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POSITIVE LINKS WITH ARRANGEMENTS OF PSEUDOCIRCLES
AS SHADOWS

CAROLINA MEDINA, SANTINO RAMÍREZ, JORGE L. RAMÍREZ-ALFONSÍN,
AND GELASIO SALAZAR

Abstract. An arrangement of pseudocircles A is a collection of Jordan curves in the plane
that pairwise intersect (transversally) at exactly two points. How many non-equivalent links
have A as their shadow? Motivated by this question, we study the number of non-equivalent
positive oriented links that have an arrangement of pseudocircles as their shadow. We give sharp
estimates on this number when A is one of the three unavoidable arrangements of pseudocircles.

1. Introduction

Let L be a link. A link diagram of L is a regular projection of L into R2 such that the
projection of each component is smooth and at most two curves intersect at a point. At each
crossing point of the link diagram the curve which goes over the other is specified. A shadow
of a link diagram is the plane graph obtained by ignoring the over/under passes, turning them
into degree 4 vertices. We refer the reader to [1] for standard background on knot theory.

Suppose that S is a link shadow. In general, it is virtually impossible to tell exactly which
link is being projected to S. What can we say about the links that could be projected to S?

Several variants of this general question have been investigated in the literature. For in-
stance, [2,9, 21,22,23,24] revolve around the following question: given a link L, which shadows
are projections of L?

The latter is closely related to the notion of fertility: which/how many knots can be obtained
from a minimal shadow of a knot [5,10,11,15]. Another related problem asks for the construction
of “small” shadows that are the projection of all knots of a given crossing number [7]. A
connection between shadows and the well-known unknotting number of a link diagram has been
treated in [17]. We refer the reader to [8, 13,14,19] for further related problems.

The concept of fertility mentioned above is closely related to what we call the prolificity of
a link shadow S, which is simply the number of non-equivalent links that project to S. For
instance, a shadow of a torus knot T2,n with exactly n crossing points is rather poor in this
regard, as its prolificity is only tn{2u [5].

Needless to say, estimating the prolificity of an arbitrary shadow S with n crossings is a
daunting task. A naive general algorithm to calculate this number consists of generating all 2n

diagrams that project to S, and then to try to find out by some means how many non-equivalent
links (this is the hard part) arise from these 2n diagrams.
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In this direction, we shall shed light into the problem by investigating particular families of
shadows. In this paper we focus our attention on shadows that are arrangements of pseudocir-
cles. We recall that an arrangement of pseudocircles of size n is a collection of n Jordan curves
in the plane that pairwise intersect at exactly two points, at which they cross. In Figure 1(a)
we illustrate an arrangement of pseudocircles of size 3. If we assign an orientation to each
pseudocircle, we obtain an oriented arrangement of pseudocircles. For instance, in Figure 1(b)
and (d) we illustrate oriented arrangements obtained from the arrangement in (a). For brevity,
throughout this work we refer to an (oriented or not) arrangement of pseudocircles simply as
an arrangement.

(c)(a) (d)(b) (e)

Figure 1. In (a) we have an arrangement of three pseudocircles, and in (b) and (d) we
have oriented arrangements obtained from (a). In (c) (respectively, (e)) we illustrate
the positive link induced by the oriented arrangement in (b) (respectively, (d)).

1.1. The main question. Estimating the prolificity of an arbitrary arrangement A seems to
be far from reach. We shall thus concentrate our efforts on estimating the number of non-
equivalent positive links that project to A . We investigate the following.

Question 1. Let A be an unoriented arrangement of pseudocircles. How many non-equivalent
positive links project to A ?

Throughout this paper we investigate Question 1 for oriented links (as we explain in Sec-
tion 15, our results for oriented links imply corresponding results for unoriented links). A link
is oriented if an orientation for each of its connected components is fixed. Two oriented links L
and M are equivalent if there is an ambient isotopy that takes L to M , preserving the orientation
of each component. We use L „M to denote that L and M are equivalent oriented links.

Remark. With the exception of Section 15, throughout this paper all links under consideration
are implicitly assumed to be oriented.

As illustrated in Figure 1, each oriented arrangement naturally induces a positive link. We
recall that each crossing in a link diagram is either positive or negative, according to the con-
vention illustrated in Figure 2, and a link is positive if all its crossings are positive. Thus in
order to obtain a positive link from an oriented arrangement, one gives to each crossing in the
arrangement the over/under assignment that yields a positive crossing. In Figure 1(c) (respec-
tively, (e)) we illustrate the positive link induced by the oriented arrangement (b) (respectively,
(d)).

We denote by
ÝÑL`

pA q the collection of all positive oriented links that project to A . Thus
if A is an unoriented arrangement of n pseudocircles, each of the 2n ways to orient the n
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Positive crossing Negative crossing

Figure 2. Each crossing in a link diagram is either positive or negative, according to
this convention.

pseudocircles in A induces an oriented arrangement, which in turn naturally induces a link

in
ÝÑL`

pA q. Conversely, it is easy to see that each link L in
ÝÑL`

pA q naturally induces an
oriented arrangement: the orientations of the components of L naturally yield orientations of
the pseudocircles in A .

There is thus a one-to-one correspondence between the links in
ÝÑL`

pA q and the 2n distinct
ways to orient the n pseudocircles in A , that is, the 2n distinct oriented arrangements that

have A as its underlying unoriented arrangement. Therefore |
ÝÑL`

pA q| “ 2n. We let JÝÑL`
pA qK

denote the number of non-equivalent links in
ÝÑL`

pA q (that is, the number of equivalence classes

in
ÝÑL`

pA q).
For instance, in Figure 3 we illustrate the 23 “ 8 positive links induced by the arrangement

A in Figure 1. As we also illustrate in that figure, it is easy to verify that the six links on the
left-hand side of that figure are equivalent to each other, and the two links on the right-hand
side are equivalent to each other (but not to the other six). Hence the collection of 8 links in
ÝÑL`

pA q is partitioned into two equivalence classes. Thus in this particular case |
ÝÑL`

pA q| “ 8

and JÝÑL`
pA qK “ 2.

We focus our attention on the oriented version of Question 1:

Question 2 (Oriented version of Question 1). Let A be an unoriented arrangement of pseu-
docircles. How many non-equivalent positive oriented links project to A ? Using our notation:

how large is JÝÑL`
pA qK?

1.2. Our main results. Needless to say, the answer to Question 2 depends on the arrangement
A under consideration. We investigate this question for three important families of arrange-
ments, namely the unavoidable arrangements: the ring arrangement, the boot arrangement and
the flower arrangement. Let us quickly recall these families.

In Figure 4 we illustrate three arrangements of size 6: the ring arrangement R6, the boot
arrangement B6, and the flower arrangement F6. It is straightforward to generalize these
arrangements to obtain arrangements Rn,Bn, and Fn, for any positive integer n. Note that
R1“B1“F1 and R2“B2“F2, as up to isomorphism there is evidently only one arrangement
of size 1 and only one arrangement of size 2.

It was proved in [18] that for each integer n ě 1, Rn,Bn, and Fn are the three unavoidable
arrangements of pseudocircles, in the following sense:
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Figure 3. The 23 “ 8 positive links induced by the arrangement A in Figure 1 are
partitioned into two equivalence (ambient isotopic) classes. Indeed, it is easy to check
that the six links on the left-hand side are equivalent to each other, that the two links on
the right-hand side are equivalent, and that no link in the first collection is equivalent

to a link in the second collection. Therefore JÝÑL`pA qK “ 2.

R6 F6B6

Figure 4. From left to right, the ring arrangement R6, the boot arrangement B6, and
the flower arrangement F6. These are the unavoidable arrangements of size 6.

Theorem 3 ( [18, Theorem 2]). For each fixed n ě 1, every sufficiently large arrangement of
pseudocircles has a subarrangement isomorphic to Rn,Bn, or Fn.

These three families of arrangements Rn,Bn and Fn are then the unavoidable families, in the
sense that these are the (only) arrangements that are guaranteed to exist as “large” subarrange-
ments of an arbitrary arrangement. The latter is the analogue to the seminal Erdős-Szekeres
Theorem [20] asserting that for each fixed m ě 1, every sufficiently large simple arrangement of
pseudolines in RP2 has a cyclic subarrangement of size m.

We investigate Question 2 for the three unavoidable families of arrangements. Not surpris-

ingly, determining the exact values of JÝÑL`
pRnqK, J

ÝÑL`
pBnqK, and JÝÑL`

pFnqK for small values of
n is a cumbersome task that relies on a case analysis, and so it makes more sense to investigate
these numbers for large values of n, that is, the asymptotic behaviour of these numbers. More



POSITIVE LINKS WITH ARRANGEMENTS OF PSEUDOCIRCLES AS SHADOWS 5

specifically, we are interested in the growth of JÝÑL`
pRnqK, J

ÝÑL`
pBnqK, and JÝÑL`

pFnqK relative to

2n, which is the total number of links in
ÝÑL`

pRnq,
ÝÑL`

pBnq, and
ÝÑL`

pFnq.

Our main contributions are exact asymptotic estimates for JÝÑL`
pRnqK, J

ÝÑL`
pBnqK, and JÝÑL`

pFnqK.
For the reader not familiar with this notation, we recall that opnq stands for a function that
goes to 0 as n goes to infinity.

Theorem 4 (The number of positive oriented links that project to Rn).

JÝÑL`
pRnqK “

ˆ

1

4
` opnq

˙

¨ 2n.

Theorem 5 (The number of positive oriented links that project to Bn).

JÝÑL`
pBnqK “

ˆ

1` opnq

˙

¨ 2n.

Theorem 6 (The number of positive oriented links that project to Fn).

JÝÑL`
pFnqK “

ˆ

1

2n
` opnq

˙

¨ 2n.

At a high level, to prove Theorem 4 we show that if we take a random oriented link in
ÝÑL`

pRnq

then with high probability its equivalence class in
ÝÑL`

pRnq has size exactly four. Similarly, to
prove Theorem 5 (respectively, Theorem 6) we show that if we take a random oriented link in
ÝÑL`

pBnq (respectively, in
ÝÑL`

pFnq) then with high probability its equivalence class in
ÝÑL`

pBnq

(respectively,
ÝÑL`

pFnq) has size exactly one (respectively, 2n).
The paper is organized as follows. In next section we briefly discuss some needed background.
In Section 3, we set the strategy to prove Theorem 4 concerning ring links. We reduce

Theorem 4 to Proposition 9. In Section 4 Proposition 9 is in turn reduced to Lemmas 10 and
11. Lemma 10 is proved in Section 5 while Lemma 11 is treated in Section 6 (for small values
by using intrinsic symmetry groups) and in Section 7 for arbitrary values.

In Section 8, we set the strategy to prove Theorem 5 concerning boot links. We reduce
Theorem 5 to Proposition 18. Similarly as for ring links, this proposition is in turn reduced
in Section 9 to Lemmas 21 and 22. Lemma 21 is also proved in Section 9, while Lemma 22 is
proved in Section 10.

In Section 11 we set the strategy to prove Theorem 6 concerning flower links. This family is
trickier, and it needs a few further notions and arguments. The overall strategy is analogous
to the one used for ring links and boot links: the theorem is reduced to Proposition 31, which
is in turn reduced to Lemmas 33 and 34 in Section 12. Lemma 33 is also proved in Section 12
while Lemma 34 is treated in Section 13 (for small values by using intrinsic symmetry groups)
and in Section 14 for general values.

Finally, in Section 15 we discuss the corresponding versions of Theorems 4, 5, and 6 for
unoriented links.
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2. Basic notation and terminology on isotopies

We close this introductory section with some remarks on the notation and terminology that
we use throughout this paper.

For brevity, we will refer to an ambient isotopy simply as an isotopy. We use I
ˇ

ˇLÑM to
denote that I is an isotopy that takes a link L to a link M , and say that I is an L ÞÑM isotopy.

Many of our arguments will involve permutations induced by isotopies. Before we explain
this in more detail, let us lay out the terminology we shall use for permutations. As usual, the
set t1, . . . , nu will be denoted by rns. We use ι to denote the identity permutation on a set rns,
for some positive integer n. We use ν to denote the reverse permutation on a set rns, that is,
νpiq “ n´ i` 1 for i “ 1, . . . , n. We shall use the one-line notation for permutations. That is,
we use pπp1qπp2q ¨ ¨ ¨ πpnqq to denote the permutation

`

1 2 ¨¨¨ n
πp1q πp2q ¨¨¨ πpnq

˘

. Thus, for instance, the
identity permutation ι on rns is p1 2 ¨ ¨ ¨nq, and the reverse permutation ν on rns is pn ¨ ¨ ¨ 2 1q.

As we shall see, the components of every link under consideration will be naturally ordered.
Suppose that the components of a link L (respectively, M) have a natural order L1, . . . , Ln
(respectively, M1, . . . ,Mn). Then each L ÞÑM isotopy I naturally induces a permutation π
of rns “ t1, 2, . . . , nu, where πpiq is the integer such that I

ˇ

ˇLi ÑMπpiq. We say that π is

the pL,Mq-permutation under I. We also say that I is an L
π
ÞÝÑM isotopy, and we write

I
ˇ

ˇL
π
ÝÑM .

In the particularly important case in which π is the identity permutation ι (that is, I takes
the i-th component Li of L to the i-th component Mi of M , for i “ 1, . . . , n), we say that I is
a strong L ÞÑM isotopy.

We finish the section with an elementary fact that will be used frequently in our discussions.

Observation 7. Let L,M and N be three links and let I
ˇ

ˇLÑM and J
ˇ

ˇM Ñ N be two

isotopies. Let π, τ be permutations such that I
ˇ

ˇL
π
ÝÑM and J

ˇ

ˇM
τ
ÝÑ N . Then J ˝ I is an

isotopy such that J ˝ I
ˇ

ˇL
τ ˝π
ÝÑ N .

3. Ring links: proof of Theorem 4

For simplicity, throughout this paper we refer to a link in
ÝÑL`

pRnq as a positive ring link of
size n or simply as a ring link of size n, since all links under consideration are positive.

3.1. Correspondence between ring links and binary words. A ring link of size n is

naturally associated to a binary word of size n. Indeed, each link in
ÝÑL`

pRnq is obtained by
assigning an orientation to each of the n pseudocircles in Rn. Such an orientation assignment
can be naturally encoded as follows. See Figure 5 for an illustration.

Let i “ 1, 2, . . . , n be the pseudocircles in Rn, ordered from left to right. We encode an
orientation using a word a of length n, where the i-th entry of the word a is 0 (respectively, 1)
if pseudocircle i is oriented clockwise (respectively, counterclockwise). Given such a word a, we
use Rnpaq to denote the corresponding oriented arrangement. Finally, we use Rpaq to denote
the positive link induced by Rnpaq. It seems worth emphasizing that R stands for “ring”.

