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Abstract—In the imminent era of 6G, Unmanned Aerial Vehi-
cles (UAVs) emerge as indispensable connectors, seamlessly inte-
grating ground and space networks with unparalleled flexibility
and dynamic mobility. This article focuses on enhancing Quality
of Service (QoS) by categorizing users into Premium, Silver, and
Bronze tiers, akin to 5G slicing. Leveraging Deep Deterministic
Policy Gradient (DDPG), the study unfolds in two phases. In
the first phase, UAVs are strategically deployed using DDPG
to optimize network coverage in areas of higher user density.
This intelligent deployment adapts to user distribution patterns.
In the second phase, dynamic repositioning using DDPG meets
QoS requirements by prioritizing users based on categories. This
two-phase approach showcases UAV adaptability in optimizing
wireless communication systems in the evolving landscape of
6G networks. The proposed solution, driven by DDPG, ensures
optimal coverage and responsiveness to diverse user needs.

Index Terms—Deep reinforcement learning, Drone, Slicing,
Quality Of Service

I. INTRODUCTION

In the dynamic landscape of technological evolution over
the past decade, unmanned aerial vehicles (UAVs), collo-
quially referred to as drones or unmanned aircraft systems
(UAS), have emerged as technological frontiers, propelled
by substantial advancements in machine learning (ML) and
artificial intelligence (AI). This transformative journey has
unfolded a spectrum of applications, spanning the realms of
delivery services, disaster response, agriculture, and military
operations. In times of natural disasters, where stationary
infrastructure may be damaged, drones play a vital role as
flying base stations (BSs). For instance, in the aftermath of
events like earthquakes, when traditional base stations are
compromised, UAVs can quickly re-establish communication
[1]. Furthermore, integrating drones with wireless networks
has garnered attention for its flexibility and mobility, making
it appealing for commercial and academic purposes.

UAVs offer a versatile platform for wireless communication,
addressing challenges and providing unique advantages. Their
mobility allows for rapid deployment in emergency scenarios,
and they can establish direct line-of-sight communication
links during challenging circumstances. In the communication
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sphere, drones act as relay nodes, extending communication
range, forming mesh networks for ad-hoc connections, and
even serving as aerial base stations in cellular networks,
often referred to as flying radio access networks (FRAN) [2].
Research efforts focus on optimizing UAV flight paths, known
as trajectory optimization, to meet user demands. Energy re-
source optimization, communication protocol algorithms, and
ensuring secure and private communication for UAVs are areas
of active investigation. Amid the advantages, challenges exist
in implementing UAVs to meet diverse user and situational
demands. This article specifically delves into the challenges
of autonomous trajectory optimization, addressing them us-
ing DRL (Deep Reinforcement Learning). DRL, a subset of
machine learning, combines reinforcement learning with deep
learning, proving effective in decision-making and sequen-
tial interactions [3]. Autonomous trajectory optimization uses
the DDPG (Deep Deterministic Policy Gradient) algorithm,
which excels in handling continuous action spaces [4]. DDPG
employs a critic network to estimate expected cumulative
rewards and utilizes experience replay to enhance training
stability and efficiency. With demonstrated success, DDPG
finds practical applications, including drone implementation
for wireless network provision, such as in current 5G networks.
Also, in the context of future technologies like 6G, UAVs
are expected to play a crucial role, densely populating the
aerial space and serving as an intermediary network layer
connecting ground and space-based networks [5]. This article
presents a simulation that optimizes drone trajectories in two
phases. Initially, drones are deployed in a grid, using DRL
to prioritize areas with higher user density based on user
categories (Premium (A) or Gold, Silver (B), Bronze (C)).
Subsequently, the drone’s height and movement are adjusted
with DRL to meet QoS demands for each user category.

The paper is organized as follows: After a literature review
in Section II, the main DDPG algorithms for drones are
presented in Section III, and simulation results are provided
in Section IV. Finally, a conclusion is addressed in Section V.

