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Abstract

Interparticle Van der Waals force contributes to the overshoot in the bed

pressure drop at the minimum fluidization velocity during the transition from

static to fluidized bed conditions, which is a well-known phenomenon in the

fluidization of fine particles. In this study, two adhesive particle pressure

closures considering the effect of interparticle Van der Waals force are used

in two-fluid model simulations with the intention to generate the pressure

overshoot. The first adhesive pressure model developed within the context

of the kinetic theory of rapid granular flows failed to produce the overshoot

due to the dominance of multiple and long duration contacts in the fixed-bed

flow. Another closure based on the coordination number was then proposed

to represent long-lasting interparticle contacts, which gave an adhesive con-
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oftribution much larger than the one of the kinetic theory model and was able

to create the pressure drop overshoot.

Keywords: Gas-solid fluidized beds, Interparticle forces, Van der Waals

adhesion, Granular media, Two-fluid model, Kinetic theory

1. Introduction1

Gas-solid fluidized beds are employed in several industries, such as the2

polymerization of olefins, fluid catalytic cracking (FCC), coal combustion,3

and ore roasting [1]. Good quality solids mixing, high rates of mass and heat4

transfer, uniform temperature distribution, and the capability of processing5

a broad variety of granular materials are among the features of fluidized-6

bed reactors [1, 2, 3, 4, 5]. Interparticle forces, such as Van der Waals,7

electrostatic, liquid bridge, and solid bridge forces, may have a significant8

influence on fluidized bed hydrodynamics and performance [6, 7, 8, 9, 10, 11,9

12].10

Fine particles ranging from cohesive to aeratable are highly desirable11

for reactive fluidization processes due to their high surface-to-volume ratio,12

which results in greater reaction rates per unit volume of reactor [13]. The13

pressure drop overshoot at the minimum fluidization velocity is a typically14

encountered phenomenon in beds of fine particles belonging to the group A of15

Geldart’s classification [14]. A more intense overshoot and a larger hystere-16

sis area between the fluidization and defluidization pressure-drop curves are17

observed upon decreasing the particle diameter towards Geldart’s C group18

[15]. This observation is owing to the dominant role of interparticle over hy-19

drodynamic interactions in static beds of these particles. The Van der Waals20
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dry ambient environment [16].22

Van der Waals forces include dipole-dipole, dipole-induced dipole, and in-23

stantaneous dipole-induced dipole forces acting between atoms and molecules.24

The temporal average of a neutral atom’s dipole moment is zero, yet at ev-25

ery instant there is a definite polar moment provided by the asymmetrical26

electron distribution around the protons that are inside the nucleus [17].27

This instantaneous dipole produces an electric field, which creates a dipole28

moment in any adjacent neutral atom [17]. The two dipoles then interact,29

resulting in a force of attraction among the two atoms. The temporal average30

of this instantaneous dipole-induced dipole force, which is also known as the31

London dispersion force, is finite. Hamaker [18] obtained an expression for32

the Van der Waals force between macroscopic objects using the dispersion33

interaction potential between two atoms/molecules proposed by London [19]34

and an additivity hypothesis (summing up the forces over all pairs of individ-35

ual atoms/molecules). The Van der Waals force between particles in contact36

is highly influenced by their surface roughness (i.e., asperity size) [20, 21].37

Working at high temperatures and/or high pressures has an impact on38

the strength of Van der Waals force. The Van der Waals force increases with39

temperature due to greater molecular dipole pulsation and a larger particle-40

particle contact area induced by viscoelastic flattening [22, 23, 24, 21]. The41

magnitude of the Van der Waals force can rise with pressure owing to gas42

adsorption on the particle surfaces [25, 26, 4]. It is worth mentioning that43

hydrodynamic forces can increase dramatically with pressure (gas density44

increases with pressure), which may result in a less prominent influence of45
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Stresses caused by adhesive and frictional interactions have a signifi-47

cant influence on the mechanical response of granular media [27]. There48

is, however, insufficient data on the magnitude of these stresses, which limits49

comprehension of the fluidization behavior reported in experimental studies.50

Mutsers and Rietema [28] and Tsinontides and Jackson [29] postulated that51

the interparticle contact adhesion and friction are responsible for the stable52

expansion occurring between the minimum fluidization and minimum bub-53

bling velocities in fine-particle beds. Rietema and Piepers [30] ascribed the54

pressure drop overshoot at incipient fluidization to interparticle and particle-55