For instance, if we take the arrangement R5 and orient clockwise pseudocircles 1, 2, and 4,
and orient counterclockwise pseudocircles 3 and 5, then we obtain the oriented arrangement
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1 2 3 4 5

0

Rp00101q3

Rp00101q1 Rp00101q5

Rp00101q2 Rp00101q4

R5p00101q Rp00101q

1010

Figure 5. The oriented arrangement R5p00101q, and its induced positive link, the
ring link Rp00101q. We indicate the five components Rp00101q1, Rp00101q2, Rp00101q3,
Rp00101q4 and Rp00101q5 of Rp00101q.

R5p00101q, illustrated on the left hand side of Figure 5. This oriented arrangement induces the
ring link Rp00101q, illustrated on the right hand side of that figure. As we also illustrate in that
figure, for each i “ 1, . . . , n we use Rpaqi to denote the i-th component of the ring link Rpaq.

In short, there is a one-to-one correspondence between the set of all binary words of length

n and the collection
ÝÑL`

pRnq of all ring links of size n. As we shall see, a totally analogous
observation holds for boot links of size n and also for flower links of size n. For the rest of the
paper, we shall refer to a binary word simply as a word.

We finally introduce a few elementary notions that will be used throughout this paper. If
a “ a1 ¨ ¨ ¨ an is a word, the reverse a´1 of a is an ¨ ¨ ¨ a1, and its negation a “ a1 ¨ ¨ ¨ an is a1 ¨ ¨ ¨ an
(as usual, 0 “ 1 and 1 “ 0). Thus if a “ 00101, then a´1 “ 10100 and a “ 11010. Note that

every word a satisfies that paq´1 “ a´1.
A subword of a word a1a2 ¨ ¨ ¨ an is a word of the form ai1ai2 ¨ ¨ ¨ aim , where i1 ă i2 ă ¨ ¨ ¨ ă im.

A word is oscillating if it contains neither two consecutive 0s nor two consecutive 1s. We note
that in the literature a word that we call oscillating would be called “alternating”, but in the
context of knot theory it seems best to avoid this terminology for anything other than its usual
meaning.
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The opposite notion of an oscillating word is a monotone word, which consists only of 0s or
only of 1s. The rank of a word a, denoted by rankpaq, is the length of a longest oscillating
subword contained in a. Thus, for instance, rankp000100q “ 3 and rankp00100010q “ 5.

If m is a positive integer, we use 0m to denote the monotone word 0 ¨ ¨ ¨ 00 of length m with
only 0s. Similarly, 1m is the monotone word 1 ¨ ¨ ¨ 11 of length m with only 1s.

Note that if ai1 ¨ ¨ ¨ air is a longest oscillating subword of a, then there exist positive integers

αp1q, . . . , αprq, such that a is the concatenation a
αp1q
i1

¨ ¨ ¨ a
αprq
ir

of r monotone words. We say that

A1 “ a
αp1q
i1

, . . . , Ar “ a
αprq
ir

are the canonical subwords of a, and that a “ a
αp1q
1 ¨ ¨ ¨ a

αprq
r “ A1 ¨ ¨ ¨Ar

is the canonical decomposition of a. For instance, the word a “ 001000110 has rank r “ 5, and
its canonical subwords are A1 “ 02, A2 “ 11, and A3 “ 03, A4 “ 12, and A5 “ 01, as schematized
in Figure 6.

a “ 001000110
hkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkj

00
loomoon

A1

1
loomoon

A2

000
loomoon

A3

11
loomoon

A4

0
loomoon

A5

Figure 6. The canonical decomposition of a “ 0010001100 is a “ A1A2A3A4A5, where
A1 “ 00 “ 02, A2 “ 1 “ 11, A3 “ 000 “ 03, A4 “ 11 “ 12, and A5 “ 0 “ 01.

3.2. Isotopies that act naturally on ring links. The heart of the proof of Theorem 4 is
an identification of which ring links are equivalent to a given ring link Rpaq. As we shall see
shortly (see Observation 8), Rpaq is always equivalent to Rpaq, to Rpa´1q, and to Rppaq´1q (and
of course, to Rpaq itself). This will be the easy part of the identification of the links that are
equivalent to Rpaq. The considerably more difficult part (see Proposition 9) will be to show
that only these links are equivalent to Rpaq.

Let us start by showing that Rpaq is always equivalent to Rpaq. We refer the reader to Figure 7,
where we illustrate an isotopy H (which stands for “horizontal”, as H is a rotation of 180 degrees
around a horizontal axis lying on the plane of the diagram). As we illustrate in that figure for
the particular case in which a “ 000101, if we apply H to a ring link Rpaq “ Rpa1 ¨ ¨ ¨ anq, as a
result we obtain the ring link Rpa1 ¨ ¨ ¨ anq “ Rpaq. That is, H

ˇ

ˇRpaq Ñ Rpaq. We conclude that
(R1) if a is any word, then Rpaq „ Rpaq.

Consider now the isotopy V illustrated in Figure 8. The letter V stands for “vertical”, as V
is a rotation of 180 degrees around a vertical axis on the plane of the diagram. As we illustrate
in that figure, if we apply V to a ring link Rpaq “ Rpa1 ¨ ¨ ¨ anq, as a result we obtain the ring

link R
`

pa1 ¨ ¨ ¨ anq
´1

˘

“ R
`

pa1 ¨ ¨ ¨ anq
´1
˘

“ R
`

paq´1
˘

. That is, V
ˇ

ˇRpaq Ñ Rppaq´1q. Therefore

(R2) if a is any word, then Rpaq „ Rppaq´1q.
Since H

ˇ

ˇRpaq Ñ Rpaq and V
ˇ

ˇRpaq Ñ Rppaq´1q, it follows that Rpaq „ Rpaq and Rpaq „

Rppaq´1q. If we apply to Rpaq the isotopy H followed by the isotopy V (that is, V ˝ H), we

obtain the ring link Rppaq
´1
q “ Rpa´1q. Therefore (R3) if a is any word, then Rpaq „ Rpa´1q.

We finally note that trivially (R4) if a is any word, then Rpaq „ Rpaq. In view of (R1)–(R4)
we have the following.
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Rp000101q

180˝ rotation

H

Rp000101q“Rp111010q

Figure 7. If we apply the isotopy H to the ring link Rp000101q we obtain the ring
link Rp000101q “ Rp111010q. The permutation of this Rp000101q ÞÑ Rp111010q isotopy
is the identity permutation ι on r6s. In general, if we apply H to a ring link Rpaq we
obtain the ring link Rpaq, that is, H

ˇ

ˇRpaq Ñ Rpaq. If Rpaq has n components then H
maps the i-th component of Rpaq to the i-th component of Rpaq, for i “ 1, . . . , n. That

is, H
ˇ

ˇRpaq
ι
ÝÑ Rpaq.

Rp000101q

V

180˝ rotation

R
`

p000101q´1
˘

“R
`

p000101q
´1˘
“Rp010111q

Figure 8. If we apply the isotopy V to the ring link Rp000101q we obtain the ring link

Rpp000101q
´1
q “ Rp010111q. The permutation of this Rp000101q ÞÑ Rp010111q isotopy

is the reverse permutation ν on r6s. In general, if we apply V to a ring link Rpaq we

obtain the ring link Rppaq´1q, that is, V
ˇ

ˇRpaq Ñ Rppaq´1q. If Rpaq has n components

then V maps the i-th component of Rpaq to the pn´ i` 1q-st component of Rppaq´1q,

for i “ 1, . . . , n. That is, V
ˇ

ˇRpaq
ν
ÝÑ Rppaq´1q.

Observation 8. Let a and b be words. If b is either a, a, a´1, or paq´1, then Rpaq „ Rpbq.

3.3. Reducing Theorem 4 to a proposition. Given a word a, we have thus identified four
words b (including a itself) such that Rpaq „ Rpbq. The main ingredient in the proof of
Theorem 4 is that the converse statement also holds, as long as the rank of a is at least four:
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Proposition 9 (Implies Theorem 4). Let a be a word of rank r ě 4. If b is a word such that
Rpaq „ Rpbq, then b is either a, a, a´1, or paq´1.

The proof of this proposition will take considerably more effort than the arguments that led to
Observation 8. We defer the proof of the proposition for the moment, and show that Theorem 4
follows easily by combining these two statements.

Proof of Theorem 4 (assuming Proposition 9). Let a be a word of length n. Using standard
calculations one obtains that the probability that rankpaq is less than 4 goes to 0 as n Ñ 8,
and also the probability that there are two identical words in ta, a, a´1, paq´1u also goes to 0
as n Ñ 8. By Observation 8 and Proposition 9 this implies that the probability that there
are exactly four distinct words b of length n (including a) such that Rpaq „ Rpbq goes to 1 as
nÑ 8.

The one-to-one correspondence between binary words of length n and elements of
ÝÑL`

pRnq

then implies that the probability that the equivalence class of a random link in
ÝÑL`

pRnq has

size 4 goes to 1 as nÑ 8. Since |
ÝÑL`

pRnq| “ 2n, Theorem 4 follows. �

4. Proof of Proposition 9

Before we move on to the proof of Proposition 9 (or, more accurately, to reducing the propo-
sition to a couple of lemmas, namely Lemmas 10 and 11), we briefly discuss sublinks of ring
links, as they play a central role in this discussion.

4.1. Sublinks of ring links. Let a “ a1 . . . an be a word, and let i1, . . . , ik be integers such
that 1 ď i1 ă ¨ ¨ ¨ ă ik ď n. Then ai1 ¨ ¨ ¨ aik is a subword of a, and this subword naturally
corresponds to a link Rpaqi1 Y ¨ ¨ ¨ Y Rpaqik (recall that Rpaqi is the i-th component of the ring
link Rpaq). We say that Rpaqi1 Y ¨ ¨ ¨ Y Rpaqik is a sublink of Rpaq, and for brevity we use
Rpaqi1,...,ik to denote it.

It is worth noting that this notation is consistent with the way we denote a single component
of Rpaq: if k “ 1 then we have a single integer i1, and so the corresponding sublink consists of
the component Rpaqi1 .

We say that the ring link Rpaq is oscillating if the word a is oscillating, and we say that the
sublink Rpaqi1,...,ik of Rpaq is oscillating if ai1 ¨ ¨ ¨ aik is an oscillating subword of a. Note that
obviously no oscillating sublink of Rpaq can have size larger than the rank r of a, since this is
the length of a longest oscillating subword of a.

4.2. Reducing Proposition 9 to two lemmas. Recall that Proposition 9 claims that if a is
a word with rank r ě 4, and Rpaq „ Rpbq, then b is either a, a, a´1, or paq´1.

The proof of this proposition has two main ingredients. The first one is that if I is an
Rpaq ÞÑ Rpbq isotopy, then we can fully reconstruct b from the action of I on an oscillating
sublink Rpaqi1,...,ir of Rpaq of size r. More precisely, let Rpbqj1,...,jr be the image of Rpaqi1,...,ir
under I. Suppose that we know

(i) the subword bj1 ¨ ¨ ¨ bjr of b, and
(ii) the pRpaqi1,...,ir , Rpbqj1,...,jrq-permutation under I.
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Then from (i) and (ii) we can fully determine the word b. This is the content of Lemma 10
below.

The second ingredient in the proof of Proposition 9 is that we can actually fully understand
all the possibilities for (i) and (ii) in the previous paragraph. Indeed, as we claim in Lemma 11,
bj1 ¨ ¨ ¨ bjr is necessarily also oscillating (as ai1 ¨ ¨ ¨ air) and the pRpaqi1,...,ir , Rpbqj1,...,jrq-permutation
under I is either the identity permutation ι or the reverse permutation ν. As we shall see,
Proposition 9 follows easily by combining these two lemmas.

Lemma 10 involves the concept of the π-image of a word. We refer the reader to Figure 9 for an
illustration of this crucial notion. Let a, b be words of the same rank r, and let A1A2 ¨ ¨ ¨Ar and
B1B2 ¨ ¨ ¨Br be the canonical decompositions of a and b, respectively. Let π be a permutation
of rrs. We say b is the π-image of a if there is a bijection between Ai and Bπpiq, that is, if
|Ai| “ |Bπpiq| for i “ 1, . . . , r.

0
0
0
0
1
0
0
0
1
1

0

1
1

1
0
1
1
1
0

1

a “ 0011101111 “ 02130114 b “ 0000100011 “ 04110312

Figure 9. On the left-hand side we have the word a “ 0011101111, whose canonical
decomposition is A1A2A3A4, where A1 “ 00 “ 02, A2 “ 111 “ 13, A3 “ 0 “ 01, and
A4 “ 1111 “ 14. On the right-hand side we have the word b “ 0000100011, whose
canonical decomposition is B1B2B3B4, where B1 “ 0000 “ 04, B2 “ 1 “ 11, B3 “

000 “ 03, and B4 “ 11 “ 12. We indicate with arrows a natural bijection between the
canonical subwords of a and the canonical subwords of b. If we let π be the reverse
permutation ν “ p4 3 2 1q on r4s, we have that Ai is mapped to (has the same length
as) Bπpiq for i “ 1, 2, 3, 4. Thus b is the π-image of a.

Clearly, if b is the π-image of a for some permutation π of rrs, then in particular b has the
same length as a. Moreover, if we know an oscillating subword bj1 ¨ ¨ ¨ bjr of b of length r and we
know a permutation π such that b is the π-image of a, then we can fully reconstruct b. This
explains the importance of the next statement, whose proof is deferred to the next section.

Lemma 10. Let a be a word with rank r ě 4, let b be a word such that Rpaq „ Rpbq, and let I be
an Rpaq ÞÑ Rpbq isotopy. Let Rpaqi1,...,ir be an oscillating sublink of Rpaq, and let Rpbqj1,...,jr be its
image under I. Then b is the π-image of a, where π is the pRpai1,...,irq, Rpbj1,...,jrqq-permutation
under I.
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In order to make use of Lemma 10 we need to know which sublinks Rpbqj1,...,jr of Rpbq can be
the image ofRpaqi1,...,ir under I, and we need to know which are the possible pRpai1,...,irq, Rpbj1,...,jrqq-
permutations under I. This is precisely the information given by our next statement, the second
main ingredient in the proof of Proposition 9.

Lemma 11. Let a “ a1 ¨ ¨ ¨ an be a word of rank r ě 4, and let Rpaqi1,...,ir be an oscillating
sublink of Rpaq of size r. Let b be a word such that Rpaq „ Rpbq, and let I be an Rpaq ÞÑ Rpbq
isotopy. Let Rpbqj1,...,jr be the sublink of Rpbq that is the image of Rpaqi1,...,ir under I. Then,

(1) the pRpaqi1,...,ir , Rpbqj1,...,jrq-permutation under I is either the identity permutation ι or
the reverse permutation ν; and

(2) bj1 ¨ ¨ ¨ bjr is an oscillating subword of b. That is, Rpbqj1,...,jr is an oscillating sublink of
Rpbq.

