝑈A − 𝑈D). 

Therefore, employing the protocols depicted in Figs. 2 and 3, the thermoelectric cycle 

can be constructed as above, of which total work is given by, 

 

𝑊 = 𝑊AB +𝑊BC +𝑊CD +𝑊DA 

= 𝑄AB + 𝑄CD 

 

 

(4) 

As these two isothermal processes are quasistatic with 𝜏 → ∞, Eq. (4) becomes, 

 𝑊 = 𝑇H(𝑆H − 𝑆L) + 𝑇L(𝑆L − 𝑆H) = (𝑇H − 𝑇L)∆𝑆. (5) 

with the Carnot efficiency,  
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 𝜂C =
𝑊

𝑄AB
= 1 −

𝑇L
𝑇H
. (6) 

which is not surprising for a reversible thermoelectric cycle, due to the equivalence 

among heat engines [22].  

III. Finite-Time Carnot-Like Thermoelectric Cycle 

When the thermoelectric cycle in Sec II operates within a finite time period, its 

efficiency will deviate from the Carnot formulation, due to entropy production [10], 

though those four state points are prescribed. A generally-adopted theorem is to add a 

term of irreversible work into the energy conservation equation to take the 

irreversibility into account [10][13],  

 𝑊 +𝑊irr = (𝑇H − 𝑇L)∆𝑆, (7) 

where the irreversible work 𝑊irr is proportional to the entropy production supposed 

to be positive in general [13]. Nevertheless, it is noted that there is possibility of 

negative entropy production in some particular cases, like in small-scale systems 

[16][18]. Thus, instead of utilizing Eq. (7) directly, we start with clarifying the 

irreversibility in the cycle based on the methodology of fluctuation theorem (FT) 

[16][17][18][19].   

In the thermoelectric cycle above, how the adiabatic processes are conducted and 

their irreversibility will not affect the work output, once they are ideally adiabatic. 

Therefore, the key issue should be the analysis of isothermal processes A → B and 

C → D . As for an isothermal process of thermoelectric system that is realized 
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following the operation (or protocol) illustrated in Fig. 2, we could have a formulation 

that shares the generic form of Evans-Searles fluctuation theorem [18],  

𝑝 (+
∆𝑆̃irr
𝑘𝐵

)

𝑝 (−
∆𝑆̃irr
𝑘𝐵

)

= 𝑒
(+

∆𝑆̃irr
𝑘𝐵

)
(8) 

where 𝑘𝐵 is Boltzmann constant, ∆𝑆̃irr is the entropy production during the time 

interval, 𝑝( ) is the probability function for entropy production, and the label “~” 

notes the entropy production is a process quantity that depends on how the process is 

operated. In fact, the protocol in Fig. 2 is devised in analogy to that presented in the 

paper by Jarzynski [17], which discussed the problem in canonical ensemble, while 

the present problem is about grand canonical ensemble. Due to the similar 

architectures of the protocols, it could not be nontrivial to derive Eq. (8) through 

replacing the canonical ensemble distribution to the grand canonical ensemble one 

following the identical methodology [23][24]. Therefore, the preconditions for the 

validity of Eq. (8) read [17],  

- Evolution of the full phase space is Hamiltonian; 

- Time reversal symmetry at microscale (no magnetic field); 

- Weak coupling between the targeted system and the reservoirs. 

In terms of Eq. (8), we have 

〈𝑒
(−

∆𝑆̃irr
𝑘𝐵

)
〉 = ∫𝑝 (+

∆𝑆̃irr
𝑘𝐵

) 𝑒
(−

∆𝑆̃irr
𝑘𝐵

)
𝑑
∆𝑆̃irr
𝑘𝐵

= ∫𝑝(−
∆𝑆̃irr
𝑘𝐵

)𝑑
∆𝑆̃irr
𝑘𝐵

= 1. (9) 

Using Jensen’s inequality, it is easily obtained,   

〈∆𝑆̃irr〉 ≥ 0 (10) 
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in which “〈 〉” refers to ensemble average. It is the second law of thermodynamics in 

the statistical view [18].  