wall forces. According to these authors, the Van der Waals interaction is the56

source of particle-particle force. The non-sphericity can enhance the solid57

friction and the pressure-drop hysteresis [31, 32, 33, 34].58

In the experiments carried out by Vanni et al. [32], the static wall friction59

effect on the pressure overshoot was only noticeable in columns with small60

diameters (D = 2 cm). The experiments of Srivastava and Sundaresan [27]61

also revealed a more significant overshoot in smaller columns, which they62

ascribed to particle-wall friction. Wang et al. [35] observed that increasing63

the static bed height increases the pressure overshoot intensity, which they64

attributed to wall friction. The effect of bed diameter and height on the65

significance of static wall friction (bridging) can also be seen in the vertical66

solid stress profiles showing the Janssen effect in silos and hoppers [36, 37].67

Several researchers accounted for the Van der Waals force in the Eulerian-68

Lagrangian model to simulate the fluidization behavior of fine particles. Ho69

and Sommerfeld [38] used a criterion for agglomeration based on a critical70
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collision that takes into account the Van der Waals force. These authors72

considered that when the normal relative velocity between two interacting73

particles is smaller than the critical velocity, agglomeration occurs. Wang et74

al. [39] solved a Newtonian equation of motion with a Van der Waals force75

term based on the Hamaker theory for each particle in a fluidized bed riser.76

Zhang et al. [40] investigated the cluster dynamics in circulating fluidized-77

bed reactors using a CFD-DEM model. Their simulations showed that when78

the solid volume fraction αp is large, the Van der Waals interaction may79

promote the cluster formation.80

On the other hand, Eulerian-Eulerian models that take into considera-81

tion the impact of interparticle Van der Waals interaction are scarce in the82

literature. Within the framework of the kinetic theory of granular flows,83

Gidaspow and Huilin [41] added a negative pressure inferred from the exper-84

imental data of radial distribution functions to the solid pressure in order85

to consider the effect of adhesive forces on the fluidization of FCC parti-86

cles. This empirical adhesive pressure modified the kinetic theory equation87

of state to match the measured particle pressure. Parmentier [42] worked on88

incorporating the effect of Van der Waals interaction into the two-fluid model89

utilizing the BBGKY hierarchy. An adhesive pressure was added to the par-90

ticle pressure to account for the Van der Waals attraction between particles.91

By comparing the magnitudes of attractive and repulsive solids pressures92

within a bed of Geldart A particles in the fluidized state (small attraction),93

Parmentier [42] concluded that the overestimation of bed expansion found94

in standard two-fluid model simulations is not due to neglecting the effect95
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of binary collision and molecular chaos may be extended from moderately97

dense to highly dense gas-solid flows by utilizing numerical data of discrete98

element simulations [43, 44, 45].99

Some efforts have been made to predict the pressure-drop overshoot phe-100

nomenon observed during the fluidization of fine particles. Srivastava and101

Sundaresan [27] and Loezos et al. [46] utilized a one-dimensional force bal-102

ance model based on Janssen’s approach in order to predict the pressure drop103

overshoot. This model involves determining coefficients that can combine the104

adhesion and friction effects together. For instance, when the particle diam-105

eter decreases, the friction coefficient of Loezos et al. [46] increases, which106

may be attributed to an increase in the significance of the Van der Waals107

adhesive interaction. Ye et al. [47] demonstrated through discrete particle108

simulations that the pressure overshoot is caused by particle-particle Van der109

Waals adhesion and particle-wall friction. Weber and Hrenya [48] conducted110

discrete particle simulations employing Hamaker and square-well adhesion111

models. Their findings reveal that the overshoot in the bed pressure drop112

is dominated by interparticle adhesion. The Hamaker model predicted that113

Van der Waals adhesive interactions with the sidewalls have a considerable114

impact on the pressure-drop overshoot (adhesion augments wall friction),115

whereas adhesive interactions with the distributor plate have minimal im-116

pact. The square-well model, on the other hand, predicted that particle-117

distributor plate adhesion has a considerable influence on the pressure-drop118

overshoot.119

Interparticle adhesive forces affect both solid pressure and viscosity (nor-120
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pressure overshoot, which is associated with a fixed arrangement of particles122