We defer the proof of Lemma 11 to Sections 6 and 7, and we prove Proposition 9 assuming the
lemmas. Before proceeding to the proof we note the following easy consequence of Lemma 11.

Corollary 12. Let a be a word of rank r ě 4, and let b be a word such that Rpaq „ Rpbq. Then
rankpbq “ r.

Proof. Let s :“ rankpbq. Lemma 11 implies that there is an oscillating sublink of Rpbq of size r,
and so it follows that s ě r. In particular, rankpbq ě 4, and so we can apply the lemma also to
an Rpbq ÞÑ Rpaq isotopy, obtaining that there must exist an oscillating sublink of Rpaq of size
s, and so r ě s. Thus s “ r. �

Proof of Proposition 9 (assuming Lemmas 10 and 11). Let a “ a1 ¨ ¨ ¨ an be a word with rank
r ě 4. Let b “ b1 ¨ ¨ ¨ bn be a word such that Rpaq „ Rpbq, and let I be an Rpaq ÞÑ Rpbq isotopy.

Let Rpaqi1,...,ir be an oscillating sublink of Rpaq. Let Rpbqj1,...,jr be the sublink of Rpbq that is
the image of Rpaqi1,...,ir under I, and let π be the pRpaqi1,...,ir , Rpbqj1,...,jrq-permutation under I.

Since ai1 ¨ ¨ ¨ air is oscillating, it follows that the only two oscillating words of length r are
ai1 ¨ ¨ ¨ air and ai1 ¨ ¨ ¨ air . Therefore Lemma 11 (2) implies that either

(:) bj1 ¨ ¨ ¨ bjr “ ai1 ¨ ¨ ¨ air ; or
(;) bj1 ¨ ¨ ¨ bjr “ ai1 ¨ ¨ ¨ air .

Let a “ A1 ¨ ¨ ¨Ar “ a
|A1|

i1
¨ ¨ ¨ a

|Ar|
ir

be the canonical decomposition of a. We note that Corol-

lary 12 implies that the rank of b is also r, and so we can let b “ B1 ¨ ¨ ¨Br “ b
|B1|

j1
¨ ¨ ¨ b

|Br|
jr

be the
canonical decomposition of b.

Lemma 10 implies that b is the π-image of a, and Lemma 11 (1) implies that π is either ι or
ν. Therefore either

(˚) |Bk| “ |Ak| for k “ 1, . . . , r; or
(˚˚) |Bk| “ |Ar´k`1| for k “ 1, . . . , r.

A glance at the canonical decompositions of a and b shows that if (˚) and (:) hold then b “ a;
if (˚) and (;) hold then b “ a; if (˚˚) and (:) hold then b “ a´1; and if (˚˚) and (;) hold then
b “ paq´1. Thus b is either a, a, a´1, or paq´1. �
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5. Proof of Lemma 10

The proof of Lemma 10 is particularly important, as it will be “recycled” almost in its entirety
when we deal with boot links and with flower links.

Proof of Lemma 10 (assuming Lemma 11). The proof relies on a detailed description of the
canonical decompositions of a and b. Let a “ A1 ¨ ¨ ¨Ar be the canonical decomposition of
a. For each i “ 1, . . . , r we let pi, qi be the integers such that Ai “ apiapi`1

¨ ¨ ¨ aqi , and let
Ii “ tpi, pi`1, . . . , qiu. Note that actually pi may be the same as qi, which is the case when the
canonical subword Ai has length 1. Also note that p1 “ 1 and qr “ n. Thus the canonical
decomposition of a is as follows:

a “ ap1 ¨ ¨ ¨ aq1
looooomooooon

A1

ap2 ¨ ¨ ¨ aq2
looooomooooon

A2

¨ ¨ ¨ ¨ ¨ ¨ apr ¨ ¨ ¨ aqr
looooomooooon

Ar

.

We say that Rpaqpk,...,qk is the k-th canonical sublink Rk of Rpaq, for k “ 1, . . . , r. Evidently,
Rpaq is the disjoint union of its canonical sublinks. A crucial observation is that a sublink of
Rpaq of size r is oscillating if and only if it contains exactly one component of each canonical
sublink.

Now, by Corollary 12, the rank of b is also r. Thus we let b “ B1 ¨ ¨ ¨Br be the canonical
decomposition of b. For each i “ 1, . . . , r we let si, ti be the integers such that Bi “ bsi ¨ ¨ ¨ bti ,
and let Ji “ tsi, si`1, . . . , tiu. Thus

b “ bs1 ¨ ¨ ¨ bt1
loooomoooon

B1

bs2 ¨ ¨ ¨ bt2
loooomoooon

B2

¨ ¨ ¨ ¨ ¨ ¨ bsi ¨ ¨ ¨ bti
loooomoooon

Bi

¨ ¨ ¨ ¨ ¨ ¨ bsr ¨ ¨ ¨ btr
loooomoooon

Br

.

Similarly as with Rpaq, we say that Rpbqsk,...,tk is the k-th canonical sublink Rkpbq of Rpbq, for
k “ 1, . . . , r. Clearly Rpbq is the disjoint union of its canonical sublinks, and a sublink of Rpbq
of size r is oscillating if and only if it contains exactly one component of each canonical sublink.

Note that since ai1 ¨ ¨ ¨ air is an oscillating subword of a, it follows that necessarily aik P Ak for

k “ 1, . . . , r. Thus Ak “ a
|Ak|
ik

for k “ 1, . . . , r, and so (˚) a “ a
|A1|

i1
¨ ¨ ¨ a

|Ar|
ir

. A totally analogous

argument shows that (˚˚) b “ b
|B1|

i1
¨ ¨ ¨ b

|Br|
ir

.
Recall that π is the pRpaqi1,...,ik , Rpbqj1,...,jkq-permutation under I. This means that I maps

Rpaqik to Rpbqjπpkq for k “ 1, . . . , r. Since Rpaqik (respectively, Rpbqjπpkq) is in the canonical
sublink Rkpaq of Rpaq (respectively, in the canonical sublink Rπpkq of Rpbq), this implies that
I takes one particular component of Rkpaq to one particular component of Rπpkqpbq, for k “
1, . . . , r. The key argument is that a much stronger statement holds: (:) for k “ 1, . . . , r, I
takes each component of Rkpaq to a component in Rπpkqpbq.

To prove (:), by way of contradiction suppose that there is a k P rrs such that I takes some
component Rpaqi1k of Rkpaq to a component in Rpbq that is not in Rπpkqpbq. Then the image
under I of the oscillating sublink Rpaqi1,...,ik´1,i

1
k,ik`1,...,ir of Rpaq does not contain any component

of the canonical sublink Rπpkqpbq of Rpbq. Therefore I takes an oscillating sublink of Rpaq of
size r to a sublink of Rpbq that is not oscillating. But this contradicts Lemma 11(2). Thus (:)
holds.
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Since |Rkpaq| “ |Ak| and |Rπpkqpbq| “ |Bπpkq| for k “ 1, . . . , r, (:) implies that |Ak| ď |Bπpkq|

for k “ 1, . . . , r. Since
řr
k“1 |Ak| “

řr
k“1 |Bπpkq| “ n, it follows that (;) |Ak| “ |Bπpkq| for

k “ 1, . . . , r. Therefore b is the π-image of a. �

6. Towards the proof of Lemma 11: small ring links

We will prove Lemma 11 by induction on the length n of a. Our aim in this section is to
prove the lemma when n “ 4, which is the base case of the induction. As we shall see, this base
case is equivalent to Claim 14 at the end of the section.

The proof of this claim makes essential use of the intrinsic symmetry groups of the ring links
Rp0101q and Rp1010q. In Section 6.1 we give a brief overview of the notion of an intrinsic
symmetry group, and in Section 6.2 we identify the intrinsic symmetry groups of these two
links. Finally, in Section 6.3 we establish Claim 14.

6.1. Intrinsic symmetry groups. Throughout this paper Z2 is the multiplicative group
t´1, 1u, and (as usual) Sn is the group of all permutations of size n. If K is any oriented
knot then p´1q ¨K is K with its orientation reversed, whereas 1 ¨K is simply K with its given
orientation.

In order to introduce the notion of an intrinsic symmetry of a link we refer the reader to
Figure 10. At the top of that figure we illustrate how the isotopy H takes the ring link Rp0101q
to the ring link Rp1010q. As we show at the bottom of the figure, if we ignore for a moment
the orientations of the components of these links, we may consider that H takes the ring link
Rp0101q to itself.

If once again we take into account the orientations of the components, we may then conclude
that H takes the link Rp0101q to itself, but reversing the orientations of all its components. For
instance, H takes the first component Rp0101q1 of Rp0101q to itself with its orientation reversed.
That is, H takes Rp0101q1 to p´1q ¨ Rp0101q1. Moreover, for i “ 1, . . . , 4 we have that H takes
Rp0101qi to p´1q ¨Rp0101qi.

In general, suppose that that L is a link whose components are given in some order L1, . . . , Ln,
and let L˚1 , . . . , L

˚
n be the respective components of the mirror image L˚ of L. (As we further

discuss below, mirror images are irrelevant in our current context, but they are still an essential
part of the definition of an intrinsic symmetry of a link). Let pε1, . . . , εnq P Zn2 , and let π be a
permutation of rns. Then,

(1) L admits p1, ε1, . . . , εn, πq if there is an ambient isotopy that maps L to itself, taking Li
to εi ¨ Lπpiq for i “ 1, . . . , n;

(2) L admits p´1, ε1, . . . , εn, πq if there is an ambient isotopy that maps L to L˚, taking Li
to εi ¨ L

˚
πpiq for i “ 1, . . . , n.

If L admits pε0, ε1, . . . , εn, πq for some ε0 P t´1, 1u, then pε0, ε1, . . . , εn, πq is an intrinsic
symmetry of L. For instance, Figure 10 illustrates that Rp0101q admits the intrinsic symmetry
p1,´1,´1,´1,´1, p1 2 3 4qq. The set of intrinsic symmetries of a link L forms a group, the
intrinsic symmetry group of L [26]. If L has n components, then the identity element of this
group is the trivial intrinsic symmetry p1, 1, . . . , 1

looomooon

n 1s

, p1 2 ¨ ¨ ¨ nqq.
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H

180˝ rotation
Rp0101q Rp0101q“Rp1010q

Figure 10. An application of the ambient isotopy H takes Rp0101q to Rp1010q. As
we show below, if we disregard for a moment the orientation of the components, it is
valid to say that H takes Rp0101q to itself. Thus we may regard this action of H on
Rp0101q by saying that H takes Rp0101q to itself, but reversing the orientation of all
its components. Indeed, for i “ 1, . . . , 4, we have that H takes the i-th component
Rp0101qi of Rp0101q to p´1q ¨ Rp0101qi. Thus H witnesses that Rp0101q admits the
intrinsic symmetry p1,´1,´1,´1,´1, p1 2 3 4qq.

Once again, we include (2) (that is, we involve mirror images in the discussion) because it is
an integral part of the notion of an intrinsic symmetry, but in our current context it is totally
irrelevant: our interest lies on positive links, and the mirror image of a positive link is not a
positive link. Throughout this paper we will not encounter any intrinsic symmetry of the form
p´1, ε1, . . . , εn, πq.

6.2. The intrinsic symmetry groups of small oscillating ring links. Calculating the
intrinsic symmetry group of a link L is in general a very difficult task [3, 4, 16], but if L is a
reasonably small hyperbolic link (see [12]) then this group can be computed using SnapPy [6].
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One uses SnapPy to calculate the full symmetry group (that is, the mapping class group of the
pair pS3, Lq), and from this it is easy to obtain the intrinsic symmetry group of L.

The links Rp0101q and Rp1010q happen to be hyperbolic, and we followed the approach
described in [4, Section 3] to compute the intrinsic symmetry groups of these two links using
SnapPy.

Fact 13. The intrinsic symmetry group of Rp0101q is isomorphic to Z2 ˆ Z2. Its elements are
p1, 1, 1, 1, 1, ιq, p1,´1,´1,´1,´1, ιq, p1, 1, 1, 1, 1, νq, and p1,´1,´1,´1,´1, νq. The intrinsic
symmetry group of Rp1010q is identical.

We emphasize that we knew that Rp0101q and Rp1010qq admitted these four symmetries.
Indeed, the first symmetry is trivial, and the second symmetry is witnessed by H, as illustrated
in Figure 10. It is easy to see that the isotopy V illustrated in Figure 8 witnesses the third
symmetry, and that the fourth symmetry is witnessed by the isotopy V ˝H.

6.3. The base case of the proof of Lemma 11. The next statement is the main result in
this section, which corresponds to the base case of the proof of Lemma 11. As we shall see in
the next section, even though this claim is stated in terms of oscillating links, and not in terms
of oscillating sublinks (as Lemma 11), this statement is indeed equivalent to the case n “ 4 of
that lemma.

Claim 14. Let a “ a1a2a3a4 be an oscillating word of length 4. Let b “ b1b2b3b4 be a word such
that Rpaq „ Rpbq, and let I be an Rpaq ÞÑ Rpbq isotopy. Then,

(1) Rpbq is also oscillating, that is, b is an oscillating word; and
(2) the pRpaq, Rpbqq-permutation under I is either the identity permutation ι or the reverse

permutation ν.

Proof. We start by noting that (1) states that if a P t0101, 1010u, and Rpaq„Rpbq, then b P t0101,
1010u. We verified this using SageMath [25]: we found out that the Jones polynomials VRp0101q of
Rp0101q and VRp1010q of Rp1010q are the same (this was of course expected, since these links are
equivalent), and the Jones polynomial of any other ring link of size 4 is distinct from VRp0101q.

To prove (2), suppose first that b “ a. Let I be an Rpaq ÞÑ Rpaq isotopy, and let π be the
pRpaq, Rpaqq-permutation under I. Since I maps each component of Rpaq to a component of
Rpaq with its correct orientation, then p1, 1, 1, 1, 1, πq must be an intrinsic symmetry of Rpaq.
Since a is either 0101 or 1010, by Fact 13 we conclude that π is either ι or ν.

Suppose finally that b “ a. Let I be an Rpaq ÞÑ Rpaq isotopy, and let π be the pRpaq, Rpaqq-
permutation under I. Clearly, Rpaq is the same as Rpaq but with the orientation of all its
components reversed. Therefore I maps each component of Rpaq to a component of Rpaq with
its orientation reversed, and so p1,´1,´1,´1,´1, πq must be an intrinsic symmetry of Rpaq.
Since a is either 0101 or 1010, by Fact 13, we conclude that π is either ι or ν. �

7. Proof of Lemma 11

The proof of Lemma 11 relies on a natural equivalence (isotopy) between ring links and
sublinks of ring links. An analogous equivalence between sublinks of boot links and boot links
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(respectively, between sublinks of flower links and flower links) will also play a central role in
the proof of Theorem 5 (respectively, Theorem 6).