Here, we assume the four state points of the thermoelectric cycle are prescribed, 

which has been often adopted in both existing theoretical and experimental researches 

[13][25]. This assumption allows us to have a well-defined benchmark result in the 

infinite-time operating case (i.e., the reversible one in Sec. II) and facilitate the 

formulation derivation. Thus, for the isothermal process A → B, the entropy balance 

equation should hold, 

𝑆H − 𝑆L = ∆𝑆 = ∆𝑆̃re_AB + ∆𝑆̃irr_AB =
𝑄̃AB
𝑇H

+ ∆𝑆̃irr_AB = 〈
𝑄̃AB
𝑇H

〉 + 〈∆𝑆̃irr_AB〉. (11) 

Combining Eqs. (9) and (11) yields, 

〈𝑒
(
𝑄̃AB
𝑘𝐵𝑇H

)
〉 = 𝑒

(
∆𝑆
𝑘𝐵

)
. (12) 

Following the same derivation, we have the equation of identical form as Eq. (12) 

for the isothermal process C → D,  

〈𝑒
(
𝑄̃CD
𝑘𝐵𝑇L

)
〉 = 𝑒

(−
∆𝑆
𝑘𝐵

)
. (13) 

Then, combination of Eqs. (12) and (13) leads to  

〈𝑒
(
𝑄̃AB
𝑘𝐵𝑇H

)
〉 〈𝑒

(
𝑄̃CD
𝑘𝐵𝑇L

)
〉 = 1. (14) 

We can define the deviation of heat flow with respect to its ensemble average as,  

𝛿𝑄̃AB = 𝑄̃AB − 〈𝑄̃AB〉,

𝛿𝑄̃CD = 𝑄̃CD − 〈𝑄̃CD〉. (15)
 

Thus, Eq. (14) can be transformed to,  

𝑒
(
〈𝑄̃AB〉
𝑘𝐵𝑇H

+
〈𝑄̃CD〉
𝑘𝐵𝑇L

)
〈𝑒

(
𝛿𝑄̃AB
𝑘𝐵𝑇H

)
〉 〈𝑒

(
𝛿𝑄̃CD
𝑘𝐵𝑇L

)
〉 = 1. (16) 
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According to the energy conservation law for the cycle, we have  

〈𝑊̃〉 = 〈𝑄̃AB〉 + 〈𝑄̃CD〉, (17) 

in which 〈𝑊̃〉 is the ensemble-average work. Substituting Eq. (17) into Eq. (16), we 

have, 

〈𝑊̃〉 = 𝜂CA〈𝑄̃AB〉 − 𝑘𝐵𝑇Lln {〈𝑒
(
𝛿𝑄̃AB
𝑘𝐵𝑇H

)
〉 〈𝑒

(
𝛿𝑄̃CD
𝑘𝐵𝑇L

)
〉} . (18) 

Using the entropy balance equations,  

∆𝑆 = 〈
𝑄̃AB
𝑇H

〉 + 〈∆𝑆̃irr_AB〉,

−∆𝑆 = 〈
𝑄̃CD
𝑇L

〉 + 〈∆𝑆̃irr_CD〉, (19)

 

we have, 

〈𝑒
(
𝛿𝑄̃AB
𝑘𝐵𝑇H

)
〉 = 𝑒

(
〈∆𝑆̃irr_AB〉

𝑘𝐵
)
, (20)

 

〈𝑒
(
𝛿𝑄̃CD
𝑘𝐵𝑇L

)
〉 = 𝑒

(
〈∆𝑆̃irr_CD〉

𝑘𝐵
)
. (21)

 

Substituting Eqs. (20) & (21) into Eq. (18), we reach the formulation involving 

the irreversible work for our thermoelectric cycle, 

〈𝑊̃〉 = 𝜂CA〈𝑄̃AB〉 − 𝑇L{〈∆𝑆̃irr_AB〉 + 〈∆𝑆̃irr_CD〉}, (22) 

which holds the identical form to that of the widely-adopted one, except for the 

ensemble average. In this way, the conditions for guaranteeing the validity of Eq. (22), 

which employs entropy production to analyze the finite-time thermoelectric cycle, can 

be clarified on the basis of FTs, and they should be consistent with those for Eq. (8).   

In order to discuss the power of such thermoelectric cycle, we need to specify 

how the entropy production of isothermal processes varying with the operating time 

interval τ. According to Ref. [26], the entropy production rate during a process should 
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be equal to the product of driven force and flow rate, in spite of nonlinear or linear. 