(zero particle velocity), is negligible. Hence, we consider only the effect of123

adhesion on the solid pressure. In our investigation, we take into account124

the short-range Van der Waals interaction between particles via an adhesive125

pressure gradient in the particle momentum equation within an Eulerian-126

Eulerian approach. We present two adhesive pressure models, one based on127

the kinetic theory and another based on the coordination number to represent128

interparticle contacts, and assess their capability of creating a pressure-drop129

overshoot in beds of Geldart A particles.130

2. Prediction of overshoot in pressure drop across an aeratable-131

particle bed132

Soleimani et al. [14] performed experimental measurements of the total133

bed pressure drop and bed voidage of Geldart A and Geldart B particles134

fluidized by air at 20 ◦C. The air was pre-dried by passing it through a bed135

of humidity adsorber. As a result, capillary forces have a negligible effect.136

The properties of the solids used in their study are shown in Table 1. The137

experiments were carried out in a fluidized bed of 5.25 cm in diameter and 50138

cm in height. The static bed height was around 15 cm. For details about the139

procedure employed to determine the experimental bed pressure drop and140

voidage, the reader is referred to the paper of Soleimani et al. [14].141
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Properties of particles used in the experiments of Soleimani et al. [14].

Material Glass beads Glass beads

Mean particle diameter, dp (µm) 156 67

Particle density, ρp (kg/m3) 2595 2595

Sphericity ∼ 1 ∼ 1

Geldart group B A

Acronym GB-156 GB-67

The experimental bed pressure drop and voidage profiles as a function of142

the superficial gas velocity of the Geldart B and A glass beads determined143

by Soleimani et al. [14] are demonstrated in Fig. 1. It can be seen that the144

increasing velocity path pressure drop curve of the Geldart B particles has145

no overshoot since the associated loose-fixed-bed and minimum fluidization146

voidages (ε0 and εmf , respectively) are nearly equal. In contrast, a consider-147

able pressure drop overshoot is apparent at the minimum fluidization velocity148

(Umf ) in the fluidization branch of the experiment with Geldart A particles,149

which is equivalent to the difference between the fixed-bed and minimum150

fluidization voidages.151
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Fig. 1. Normalized bed pressure drop and corresponding voidage profiles of Geldart B

(GB-156) and A (GB-67) particles measured by Soleimani et al. [14].

In our study, we perform two-fluid simulations using the neptune cfd code152

[52]. Transport equations and models employed in this code are reported in153

Ansart et al. [53]. The particle stress in the Eulerian-Eulerian model consists154

of kinetic, collisional and frictional terms. The closure of the kinetic and155

collisional stresses is based on the kinetic theory of granular flows. In dilute156

flows (αp < 1%), the kinetic stress is dominant, whereas in moderately dense157

flows (αp > 5%), the collisional stress dominates. The particle friction stress158

is employed at high solid volume fractions to take into account the interaction159

of single particles with several neighbors through prolonged contact. The160

normal particle-particle forces are considered via the particle pressure [54].161

For the particle frictional pressure, we have employed the following semi-162

9
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P f
p =




Fr

(αp−αp,min)
n

(αp,max−αp)
m for αp > αp,min

0 for αp ≤ αp,min

(1)

where Fr, n and m are constants and αp,min and αp,max are respectively164

the threshold particle volume fraction for the activation of the frictional165

stress and the close-packing particle volume fraction. The values of these166

parameters used in our simulations are listed in Table 2. To account for the167

Van der Waals interaction among particles, a negative adhesive pressure is168

added to the particle pressure for all values of the particle volume fraction169

αp in our work. The additional negative stress component has the effect170

of lowering particle repulsion. In the following sections, we propose two171

adhesive pressure models and investigate their ability to create a pressure172

drop overshoot.173

2.1. Derivation of an adhesive pressure model based on the kinetic theory174

The kinetic theory approach relies on the similarity between the random

particle movement in rapid granular flow and the thermal motion of molecules

in gas [57]. The adhesive pressure model derivation employing the kinetic

theory of granular flows given in this subsection is based on the research of

Parmentier [42]. Using the BBGKY hierarchy, the Van der Waals force can

be included in the Boltzmann-Liouville equation:

∂fp
∂t

+
∂

∂xi
(cp,ifp) +

∂

∂cp,i

(〈
Fp,i
mp

| xp = x,up = cp

〉
fp

)