II. LITERATURE REVIEW

Numerous studies have investigated the implementation
of drones, particularly their applications and challenges in
wireless communication [6], [7]. One systematic literature



review emphasized the significance of the delay factor in
meeting network requirements for UAV-based Internet of
Vehicles (IoV) [8]. Another survey delved into UAV-assisted
wireless communications, exploring recent advancements and
future trends in the field [9]. Additionally, a comprehensive
survey on communication and networking technologies for
UAVs provided insights into lessons learned, challenges, open
issues, and future directions in UAV communications. Various
survey papers have also addressed the application of drones
in wireless networks, focusing on resource allocation and
management in 5G and beyond, as highlighted in works such
as [10] and [11].

The Internet of Drones (IoD) has recently surfaced as
a promising technology to enhance traditional ground-based
wireless networks’ coverage, connectivity, and reliability, as
highlighted in [10]. IoD is increasingly being integrated into
various networks, including cellular networks, wireless sensor
networks (WSNs), IoT networks, and reconfigured intelligent
surface (RIS)-aided networks [12].

Conventional techniques, such as optimization- and game
theory-based approaches, face challenges in addressing com-
munication issues in dynamic drone environments due to their
high complexity, as noted in [11] and [13]. As a result,
emerging machine learning approaches like DRL are gaining
prominence for addressing wireless network challenges.

Drones, with their reduced maintenance costs, seamless
integration with various systems, and high mobility, find
applications in civil and military domains [10] and [14]. They
prove particularly effective in wireless coverage and search
and rescue missions and are expected to play a significant
role in future cellular networks, enhancing capacity and cov-
erage. Additionally, drones minimize communication delays
and improve user throughput by providing aerial caching at
small base stations [15].

The diverse applications of IoD networks have led to devel-
oping specialized drone systems, such as IoT-enabled drones
[16] and LiDAR-based drones [17]. IoD proves invaluable
in real-time urban traffic monitoring and management to
support public transportation, as discussed in [18]. Drones
find versatile applications in reconnaissance, including traffic
surveillance, indoor and outdoor monitoring, and environmen-
tal surveillance [18]. In scenarios like environmental disasters,
a swarm of drones can be deployed for efficient search and
rescue operations. The mobility of drones within a network
enables them to establish a reliable line of sight (LoS) con-
nection with ground entities, significantly enhancing coverage
and network performance compared to conventional ground-
based wireless networks. Leveraging drones as aerial base
stations offer various strategies for distributing and offloading
user traffic, making them effective integrators with cellular and
vehicular networks. This integration not only improves overall
network performance but also helps alleviate congestion [5].
We introduce innovative enhancements to the Deep Determin-
istic Policy Gradient (DDPG) framework by integrating differ-
entiated Quality of Service (QoS) management. Our approach
promises tailored, efficient service delivery by aligning system

responses with user priorities, marking a significant leap in
optimizing network performance and user satisfaction.

III. PROPOSED METHODOLOGY

A. Reinforcement learning

Reinforcement learning (RL) facilitates the acquisition of
an optimal decision-making policy through sequential learning
and trial-and-error processes. The formalization of RL is based
on the framework of Markov Decision Processes (MDP),
comprising a set of states (S), a set of actions (A), and
transition dynamics denoted as T(st+1| st,at). At each time
step (t), the agent (drone) selects an action (at), determined by
observations (in this context QoS) represented by the current
state (st). Following the drone’s movement, the environment
responds with a reward (rt+1) and transitions to a new state
(st+1). The drone aims to develop an optimal strategy or policy
through repeated experiments and adjustments of its position,
maximizing the cumulative rewards over time. This learning
process involves utilizing action-value functions, commonly
known as Q-values. These Q-values express the expected
cumulative rewards r associated with taking a specific action
A in a given state S following the rule as in Equation 1.

Q(s, a) = Eπ [rt+1|St = s,At = a] (1)

forming the basis for the drone’s decision-making and adap-
tation to achieve optimal performance.