Therefore, for the isothermal process devised in Fig. 2, the entropy production rate at 

the time t could be expressed as,     

𝜎̃(𝑡) =
∆𝜇Ψ𝑖̃
𝑇

𝜕𝑁

𝜕𝑡

̃
, (23) 

in which T is the temperature, and ∆𝜇Ψ𝑖̃ is the electrochemical potential difference 

between the targeted system Ψ and the i th reservoir connecting with it at t. We 

could have the ensemble average of entropy production rate as,  

〈𝜎̃〉 = 〈
∆𝜇Ψ𝑖̃
𝑇

𝜕𝑁

𝜕𝑡

̃
〉 =

〈∆𝜇Ψ𝑖̃〉

𝑇
〈
𝜕𝑁

𝜕𝑡

̃
〉 + 𝑐en_cov(

∆𝜇Ψ𝑖̃
𝑇

,
𝜕𝑁

𝜕𝑡

̃
), (24) 

with the ensemble-average covariance 𝑐en_cov( ). It should be reasonable that the 

flow and its corresponding driven force is positively correlated, and thus we have  

𝑐en_cov (
∆𝜇Ψ𝑖̃
𝑇

,
𝜕𝑁

𝜕𝑡

̃
) ≥ 0 → 〈𝜎̃〉 = 〈

∆𝜇Ψ𝑖̃
𝑇

𝜕𝑁

𝜕𝑡

̃
〉 ≥

〈∆𝜇Ψ𝑖̃〉

𝑇
〈
𝜕𝑁

𝜕𝑡

̃
〉 . (25) 

We could thus estimate a lower bound for the ensemble average of total entropy 

production for an isothermal process with the duration τ,  

〈∆𝑆̃irr〉 = ∫〈𝜎̃〉

𝜏

0

𝑑𝑡 ≥
1

𝑇
∫〈∆𝜇Ψ𝑖̃〉 〈

𝜕𝑁

𝜕𝑡

̃
〉

𝜏

0

𝑑𝑡. (26) 

Taking the time average of total entropy production yields, 

[〈∆𝑆̃irr〉]𝜏 =
〈∆𝑆̃irr〉

𝜏
≥
1

𝑇

1

𝜏
∫〈∆𝜇Ψ𝑖̃〉 〈

𝜕𝑁

𝜕𝑡

̃
〉

𝜏

0

𝑑𝑡 =
1

𝑇
[〈∆𝜇Ψ𝑖̃〉 〈

𝜕𝑁

𝜕𝑡

̃
〉]
𝜏

. (27) 

in which the symbol “[ ]𝜏” refers to the time average. Similarly, we could have  

[〈∆𝑆̃irr〉]𝜏 ≥
1

𝑇
[〈∆𝜇Ψ𝑖̃〉 〈

𝜕𝑁

𝜕𝑡

̃
〉]
𝜏

=
1

𝑇
[〈∆𝜇Ψ𝑖̃〉]𝜏 [

〈
𝜕𝑁

𝜕𝑡

̃
〉]
𝜏

+
1

𝑇
𝑐𝜏_cov (〈∆𝜇Ψ𝑖̃〉, 〈

𝜕𝑁

𝜕𝑡
〉

̃
) , (28) 

where “𝑐𝜏_cov( )” means the time average covariance. The ensemble averages of the 



14 

 

flow and its driven force are also supposed to be positively correlated during the 

evolution, which results in,  

[〈∆𝑆̃irr〉]𝜏 ≥
1

𝑇
[〈∆𝜇Ψ𝑖̃〉 〈

𝜕𝑁

𝜕𝑡

̃
〉]
𝜏

≥
1

𝑇
[〈∆𝜇Ψ𝑖̃〉]𝜏 [

〈
𝜕𝑁

𝜕𝑡

̃
〉]
𝜏

. (29) 

Herein, an average effective electrical resistance 𝑅e is introduced to characterize 

the charge transport impedance between the targeted system and the reservoirs over 

the isothermal process, 

𝑅e =
[〈∆𝜇Ψ𝑖̃〉]𝜏

𝑞e2 [〈
𝜕𝑁
𝜕𝑡

̃
〉]
𝜏

, (30)
 

in which qe is the elementary charge. This average effective electrical resistance 𝑅e 

is measurable and holds the comparable meaning with the conventional electrical 

resistance. Assume that in the view of time and ensemble average the charge transfer 

process is linear and thus 𝑅e is independent on either [〈∆𝜇Ψ𝑖̃〉]𝜏 or [〈
𝜕𝑁

𝜕𝑡

̃
〉]
𝜏
. Then, 

Eq. (29) becomes, 

[〈∆𝑆̃irr〉]𝜏 ≥
𝑞e
2

𝑇
𝑅e [〈

𝜕𝑁

𝜕𝑡

̃
〉]
𝜏

2

. (31) 

Since the four state points of the thermoelectric cycle are fixed, we could estimate the 

average charge flows for the processes A → B and C → D as, 

[〈
𝜕𝑁

𝜕𝑡

̃
〉]
𝜏AB

≈
𝑁B − 𝑁A

𝜏
=
∆𝑁AB
𝜏

,

[〈
𝜕𝑁

𝜕𝑡

̃
〉]
𝜏_AB

≈
𝑁D − 𝑁C

𝜏
=
∆𝑁CD
𝜏

. (32)