=

(
∂fp
∂t

)

coll

+

(
∂fp
∂t

)

ad

(2)
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(
∂fp
∂t

)

ad

=

∫∫
∂f

(2)
p

∂cp,i

∂

∂xi

(
V (‖x∗ − x‖)

mp

)
dc∗pdx

∗ (3)

where fp is the one-particle probability density function defined such that176

fp (cp,x, t) δcpδx is the probable number of particles, whose center of mass,177

xp, at time t is located in the volume [x,x + δx] with a velocity up in178

[cp, cp + δcp]. Fp,i represents the external forces acting on the particles179

(gravity, drag and buoyancy). Fp,i/mp = dup,i/dt is the acceleration of a180

particle. 〈Fp,i | xp = x,up = cp〉 represents the conditional average of the181

external force acting on a particle at a given center position xp = x with182

the translation velocity up = cp. The two terms on the right-hand side183

of Eq. (2) denote the rate of change in the probability density function184

caused by particle-particle collision and Van der Waals adhesion, respectively.185

The adhesion term is given by Eq. (3), where f
(2)
p

(
cp,x, c

∗
p,x

∗, t
)

is the186

two-particle probability density function and V (‖x∗ − x‖) is the interaction187

potential between two particles resulting in an adhesion force. According to188

Elimelech et al. [59], the Van der Waals interaction potential between two189

spheres can be expressed as follows:190

V (‖x∗ − x‖) = − A
24

[
2

2u+ u2
+

2

(1 + u)2
+ 4 ln

(
2u+ u2

[1 + u]2

)]
(4)

where u = ‖x∗ − x‖/dp − 1 is the dimensionless distance between the two191

particle surfaces and A is the Hamaker constant, which relies on the compo-192

sition of the particles and the interstitial fluid. The adhesive force exerted193

by particle p∗, with its center at x∗, on particle p, with its center at x, as a194

result of the Van der Waals potential given by Eq. (4) can be written as:195

Fad
p∗→p =

A

6dp

1

(2u+ u2)2
1

(1 + u)3
x∗ − x

‖x∗ − x‖ (5)

11
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teratomic distance S0, Eqs. (4) and (5) are no longer applicable and the197

magnitude of the Van der Waals force is fixed at a maximal value in order198

to represent the physical particle-particle repulsion and prevent the single199

attraction when the surface separation distance is zero [60].200

Assuming that the velocities of colliding particles are not correlated (En-201

skog approximation for dense flows), the two-particle probability density202

function is defined as follows:203

f (2)
p

(
cp,x, c

∗
p,x

∗, t
)

= g (x,x∗) fp (cp,x, t) fp
(
c∗p,x

∗, t
)

(6)

with g (x,x∗) being the two-particle radial distribution function. The adhe-204

sion term in Eq. (3) can then be written as:205

(
∂fp
∂t

)

ad

= − ∂

∂cp,i

(
Fa,i
mp

fp

)
− ∂

∂cp,i

(
Fb,i
mp

fp

)
(7)

with206

Fa,i = − ∂

∂xi

∫
np (x∗) g (x,x∗)V (‖x∗ − x‖) dx∗ (8)

207

Fb,i =

∫
np (x∗)

∂g (x,x∗)

∂xi
V (‖x∗ − x‖) dx∗ (9)

where np is the particle number density. Fa,i and Fb,i can be approximated208

as follows:209

Fa,i ≈ −
∂

∂xi
np (x) g0 (x)

∫
V (‖x∗ − x‖) dx∗ (10)

210

Fb,i ≈ 0 (11)

where g0 is the radial distribution function at contact. A momentum balance

equation for the solid phase containing a gradient of adhesive particle pressure

12
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αpρp
∂Up,i
∂t

+ αpρpUp,j
∂Up,i
∂xj

= −αp
∂Pg
∂xi

+ αpρpgi + Ig→p,i

− ∂

∂xj
(αpρpRp,ij + Θp,ij)− αp

∂Pad
∂xi

(12)

where Ig→p,i is the mean interphase gas-to-particle momentum transfer and211

Rp,ij and Θp,ij are respectively the particle kinetic and collisional stress ten-212

sors. Eq. (12) is derived by substituting (7) in (2) and then multiplying (2)213

by mpcp and integrating over all velocities cp. In Eq. (12), −αp∂Pad/∂xi214

is equal to npFa,i, where Fa,i is expressed by Eq. (10). Pad represents an215

adhesive pressure resulting from the attraction between particles, which is216

given by:217

Pad ≈
npg0
πd3p/6

∫
V (‖x∗ − x‖) dx∗ (13)