Reinforcement learning (RL) faces challenges in efficiently
finding optimal strategies, especially in large-scale wireless
communication scenarios. Experts have introduced Deep Re-
inforcement Learning (DRL) to address this limitation, com-
bining RL with deep learning techniques. This integration aims
to enhance performance in complex environments. A policy-
based algorithm called Deep Deterministic Policy Gradient
(DDPG) is commonly employed for scenarios with dynamics
and continuous action spaces, such as drone movements.
DDPG combines features of both policy gradient and Q-
learning techniques. In this algorithm, an actor, represented
by a deep neural network, selects actions based on the current
state of the environment. Additionally, a critic, implemented as
a Q-value deep neural network, assesses the quality of actions
taken by the actor-network. This collaborative approach in
DDPG contributes to more effective decision-making and
adaptation in dynamic and continuous action spaces like those
encountered in drone movements within wireless communica-
tion networks.

B. DDPG based algorithms

We address real-world scenarios, particularly focusing on
the critical role of network services during natural disasters
for effective rescue operations. In such emergencies, network
services are vital for various entities, including firefighters and
medical facilities, where the QoS is of utmost importance and
cannot be compromised. To cater to these requirements, we
incorporate deep reinforcement learning into the configuration
of network slicing. The simulation unfolds in two stages using
two DDPG, illustrated in Figure 1. Initially, we examine



Fig. 1: Multiple DDPG for different categories of users
(Nodes)

the optimal drone deployment locations in a grid scenario,
assigning one drone to each cell. Considering user equipment
(UE) density, we categorize users into three groups: Category
A (Premium or Gold), Category B (Silver), and Category
C (Bronze). The UE density in each cell is dynamically
generated, and the deployment prioritizes cells with a higher
density of Category A users. Using DDPG, we deploy three
drones in the experiment, selecting the top three cells with
the highest user density. Let C ′ be the set of cells where
drones can be deployed, and c ∈ C ′ represents a specific cell.
The dynamic UE density in each cell c at time t is denoted
as D(c, t), encompassing users from the three categories (A,
B, C). The system’s state space S at time t is defined by
Equation 2.

S(t) = {DA(c, t) | c ∈ C ′} (2)

where DA is the UE density in each cell specifically for
category A users.

The action space consists of the decision to deploy a drone
in each cell. Let A(c, t) be the action representing whether
a drone is deployed in cell c at time t. The action space is
defined as in Equation 3.

A(t) = {A(c, t) | c ∈ C ′}. (3)

The priority of each cell is given by Equation 4.

P (c, t) = DA(c, t) (4)

is determined based on the UE density of category A users.
The DDPG algorithm involves training a policy network π(S)
that outputs actions based on the current state S. In this case,
the policy network is given by Equation 5.

π(S(t)) = {A(c, t) | c ∈ C ′} (5)

At each time step, the agent deploys drones based on the
policy, selecting the top three cells with the highest category
A density as in Equation 6.

TopThree(A(t) = TopThree(π(S(t))) (6)

where TopThree(·) selects the top three elements with the
highest value. The reward for each drone is calculated based
on the UE density at its current position as in Equation 7.

Rewardi = UEDN [Dri,xgdx, Dri,ygdy] (7)

where UEDN is the array representing UE density across the
grid, Drx,y is the x-coordinate of drone i, Dri,y is the y-
coordinate for the drone i, gdy is the size of the grid along
y-axis and gdx is the size of the grid along the x-axis. The
total reward is calculated as the sum of all individual rewards
obtained throughout the episode.

Algorithm 1 defines a simulation framework for drone
movements in a 3D environment. The DroneEnvironment
class initializes the environment, including drones, obstacles,
and parameters, and provides methods for calculating density,
moving drones, and updating environmental conditions. The
DDPGAgent class manages the agent’s behavior, including
defining neural network models, optimizers, and training pro-
cedures.

Algorithm 1 includes a visualization function that plots
drone trajectories and highlights positions with the highest
User Equipment (UE) density for each episode. In the main
section, the environment and agent instances are created, and
the visualization function is called for a specified number of
episodes. This algorithm is a foundation for studying drone
behaviors in 3D space using a DDPG approach.