7.1. Sublinks of ring links are equivalent to ring links. Let a “ a1 ¨ ¨ ¨ an be a word,
and let ai1 ¨ ¨ ¨ aik be a subword of a. As we illustrate in Figure 11, the special structure of
the arrangement Rn implies that the sublink Rpaqi1,...,ik of Rpaq is equivalent to the ring link
Rpai1 ¨ ¨ ¨ aikq, via a strong isotopy. Loosely speaking, one can “bring together” some components
of Rpaqi1,...,ik until all the components are placed exactly in the same way as the components of
Rpai1 ¨ ¨ ¨ aikq.

Rp000101q4Rp000101q1

Rp000101q2

Rp000101q Rp000101qRp000101q1,2,4 „

Figure 11. Illustration of Observation 15. Let a “ pa1a2a3a4a5a6q “ p000101q, and
consider the subword a1a2a4 “ 001 of a. On the left-hand side we have Rp000101q, and
we indicate the components Rp000101q1, Rp000101q2, Rp000101q4 corresponding to a1 “
0, a2 “ 0, and a4 “ 1, respectively. At the center we have the sublink Rp000101q1,2,4 that
is the union of these three components. Loosely speaking, we can “bring together” some
components of Rp000101q1,2,4 until they match exactly the components of the ring link
Rpa1a2a4q “ Rp001q, illustrated at the right-hand side of the figure. This is a strong
Rp000101q1,2,4 ÞÑ Rp001q isotopy. Indeed, its associated permutation is the identity
permutation ι “ p1 2 3q, as the isotopy takes the i-th component of Rp000101q1,2,4 to
the i-th component of Rp001q for i “ 1, 2, 3.

Such an Rpaqi1,...,ik ÞÑ Rpai1 ¨ ¨ ¨ aikq isotopy is indeed strong, as it clearly takes the j-th com-
ponent Rpaqij of Rpaqi1,...,ik to the j-th component Rpai1 ¨ ¨ ¨ aikqj of the ring link Rpai1 ¨ ¨ ¨ aikq,
for j “ 1, . . . , k.

Clearly, we can reverse the process of “bringing together” the components of Rpaqi1,...,ik to
the components of Rpai1 ¨ ¨ ¨ aikq. Loosely speaking, we can “pull apart” some components of
Rpai1 ¨ ¨ ¨ aikq until they are all placed exactly in the same way as the components of Rpaqi1,...,ik .
Therefore there also exists a strong Rpai1 ¨ ¨ ¨ aikq ÞÑ Rpaqi1,...,ik isotopy.

Let us highlight these crucial facts.
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Observation 15. Let a “ a1 ¨ ¨ ¨ an be a word. If ai1 ¨ ¨ ¨ aik is any subword of a, then there exists

an Rpaqi1,...,ik
ι
ÞÝÑ Rpai1 ¨ ¨ ¨ aikq isotopy, and there exists an Rpai1 ¨ ¨ ¨ aikq

ι
ÞÝÑ Rpaqi1,...,ik isotopy.

We close this section with a final observation that will be invoked repeatedly in the proof of
Proposition 9.

Observation 16. Let a “ a1 ¨ ¨ ¨ an and b “ b1 ¨ ¨ ¨ bn be words. Let 1 ď i1 ă ¨ ¨ ¨ ă ik ď n
and 1 ď j1 ă ¨ ¨ ¨ ă jk ď n be integers, and let π be a permutation of rks. Then there exists

an Rpaqi1,...,ik
π
ÞÝÑ Rpbqj1,...,jk isotopy if and only if there exists an Rpai1 ¨ ¨ ¨ aikq

π
ÞÝÑ Rpbj1 ¨ ¨ ¨ bjkq

isotopy.

Proof. We prove the “if” part. The proof of the “only if” part is totally analogous.
Suppose that there exists an Rpai1 ¨ ¨ ¨ aikq

π
ÞÝÑ Rpbj1 ¨ ¨ ¨ bjkq isotopy I. We know from Obser-

vation 15 there there exists an Rpaqi1,...,ik
ι
ÞÝÑ Rpai1 ¨ ¨ ¨ aikq-isotopy J , and the same observation

implies that there exists an Rpbj1 ¨ ¨ ¨ bjkq
ι
ÞÝÑ Rpbqj1,...,jk isotopy K.

Two applications of Observation 7 yield that K ˝ I ˝ J
ˇ

ˇRpaqi1,...,ik
ι˝π˝ι
ÝÑ Rpbqj1,...,jk . Since

ι ˝ π ˝ ι “ π, this means that K ˝ I ˝ J is an Rpaqi1,...,ik
π
ÞÝÑ Rpbqj1,...,jk isotopy. �

7.2. Proof of Lemma 11. Even though in principle it is possible to prove Lemma 11 in its
given form, it happens to be easier to establish instead the following proposition, stated in terms
of ring links instead of in terms of sublinks of ring links. We remark that the equivalence of this
statement with Lemma 11 is a consequence of Observation 16.

Lemma 17 (Equivalent to Lemma 11). Let a “ a1 ¨ ¨ ¨ an be an oscillating word of length n ě 4.
Let b be a word such that Rpaq „ Rpbq, and let I be an Rpaq ÞÑ Rpbq isotopy. Then,

(1) the pRpaq, Rpbqq-permutation under I is either the identity permutation ι or the reverse
permutation ν; and

(2) b is an oscillating word, that is, the ring link Rpbq is also oscillating.

Proof. We proceed by induction on the length n of a. Claim 14 shows that the statement is
true for n“4. For the inductive step we let m ě 4 be an integer, assume that the lemma holds
for oscillating words of length m, and prove that then it holds for an oscillating word of length
m` 1.

Thus we let a “ a1 ¨ ¨ ¨ amam`1 be an oscillating word, let b “ b1 ¨ ¨ ¨ bm`1 be a word such that
Rpaq „ Rpbq. Let I be an Rpaq ÞÑ Rpbq isotopy, and let π be the pRpaq, Rpbqq-permutation
under I. Our goal is to show that (I) π is either ι of ν; and (II) b is oscillating.

Let Rpbqj1,...,jm (respectively, Rpbqk1,...,km) be the sublink of Rpbq that is the image of Rpaq1,...,m
(respectively, Rpaq2,...,m`1) under I.

By Observation 16, the induction hypothesis implies that the pRpaq1,...,m, Rpbqj1,...,jmq-permuta-
tion under I is either ι or ν. That is, either

(i) I
ˇ

ˇRpaq1,...,m
ι
ÝÑ Rpbqj1,...,jm or (ii) I

ˇ

ˇRpaq1,...,m
ν
ÝÑ Rpbqj1,...,jm .

Similarly, the pRpaq2,...,m`1, Rpbqk1,...,kmq-permutation under I is either ι or ν. Therefore either

(iii) I
ˇ

ˇRpaq2,...,m`1
ι
ÝÑ Rpbqk1,...,km or (iv) I

ˇ

ˇRpaq2,...,m`1
ν
ÝÑ Rpbqk1,...,km .
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Note that (i) implies that πp1q ă ¨ ¨ ¨ ă πpmq, (ii) implies that πpmq ą ¨ ¨ ¨ ąπp1q, (iii) implies
that πp2q ă ¨ ¨ ¨ ăπpm ` 1q, and (iv) implies that πpm ` 1q ą ¨ ¨ ¨ ąπp2q. Evidently (i) and (iv)
are inconsistent with each other, and (ii) and (iii) are inconsistent with each other. Therefore
either (i) and (iii) hold, or (ii) and (iv) hold.

That is, either πp1q ă πp2q ă ¨ ¨ ¨ ăπpm ` 1q or πpm ` 1q ą ¨ ¨ ¨ ąπp2q ą πp1q. In the
former case necessarily πp`q “ ` for i “ 1, . . . ,m ` 1, and so π “ ι, and in the former case
πp`q “ pm` 1q ´ `` 1 for i “ 1, . . . ,m` 1, that is, π “ ν. Thus (I) holds.

We prove (II) under the assumption that the pRpaq, Rpbqq-permutation under I is ν. The
proof for the case in which this permutation is ι is totally analogous.

Under this assumption

(:) I
ˇ

ˇRpaq1,...,m Ñ Rpbq2,...,m`1 and (;) I
ˇ

ˇRpaq2,...,m`1 Ñ Rpbq1,...,m.

By Observation 16, the induction hypothesis applied to (:) implies that Rpbq2,...,m`1 is oscillating,
that is,

(˚) b2 ¨ ¨ ¨ bm`1 is an oscillating subword of b.

Similarly, Observation 16 and the induction hypothesis applied to (;) imply that Rpbq1,...,m is
oscillating, that is,

(˚˚) b1 ¨ ¨ ¨ bm is an oscillating subword of b.

Clearly, (˚) and (˚˚) imply that b is oscillating. �

8. Boot links: proof of Theorem 5

Throughout this paper we refer to a link in
ÝÑL`

pBnq as a positive boot link of size n or simply
as a boot link of size n, since all links under consideration are positive.

As we mentioned in Section 1, the proof of Theorem 5 follows a similar strategy to the one we
used to prove Theorem 4. This is actually an understatement: with the framework we developed
for the proof of Theorem 4, the proof of Theorem 5 will be much shorter, as we only need to
describe some adjustments we need to make in order to deal with boot links.

8.1. Correspondence between boot links and binary words. Similarly as with ring links,

a boot link of size n is naturally associated to a binary word of size n. Each link in
ÝÑL`

pBnq is
obtained by assigning an orientation to each of the n pseudocircles in Bn, and an orientation
assignment can be naturally encoded in a totally analogous manner as we did for ring links. We
illustrate this in Figure 12.

Formally, let i “ 1, 2, . . . , n be the pseudocircles in Bn, ordered from left to right. As
with ring arrangements, we encode an orientation using a word a of length n, where the i-th
entry of the word a is 0 (respectively, 1) if pseudocircle i is oriented clockwise (respectively,
counterclockwise). Given such a word a, we use Bnpaq to denote the corresponding oriented
arrangement. Finally, we use Bpaq to denote the positive link induced by Bnpaq (here B stands
for “boot”).

Thus, as with ring links, there is a one-to-one correspondence between the set of all binary

words of length n and the collection
ÝÑL`

pBnq of all boot links of size n.
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Bp00101q5

Bp00101q2

Bp00101q10 1 0 1

1 2 3 4 5

0

B5p00101q

Bp00101q4

Bp00101q

Bp00101q3

Figure 12. The oriented arrangement B5p00101q and its induced positive link, the
boot link Bp00101q. We also indicate the five components of Bp00101q.

8.2. Reducing Theorem 5 to a proposition. Back in Section 3 we reduced Theorem 4 to
Proposition 9. Here we proceed similarly, but the situation is simpler for boot links.

In order to prove Theorem 4 we identified some natural isotopies on ring links, culminating
with Observation 8, which gave sufficient conditions for a ring link to be equivalent to a ring
link: if b is either a, a, a´1, or paq´1, then Rpaq „ Rpbq.

For boot links we do not need to go through that step: the equivalent to Observation 8 for
boot links would be the trivial statement that

(˚) if b “ a, then Bpaq “ Bpbq.

The workhorse behind the proof of Theorem 5 is then the following proposition, which claims
that the converse of (˚) holds, as long as the rank of a is at least 6.

Proposition 18 (Implies Theorem 5). Let a be a word of rank r ě 6. If b is a word such that
Bpaq „ Bpbq, then b “ a.

As we did with ring links, we defer the proof of the proposition for the moment, and show
that Theorem 5 easily follows from it.

Proof of Theorem 5 (assuming Proposition 18). Let a be a word of length n. Using standard
calculations one obtains that the probability that rankpaq is less than 6 goes to 0 as nÑ 8. By
Proposition 18, this implies that the probability that Bpaq is not equivalent to any other boot
link goes to 1 as nÑ 8.

The one-to-one correspondence between binary words of length n and elements of
ÝÑL`

pBnq

then implies that the probability that the equivalence class of a random link in
ÝÑL`

pBnq has

size 1 goes to 1 as nÑ 8. Since |
ÝÑL`

pBnq| “ 2n, Theorem 5 follows. �
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9. Proof of Proposition 18

Similarly as in the proof of Proposition 9, sublinks of boot links play a central role in the
proof of Proposition 18, so we start with a brief discussion on them.

9.1. Sublinks of boot links are equivalent to boot links. Let a “ a1 . . . an be a word, and
let i1, . . . , ik be integers such that 1 ď i1 ă ¨ ¨ ¨ ă ik ď n. Then ai1 ¨ ¨ ¨ aik is a subword of a, and
this subword naturally corresponds to a sublink Bpaqi1 Y ¨ ¨ ¨ Y Bpaqik of Bpaq. For brevity, we
use Bpaqi1,...,ik to denote this link.

We say that the boot link Bpaq is oscillating if the word a is oscillating, and we say that the
sublink Bpaqi1,...,ik of Bpaq is oscillating if ai1 ¨ ¨ ¨ aik is an oscillating subword of a. No oscillating
sublink of Bpaq can have size larger than the rank r of a, since this is the length of a longest
oscillating subword of a.

Similarly as in the case of ring links, as we illustrate in Figure 13 the special structure of
the arrangement Bn implies that the sublink Bpaqi1,...,ik of Bpaq is equivalent to the boot link
Bpai1 ¨ ¨ ¨ aikq, via a strong isotopy. Loosely speaking, one can “bring together” some components
of Bpaqi1,...,ik until all the components are placed exactly in the same way as the components
of Bpai1 ¨ ¨ ¨ aikq, and we can also reverse this process to take the components of Bpai1 ¨ ¨ ¨ aikq to
Bpaqi1,...,ik .

Observation 19. Let a “ a1 ¨ ¨ ¨ an be a word. If ai1 ¨ ¨ ¨ aik is any subword of a, then there

exists an Bpaqi1,...,ik
ι
ÞÝÑ Bpai1 ¨ ¨ ¨ aikq isotopy, and there exists an Bpai1 ¨ ¨ ¨ aikq

ι
ÞÝÑ Bpaqi1,...,ik

isotopy.

We thus obtain the following crucial statement, which parallels Observation 16.

Observation 20. Let a “ a1 ¨ ¨ ¨ an and b “ b1 ¨ ¨ ¨ bn be words. Let 1 ď i1 ă ¨ ¨ ¨ ă ik ď n
and 1 ď j1 ă ¨ ¨ ¨ ă jk ď n be integers, and let π be a permutation of rks. Then there exists

an Bpaqi1,...,ik
π
ÞÝÑ Bpbqj1,...,jk isotopy if and only if there exists an Bpai1 ¨ ¨ ¨ aikq

π
ÞÝÑ Bpbj1 ¨ ¨ ¨ bjkq

isotopy.

9.2. Reducing Proposition 18 to a lemma. Back in Section 4 we reduced Proposition 9
to Lemmas 10 and 11, and these lemmas were proved in later sections. Here we proceed in a
similar way. The next statements parallel these lemmas.