In the case of Van der Waals interaction potential, Pad may be written as:218

Pad ≈
npg0
πd3p/6

∫

‖x∗−x‖>dp+S0

V (‖x∗ − x‖) dx∗ (14)

And according to Parmentier [42]:219

Pad ≈ −Anpg0 ln

(
dp
S0

)
(15)

The adhesion term in the momentum equation (Eq. (12)) is written as:220

−αp
∂Pad
∂xi

= −∂P
a
p

∂xi
(16)

with221

P a
p ≈ −A

np
αp

ln

(
dp
S0

)∫ αp

0

αp

(
g0 + αp

∂g0
∂αp

)
dαp (17)
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the likelihood of particle-particle collision, is given as the following expression223

[61]:224

g0 =

(
1− αp

αp,max

)−2.5αp,max

(18)

Using Eq. (17), the negative adhesive pressure can then be formulated as:225

P a
p = −B

d3p
2α2

p,max

[
25

6
+

(
−3

2

α2
p

α2
p,max

+
20

3

αp
αp,max

− 25

6

)
g0

]
(19)

with226

B = A
3

π
ln

(
dp
S0

)
(20)

where dp is the particle diameter, αp is the solid volume fraction, A is the227

Hamaker constant, and S0 is a minimum cutoff separation distance between228

two particle surfaces. The adhesive pressure P a
p given by Eq. (19) is added229

to the kinetic, collisional, and frictional pressures.230

2.2. Evaluation of the kinetic-theory-based adhesion model231

The adhesive pressure model presented in Eq. (19) is tested by adding232

it to the solids pressure and performing two-fluid model simulations similar233

to CFD-DEM simulations carried out by Hou et al. [62]. The values of the234

parameters used in our quasi-two-dimensional fluidized bed simulations of235

Geldart A particles are summarized in Table 2. The value of the initial solid236

volume fraction (αp,ini = 0.6) is chosen to be the same as that obtained from237

the CFD-DEM simulations of Hou et al. [62] for the fixed bed. The bottom238

face of the cuboid bed employed in our simulations acts as an inlet for gas239

and a wall with a no-slip condition for particles. The top face serves as a240

free outlet for both gas and solid phases with an imposed gauge pressure of241

14
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with a no-slip condition for each phase. A symmetry boundary condition is243

employed for both phases at the front and back faces (normal to the y-axis).244

Table 2

Simulation parameters.

Parameter Value

Particle diameter, dp 100 µm

Particle density, ρp 1440 kg/m3

Particle-particle normal restitution coefficient, ec 0.8

Gas density, ρg 1.205 kg/m3

Gas viscosity, µg 1.8× 10−5 Pa.s

Cuboid bed size, Lx × Ly × Lz 60dp × 4dp × 200dp

Cell size, ∆x = ∆y = ∆z 2dp

Initial particle bed height, Hini 36dp

Initial particle volume fraction, αp,ini 0.6

Frictional pressure constant (Eq. (1)), Fr 0.05 Pa

Frictional pressure constant (Eq. (1)), n 2

Frictional pressure constant (Eq. (1)), m 5

Threshold solid volume fraction for friction, αp,min 0.58

Close-packing solid volume fraction, αp,max 0.64

Minimum surface separation distance, S0 1 nm

Base value of the Hamaker constant, A 2.1× 10−21 J

Maximum Courant number, CFLmax 0.1

The equations for the kinetic, collisional and frictional solids stress clo-245
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frictional viscosity is omitted from each simulation with adhesion (only the247

frictional pressure is included) since it turns negative in the region where248

adhesion effect is dominant over friction effect. The drag model used is that249

proposed by Gobin et al. [63], which is the drag correlation of Wen and Yu250

[64] limited by the Ergun [65] equation for dense regimes. The gas flow is251

assumed to be laminar (no turbulence model is used). The agitation model252

used for the solid phase is q2p−qgp, which includes transport equations for the253

particle fluctuant kinetic energy, q2p, and the gas-particle velocity covariance,254