 

In this way, we could reach a least estimation of the entropy production dependent on 

the duration 𝜏 for the two isothermal processes through combining Eqs. (31) & (32), 
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〈∆𝑆̃irr_AB〉 ≥
1

𝜏

𝑞e
2

𝑇H
𝑅e_AB∆𝑁AB

2 ∝ 𝜏−1,

〈∆𝑆̃irr_CD〉 ≥
1

𝜏

𝑞e
2

𝑇L
𝑅e_CD∆𝑁CD

2 ∝ 𝜏−1, (33)

 

which have the 𝜏−1  scaling relation that has been extensively employed when 

analyzing the thermal engines of finite-time thermodynamics [12][13][15][27]. Thus, 

the work of the finite-time thermoelectric cycle could be estimated as,   

〈𝑊̃〉 = 𝜂C〈𝑄̃AB〉 − 𝑇L𝑞e
2 {
𝑅e_AB∆𝑁AB

2

𝑇H
+
𝑅e_CD∆𝑁CD

2

𝑇L
} 𝜏−1, (34) 

with the heat flow 〈𝑄̃AB〉 as, 

〈𝑄̃AB〉 = 𝑇H∆𝑆 − 𝑇H〈∆𝑆̃irr_AB〉 = 𝑇H∆𝑆 − 𝑞e
2𝑅e_AB∆𝑁AB

2 𝜏−1. (35) 

The power can be calculated readily from Eq. (34) by dividing the cycle 

operation duration. With the assumption that the processes B → C and D → A are 

ideally adiabatic, we could neglect their duration 𝜏adia for simplicity without altering 

the physical essence, and thus have, 

〈𝑃̃〉 =
1

2
{𝜂C𝑇H∆𝑆𝜏

−1 − 𝑞e
2{𝑅e_AB∆𝑁AB

2 + 𝑅e_CD∆𝑁CD
2 }𝜏−2}. (36) 

Taking 𝜕 〈𝑃̃〉 𝜕⁄ (𝜏−1) = 0 , we can determine the maximum power of the 

thermoelectric cycle, which reads, 

〈𝑃̃〉Max =
1

8𝑅e_AB𝑞e
2∆𝑁AB

2

(∆𝑆)2

1 + 𝛾
(𝑇H − 𝑇L)

2, (37) 

with 

𝜏MP
−1 =

1

2𝑅e_AB𝑞e2∆𝑁AB
2

∆𝑆

1 + 𝛾
(𝑇H − 𝑇L). (38) 

The corresponding efficiency is given by, 

〈𝜂〉MP =
𝜂C

2 − 𝜂C {1 + 𝛾}⁄
, (39) 
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with  

𝛾 =
𝑅e_CD∆𝑁CD

2

𝑅e_AB∆𝑁AB
2 . (40) 

When we define 𝛽 = 1 + 𝛾 , Eq. (39) is well consistent with the efficiency 

formulation  𝜂ST  derived from Brownian motors as presented in Tab.1. This is 

reasonable due to the equivalence of varied types of heat engines. The corresponding 

maximum power of thermoelectricity holds the same explicit temperature dependence 

and the identical factor, i.e. 1/8, as that derived from stochastic thermodynamics.  

For further clarifying the physical essence of the coefficient γ for 

thermoelectricity, some transformations are introduced to make it more 

understandable and calculable for a specific TEG. Referring to Ref. [4], a Peltier 

coefficient can be defined in a reversible way for a thermoelectric system by 

constructing the isothermal process, which is given by,  

Π =
𝑇∆𝑆

𝑞e∆𝑁
, (41) 

in which ∆𝑆 and ∆𝑁 are the entropy change and the charge number change of 

isothermal process at the temperature T. Using the Kelvin relation presented in the 

same paper [4], a Seebeck coefficient can be deduced as well, 

𝛼S_r =
∆𝑆

𝑞e∆𝑁
. (42) 

Then, referring to Eq. (42), we could have,  

𝛾 =
𝑅e_CD
𝑅e_AB

(
∆𝑆 (𝑞e∆𝑁AB)⁄

∆𝑆 (𝑞e∆𝑁CD)⁄
)

2

=
𝛼S_r(AB)
2 𝑅e_AB⁄

𝛼S_r(CD)
2 𝑅e_CD⁄

=
𝑃F_r(AB)