Algorithm 1 Drone Environment & DDPG Agent

1: 1. Initialize: Setup environment, drones, and DDPG agent
2: for each episode do
3: 2. Reset: Initialize environment and variables
4: for each time step do
5: 3. Interact: Select actions, move drones, calculate

rewards, and train agent
6: 4. Record: Store drone positions and find density

peaks
7: end for
8: end for
9: 5. Visualize: Display drone trajectories, density peaks, and

total reward

After deploying the drones in a cell, we now focus on the
second part of our simulation, which is how we provide QoS
to the different user categories depending upon the priority
of users. Algorithm 2 is the pseudo algorithm for how we
carry out our operation. Algorithm 2 outlines a comprehensive
framework for training a drone system through DRL, employ-
ing the DDPG approach. The algorithm begins by initializing
the environment, defining action and observation spaces, and
setting up initial QoS criteria for diverse user categories.
It dynamically updates QoS criteria based on environmental
conditions. The agent is then initialized, featuring actor and
critic neural networks, and a replay buffer is established for
storing training experiences. The main training loop iterates
through episodes and time steps, involving the selection of
actions, drone movement, reward calculation, and training of



the DDPG agent. Visualization functions are incorporated to
depict drone trajectories and total rewards. The algorithm also
addresses reward and observation calculations, environment
updates, and the resetting of the environment at the beginning
of each episode. Training data is efficiently stored in the replay
buffer, providing a robust foundation for the reinforcement
learning-based training of a drone system in dynamic and
varying conditions.

Algorithm 2 DDPG Algorithm for Drone System

1: Initialization:
2: Initialize environment, agent, and replay buffer.
3: Training Loop:
4: for each episode do
5: Reset environment and variables.
6: for each time step do
7: Interact with the environment, train agents, and

record positions.
8: end for
9: end for

10: Visualization & Rewards:
11: Implement visualization for trajectories and rewards.
12: Observation & Environment Updates:
13: Implement observation generation and update environ-

ment.
14: Reset & Training Data:
15: Implement environment reset and store data in replay

buffer.

Algorithm 3 is a continuation of Algorithm 2, which out-
lines the training process for a drone system using the DDPG
approach. It begins by initializing the DDPG agent with hyper-
parameters such as state and action dimensions, learning rates
for the actor and critic, gamma, epsilon decay, and action
space specifications. The training loop executes over multiple
episodes, involving resetting the environment and dynamic
updates. At each time step, the actor-network selects actions,
incorporating exploration noise, and the subsequent execution
of these actions leads to the observation of the next state
and associated rewards. Individual latency, throughput, and
reliability rewards are calculated and stored, contributing to the
overall episode reward for all users. The algorithm employs a
replay buffer to sample minibatches for training, preprocesses
relevant data, and computes current QoS-based rewards. Critic
and actor networks are updated using computed gradients, and
a soft update is applied to target networks. The algorithm
concludes with storing total rewards per episode and plotting
various metrics, including latency, throughput, reliability, total
rewards, and QoS criteria across episodes.

1) Reward function: This method computes the reward for
a given state and action, incorporating QoS rewards based
on the user category. The distance to the target is calculated
using the Euclidean norm, and a negative reward is assigned
proportional to this distance. The method then determines the
user category index in a 1D array based on the drone’s position
coordinates. The received power is computed using a channel

Algorithm 3 DDPG Algorithm for Drone System (Continued)

1: Initialize DDPG Agent:
2: Set hyperparameters, build actor and critic networks.
3: Training Loop:
4: for each episode do
5: Reset environment, initialize episode and QoS re-

wards.
6: for each time step do
7: Interact with environment, calculate individual re-

wards, and update networks.
8: Store rewards, update episode reward, and sample

minibatch for training.
9: Update critic and actor networks, perform soft

target updates.
10: end for
11: Store total reward and update QoS history.
12: end for

model, and the user category is extracted from the received
power values. The code calculates QoS rewards for three
user categories (A, B, and C) based on the received power
and specified QoS criteria. The weights for each category’s
reward are adjusted based on their importance. The total
reward combines QoS rewards for Categories A, B, and C.
The resulting rewards are returned as a list.

The rewards for Category A are based on specified QoS
criteria, including latency, throughput, reliability, and distance.
This reward function takes as input the current drone positions
(current positions), user positions (user positions), QoS criteria
for Category A (QoS criteria), and the received power as in
given Equation 8.