qgp [66, 67, 57, 68]. However, since the gas flow is assumed to be laminar,255

the gas fluctuating velocity u
′′
g,i is zero; hence qgp = 〈u′′g,iu

′′
p,i〉p equals zero.256

Two sidewall pressure monitoring points at zero and 195dp above the inlet257

were utilized to measure the overall bed pressure drop at each superficial gas258

velocity in fluidization and defluidization cycles. Each superficial gas velocity259

was sustained for 5 s, and the pressure was averaged over the last 2 s of each of260

these 5 s intervals to determine the time-averaged bed pressure drop values:261

262

∆P = P1 − P2 =
1

Nr∑
k=1

∆tk

(
Nr∑

k=1

∆tkP1,k −
Nr∑

k=1

∆tkP2,k

)
(21)

where P1 and P2 are the pressures at the monitoring points, ∆t is the time263

step, and Nr is the total number of time steps in the 2 s interval. The264

normalized bed pressure drop is defined as the ratio of the pressure drop265

across the whole bed to the pressure drop equivalent to the weight of the266

particles, ∆P/∆Peq. The pressure drop ∆Peq can be expressed as:267

∆Peq = mbg/Sb = αpρpHbg (22)
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Sb is the cross-sectional area of the bed, and Hb is the bed height. Substi-269

tuting 0.6 for αp and 36dp for Hb (see Table 2) in Eq. (22) gives ∆Peq equals270

30.513 Pa. The spatial average of the solid volume fraction αp is computed271

as follows:272

〈αp〉 =
1

Nc

Nc∑

i=1

αpi (23)

where Nc is the number of cells between the inlet and 34dp above the inlet,273

which is slightly less than the bed height at the lowest superficial gas velocity.274

The time average of the spatially averaged αp is determined as:275

〈αp〉 =

Nr∑
k=1

∆tk〈αp〉k
Nr∑
k=1

∆tk

(24)

Then, the bed voidage is obtained as: 〈αg〉 = 1− 〈αp〉.276

Bed pressure drop and voidage versus superficial gas velocity curves for277

fluidization and defluidization cycles with different B values (Eq. (19)) are278

shown in Fig. 2. The value of B obtained by substituting the values of A,279

dp and S0 (given in Table 2) in Eq. (20) is 2.3 × 10−20 J. In addition to280

this value, we tested much higher B values in order to demonstrate that the281

adhesion provided by the kinetic theory model is several orders of magnitude282

smaller than that given by the coordination number model presented later283

in section 2.3. As depicted in Fig. 2, generating a pressure drop overshoot284

requires multiplying B by 106 (using B = 2.3 × 10−14 J) and no hysteretic285

behavior is predicted between the increasing and decreasing velocity path286

curves. The bed voidage curves displayed in Fig. 2 show a decrease in the287
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relatively strong adhesion.289
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Fig. 2. Normalized time-averaged overall bed pressure drop and time-spatial averaged

gas volume fraction in the bed during fluidization and defluidization cycles with different

B values in the adhesion pressure (Eq. (19)). F represents a fluidization branch and D a

defluidization branch in this and Fig. 4. [69].

Based on the foregoing results, the adhesive contribution introduced by290

the kinetic theory model is insufficient to generate an overshoot in the bed291

pressure drop. This inability might be attributed to the binary and instan-292

taneous collisions assumption used in the kinetic theory approach because293

fixed-bed flows are dominated by the influence of multiple and sustained294

contacts. The pressure-drop hysteresis between the fluidization and deflu-295

idization branches is not produced because the impact of deformation history296

is not taken into account in the kinetic theory adhesion model. In particular,297

the adhesive pressure is only a function of the particle volume fraction αp,298

indicating that it is a symmetric closure. In the next section, we present a299

coordination-number-based approach suitable for quasi-static flow regimes.300
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Here, we derive an adhesive pressure model by assuming that the domi-302

nant Van der Waals interaction occurs between particles in long-lasting con-303

tact characterized by the coordination number. The coordination number304

is defined as the mean number of particles in contact with a given particle,305

which may be written as:306

CN = 2
nc
np

(25)

where nc denotes the mean number of contacts per unit volume and np de-307

notes the number of particles per unit volume. The factor 2 enters in Eq. (25)308

because each contact is shared by two particles. The particle-particle stress309

tensor component due to the adhesive force may be computed as [70, 71, 72]:310

311

σadij = − 1

V

∑

c∈V
f ci b

c
j (26)