𝑃F_r(CD)
, (43) 

where 𝑃F_r(AB) = 𝛼S_r(AB)
2 𝑅e_AB⁄  and 𝑃F_r(CD) = 𝛼S_r(CD)

2 𝑅e_CD⁄  should have the 

comparable physical contents to the thermoelectric power factor for the processes 
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A → B and C → D, respectively. Therefore, we could say the coefficient γ is the ratio 

of such thermoelectric power factors at the high and low temperatures. Moreover, the 

maximum power of the thermoelectric cycle can be rewritten to a compact expression, 

〈𝑃̃〉Max =
1

8(1 + 𝛾)
𝑃F_r(AB)(𝑇H − 𝑇L)

2. (44) 

In practice, the difference of 𝑃F_r at the high and low temperature is frequently 

assumed to be non-significant, resulting in the nearly symmetric dispassion condition 

(𝛾 ≈ 1), and thus we have, 

〈𝜂〉MP =
𝜂C

2 − 𝜂C 2⁄
, (45) 

〈𝑃̃〉Max =
1

16
𝑃F_r(AB)(𝑇H − 𝑇L)

2, (46) 

which are distinct compared to the formulations based the linear-irreversible and 

endoreversible thermodynamics at the identical condition. 

IV. Discussions  

A. Comparison to the linear-irreversible-thermodynamics-based formulations 

The maximum power-efficiency pair of finite-time thermoelectric cycle can well 

agree with that derived from the stochastic thermodynamics, but poses the 

discrepancy with the linear-irreversible-thermodynamics-based formulations that 

have been widely adopted in the research of thermoelectricity [6]. Firstly, we should 

note that the steady-state TEG generally serves as the targeted system in the 

linear-irreversible-thermodynamic analysis, and its power output is continuous; by 

contrast, the power output pattern should be discontinuous for a thermodynamic 

cycle, as shown in Fig. 4 (a). In order to have continuous power output, we can 

combine the thermoelectric cycle with another cycle of phase lag, as given in Fig. 4 
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(b), and thus the power is doubled, while the efficiency remains unchanged:  

〈𝑃̃〉Max
(Cont) =

1

4

1

(1 + 𝛾)
𝑃F_r(AB)(𝑇H − 𝑇L)

2. (47) 

 Table 2 demonstrates the expressions of the efficiency at max power and the 

continuous max power with the parameter 𝛾  at the different limits: when the 

high-temperature-side dissipation dominates, i.e. 𝛾 → 0, the continuous power of 

thermoelectric cycle has the same form as the linear-irreversible-thermodynamics 

case, but the corresponding efficiency is not 𝜂C 2⁄ ; by contrast, when the 

low-temperature-side dissipation is dominant, i.e. 𝛾 →∞, the efficiency at max 

power given by the linear-irreversible thermodynamics can be recovered (that is, 

𝜂C 2⁄ ), while the power becomes 0. Note that these limiting values of 𝛾 could be 

hard to be realistic for the practical TEGs, and thus such discussion makes sense 

majorly in the view of mathematics. Actually, the derivation in the linear-irreversible 

thermodynamics generally assumes the condition of symmetric dispassion (𝛾 = 1), 

where the thermoelectric cycle holds the different continuous max power and 

efficiency compared to the linear-irreversible-thermodynamics formulations.  

 

TABLE 2 Efficiency at max power and continuous max power with the parameter γ at the 

different limits. 

 Description 
Continuous max 

power 

Efficiency at max 

power 

𝛾 → 0 
High-temperature-side 

dissipation dominates 

𝑃F_r(AB)

4
(𝑇H − 𝑇L)

2 
𝜂C

2 − 𝜂C
 

𝛾 → ∞ 
Low-temperature-side 

dissipation dominates 
0 

𝜂C
2

 

𝛾 = 1 Symmetric dispassion 
𝑃F_r(AB)

8
(𝑇H − 𝑇L)

2 
𝜂C

2 − 𝜂C 2⁄
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In order to explain such incompatibility, we notice the discrepancy of 

thermoelectric coefficients (i.e., Peltier and Seebeck) in the thermoelectric cycle, 

compared to the linear-irreversible thermodynamics analysis. Referring to Eq. (41), 

the Peltier coefficient (Π) here is derived from the reversible heat flow, corresponding 

to the Seebeck coefficient (𝛼S_r) defined with respective to the entropy change ∆𝑆 

that is the difference of the state variable, entropy S, as given in Eq. (42); by contrast, 

the Peltier coefficient (denoted by Πirr ) used in the linear irreversible 

thermodynamics relates the heat flow 〈𝑄̃〉 to the accumulated current [6],   

Πirr =
〈𝑄̃〉

𝑞e∆𝑁
. (48) 