RewardA = σ

(
N1∑
i=1

γiA +

N1∑
i=1

αiA +

N1∑
i=1

θiA

)
(8)

where σ is a weight assign to the category A, γi the la-
tency rewards, αi the throughput rewards, θi the Signal-to-
Interference-plus-Noise Ratio (SINR) rewards of the category
A and N1 the number of users in Category A, Gold.

The rewards for Category B are based on various QoS
criteria, including latency, throughput, reliability, and distance.
This reward function takes as input the current drone positions
(current positions), user positions (user positions), QoS criteria
for Category B (QoS criteria), and the received power. It is
given as in Equation 9.

RewardB = β

(
N2∑
i=1

γiB +

N2∑
i=1

αiB +

N2∑
i=1

θiB

)
(9)

where β is the weight assign to the category B, γi the latency
rewards, αi the throughput rewards, θi the SINR rewards of the
category B and N2 the number of users in Category B, Sliver.
It then calculates QoS-based rewards for latency, throughput,
and reliability. The rewards are adjusted based on the received
power, aiming to balance the impact of the channel conditions
on different QoS metrics.



The rewards for Category C are based on specified QoS
criteria, including latency, throughput, reliability, and distance.
The function takes as input the current drone positions (current
positions), user positions (user positions), QoS criteria for
Category C (QoS criteria), and the received power. It is given
by Equation 10.

RewardC = ω

(
N3∑
i=1

γiC +

N3∑
i=1

αiC +

N3∑
i=1

θiC

)
(10)

where ω is weight assign to the category C, γi the latency
rewards, αi the throughput rewards, θi the SINR rewards of
the category C and N3 the number of users in Category C,
Bronze.

2) Latency: The latency reward is based on the user
position, current position, and target latency. Here is the
mathematical representation in Equation 11.

Latency =
| Cp − Up |

Sl
(11)

where Cp is current drone position, Up is the user position,
and Sl is speed of light. The formula calculates latency as
the ratio of the spatial separation between the drone and the
user to the speed of light. This ratio indicates the time it
takes for a signal to travel from the drone to the user or vice
versa. Lower latency values indicate quicker communication
between the drone and the user, while higher values imply
longer communication delays.

3) SINR: The function below calculates the SINR, which
is the ratio of the signal power to the sum of interference and
noise powers, shown in Equation 12.

SINRdB =
Sp

Ip +NP
(12)

where Sp is the single power, Ip the interference power and
Np the noise power. The SINR is scaled based on the target
SINR, and the resulting value represents the SINR reward. The
function is designed to emphasize the importance of meeting
SINR targets.

4) Throughput: The function below calculates throughput
in Mbps based on a given data rate and bandwidth and assigns
a reward accordingly, as in Equation 13.

Th = B × (1 + SINR) (13)

where Th is throughput, SINR is the Signal-to-Interference-
plus-Noise Ratio and B is bandwidth.

5) Drone position: Drone postion are ajusted with the feed-
back provided by system, after the deep lering is implemented
so that it can meet the desire objective. Height of the dron is
adjusted as in equation.

Hnew = clip(Hcurrent + δH,Hmin, Hmax) (14)

Hnewis the drone’s new height after applying action. Hcurrent

is the drone’s current height before the action is applied δH
is the change in height as dictated by the action. Hmin and
Hmaxrepresent the minimum and maximum allowable heights
for the drone, ensuring it remains within a predefined vertical

space. These values prevent the drone from going below
ground level or exceeding a certain altitude limit.

The clip function ensures that the new height new Hnew

does not exceed the minmum and maximum height boundaries.
It resticts the value within the range [Hmin, Hmax]

IV. SIMULATION RESULTS

In our study, we conducted simulations using Python 3.1
within the Google Colab environment, leveraging the power of
TensorFlow for DRL. The experiment was bifurcated into two
distinct phases to comprehensively evaluate the performance
of the deployed drones.

Phase 1: Deployment using DDPG. The initial simulation
phase focused on deploying drones in suitable areas, guided
by the DDPG algorithm. Suitability was determined by iden-
tifying locations with a higher density of users. The primary
goal was strategically positioning drones in areas with elevated
user density.