As we shall see, in this case we will only need to defer the proof of Lemma 22 to the next
section, as the proof of Lemma 21 is virtually identical to the proof of Lemma 10.

Lemma 21. Let a be a word with rank r ě 6, let b be a word such that Bpaq „ Bpbq, and let I be
an Bpaq ÞÑ Bpbq isotopy. Let Bpaqi1,...,ir be an oscillating sublink of Bpaq, and let Bpbqj1,...,jr be its
image under I. Then b is the π-image of a, where π is the pBpai1,...,irq, Bpbj1,...,jrqq-permutation
under I.

Lemma 22. Let a “ a1 ¨ ¨ ¨ an be a word of rank r ě 6, and let Bpaqi1,...,ir be an oscillating
sublink of Bpaq of size r. Let b be a word such that Bpaq „ Bpbq, and let I be an pBpaq, Bpbqq
isotopy. Let Bpbqj1,...,jr be the sublink of Bpbq that is the image of Bpaqi1,...,ir under I. Then,

(1) the pBpaqi1,...,ir , Bpbqj1,...,jrq-permutation under I is the identity permutation ι; and
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Bp000101q„

Bp000101q1

Bp000101q2

Bp000101q4

Bp000101q Bp000101q1,2,4

Figure 13. Illustration of Observation 19.

(2) bj1 ¨ ¨ ¨ bjr “ ai1 ¨ ¨ ¨ air .

We have the following easy consequence of Lemma 22, which is the analogue of Corollary 12.

Corollary 23. Let a “ a1 ¨ ¨ ¨ an be a word of rank r ě 6, and suppose that b is a word such that
Bpaq „ Bpbq. Then rankpbq “ r.

Proof of Lemma 21 (assuming Lemma 22). This is virtually identical to the proof of Lemma 10.
It suffices to invoke Corollary 23 instead of Corollary 12, and to invoke Lemma 22(2) instead of
Lemma 11(2). �

Proof of Proposition 18 (assuming Lemma 22). Let a “ a1 ¨ ¨ ¨ an be a word with rank r ě 6.
Let b “ b1 ¨ ¨ ¨ bn be a word such that Bpaq „ Bpbq, and let I be an pBpaq, Bpbqq isotopy. Let
Bpaqi1,...,ir be an oscillating sublink of Bpaq, and let Bpbqj1,...,jr be the sublink of Bpbq that is
the image of Bpaqi1,...,ir under I, and let π be the pBpaqi1,...,ir , Bpbqj1,...,jrq-permutation under I.

Let a “ A1 ¨ ¨ ¨Ar “ a
|A1|

i1
¨ ¨ ¨ a

|Ar|
ir

be the canonical decomposition of a. We note that Corol-

lary 23 implies that the rank of b is also r, and so we can let b “ B1 ¨ ¨ ¨Br “ b
|B1|

j1
¨ ¨ ¨ b

|Br|
jr

be the
canonical decomposition of b.

Lemma 21 implies that b is the π-image of a, and Lemma 22(1) implies that π is ι. Therefore
|Bk| “ |Aιpkq| “ |Ak| for k “ 1, . . . , r. By Lemma 11(2), we have that bj1 ¨ ¨ ¨ bjr “ ai1 ¨ ¨ ¨ air ,
and so a glance at the canonical decompositions of a and b reveals that b “ a. �
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10. Proof of Lemma 22

As the proof of Lemma 11, the proof of Lemma 22 is by induction on n. In order to establish
the base case we need the intrinsic symmetry groups of the two oscillating boot links of size 6.
Fortunately, these links are hyperbolic, and so we could use SnapPy to calculate these groups.
We obtained the following

Fact 24. The intrinsic symmetry groups of the boot links Bp010101q and Bp101010q are triv-
ial. Therefore, if I is an Bp010101q ÞÑ Bp010101q isotopy, then the pBp010101q, Bp010101qq-
permutation under I is the identity permutation ι. A totally analogous statements holds for
Bp101010q.

We have the following analogue of Claim 14. This will be the base case of the inductive proof
of Lemma 22 (or, more precisely, for the proof of its equivalent Lemma 26).

Claim 25. Let a “ a1a2a3a4a5a6 be an oscillating word of length 6. Let b “ b1b2b3b4b5b6 be a
word such that Bpaq „ Bpbq, and let I be an Bpaq ÞÑ Bpbq isotopy. Then,

(1) b “ a; and
(2) the pBpaq, Bpbqq-permutation under I is the identity permutation ι.

Proof. We start by noting that (1) states that if a “ 010101 (respectively, a “ 101010) and
Bpaq„Bpbq, then b “ 010101 (respectively, b “ 101010). We verified this using SageMath: the
Jones polynomial of VBp010101q of Bp010101q is different from the Jones polynomial of any other
boot link of size 6, and the same holds for the Jones polynomial VBp101010q of Bp101010q.

To prove (2), let I be an Bpaq ÞÑ Bpbq isotopy, and let π be the pBpaq, Bpbqq-permutation
under I. We already know that b “ a, and so I is an Bpaq ÞÑ Bpaq isotopy, and π is the
pBpaq, Bpaqq-permutation under I. Thus I maps each component of Bpaq to a component of
itself with its given orientation, and so p1, 1, 1, 1, 1, 1, 1, πq must be an intrinsic symmetry of
Bpaq. Regardless of whether a “ 010101 or 101010, Fact 24 implies that π is the identity
permutation ι. �

Similarly as we proceeded in the proof of Lemma 11, it turns out to be easier and more natural
to establish instead the following lemma, stated in terms of boot links instead of in terms of
sublinks of boot links. The equivalence of this statement with Lemma 22 follows immediately
from Observation 20.

Lemma 26 (Equivalent to Lemma 22). Let a “ a1 ¨ ¨ ¨ an be an oscillating word of length n ě 6.
Let b be a word such that Bpaq „ Bpbq, and let I be an Bpaq ÞÑ Bpbq isotopy. Then,

(1) the pBpaq, Bpbqq-permutation under I is the identity permutation ι; and
(2) b “ a.

Proof. The proof is an easier version of the proof of Lemma 17. We proceed by induction on
the length n of a. Claim 25 shows that the statement is true for n“6. For the inductive step
we let m ě 6 be an integer, assume that the lemma holds for oscillating words of length m, and
prove that then it holds for an oscillating word of length m` 1.

Thus we let a “ a1 ¨ ¨ ¨ amam`1 be an oscillating word, and let b “ b1 ¨ ¨ ¨ bm`1 be a word such
that Bpaq „ Bpbq. Let I be an Bpaq ÞÑ Bpbq isotopy, and let π be the pBpaq, Bpbqq-permutation
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under I. We must show that

π “ ι and b “ a.

Let Bpbqj1,...,jm (respectively, Bpbqk1,...,km) be the sublink of Bpbq that is the image of Bpaq1,...,m
(respectively, Bpaq2,...,m`1) under I.

By Observation 20, the induction hypothesis implies that the pBpaq1,...,m, Bpbqj1,...,jmq-permuta-
tion under I is ι. This implies in particular that πp1q ă ¨ ¨ ¨ ă πpmq. Similarly, the induction
hypothesis implies that the pBpaq2,...,m`1, Bpbqk1,...,kmq-permutation under I is ι. This implies in
particular that πp2q ă ¨ ¨ ¨ ăπpm`1q. Therefore πp1q ă πp2q ă ¨ ¨ ¨ ăπpm`1q, and so necessarily
πp`q “ ` for ` “ 1, . . . ,m` 1. In other words, π is the identity permutation ι. Thus (I) holds.

To prove (2), note that we have in particular we have proved that

(:) I
ˇ

ˇBpaq1,...,m Ñ Bpbq1,...,m and (;) I
ˇ

ˇBpaq2,...,m`1 Ñ Bpbq2,...,m`1.

By Observation 16, the induction hypothesis applied to (:) implies that b1 ¨ ¨ ¨ bm “ a1 ¨ ¨ ¨ am.
Similarly, Observation 16 and the induction hypothesis applied to (;) imply that b2 ¨ ¨ ¨ bm`1 “
a2 ¨ ¨ ¨ am`1. Evidently, (I) and (II) imply that b1 ¨ ¨ ¨ bm`1 “ a1 ¨ ¨ ¨ am`1, that is, b “ a. �

11. Flower links: proof of Theorem 6

We shall refer to a link in
ÝÑL`

pFnq as a positive flower link of size n or simply as a flower
link of size n, since all links under consideration are positive. We prove Theorem 6 using the
same strategy used to prove Theorems 4 and 5.

For convenience, we will deal exclusively with flower links of even size. We could in principle
also consider flower links of odd size, but this would imply some additional case analyses in
several important statements, and so it turns out to be easier to focus on flower links of even
size. We emphasize that this has no impact in the validity of Theorem 6, as it is easy to see
that (due to its asymptotic character) if the theorem holds for even values of n, then it also
holds when n is odd (see Proposition 31 and Corollary 31).

Remark. Whenever we work with a flower link, it will be implicitly assumed that it has an
even number of components.

11.1. Correspondence between flower links and binary words. Similarly as with ring
links and with boot links, we can naturally associate a flower link of size n to a binary word of size

n. Each link in
ÝÑL`

pFnq is obtained by assigning an orientation to each of the n pseudocircles
in Fn, and an orientation assignment can be naturally encoded similarly as we did for ring links
and for boot links.

We note that in this case we need to come up with a convention: the components of a ring
arrangement and the components of a boot arrangement are naturally ordered from left to
right, but the components of a flower arrangement appear in a cyclic fashion. We refer the
reader to Figure 14 to illustrate this discussion. A flower arrangement with an even number
n pseudocircles has two topmost pseudocircles. Thus we can label (order) the pseudocircles
1, . . . , n starting with its topmost right component and following a clockwise order, as shown for
the arrangement at the top of Figure 14.
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1

1
1

F5p001101q

F p001101q1

F p001101q2

F p001101q4 F p001101q3

F p001101q6

F p001101q

F p001101q5

0 0

0

1

25

6

34

Figure 14. The oriented arrangement F5p001101q and its induced link, the flower link
F p001101q. We indicate the six components of F p001101q.

Formally, let i “ 1, 2, . . . , n be the pseudocircles in Fn, ordered in a naturally clockwise
cyclic fashion, starting at the topmost right pseudocircle. As with ring arrangements and boot
arrangements, we encode an orientation using a word a of length n, where the i-th entry of the
word a is 0 (respectively, 1) if pseudocircle i is oriented clockwise (respectively, counterclock-
wise). Given such a word a, we use Fnpaq to denote the corresponding oriented arrangement.
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Finally, we use F paq to denote the positive link induced by Fnpaq (here F stands for “flower”).
We refer the reader again to Figure 14 for an illustration. As we also illustrate in that figure,
for each i “ 1, . . . , n we use F paqi to denote the i-th component of the flower link F paq.

Thus, as with ring links and boot links, there is a one-to-one correspondence between the set

of all binary words of length n and the collection
ÝÑL`

pFnq of all flower links of size n.

11.2. Isotopies that act naturally on flower links. We recall that, at a high level, the proof
of Theorem 4 had two main steps. Given a ring link Rpaq, the easy step was to exhibit isotopies
that proved that Rpaq „ Rpaq, Rpaq „ Rpa´1q, and Rpaq „ Rppaq´1q (evidently, there is no
need to exhibit an isotopy that takes Rpaq to itself). This part culminated with Observation 8,
and was by far the easier step of the proof: if b is either a, a, a´1, or paq´1, then Rpaq „ Rpbq.
The difficult part was the converse statement, namely Proposition 9: if Rpaq „ Rpbq, then b is
either a, a, a´1, or paq´1.

Here the strategy is totally analogous. Given a flower link F paq, we start by exhibiting
isotopies that prove that F paq is equivalent to a certain collection of flower links. This is the
goal of the current subsection, whose main result is Observation 27. The more difficult part will
be stated in Proposition 31, which plays the role that Proposition 9 played for ring links.

11.2.1. The isotopy R2π{n, the word mapping r, and the permutation σ. Let us then exhibit
some natural isotopies that take a flower link to a flower link. As we illustrate in Figure 15 for
the case n “ 6, we use R2π{n to denote an isotopy that clockwise rotates an angle of 360˝{n a
diagram along an axis perpendicular to the sheet. (We mostly use degrees in our discussions,
but we find it more natural to use 2π{n as a subscript of R, rather than 360˝{n).

As we show in Figure 15, if apply R2π{6 to F p001101q then we obtain F p101101q. That

is, R2π{6

ˇ

ˇF p001101q Ñ F p100110q. It is easy to see that if we apply R2π{6 to any flower
link with 6 components F pa1a2a3a4a5a6q, we obtain the flower link F pa6a1a2a3a4a5q. That
is, R2π{6

ˇ

ˇF pa1a2a3a4a5a6q Ñ F pa6a1a2a3a4a5q.
In general, if for some positive integer n we apply R2π{n to a flower link with n components

F pa1a2 ¨ ¨ ¨ an´1anq, we obtain the flower link F pana1a2 ¨ ¨ ¨ an´1q. Thus R2π{n

ˇ

ˇF pa1a2 ¨ ¨ ¨ an´1anq
Ñ F pana1a2 ¨ ¨ ¨ an´1q.

Motivated by the action of R2π{n on a flower link F pa1 ¨ ¨ ¨ anq, we define a mapping r on
binary words by the following rule: if a “ a1a2 . . . , an is a word, then rpaq “ a2 ¨ ¨ ¨ ana1. (Here
r stands for “rotation”, to capture the action of R2π{n). Thus, regardless of the value of n, we

have that if a is a word of length n, then R2π{n

ˇ

ˇF paq Ñ F prpaqq.
If a is any word of length n, then R2π{n takes F paqi to F praqi`1 for i “ 1, . . . , n ´ 1, and it

takes F paqn to F praq1. Thus the pF paq, F praqq-permutation under R2π{n is p2 3 ¨ ¨ ¨ n 1q.
We shall use σ to denote the permutation p2 3 ¨ ¨ ¨ n 1q on a set rns. (This is called the cyclic

shift permutation in some contexts). With this notation we have that for any positive integer n,
the pF paq, F praqq-permutation under R2π{n is σ. Thus we have the following expression, which
brings together the isotopy R2π{n, the word mapping r, and the cyclic shift permutation σ,
displaying the interplay between them:

R2π{n

ˇ

ˇF paq
σ
ÝÑ F prpaqq.
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360˝{n “ 2π{n rotation

p360˝{6 “ 60˝ in this exampleq

F p001101q

pR2π{6 in this exampleq

F prp001101qq“F p100110q

R2π{n

Figure 15. For each positive integer n, the isotopy R2π{n clockwise rotates an angle
of 2π{n a diagram along an axis perpendicular to the page. This isotopy takes a flower
link F pa1a2 ¨ ¨ ¨ an´1anq to the flower link F prpa1a2 ¨ ¨ ¨ an´1anqq “ F pana1a2 ¨ ¨ ¨ an´1q,
and the pF pa1a2 ¨ ¨ ¨ an´1anq, F pana1a2 ¨ ¨ ¨ an´1qq-permutation under R2π{n is σ “

p2 3 ¨ ¨ ¨ n 1q. Here we illustrate R2π{6, which takes F p001101q to F p100110q. The
pF p001101q, F p100110qq-permutation under R2π{6 is indeed σ “ p2 3 4 5 6 1q, as it
takes the i-th component of F p001101q to the pi‘61q-st component of F p100110q, for
i “ 1, . . . , 6.