Accordingly, in terms of the ORR, the Seebeck coefficient (denoted by 𝛼S_irr) in the 

linear irreversible thermodynamics is dependent on the entropy flow, 〈𝑄̃ 𝑇⁄ 〉 [6], 

which excludes the entropy production in the entropy change ∆𝑆,   

𝛼S_irr =
〈𝑄̃ 𝑇⁄ 〉

𝑞e∆𝑁
. (49) 

If we substitute the Peltier coefficient, Πirr , into the work expression of the 

finite-time thermoelectric cycle, Eq. (34), we have,  

〈𝑊̃〉 = 𝜂CΠirr𝑞e∆𝑁AB − 𝑞e
2𝑅e_AB∆𝑁AB

2 {1 − 𝜂C + 𝛾}𝜏−1. (50) 

Following the widely-employed assumption in the linear-irreversible thermodynamics 

that the thermoelectric coefficients are constant, we can derive the maximum 

power-efficiency pair accordingly,  

〈𝑃̃〉Max_irr
(Cont) =

1

4

1

1 − 𝜂C + 𝛾
𝑃F_irr(AB)(𝑇H − 𝑇L)

2, (51) 

〈𝜂〉MP_irr =
𝜂C
2
. (52) 
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Then, at the symmetric dispassion condition, 𝛾 = 1, the maximum power-efficiency 

pair of the thermoelectric cycle with Πirr and 𝛼S_irr reaches,  

〈𝑃̃〉Max_irr
(Cont) =

1

4

1

2 − 𝜂C
𝑃F_irr(AB)(𝑇H − 𝑇L)

2 ≤
1

4
𝑃F_irr(AB)(𝑇H − 𝑇L)

2,

〈𝜂〉MP_irr =
𝜂C
2
, (53)

 

which is in the identical form of the linear-irreversible-thermodynamics formulations 

given in Tab.1. Actually, it requires further clarification on which definition of 

thermoelectric coefficients is more proper for accessing the efficiency of TEGs.  

 

B. Comparison to the endoreversible-thermodynamics-based formulations 

Here, we argue the applicability using the endoreversible thermodynamics to 

analyze the Carnot-like thermoelectric cycle. The hypothesis of endoreversibility, 

which merely considers the irreversibility emerging due to the finite heat exchange 

with heat reservoirs [8], is fundamentally distinct with the thermoelectric cycle here 

where the irreversibility arises from the internal processes [5]. Moreover, the heat 

input and output in the thermoelectric cycle here are achieved through the Peltier 

effect rather than to the finite heat exchange, which does not give a place for using 

the endoreversible assumption.  

In fact, if only considering the mathematical expressions, the difference of the 

maximum power-efficiency pair between the thermoelectric cycle and the 

endoreversible thermodynamics could be eliminated with assuming,     

𝛾 = √𝑇L 𝑇H⁄ =
𝑃F_r(AB)

𝑃F_r(CD)
, (54) 

which leads to,    
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〈𝑃̃〉Max =
1

8
𝑃F_r(AB)𝑇H𝜂CA(√𝑇H −√𝑇L)

2
, (55) 

〈𝜂〉MP =
𝜂C

2 − 𝜂C {1 + 𝛾}⁄
=

𝜂C

1 + √𝑇L 𝑇H⁄
= 1 − √𝑇L 𝑇H⁄ . (56) 

Nevertheless, such coincidence might not be that physically rational. In addition of 

the argument above, the ratio of thermoelectric power factors at the high and low 

temperatures generally approximates 1.0, 𝛾 ≈ 1, in practice, which makes it kind of 

hard to give a solid explanation about the physical or practical essence of 𝛾 =

√𝑇L 𝑇H⁄ . 

C. Implementation of the present formulations for realistic thermoelectric 

material  

Our discussions above are conducted in a rather theoretic view of 

thermodynamics, while this section presents how to effectively implement our models, 

i.e. Eqs. (39) & (47), to estimate the maximum power-efficiency pairs of realistic 

thermoelectric materials based on the finite-time Carnot-like thermoelectric cycle.  