Phase 2: Dynamic Drone Adjustments for QoS. The
subsequent part of our experiment delved into dynamic adjust-
ments to the drones’ movements. This encompassed variations
in height and back-and-forth positional changes, allowing for
meticulous control. The objective was to optimize Quality of
Service (QoS) specifically for prioritized users.

Our evaluation criteria spanned both phases, assessing the
overall efficacy of the deployed drones. We gauged the success
of the deployment strategy in identifying high-density user
areas during Phase 1. In Phase 2, we evaluated the precision of
dynamic adjustments to enhance QoS for priority users. This
concise approach captures the essence of our experimental de-
sign and evaluation criteria. This structured approach ensured a
thorough examination of our experiment, shedding light on the
effectiveness of the DRL-based methodology in drone deploy-
ment and dynamic adjustments for optimized service delivery.
We simulated the 10×10×10 (X, Y, and Z) grid. Initially, three
drones were deployed, each positioned in the top three cells
with the highest user density on the grid. Using the following
parameters as shown in Table I and Table II. Table I includes
parameters related to the simulation setup or the environment,
while Table II contains hyperparameters specifically used in
the implementation of the Deep Deterministic Policy Gradients
(DDPG) algorithm. This meticulous setup ensured a detailed
exploration of drone deployment strategies within a three-
dimensional space, guided by specific hyperparameters for the
DDPG algorithm.

In Figure 2, the rewards for the initial phase of up to 1000
episodes are illustrated, showcasing consistently positive and
promising outcomes. This measure demonstrates the overall
success and effectiveness of the algorithm over the specified
period. The visual representation affirms the effectiveness
of our DDPG algorithm, demonstrating its proficiency in
selecting higher-density cells within the grid. Figures 3 and
4 present density maps depicting the distribution of different
user categories across the grid. A specific episode (episode 81)
was randomly selected from the thousand episodes to offer a



TABLE I: Initial parameters for first part

Parameter Description Default Value
Grid size Size of the 3D

grid representing
the environment

(10, 10, 10)

Num drones Number of
drones in the
environment

3

Sensor range Sensor range of
each drone in the
environment

3 unit, means a
drone can sense
objects up to 3
grid cells away

Num users Number of user
for A,B and C

rand(1,10)

TABLE II: DDPG Hyperparameters for first part

Hyperparameter Value
State Dimension 10× 10× 10
Action Dimension 2
Action High 1.0
Actor Learning Rate 0.001
Critic Learning Rate 0.002
Actor Hidden Layer 1 64 neurons, ReLU activa-

tion
Actor Hidden Layer 2 64 neurons, ReLU activa-

tion
Actor Output Layer Tanh activation, Random

Uniform initialization
(−0.003, 0.003)

Critic Hidden Layer 1 64 neurons, ReLU activa-
tion

Critic Hidden Layer 2 64 neurons, ReLU activa-
tion

Critic Output Layer Linear activation
Discount Factor (γ) 0.99
Single power(Sp) 2500 dbm
Noise power(Np) 10 db
Bandwidth(Np) 1e7Hz

Fig. 2: Total reward per Episodes

more detailed insight, revealing the density distribution before
and after the episode’s conclusion.

In Figure 5, we visually represent drone placements within
individual cells. Each dot is color-coded, with blue, yellow,
and green signifying different drones. Notably, the red cross

Fig. 3: Density Heat map

Fig. 4: Density Heat map

marks the cell with the highest density on the grid for each
episode. This visualization offers insights into the strategic
positioning of drones and the dynamic changes in density
across the grid.

The figure provided offers a focused view of data extracted
from a subset of episodes, precisely 10 episodes instead of
1000 episodes. This deliberate choice aims to optimize clarity
in the visual representation, preventing potential visual clutter
that might arise with a larger dataset. This strategic decision
ensures a more lucid depiction of the DDPG algorithm’s per-
formance in determining optimal cell locations for deploying
drones. By narrowing the focus to a subset of episodes, the
figure highlights critical patterns and trends without over-
whelming the viewer with excessive detail. In summary, the
collective presentation of figures in the subset affirms the
effectiveness of the DDPG algorithm. The visualizations of
rewards, density maps, and drone placements consistently
illustrate the algorithm’s ability to select optimal cells for
deploying drones. This clarity in representation underscores



Fig. 5: Drones and high-density cells over episodes

the algorithm’s robust performance and ability to make in-
formed decisions across various scenarios, contributing to a
comprehensive understanding of its efficacy.