Many of our arguments involve σ or, more generally, σs “ ps`1 s`2 ¨ ¨ ¨ n 1 2 ¨ ¨ ¨ sq (that
is, the composition of σ with itself s times) for some positive integer s. Describing the action of
σs in detail gets a bit awkward: σspiq “ s`i if s`i ď n, and it is n´ps`iq`2 if s`i ą n. This
action gets a lot simpler to express using the following piece of notation, very closely related to
the sum modulo n of two integers p, q.

Notation. If n, p, q are positive integers, we define p‘nq “ pp` qq modn if p ` q ı 0 modn,
and p‘nq “ n if p` q ” 0 modn.

This notation gives a cleaner way to describe the action of σs for any positive integer s, as
σspiq “ i‘ns for i “ 1, . . . , n.

With this notation, the action of R2π{n thus gets captured as follows: If a is any word of
length n, then R2π{n takes F paqi to F praqi‘n1 for i “ 1, . . . , n.

For each nonnegative integer s we let Rs
2π{n denote the isotopy that results by iteratively

applying s times the isotopy R2π{n. Clearly, Rs
2π{n “ Rs¨2π{n. Therefore, if a “ a1 ¨ ¨ ¨ an then

Rs
2π{n

ˇ

ˇF pa1 ¨ ¨ ¨ anq Ñ F pan´s`1an´s`2 ¨ ¨ ¨ ana1a2 ¨ ¨ ¨ an´sq.
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We let rs be the mapping that results by iteratively applying r a total of s times, so that
Rs

2π{n

ˇ

ˇF paq Ñ F prspaqq. Note that Rs
2π{n takes F paqi to F prspaqqi‘ns for i “ 1, . . . , n, and that

the pF paq, F prspaqqq-permutation under Rs
2π{n is σs.

It seems worth remarking that for any positive integer p the isotopy Rp¨n
2π{n “ Rp¨n¨2π{n is a

trivial isotopy that leaves every n-component flower link F pa1 ¨ ¨ ¨ anq unchanged. Also note that,
correspondingly, rp¨npaq “ a, and that (if σ is acting on rns) σp¨n is the identity permutation ι.

11.2.2. The isotopy V and the word mapping v. The second and last isotopy we use in the
current context of flower links is the isotopy V that we used in the proof of Theorem 4. This
isotopy will have a similar effect to the one that V had on ring links. Indeed, as we illustrate
in Figure 16, if we apply V to a flower link F paq “ F pa1 ¨ ¨ ¨ anq we obtain the flower link
F ppaq´1q “ F ppa1 ¨ ¨ ¨ anq

´1
q “ F pan ¨ ¨ ¨ a1q.

With this motivation we define a mapping v on binary words, letting vpaq “ paq´1 for
every word a. (Here v is meant to remind us of “V”). Thus for any word a we have that
V
ˇ

ˇF paq Ñ F pvpaqq. We note that, similarly as with ring links, the pF paq, F pvpaqqq-permutation

under V is the reverse permutation ν. Therefore V
ˇ

ˇF paq
ν
ÝÑ F pvpaqq.

F pvp001101qq “ F pp001101q
´1
q “ F p010011qF p001101q

180˝ rotation

V

Figure 16. If we apply the isotopy V to the flower link F p001101q we obtain the

flower link F pp001101q
´1
q “ F pvp001101qq “ F p010011q. This isotopy maps the i-th

F p001101qi component of F p001101q to the p6´ i`1q-st component F pvp001101qq6´i`1
of F pvp001101qq. Thus the pF p001101q, F pvp001101qq-permutation under V is the

reverse permutation ν on r6s. Thus V
ˇ

ˇF p001101q
ν
ÝÑ F pvp001101qq. In general,

if we apply V to a flower link F paq we obtain the flower link F pvpaqq, that is,
V
ˇ

ˇF paq Ñ F pvpaqq. If F paq has n components then V maps the i-th component
of F paq to the pn ´ i ` 1q-st component of F pvpaqq, for i “ 1, . . . , n. That is,

V
ˇ

ˇF paq
ν
ÝÑ F pvpaqq.

11.2.3. Combining R2π{n and V: sufficient conditions for the equivalence between two flower
links F paq and F pbq. Let a “ a1 ¨ ¨ ¨ an and b “ b1 ¨ ¨ ¨ bn be words. Evidently, if F pbq is obtained
from F paq by applying any sequence of isotopies R2π{n and V , then F paq „ F pbq. Since applying
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R2π{n (respectively, V) to a link F paq yields the link F prpaqq (respectively, F pvpaqq), it follows
that if a word b is obtained from a word a by applying any sequence of r and/or v operations,
then F paq „ F pbq.

Definition. We say that a word b is related to a word a, and write a ” b, if b can be obtained
from a by applying a sequence of r and v operations.

Using this definition, the remark at the end of the previous paragraph can be paraphrased as
follows.

Observation 27. Let a, b be words. If a ” b, then F paq „ F pbq.

11.2.4. Some remarks on ”. The relation ” will play a crucial role in the proof of Theorem 6,
as the goal will be to show that the sufficient condition for equivalence between flower links
given in Observation 27 is actually necessary. Before we move on to the proof of the theorem,
let us gather a few elementary facts about this relation.

Consider r and v acting on words of some fixed length n. It is easy to see that they are the
generators of a group xr,vy under the composition ˝. Moreover, it is straightforward to verify
that this group is isomorphic to the dihedral group Dn. Perhaps the easiest way to realize this is
to note that the isotopies R2π{n and V (the topological counterparts of r and v, respectively) are
the generators of a group naturally isomorphic to the group of symmetries of a regular n-gon,
that is, to the dihedral group Dn.

Thus if a, b are words of the same length then a ” b if and only if there is an element g in
xr,vy such that b “ gpaq. Thus the next observation follows simply because xr,vy is a group.

Remark 28. ” is an equivalence relation.

The dihedral nature of the group xr,vy generated by r and v (we emphasize, throughout
this discussion acting on words of some fixed length n) implies that it has 2n elements, and
every element of xr,vy can be written either as rs or as rs ˝ v for some integer s “ 0, . . . , n´ 1.
Alternatively, every element of xr,vy can be written either as rs or as v ˝ rs for some integer
s “ 0, . . . , n´ 1. Thus we have the following.

Remark 29. Let a, b be words of the same length n. Then a ” b if and only if there is an
s P t0, . . . , n´ 1u such that either b “ rspaq or b “ rs ˝vpaq. In particular, the equivalence class
of a has size at most 2n.

It is easy to exhibit words whose equivalence class has size exactly 2n, but we also note that
there exist words whose equivalence class is much smaller: indeed, if a is monotone, then its
equivalence class consists only of a and a.

Finally, suppose that a word a can be written as a concatenation a “ D1D2 of two subwords
D1, D2. We say that the word b “ D2D1 is a shift of a. Note that, evidently, b is a shift of a if
and only if a is a shift of b. Clearly, if we iteratively apply r to a a total of |D2| times (that is,
if we apply r|D2| to a) we obtain b. Thus the following holds.

Remark 30. If a is a word, and b is a shift of a, then b ” a.
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11.3. Reducing Theorem 6 to a proposition. Given a word a of length n, we have thus
identified a collection of words b (including a itself) such that F paq „ F pbq: these are the words
b such that b ” a. The main ingredient in the proof of Theorem 6 is that the converse statement
also holds, as long as the rank of a is at least six. This statement parallels Proposition 9 from
Section 3.

Proposition 31. Let a be a word of even rank r ě 6. If b is a word such that F paq „ F pbq,
then b ” a.

We defer the proof of this proposition to the next section (where we actually reduce it to a
lemma, similarly as we reduced Proposition 9 to two lemmas). We note that this proposition
involves only words of even rank. Evidently not every word has even rank, and so we need a
wider statement that includes words whose rank is odd. Fortunately, this is an easy consequence
of Proposition 31 itself.

Corollary 32. Let a be a word of rank r ě 6. If b is a word such that F paq „ F pbq, then b ” a.

Proof. Let a “ a1 ¨ ¨ ¨ an be a word of rank r ě 6, and let b be a word such that F paq „ F pbq. If
r is even then we are done by Proposition 31, and so we assume that r is odd. Note that r ě 7.

Let a “ A1A2 ¨ ¨ ¨Ar´1Ar be the canonical decomposition of a. Since r is odd it follows that
the concatenation ArA1 is a monotone word. If we let A1r :“ ArA1 then A2 ¨ ¨ ¨Ar´1Ar1 is the
canonical decomposition of a word a1. Note that since a1 is a shift of a, it follows that a1 ” a.

Observation 27 implies then that (i) F pa1q „ F paq. Since by assumption F paq „ F pbq, it
follows that (ii) F pa1q „ F pbq. Since the rank of a1 is the even number r ´ 1 ě 6, using
Proposition 31 (i) and (ii) we obtain that a1 ” a and a1 ” b. Since ” is an equivalence relation,
it follows that a ” b. �

Proof of Theorem 6 (assuming Proposition 31). Let a be a word of length n. Using standard
calculations one obtains that the probability that rankpaq is less than 6 goes to 0 as nÑ 8, and
also the probability that the equivalence class of a has size smaller than 2n goes to 0 as nÑ 8.
By Observation 27 and Corollary 32 (which holds under the assumption that Proposition 31
holds) this implies that the probability that there are exactly 2n words b of length n (including
a) such that F paq „ F pbq goes to 1 as nÑ 8.

The one-to-one correspondence between binary words of length n and elements of
ÝÑL`

pFnq

then implies that the probability that the equivalence class of a random link in
ÝÑL`

pFnq has

size 2n goes to 1 as nÑ 8. Since |
ÝÑL`

pFnq| “ 2n, Theorem 6 follows. �

12. Proof of Proposition 31

Similarly as with ring links and boot links, sublinks of flower links play a central role in the
proof of Proposition 31, and so we start with a brief discussion on these objects.

12.1. Sublinks of flower links. Let a “ a1 . . . an be a word, and let i1, . . . , ik be integers such
that 1 ď i1 ă ¨ ¨ ¨ ă ik ď n. Then ai1 ¨ ¨ ¨ aik is a subword of a, and this subword naturally
corresponds to a link F paqi1 Y ¨ ¨ ¨YF paqik (recall that F paqi is the i-th component of the flower
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link F paq). We say that F paqi1 Y ¨ ¨ ¨ Y F paqik is a sublink of F paq, and for brevity we use
F paqi1,...,ik to denote it.

It is worth noting that this notation is consistent with the way we denote a single component
of F paq: if k “ 1 then we have a single integer i1, and so the corresponding sublink consists of
the component F paqi1 .

We say that the flower link F paq is oscillating if the word a is oscillating, and we say that the
sublink F paqi1,...,ik of F paq is oscillating if ai1 ¨ ¨ ¨ aik is an oscillating subword of a. Note that
obviously no oscillating sublink of F paq can have size larger than the rank r of a, since this is
the length of a longest oscillating subword of a.

12.2. Reducing Proposition 31 to a lemma. When we dealt with ring links in Section 4,
we reduced Proposition 9 to Lemmas 10 and 11. Here we proceed similarly. As we shall see,
the proposition follows easily from the next two lemmas, which parallel Lemmas 10 and 11,
respectively.

Back in Section 4 we only stated Lemmas 10 and 11, and proved them in later sections. For
flower links we only need to defer the proof of Lemma 34 to later sections: as we shall see, the
proof of Lemma 33 is virtually identical to the proof of Lemma 10, under the assumption that
Lemma 34 holds.

Lemma 33. Let a, b be words with the same even rank r ě 6. Suppose that F paq „ F pbq, and let
I be an F paq ÞÑ F pbq isotopy. Let F paqi1,...,ir be an oscillating sublink of F paq, and let F pbqj1,...,jr
be its image under I. Then b is the π-image of a, where π is the pF pai1,...,irq, F pbj1,...,jrqq-
permutation under I.

Lemma 34. Let a be a word of even rank r ě 6, and let F paqi1,...,ir be an oscillating sublink of
F paq of size r. Let b be a word such that F paq „ F pbq, and let I be an F paq ÞÑ F pbq isotopy.
Let F pbqj1,...,jr be the sublink of F pbq that is the image of F paqi1,...,ir under I. Then,

(1) the pF paqi1,...,ir , F pbqj1,...,jrq-permutation under I is either σs or σs ˝ ν for some s P
t0, . . . , r ´ 1u; and

(2) if s is even then bj1 ¨ ¨ ¨ bjr “ ai1 ¨ ¨ ¨ air , and if it is odd then bj1 ¨ ¨ ¨ bjr “ ai1 ¨ ¨ ¨ air .

In particular, in any case bj1 ¨ ¨ ¨ bjr is an oscillating subword of b, and so F pbqj1,,...,jr is an
oscillating sublink of F pbq.

Similarly as we proceeded back in Section 4 for ring links, we defer the proof of Lemma 34
to the next two sections, and we prove Proposition 9 and Lemma 33 assuming Lemma 34. We
also note the following easy consequence of Lemma 34.

Corollary 35. Let a “ a1 ¨ ¨ ¨ an be a word of even rank r ě 6, and suppose that b is a word
such that F paq „ F pbq. Then, rankpbq is either r or r` 1. In particular, if rankpbq is even then
rankpbq “ r.

Proof. Let s :“ rankpbq. Lemma 34 implies that there is an oscillating sublink of Rpbq of size r,
and so it follows that s ě r. In particular, s ě 6.

Suppose first that s is even. Then we can apply the lemma also to an Rpbq ÞÑ Rpaq isotopy,
obtaining that there must exist an oscillating sublink of Rpaq of size s, and so r ě s. Thus in
this case r “ s.
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Suppose finally that s is odd, and seeking a contradiction suppose that s ą r ` 1. As we
argued in the proof of Corollary 32, there is a shift b1 of b of rank s´ 1. Since b1 ” b and b ” a,
then b1 ” a, and so there is an Rpb1q ÞÑ Rpaq isotopy J . Since rankpb1q “ s´ 1 is even, we can
apply Lemma 34 to J , and obtain that there must exist an oscillating sublink of Rpaq of size
s´ 1. But this is impossible, since rankpaq “ r and s´ 1 ą r. �

Proof of Lemma 33 (assuming Lemma 34). This is virtually identical to the proof of Lemma 10.
It suffices to replace every occurrence of “R” with “F”, to invoke Corollary 35 instead of
Corollary 12, and to invoke Lemma 34 (2) instead of Lemma 11 (2). �

Proof of Proposition 31 (assuming Lemma 34). Let a “ a1 ¨ ¨ ¨ an be a word with even rank r ě
6. Let b “ b1 ¨ ¨ ¨ bn be a word such that F paq „ F pbq, and let I be an pF paq, F pbqq isotopy.