where the sum is over all the contact points c in volume V . f ci represents the312

interaction force between two particles in contact at c and bcj represents the313

vector connecting the centers of these two particles if both centers are inside314

the volume V , or only the part in V if one of the centers is outside V . By315

using Eq. (5), the adhesive contact force can be expressed as follows:316

Fc
p∗→p =

A

6dp

1

(2u0 + u20)
2

1

(1 + u0)
3k
∗ ≈ A

6dp

1

4u20
k∗ (27)

where u0 = S0/dp is the minimum dimensionless separation distance between317

two particle surfaces and k∗ = (x∗ − x) /‖x∗−x‖ is the unit vector along the318

line of centers of two interacting particles. Substituting Eq. (27) into Eq.319

(26) gives the following adhesive stress expression for homogeneous systems:320
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of321

σadij =
1

V

∑

c∈V

A

24u20
k∗i k

∗
j (28)

The isotropic component of the adhesive stress given by Eq. (28) is the322

adhesive pressure:323

P a
p = −σ

ad
ii

3
= −nc

3

Ad2p
24S2

0

(29)

Then, using Eqs. (29) and (25), the adhesive particle pressure can be ex-324

pressed as:325

P a
p = − αp

πd2p
CN

Adp
24S2

0

(30)

where CN is the coordination number.326

2.4. Evaluation of the coordination-number-based adhesion model327

Eulerian-Eulerian simulations were carried out using the parameter values

in Table 2 to check the ability of the adhesive pressure model given by Eq.

(30) to create the pressure drop overshoot. These simulations are the same

as those described in section 2.2, except that the coordination-number-based

adhesive pressure model is utilized instead of the kinetic-theory-based one.

In our tests, we used a constant coordination number of 4.77 corresponding

to a fixed bed state and correlations between the coordination number and

the solid volume fraction based on the CFD-DEM simulation results of Hou

et al. [62]:

CN = 2 + 3.25α0.4
p for expanded beds (31)

CN = 4.87× 10−5
1− (1− αp)2.8

(1− αp)11.6
for fluidized beds (32)

These correlations were developed using simulations that account for the Van328

der Waals adhesion between particles. Fig. 3 shows CN plotted as a function329
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ofof αp for expanded and fluidized bed states using Eqs. (31) and (32). In the330

expanded bed state, as the solid volume fraction decreases from the close-331

packing value (0.64) to zero, the coordination number slowly decreases until332

it reaches a minimum value of 2 corresponding to a chain-like structure,333

as demonstrated in Fig. 3. On the other hand, the coordination number334

corresponding to the fluidized bed state decreases rapidly towards zero when335

the solid volume fraction decreases, as seen in Fig. 3.336

0 0.2 0.4 0.64
0

1

2

3

4

5

6

7

Expanded state

Fluidized state

Fig. 3. CN as a function of αp for expanded and fluidized bed states.

The obtained bed pressure drop and mean gas volume fraction profiles337

are illustrated in Fig. 4. As we can observe in the pressure drop versus338

superficial gas velocity plots, the constant fixed-bed coordination number and339

the expanded-bed correlation both generate overshoot, while the fluidized-340

bed correlation does not. Based on these results, we can infer that the341

coordination-number-based model provides an adhesive contribution large342
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Fig. 4. Normalized time-averaged overall bed pressure drop and time-spatial averaged

gas volume fraction in the bed during fluidization and defluidization cycles without and

with adhesion using the coordination-number-based model. [69].

The experimental bed voidage curves of Geldart A particles in Fig. 1344

demonstrate that at superficial gas velocities less than the minimum fluidiza-345

tion velocity Umf , the bed voidage remains constant at ε0 in the increasing346

velocity path. When the superficial gas velocity reaches Umf , the forces ex-347

erted by the gas on the particles overcome the interparticle forces, particle-348

wall friction, and particles' weight, leading to the destruction of the contact349

network and an abrupt jump in the bed voidage from ε0 to εmf . In contrast,350

in the decreasing velocity path, the bed voidage progressively decreases from351

εmf to ε0 as the superficial gas velocity decreases from Umf to zero. The sim-352

ulation results in Fig. 4 show a decrease in bed voidage owing to adhesion,353

but the hysteretic behavior between the fluidization and defluidization cycle354

curves observed experimentally is not predicted. To obtain this behavior,355

the role of Van der Waals interparticle force and particle-wall static friction356
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Achieving this condition is influenced by the values of the various simulation358