TABLE III: DDPG Hyperparameters for the Second Part

Hyperparameter for second part Value
State Dimension 9

Action Dimension 3
Learning Rate (Actor) 0.6
Learning Rate (Critic) 0.5

Discount Factor (Gamma) 1
Epsilon Decay 0.995

Buffer Size 10,000
Batch Size 128

Exploration Noise Scale 0.5
Target Update Tau 0.001

TABLE IV: Parameters in Drone Environment for the Second
Part

Parameter Value
num users 100
num categories 3
num tx antennas 2
num rx antennas 2
hline tx antenna gain 10 dB [19]
rx antenna gain 10 dB [19]
beamforming angle deg 65 degrees [20]
shadowing db 2 dB

As outlined previously, in the next phase of our study, we
optimize the drone’s position to meet diverse user priorities,
aiming to fine-tune its location for specific Quality of Ser-
vice (QoS) requirements. Table III and Table IV show the
initial parameters and DDPG hyperparameters used for the
second part of the algorithm. Figure 6 visually summarizes the
outcomes, illustrating latency for distinct priority levels. The
graph showcases our successful spatial optimization strategy,
adapting the drone’s position to meet unique QoS needs. A
closer look at Figure 6 reveals varying latency levels for
different user categories, emphasizing the effectiveness of our

approach. We prioritize Gold users, ensuring their optimal
latency, before addressing other categories. This intentional
prioritization guarantees a consistently satisfactory experience
for Gold users, demonstrating our commitment to meeting
diverse user needs.

Fig. 6: QoS Latency obtained prioritizing Gold (A) users and
expected for different users

Referring to Figure 7, it vividly illustrates throughput re-
wards for various user categories. Our algorithm consistently
excels in meeting the throughput demands of Gold users,
as evidenced by the upward trajectory of the Gold user
throughput curve. This reaffirms our commitment to delivering
a high-quality and dependable service tailored to the specific
requirements of this critical user category.

Fig. 7: QoS Throughput obtained prioritizing Gold (A) users
and expected for different users



Fig. 8: QoS SINR obtained and expected for different users

The observed trend in SINR rewards, illustrated in Figure 8,
underscores the algorithm’s consistent adherence to Quality
of Service (QoS) standards, with a distinct emphasis on Gold
users, particularly User A. SINR, a critical metric gauging
signal quality, is reliably fulfilled for premium users across
almost every episode. This graphical representation accentu-
ates the algorithm’s effectiveness in elevating QoS, notably
for prioritized user groups. The special attention given to User
A within the Gold category suggests a targeted approach to
meet the diverse needs of users, exemplifying the algorithm’s
nuanced handling of different user segments. Overall, the
visual depiction in Figure 8 provides a clear insight into
the algorithm’s reliability and ability to enhance QoS for
designated user categories consistently.

V. CONCLUSION

This paper employs the DDPG algorithm for drone deploy-
ment. It dynamically adjusts drone positions for Quality of
Service (QoS) differentiation by assigning different priorities
to users based on their QoS requirements. Our methodology
emphasizes prioritizing QoS by assigning varying priorities to
users. The problem formulation involves ensuring and optimiz-
ing QoS tailored to distinct user classes. To tackle the nuanced
realm of QoS requirements, we harness the capabilities of
DDPG, seamlessly integrating crucial metrics such as latency,
Signal-to-Interference-plus-Noise Ratio (SINR), and through-
put. Our algorithm consistently meets user QoS expectations
through extensive simulations, demonstrating effectiveness in
real-world scenarios. Future work aims to extend simulations
to intricate environments by introducing multiple Deep Rein-
forcement Learning (DRL) agents. This extension allows us to
explore the algorithm’s adaptability and performance in com-
plex scenarios, providing a comprehensive understanding of
its capabilities in diverse and dynamic network environments.
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