To do so, we need to firstly identify those two parameters (the power factor PF_r 

and the coefficient 𝛾) embedded in Eqs. (39) & (47) for a specific material. As 

clarified above, the Seebeck coefficient in the present formulations holds the different 

physical essences compared with conventionally-used one. In terms of our previous 

work [4] that built the reversible quasi-static process for Seebeck phenomenon, this 

reversible Seebeck coefficient can be expressed as,  

𝛼S_r =
1

𝑞e
(
𝑑𝑁

𝑑𝑇
|
𝜇
) (

𝑑𝑁

𝑑𝜇
|
𝑇

)⁄ , (57) 

with  
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𝑁 = ∫𝑓FD𝐷(𝜀𝐤)𝑑𝜀𝐤 = ∫
2

𝑒
(
𝜀𝐤−𝜇
𝑘B𝑇

)
+ 1

𝐷(𝜀𝐤)𝑑𝜀𝐤 , (58) 

and the Fermi-Dirac distribution,  

𝑓FD =
1

𝑒
(
𝜀𝐤−𝜇
𝑘B𝑇

)
+ 1

, (59) 

in which 𝜀𝐤 is the carrier energy and 𝐷(𝜀𝐤) is the density of states (DOS). Thus, we 

have  

𝛼S_r =
1

𝑞e𝑇

∫𝑓FD[1 − 𝑓FD][𝜀𝐤 − 𝜇]𝐷(𝜀𝐤)𝑑𝜀𝐤

∫𝑓FD[1 − 𝑓FD]𝐷(𝜀𝐤)𝑑𝜀𝐤
. (60) 

Compared to the generally-used Seebeck coefficient model that is derived from 

the Boltzmann transport equation [28], the terms of group velocity and relaxation time, 

which closely relates to the irreversible transport mechanisms, are dropped in this 

reversible formula, Eq. (60). This is reasonable, since the reversible Seebeck 

coefficient is defined based on the quasi-static process [4] that eliminates the 

irreversibility. Actually, Peterson and Shastry [29] proposed the similar expression to 

Eq. (60) through the slow-limit simplification of the Kubo formula, and the authors 

named it Kelvin formula and regarded it as an approximate expression for the exact 

Seebeck coefficient, which means it might loss some accuracy. Nevertheless, based 

on our analysis, this reversible Seebeck coefficient, which is very concise, holds own 

physical content and can be utilized to estimate the maximum power-efficiency based 

on the finite-time thermodynamic cycle. As for the electrical resistivity term in the PF 

expression, the conventional resistivity could be adopted to characterize the 

irreversibility during the charge transport processes. Naturally, when such reversible 

thermoelectric power factor (PF_r) is determined, the coefficient 𝛾, i.e. the ratio of 
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thermoelectric power factors at the high and low temperatures, could be readily 

calculated. 

As a case study, our models are applied to the n-type Silicon [28][30][31]. The 

energy band of Si is characterized by the parabolic model with the effective mass 

[32],   

𝜀𝐤 =
ħ2𝐤2

2𝑚e_DOS
+ 𝐸C. (61) 

Setting the minimum energy in the conduction band 𝐸C = 0, the DOS is given by 

𝐷(𝜀𝐤) =
1

2𝜋2
(
2𝑚e_DOS

ħ2
)
3/2

√𝜀𝐤. (62) 

The Fermi level is calculated following Ref. [33], which is dependent on both the 

temperature and the doping concentration.  

Figure 5 (a) compares the Seebeck coefficient values for the n-doped Silicon 

calculated by the reversible formulation, Eq. (60), and measured by the experiments 

[28][30], respectively. It is found that the reversible Seebeck coefficients are very 

close to the experimental ones for the highly-doped case (the doping concentration nd 

= 6.0e19 cm-3), where the diffusion component dominates [28]. By contrast, the 

reversible Seebeck coefficient values of the lightly-doped sample the doping 

concentration nd = 2.6e15 cm-3) can significantly deviate the experimental data. This 

is because the measured Seebeck coefficients of the lightly-doped Silicon generally 

involves a big portion of phonon-drag term [30] which is attributed to the momentum 

exchange between the carriers and the non-equilibrium phonon system. This 

irreversible factor is not included in the present model. In fact, such limit could not 

significantly affect the utilization of our model in practice, which can serve as an 
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effective and concise alternative for performance evaluation, since the thermoelectric 

materials for the practical applications are frequently medium- or highly-doped [34]. 

Therefore, here we focus on the highly-doped Silicon (nd ≥ 1.0e19 cm-3), of 

which resistivity could be estimated using the mobility [31], 

𝜌e =
1

𝑞e𝑛e𝑘1
𝑇3/2 (63) 

where 𝑛e is the free-electron density (derived along with the Fermi level calculation) 

and 𝑘1 = 15e5 K3/2cm2/V/s [31]. Then, the reversible power factors (PF_r) can be 

calculated, and Fig. 5(b) shows PF_r decreases with the increasing temperature and the 

decreasing doping level. 