model parameters. For example, the particle diameter in the experiments of359

Soleimani et al. [14] is 67 µm, which is smaller than the particle diameter in360

our simulations (100 µm). In addition, the contact network formation and361

destruction (the coordination number evolution) should be taken into con-362

sideration in our two-fluid simulations to generate the hysteresis. Moreover,363

the effect of boundary conditions (particle-wall friction) and dimensionality364

(quasi-2D to 3D) on the pressure overshoot should be explored. Consider-365

ing the effect of static particle-wall friction on the pressure-drop overshoot366

in the two-fluid model could be the subject of future research. Accounting367

for this effect is essential to achieve a quantitative prediction because static368

wall friction may increase the overshoot intensity. However, the significance369

of this impact depends on the column diameter [32]. Regarding the effect370

of particle size, our simulations using the coordination-number-based model371

demonstrated that the diminution of the particle diameter notably increases372

the pressure overshoot intensity (data not shown here), which is consistent373

with experimental observations [15].374

The number of interparticle contacts, and hence the radial distribution375

function, is influenced by adhesion. This could be investigated through DEM376

simulations. In the fixed-bed state, the dominant effect is for the frictional377

pressure and not the collisional pressure. Therefore, modifying the radial378

distribution function to consider the influence of adhesion may have a negli-379

gible effect on the overshoot obtained using the coordination number model.380

The kinetic theory adhesion model gives an adhesive contribution 6 orders381
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because the kinetic theory assumptions, including the assumption that the383

radial distribution function is not modified by adhesion, are not valid.384

3. Conclusion385

In this research, two-fluid model simulations were performed with the386

aim of predicting the pressure-drop overshoot observed during fluidization of387

Geldart A particles. Two adhesive pressure models were suggested to account388

for the Van der Waals force among particles. The first model, which is based389

on the kinetic theory, gives an adhesion effect that is not strong enough to390

create the pressure drop overshoot. This model may be suitable for rapid391

granular flows, but it is not appropriate for quasi-static flows because it does392

not account for the long term and multiple particle-particle contacts. The393

second model, which is expressed in terms of the mean number of contacts per394

particle, makes use of CFD-DEM correlations that relate the coordination395

number to the solid volume fraction for various flow conditions. This model396

gives an adhesive contribution far larger than the one of the kinetic theory397

model and produces the overshoot in the bed pressure drop. The success398

of the aforementioned model appears to be attributable to the fact that it399

accounts for the multiple and sustained contacts. The hysteresis between the400

fluidization and defluidization branches was not predicted by any of the two401

adhesive pressure models.402

A meso-scale numerical investigation is required to guide postulating a403

continuum evolution equation for the coordination number or developing an404

Eulerian adhesive stress closure that accounts for the effect of deformation405
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and fluidized bed states) in order to predict the hysteresis in the bed pressure407

drop at the macro-scale.408

Some researchers have previously claimed that the standard two-fluid409

model, which does not account for adhesion between particles, can correctly410

predict the fluidization behavior of Geldart A particles if a sufficiently high411

resolution is used. For example, Wang et al. [73] demonstrated that fluidized412

bed expansion can be accurately predicted (compared to discrete particle413

simulations) when the cell size is of the order of three particle diameters414

and the time step is small. However, they only studied the bed expansion415

at superficial gas velocities well above the minimum fluidization velocity, at416

which the coordination number and hence the adhesive contribution may be417

negligible. Our two-fluid simulations employ a small time step and a cell size418

of two times the particle diameter, which complies with the recommendation419

of Wang et al. [73]. The results of these simulations reveal that no over-420

shoot is generated during the transition from fixed to fluidized bed without421

considering the effects of adhesion. Therefore, interparticle attractive forces422

may have a significant contribution to the hydrodynamic behavior observed423

in fluidized-bed experiments. Taking these adhesive interactions into account424

is critical for gaining a comprehensive understanding of the fluidization be-425

havior of particles belonging to Geldart group A.426
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Highlights

• Two adhesion pressure closures are given for the Van der Waals force effect in TFM.

• The kinetic theory fails to predict a pressure overshoot in a fluidized bed.

• The coordination number model is successful in generating the pressure overshoot.

• Interparticle Van der Waals force contributes to the pressure overshoot phenomenon.
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