In the proof we make essential use of Lemma 33. Since that lemma works under the assump-
tion that both words are of the same even rank at least 6, and we only assume that a has even
rank at least 6 (as far as we know, the rank of b could be any positive integer), we need to make
a little adjustement in order to use that lemma, introducing a word c of the same rank as a.

By Corollary 35 it follows that rankpbq is either r or r ` 1. If rankpbq “ r then we simply let
c “ b. If rankpbq “ r ` 1 then we note, as in the proof of Corollary 32, that there is a word c
such that rankpcq “ rankpbq ´ 1 “ r such that c ” b. We shall prove that c ” a. Since ” is an
equivalence relation, it will follow that b ” a, as required.

Let F paqi1,...,ir be an oscillating sublink of F paq, and let F pcqj1,...,jr be the sublink of F pcq that
is the image of F paqi1,...,ir under I, and let π be the pF paqi1,...,ir , F pcqj1,...,jrq-permutation under
I. We note that Lemma 34 implies cj1 ¨ ¨ ¨ cjr is oscillating. That is, F pcqj1,...,jr is an oscillating
sublink of F pcq.

Let a “ A1 ¨ ¨ ¨Ar “ a
|A1|

i1
¨ ¨ ¨ a

|Ar|
ir

be the canonical decomposition of a. Since rankpcq “

rankpaq “ r, we let c “ C1 ¨ ¨ ¨Cr “ c
|C1|

j1
¨ ¨ ¨ c

|Cr|
jr

be the canonical decomposition of c.
Lemma 33 implies that c is the π-image of a, and Lemma 34 (1) implies that there is an

s P t0, . . . , r ´ 1u such that π is either σs or σs ˝ ν.
We assume first that π “ σs, for some s P t0, . . . , r´ 1u. Since c is the π-image of a it follows

that |Cπpkq| “ |Ak| for k “ 1, . . . , r. That is, |Cs‘rk| “ |Ak| for k “ 1, . . . , r. Therefore (˚)

a “ a
|Cs`1|

i1
a
|Cs`2|

i2
¨ ¨ ¨ a

|Cr|
ir´s

a
|C1|

ir´s`1
¨ ¨ ¨ a

|Cs´1|

ir´1
a
|Cs|
jr

.
Suppose that s is even. Since ai1 ¨ ¨ ¨ air is oscillating and r is even, this implies that ai1 ¨ ¨ ¨ air “

ais`1 ¨ ¨ ¨ airai1 ¨ ¨ ¨ ais . Moreover, since s is even then Lemma 34 (2) implies that cj1 ¨ ¨ ¨ cjr “
ai1 ¨ ¨ ¨ air , and so ais`1 ¨ ¨ ¨ airai1 ¨ ¨ ¨ ais “ cis`1 ¨ ¨ ¨ circi1 ¨ ¨ ¨ cis . Therefore ai1 ¨ ¨ ¨ air “ cis`1 ¨ ¨ ¨ cir
ci1 ¨ ¨ ¨ cis , and so (˚) implies that a “ c

|Cs`1|

is`1
¨ ¨ ¨ c

|Cr|
ir

c
|C1|

i1
¨ ¨ ¨ c

|Cs|
jr

. Thus a is a shift of c, and so by
Remark 30 c ” a.

Suppose now that s is odd. Since ai1 ¨ ¨ ¨ air is oscillating and r is even, this implies that
ai1 ¨ ¨ ¨ air “ ais`1 ¨ ¨ ¨ airai1 ¨ ¨ ¨ ais . Moreover, since s is odd then Lemma 34 (2) implies that
cj1 ¨ ¨ ¨ cjr “ ai1 ¨ ¨ ¨ air , and so ais`1 ¨ ¨ ¨ airai1 ¨ ¨ ¨ ais “ cis`1 ¨ ¨ ¨ circi1 ¨ ¨ ¨ cis . Therefore ai1 ¨ ¨ ¨ air “
cis`1 ¨ ¨ ¨ circi1 ¨ ¨ ¨ cis , and so as in the previous case using (˚) we obtain that c ” a.

We finally assume that π “ σs ˝ ν, for some s P t0, . . . , r ´ 1u. Since c is the π-image of a
it follows that |Cπpkq| “ |Ak| for k “ 1, . . . , r. That is, |Cs‘r pr´k`1q| “ |Ak| for k “ 1, . . . , r.
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Therefore

(˚˚) a “ a
|Cs|
i1

a
|Cs´1|

i2
¨ ¨ ¨ a

|C2|

is´1
a
|C1|

is
a
|Cr|
is`1

¨ ¨ ¨ a
|Cs`2|

r´1 a
|Cs`1|

ir
.

Suppose that s is even. Since ai1 ¨ ¨ ¨air is oscillating and r is even, this implies that ai1 ¨ ¨ ¨air “
ais ¨ ¨ ¨airai1 ¨ ¨ ¨ais´1 . Moreover, since s is even then Lemma 34 (2) implies that cj1 ¨ ¨ ¨cjr “ ai1 ¨ ¨ ¨air ,
and so ais ¨ ¨ ¨airai1 ¨ ¨ ¨ais´1 “ cis ¨ ¨ ¨circi1 ¨ ¨ ¨cis´1 . Therefore ai1 ¨ ¨ ¨air “ cis ¨ ¨ ¨circi1 ¨ ¨ ¨cis´1 , and so

(˚˚) implies that a “ cis
|Cs|¨ ¨ ¨ci1

|C1|cir
|Cr|¨ ¨ ¨cjs´1

|Cs´1|. Thus a is a shift of cir
|Cr|¨ ¨ ¨cis

|Cs|cis
|Cs´1|¨ ¨ ¨

¨ ¨ ¨cj1
|C1| “ pcq´1 “ vpcq. Remark 30 then implies that a ” vpcq, and since vpcq ” c it follows

that c ” a.
Suppose now that s is odd. Since ai1 ¨ ¨ ¨air is oscillating and r is even, this implies that

ai1 ¨ ¨ ¨air“ais ¨ ¨ ¨airai1 ¨ ¨ ¨ais´1 . Moreover, since s is odd then Lemma 34 (2) implies that ai1 ¨ ¨ ¨air “
cj1 ¨ ¨ ¨cjr , and so ais ¨ ¨ ¨airai1 ¨ ¨ ¨ais´1 “ cis ¨ ¨ ¨circi1 ¨ ¨ ¨cis´1 . Hence ai1 ¨ ¨ ¨air “ cis ¨ ¨ ¨circi1 ¨ ¨ ¨cis´1 , and
so as in the previous case using (˚˚) we obtain that c ” a. �

13. Towards the proof of Lemma 34: small flower links

We will prove Lemma 34 by induction on n, similarly as we proceeded in the proofs of
Lemmas 11 (for ring links) and 22 (for boot links). Our aim in this section is to prove the
lemma when n “ 6, which is the base case of the induction. As we shall see, this base case is
equivalent to Claim 37 at the end of the section.

13.1. The intrinsic symmetry groups of F p010101q and F p101010q. In order to establish
the base case of the proof of Lemma 34 we need to calculate the intrinsic symmetry groups of
F p010101q and F p101010q. These links are hyperbolic, and so also in this case we followed the
approach described in [4, Section 3] to compute their intrinsic symmetry groups using SnapPy.

The results we obtained, which we state in Fact 36, involve two particular intrinsic symmetries.
Let us focus on F p010101q in this brief discussion, as the results for F p101010q are totally
analogous.

The first symmetry pertains the action of the isotopy R2π{6 on F p010101q, illustrated in
Figure 17. As we already know, this isotopy takes the flower link F p010101q to F prp010101qq “
F p101010q.

On the other hand, as we also illustrate in that figure, if we ignore for a moment the ori-
entations of the components, it is valid to say that R2π{6 takes F p010101q to itself, but each
component is taken to a component with its orientation reversed. That is, for instance, R2π{6

takes F p010101q1 to F p010101q2 with its orientation reversed, that is, to ´1 ¨ F p010101q2.
Since the isotopy takes F p010101qi to ´1 ¨ F p010101qi‘61

for i “ 1, 2, 3, 4, 5, 6, it follows that
p1,´1,´1,´1,´1,´1,´1, p2 3 4 5 6 1qq “ p1,´1,´1,´1,´1,´1,´1, σq is an intrinsic symmetry
of F p010101q.

The second relevant symmetry involves the action of the isotopy V on F p010101q, illustrated
in Figure 18. As we noted in Section 11, V takes any flower link F paq to F pvpaqq, and so in par-

ticular V takes the flower link F p010101q to F pvp010101qq “ F pp010101q
´1
q “ F p010101´1q “

F p010101q.
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F p010101q F prp010101qq“F p101010q

60˝ “ 2π{6 rotation

R2π{6

Figure 17. The isotopy R2π{6 takes F p010101q to F p101010q. If we ignore the orien-
tations of the components, as we do at the bottom of this figure, we realize that this
isotopy actually takes F p010101q to itself. Thus it is valid to say that this isotopy takes
F p010101q to itself, but with the i-th component of F p010101q taken to the pi‘61q-st
component of F p010101q with its orientation reversed. Thus this isotopy witnesses that
p1,´1,´1,´1,´1,´1,´1, σq is an intrinsic symmetry of F p010101q.

F p010101q F prp010101qq“F p101010q

180˝ rotation

V
Figure 18. The isotopy V takes F p010101q to F p010101q (that is, to itself), with
each component taken to a component with its correct orientation. More precisely,
V takes the i-th component F p010101qi of F p010101q to its p6 ´ i ` 1q-st component
F p010101q6´i`1, for i “ 1, . . . , 6. Thus V witnesses that p1, 1, 1, 1, 1, 1, 1, νq is an intrin-
sic symmetry of F p010101q.
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That is, V takes F p010101q to itself, and each component is taken to a component with its
correct orientation. That is, V takes F p010101qi to 1 ¨F p010101q6´i`1 for i “ 1, . . . , 6. Therefore
p1, 1, 1, 1, 1, 1, 1, p6 5 4 3 2 1qq “ p1, 1, 1, 1, 1, 1, 1, νq is an intrinsic symmetry of F p010101q.

The next result, which we obtained using SnapPy, attests to the relevance of these two sym-
metries in the intrinsic symmetry groups of F p010101q and F p101010q.

Fact 36. The intrinsic symmetry group of F p010101q is isomorphic to the dihedral group D6,
and it is generated by p1,´1,´1,´1,´1,´1,´1, σq and p1, 1, 1, 1, 1, 1, 1, νq. The intrinsic sym-
metry group of F p101010q is identical.

13.2. The base case of the proof of Lemma 34. The next statement is the main result in
this section, which corresponds to the base case of the proof of Lemma 34. As we shall see in
the next section, even though this claim is stated in terms of oscillating links, and not in terms
of oscillating sublinks (as Lemma 34) this statement is indeed equivalent to the case n “ 6 of
that lemma.

Claim 37. Let a “ a1a2a3a4a5a6 be an oscillating word of length 6. Let b “ b1b2b3b4b5b6 be a
word such that F paq „ F pbq, and let I be an F paq ÞÑ F pbq isotopy. Then,

(1) the pF paq, F pbqq-permutation under I is either σs or σs ˝ ν, for some s P t0, . . . , 5u; and
(2) if s is even then b “ a, and if s is odd then b “ a.

In particular, in any case b is an oscillating word, and so F pbq is an oscillating link.

In the proof we use the following terminology. Suppose that I is an isotopy that maps a link
L “ L1Y¨ ¨ ¨YLn to itself if we ignore the orientations of its components. That is, I takes Li to
εi ¨ Lπpiq for i “ 1, . . . , n, where εi P t´1, 1u for i “ 1, . . . , n. That is, I witnesses that L admits
the intrinsic symmetry p1, ε1, . . . , εn, πq. Then we say that pε1, . . . , εn, πq is the stamp of I over
L. We emphasize that the stamp of an isotopy over a link exists if and only if the isotopy maps
the link to itself, if we ignore the orientations of its components.

Proof. We start by pointing out that the closing sentence of the claim (that b is oscillating)
follows immediately from (2). However, as it happens, we need an independent verification of
this fact in order to prove (1) and (2).

This is an easy task using SageMath: we found out that the Jones polynomials VF p010101q of
F p010101q and VF p101010q of F p101010q are the same (this was of course expected, since these
links are equivalent), and the Jones polynomial of any other flower link of size 6 is distinct from
VF p010101q. Thus b is either a or a.

Let I be an F paq ÞÑ F pbq isotopy, and let π be the pF paq, F pbqq-permutation under I. Since
b is either a or a it follows that F paq and F pbq are equivalent if we ignore the orientations of
their components, and so I has a stamp Θ “ pε1, . . . , ε6, πq. Thus p1, ε1, . . . , ε6, πq is an intrinsic
symmetry of F paq, and so Fact 36 implies that Θ is either p´1s,´1s,´1s,´1s,´1s,´1s, σsq or
p´1s,´1s,´1s,´1s,´1s,´1s, σs ˝ νq for some s P t0, . . . , 5u. In particular, π is either σs or
σs ˝ ν for some s P t0, . . . , 5u. Thus (1) holds.

If s is even then Θ is either p1, 1, 1, 1, 1, 1, σsq or p1, 1, 1, 1, 1, 1, σs ˝ νq. In either case I maps
each component of F paq to a component of itself with its correct orientation, and so b “ a.
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Finally, if s is odd then Θ is either p´1,´1,´1,´1,´1,´1, σsq or p´1,´1,´1,´1,´1,´1, σs˝
νq. In either case I maps each component of F paq to a component of F pbq with its orientation
reversed, and so b “ a. �

14. Proof of Lemma 34

As in the proofs of Lemmas 11 and 22, sublinks of flower links will play a central role in the
proof of Lemma 34, and so we start the discussion by laying out some basic facts about them.

14.1. Sublinks of flower links are equivalent to flower links. Let a “ a1 . . . an be a word,
and let i1, . . . , ik be integers such that 1 ď i1 ă ¨ ¨ ¨ ă ik ď n. Then ai1 ¨ ¨ ¨ aik is a subword of a,
and this subword naturally corresponds to a sublink F paqi1 Y ¨ ¨ ¨ Y F paqik of F paq. For brevity,
we use F paqi1,...,ik to denote this link.