Furthermore, we calculated the continuous maximum power-efficiency pair and 

the relevant parameters via the present model using the reversible Seebeck coefficient, 

with the cold source temperature fixed at 300 K. In Fig. 6(a), the coefficient γ 

decreases with the increasing temperature and the decreasing doping concentration. 

The efficiency at maximum power increases with the heat source temperature and 

keeps under the Carnot efficiency curve, while the efficiency variation due to the 

doping concentration is minor. Figure 6(b) gives the continuous maximum power per 

leg length, and it can be enhanced with both the increasing heat source temperature 

and doping level. 

V. Conclusions 

The present work constructs the Carnot-like thermoelectric cycle by designing a 

set of protocols for the isothermal and adiabatic processes of thermoelectricity, which 

has the Carnot efficiency and zero power in quasi-static case. The maximum 



25 

 

power-efficiency pair of finite-time thermoelectric cycle is derived on the basis of FT, 

which is identical to that obtained from the stochastic thermodynamics, but poses the 

discrepancy with the linear-irreversible-thermodynamics and the 

endoreversible-thermodynamics -based ones.  

As comparing to the linear-irreversible-thermodynamics case, their 

incompatibility should be attributed to the difference in the definitions of Peltier and 

Seebeck coefficients: the thermoelectric coefficients in the thermoelectric cycle are 

derived based on the reversible heat flow, while those in the linear irreversible 

thermodynamics are relevant to the heat flow. Moreover, as for the endoreversible 

thermodynamics, the applicability of endoreversibility could be questionable for 

analyzing the thermoelectric cycle here, due to the incompatibility of endoreversible 

hypothesis that merely considers the irreversibility from the finite heat transfer 

between the thermal reservoirs, though the distinction of the mathematical 

expressions can vanish with assuming 𝛾 = √𝑇L 𝑇H⁄  that could not be applicable for a 

practical TEG.   

Lastly, we present how to utilize our models, Eqs. (39) & (47), as an effective and 

concise tool to estimate the maximum power-efficiency pairs of realistic 

thermoelectric materials via taking the n-type Silicon as the case study. 
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Figure captions 

Figure 1 Temperature (T) – Entropy (S) diagram of the Carnot cycle: TH the high 

temperature, TL the low temperature.  

Figure 2 Isothermal process realization of a thermoelectric system within a time 

interval τ: T is temperature. 

Figure 3 Adiabatic process realization of a thermoelectric system within a time 

interval τadia. 

Figure 4 (a) Schematic of the work evolution within single thermoelectric cycle, 

which corresponds to discontinuous power output; (b) Schematic of the work 

evolution when combining two cycles, which can have a continuous power output. 

Figure 5 (a) Seebeck coefficients of n-doped Silicon at the varied doping 

concentrations (nd) calculated by the reversible formulation, with comparison to the 

experimental data [28][30]; (b) Reversible power factor (PF_r) of highly-doped Silicon 

vs. temperature  

Figure 6 Continuous maximum power and corresponding efficiency estimated by the 

present model using the revisable power factor for n-doped Silicon samples, with the 

cold source temperature equal to 300 K and the varied doping concentrations: (a) the 

coefficient 𝛾 and the efficiencies at maximum power vs. heat source temperature; (b) 

Continuous maximum power per leg length vs. heat source temperature. 
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Figure 1 Temperature (T) – Entropy (S) diagram of the Carnot cycle: TH the high 

temperature, TL the low temperature. 
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Figure 2 Isothermal process realization of a thermoelectric system within a time 

interval τ: T is temperature. 
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Figure 3 Adiabatic process realization of a thermoelectric system within a time 

interval τadia. 
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(a) 

(b) 

   

 

Figure 4 (a) Schematic of the work evolution within single thermoelectric cycle, 

which corresponds to discontinuous power output; (b) Schematic of the work 

evolution when combining two cycles, which can have a continuous power output. 
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(a) 

 

 

(b) 

 

Figure 5 (a) Seebeck coefficients of n-doped Silicon at the varied doping 

concentrations (nd) calculated by the reversible formulation, with comparison to the 

experimental data [28][30]; (b) Reversible power factor (PF_r) of highly-doped Silicon 

vs. temperature  
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(a) 

 

 

(b) 

 

Figure 6 Continuous maximum power and corresponding efficiency estimated by 

the present model using the revisable power factor for n-doped Silicon samples, with 

the cold source temperature equal to 300 K and the varied doping concentrations: (a) 

the coefficient 𝛾 and the efficiencies at maximum power vs. heat source temperature; 

(b) Continuous maximum power per leg length vs. heat source temperature. 
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