Similarly as in the cases of ring links and boot links, as we illustrate in Figure 19 the special
structure of the arrangement Fn implies that the sublink F paqi1,...,ik of F paq is equivalent to
the flower link F pai1 ¨ ¨ ¨ aikq, via a strong isotopy. Loosely speaking, one can “bring together”
some components of F paqi1,...,ik until all the components are placed exactly in the same way as
the components of F pai1 ¨ ¨ ¨ aikq, and we can also reverse this process to take the components of
F pai1 ¨ ¨ ¨ aikq to F paqi1,...,ik .

Observation 38. Let a “ a1 ¨ ¨ ¨ an be a word. If ai1 ¨ ¨ ¨ aik is any subword of a, then there exists

an F paqi1,...,ik
ι
ÞÝÑ F pai1 ¨ ¨ ¨ aikq isotopy, and there exists an F pai1 ¨ ¨ ¨ aikq

ι
ÞÝÑ F paqi1,...,ik isotopy.

We thus obtain the following crucial statement, which parallels Observation 16.

Observation 39. Let a “ a1 ¨ ¨ ¨ an and b “ b1 ¨ ¨ ¨ bn be words. Let 1 ď i1 ă ¨ ¨ ¨ ă ik ď n
and 1 ď j1 ă ¨ ¨ ¨ ă jk ď n be integers, and let π be a permutation of rks. Then, there exists

an F paqi1,...,ik
π
ÞÝÑ F pbqj1,...,jk isotopy if and only if there exists an F pai1 ¨ ¨ ¨ aikq

π
ÞÝÑ F pbj1 ¨ ¨ ¨ bjkq

isotopy.

14.2. Proof of Lemma 34. Even though in principle it is possible to prove Lemma 34 in its
given form, it turns out to be easier to establish instead the following proposition, stated in
terms of flower links instead of in terms of sublinks of flower links. The equivalence of this
statement with Lemma 34 follows from Observation 39.

Lemma 40 (Equivalent to Lemma 34). Let a “ a1 ¨ ¨ ¨ an be an oscillating word of even length
n ě 6. Let b be a word such that F paq „ F pbq, and let I be an F paq ÞÑ F pbq isotopy. Then,

(1) the pF paq, F pbqq-permutation under I is either σs or σs ˝ ν for some s P t0, . . . , n´ 1u;
and

(2) if s is even then b “ a, and it is odd then b “ a.

In particular, in any case b is oscillating.

Before we proceed to the proof we make an elementary observation on sequences. We say that
a sequence j1, . . . , jk of k distinct integers in rns is n-consistent (respectively, n-anticonsistent)
if there is an integer t P t1, . . . , ku such that jt, jt`1, . . . , jk, j1, j2, . . . , jt´1 is increasing (respec-
tively, decreasing). We make essential use of the following trivial observation in the proof of
Lemma 17.
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„ F p010101qF p010101q1,2,4,5

F p010101q

F p010101q5

F p010101q2F p010101q1

F p010101q4

Figure 19. Illustration of Observation 38.

Remark 41. If a sequence j1, . . . , jn of distinct integers in rns is n-consistent (respectively,
n-anticonsistent) then the permutation pj1 j2 ¨ ¨ ¨ jnq is σs (respectively, σs ˝ ν) for some s P
t0, . . . , n´ 1u.

Proof of Lemma 34. We proceed by induction on the length n of a. Claim 37 establishes the
statement for the case n “ 6. For the inductive step we let m ě 6 be an even integer, assume
that the proposition holds for oscillating words of length m, and prove that then it holds for an
oscillating word of length m` 2.

Thus we let a “ a1 ¨ ¨ ¨ amam`1am`2 be an oscillating word, let b “ b1 ¨ ¨ ¨ bmbm`1bm`2 be a
word such that F paq „ F pbq, and let I be an F paq ÞÑ F pbq isotopy. Our goal is to show (1) and
(2). We let π denote the pF paq, F pbqq-permutation under I, and so we must show that (I) π is
either σs or σs ˝ ν for some s P t0, . . . ,m` 1u; and that (II) if s is even then b “ a, and if s is
odd then b “ a.

Before we move on to the main arguments of the inductive step let us make the following
trivial observations, obtained simply because a1a2 ¨ ¨ ¨ am`1am`2 is oscillating and m is even:

§ a1a2 ¨ ¨ ¨ am “ pa1a2qm{2 and a1a2 ¨ ¨ ¨ am “ pa1a2q
m{2; and

§§ a3a4 ¨ ¨ ¨ am`2 “ pa3a4qm{2 “ pa1a2qm{2 and a3a4 ¨ ¨ ¨ am`2 “ pa3a4q
m{2 “ pa1a2q

m{2.

Let F paqi1,...,im be any oscillating sublink of F paq of size m, and let F pbqj1,...,jm be the sublink
of F pbq that is the image of F paqi1,...,im under I. We note that j1, . . . , jm is a sequence of m
distinct integers in rm`2s, and as such it might be pm`2q-consistent or pm`2q-anticonsistent
(or neither).
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By Observation 39, the induction hypothesis implies that there is an s P t0, . . . ,m´ 1u such
that the pF paqi1,...,im , F pbqj1,...,jmq-permutation under I is either σs or σs ˝ν (we emphasize, with
σ and ν acting on rms). It is easy to see that in the former case πpi1q, . . . , πpimq is pm ` 2q-
consistent, and in the latter case it is pm` 2q-anticonsistent.

We now apply this discussion to two particular oscillating sublinks of F paq. Since a is os-
cillating, then a1a2 ¨ ¨ ¨ am´1am and a1a4a5 ¨ ¨ ¨ am`1am`2 are both oscillating sublinks of size m.
The remark at the end of the previous paragraph then implies that:
‚ πp1q, πp2q, . . . , πpm´ 1q, πpmq is either (i) pm` 2q-consistent or (ii) pm` 2q-anticonsistent;

and
‚ πp1q, πp4q, πp5q . . . , πpm ` 1q, πpm ` 2q is either (iii) pm ` 2q-consistent or (iv) pm ` 2q-

anticonsistent.
It is easy to see that (i) and (iv) cannot simultaneously hold, and that (ii) and (iii) cannot

simultaneously hold. So either (i) and (iii) hold, or (ii) or (iv) hold.
It is straightforward to check that if (i) and (iii) hold, the the sequence πp1q, πp2q, . . . , πpmq,

πpm`1q, πpm`2q is pm`2q-consistent, and if (ii) and (iv) hold, then this sequence is pm`2q-
anticonsistent. Remark 41 then implies that in the former case π is σs for some s P t0, . . . ,m`1u,
and in the latter case π is σs ˝ ν for some s P t0, . . . ,m ` 1u. We have thus proved part (I) of
the inductive step.

To prove (II), suppose first that π “ σs for some s P t0, . . . ,m`1u. Then I takes F paq1,...,m to
F pbq1,2,...,s´3,s´2,s`1,s`2,...,m`1,m`2, and the pF paq1,...,m, F pbq1,2,...,s´3,s´2,s`1,s`2,...,m`1,m`2q-permu-
tation under I is σs (with σ acting on rms). By Observation 39, the induction hypothesis then
implies that if s is even then b1b2 ¨ ¨ ¨ bs´3bs´2bs`1bs`2 ¨ ¨ ¨ bm`1bm`2 “ a1 ¨ ¨ ¨ am, and if s is odd
then b1b2 ¨ ¨ ¨ bs´3bs´2bs`1bs`2 ¨ ¨ ¨ bm`1bm`2 “ a1 ¨ ¨ ¨ am.

In view of (§) and (§§), we conclude that

(˚) if s is even then b1b2 ¨ ¨ ¨ bs´2bs`1 ¨ ¨ ¨ bm`2 is pa1a2q
m{2, and if s is odd then it is pa1a2q

m{2.

We now note that I takes F paq3,4...,m`1,m`2 to F pbq1,2,...,s´1,s,s`3,s`4,...,m`1,m`2, and similarly
as in the previous case the pF paq1,...,m, F pbq1,2,...,s´1,s,s`3,s`4,...,m`1,m`2q-permutation under I
is σs (with σ acting on rms). By Observation 39, the induction hypothesis then implies
that if s is even then b1b2 ¨ ¨ ¨ bs´1bsbs`3bs`4 ¨ ¨ ¨ bm`1bm`2 “ a3 ¨ ¨ ¨ am`2, and if s is odd then
b1b2 ¨ ¨ ¨ bs´1bsbs`3bs`4 ¨ ¨ ¨ bm`1bm`2 “ a3 ¨ ¨ ¨ am`2.

Using (§) and (§§), we conclude that

(˚˚) if s is even then b1b2 ¨ ¨ ¨ bsbs`3 ¨ ¨ ¨ bm`2 is pa1a2q
m{2, and if s is odd then it is pa1a2q

m{2.

Combining (˚) and (˚˚) we obtain that if s is even then b1b2 ¨ ¨ ¨ bm`2 “ pa1a2q
pm{2q`1 (that is,

b “ a), and if s is odd then b1b2 ¨ ¨ ¨ bm`2 “ a1a2
pm{2q`1 (that is, b “ a). Thus (II) holds.

Suppose finally that π “ σsν for some s P t0, . . . ,m ` 1u. Then I takes F paq1,...,m to
F pbq1,2,...,s´1,s,s`3,s`4,...,m`1,m`2, and the pF paq1,...,m, F pbq1,2,...,s´1,s,s`3,s`4,...,m`1,m`2q-permutation
under I is σs ˝ ν (with σ and ν acting on rms). By Observation 39, the induction hypothesis
then implies that if s is even then b1b2 ¨ ¨ ¨ bs´1bsbs`3bs`4 ¨ ¨ ¨ bm`1bm`2 “ a1a2 ¨ ¨ ¨ am, and if s is
odd then b1b2 ¨ ¨ ¨ bs´1bsbs`3bs`4 ¨ ¨ ¨ bm`1bm`2 “ a1a2 ¨ ¨ ¨ am.

In view of (§) and (§§), we conclude that

(:) if s is even then b1b2 ¨ ¨ ¨ bsbs`3 ¨ ¨ ¨ bm`2 is pa1a2q
m{2, and if s is odd then it is pa1a2q

m{2.
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We now note that I takes F paq3,4,...,m`1,m`2 to F pbq1,2,...,s´3,s´2,s`1,s`2,...,m`1,m`2, and
the pF paq3,4,...,m`1,m`2, F pbq1,2,...,s´3,s´2,s`1,s`2,...,m`1,m`2q-permutation under I is σs ˝ ν (with
σ and ν acting on rms). By Observation 39, the induction hypothesis then implies that if
s is even then b1b2 ¨ ¨ ¨ bs´3bs´2bs`1bs`2 ¨ ¨ ¨ bm`1bm`2 “ a3a4 ¨ ¨ ¨ am`1am`2, and if s is odd then
b1b2 ¨ ¨ ¨ bs´1bsbs`3bs`4 ¨ ¨ ¨ bm`1bm`2 “ a3a4 ¨ ¨ ¨ am`1am`2.

Using (§) and (§§), we conclude that

(;) if s is even then b1b2 ¨ ¨ ¨ bs´2bs`1 ¨ ¨ ¨ bm`2 is pa1a2q
m{2, and if s is odd then it is pa1a2q

m{2.

Combining (:) and (;) we obtain that if s is even then b1 ¨ ¨ ¨ bm`2 “ pa1a2q
pm{2q`1 (that is, b “ a),

and if s is odd then b1 ¨ ¨ ¨ bm`2 “ pa1a2q
pm{2q`1 (that is, b “ a). Therefore, (II) holds. �

15. Concluding Remarks

Throughout this paper we worked exclusively with oriented links, and in particular our main
results (namely Theorems 4, 5, and 6) are stated in terms of oriented links. However, as we
briefly mentioned in Section 1, it is possible to derive analogous statements for unoriented links.

Given an arrangement A , we use L`pA q to denote the collection of all positive unoriented
links that project to A . Similarly as for oriented links, we let JL`pA qK denote the number of
non-equivalent links in L`pA q (that is, the number of equivalence classes in L`pA q).

We have the following consequences of Theorems 4, 5, and 6, respectively.

Corollary 42 (The number of positive unoriented links that project to Rn).

JL`pRnqK “
ˆ

1

4
` opnq

˙

¨ 2n.

Corollary 43 (The number of positive unoriented links that project to Bn).

JL`pBnqK “
ˆ

1

2
` opnq

˙

¨ 2n.

Corollary 44 (The number of positive unoriented links that project to Fn).

JL`pFnqK “
ˆ

1

4n
` opnq

˙

¨ 2n.

Proof of Corollary 42. Since all links under consideration are positive, then every pair of com-
ponents form a Hopf link. Therefore, if the orientation of one component is fixed then the
orientations of all the other components are determined (since each crossing must be positive).
Hence an unoriented link that projects to a ring arrangement Rn is the “unorientation” of ex-
actly two oriented ring links Rpaq and Rpaq, for some word a of length n. Now Rpaq and Rpaq
(as oriented links) are in the same equivalence class, as one can obtained from the other by using
the isotopy H (see Section 3.2). Therefore the number of equivalence classes for unoriented ring
links is the same as for oriented ring links, and so the corollary follows from Theorem 4. �

Proof of Corollary 43. As in the proof of Corollary 42, an unoriented link that projects to a
boot arrangement Bn is the unorientation of exactly two oriented boot links Bpaq and Bpaq,
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for some word a of length n. Now if the rank of a is at least 6 then Proposition 18 implies that
Bpaq and Bpaq (as oriented links) are not in the same equivalence class.

Since the probability that a has rank at least 6 goes to 1 as n goes to infinity, it follows that
with high probability the equivalence classes of Bpaq and Bpaq are distinct and they merge into
a single equivalence class when they are regarded as unoriented links. Therefore the corollary
follows from Theorem 5. �

Proof of Corollary 44. As in the proof of the previous two corollaries, an unoriented link that
projects to a flower arrangement Fn is the unorientation of exactly two oriented flower links
F paq and F paq, for some word a of length n. Now if the rank of a is at least 6 then Proposition 31
implies that F paq and F paq (as oriented links) are not in the same equivalence class: indeed, it
is not difficult to show that the probability that a random word a of size n satisfies that a ” a
goes to 0 as n goes to infinity. Therefore with high probability the equivalence classes of F paq
and F paq are distinct and they merge into a single equivalence class when they are regarded as
unoriented links. Therefore the corollary follows from Theorem 6. �

As we mentioned in the proof of Corollary 44, for every word a the flower links F paq and
F paq are equivalent as unoriented links, since in a all orientations are opposite to those in a, and
since all crossings are positive then all the over/under assignments in these links are identical. It
may happen that F paq and F paq are also equivalent as oriented links: for instance, F p010101q
is equivalent to F p101010q, implying that F p010101q is invertible. However, this is rather
exceptional, as in general it is not true that a ” a. Indeed, an elementary calculation shows
that the probability that a ” a goes to 0 as n goes to infinity, and so (in view of Corollary 32)
with high probability the oriented flower link F paq is non-invertible.
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