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Design principles, growth laws, and competition of minimal autocatalysts

Yann Sakref and Olivier Rivoire
Gulliver, CNRS, ESPCI, Université PSL, Paris, France.

The apparent difficulty of designing simple autocatalysts that grow exponentially in the absence
of enzymes, external drives or ingenious internal mechanisms severely constrains scenarios for the
emergence of evolution by natural selection in chemical and physical systems. Here, we systemati-
cally analyze these difficulties in the context of one of the simplest and most generic autocatalysts: a
dimeric molecule that duplicates by templated ligation. We show that despite its simplicity, such an
autocatalyst can achieve exponential growth autonomously. This only requires that the rate of the
spontaneous dimerization, the interactions between molecules, and the concentrations of substrates
and products are in appropriate ranges. We also show, however, that it is possible to design as
simple sub-exponential autocatalysts that have an advantage over exponential autocatalysts when
competing for a common resource. We reach these conclusions by developing a general theoretical
framework based on kinetic barrier diagrams. Besides challenging commonly accepted assumptions
in the field of the origin of life, our results provide a blueprint for the experimental realization of
elementary autocatalysts exhibiting a form of natural selection, whether on a molecular or colloidal
scale.

The path from simple chemical systems to complex
living organisms is believed to hinge on a pivotal point
at which one molecule, or a set of molecules, gain the
capability to catalyze their own formation, hence consti-
tuting an autocatalytic system [1–5]. When several such
systems are formed from a common molecule, the faster
ones hinder the growth of the slower ones, and may even
exclude them if the common molecule is limiting. This
elementary form of natural selection is thought to set the
stage for Darwinian evolution [1–3]. Mathematically, ex-
clusion occurs whenever replicators grow exponentially
using a common limiting resource, in which case only the
fastest growing replicator can survive [6–8].

Molecular replication in extant living organisms re-
lies on enzymatic catalysis and involves a large net-
work of coupled reactions. Non-enzymatic autocata-
lysts have been designed in a variety of artificial systems
and at a variety of scales, from the molecular and col-
loidal scale up to the macroscopic scale [9–18]. At the
molecular scale, the simplest systems implement tem-
plate replication, where the formation of a new com-
plex AB from its constituents A and B is catalyzed by
a previously formed complex AB. However, such non-
enzymatic molecular autocatalysts are generally found
to exhibit sub-exponential growth, where the number
x of autocatalysts follows the phenomenological equa-
tion dx/dt = kxn with n < 1, associated with polyno-
mial growth, x(t) ∼ t1/(1−n) [5, 19]. A growth order of
n ≈ 1/2 is typically observed, also known as parabolic
growth due to the relationship x(t) ∼ t2 [5, 9, 19, 20].
Sub-exponential autocatalysts, unlike exponential auto-
catalysts, are not mutually exclusive, which often leads
them to be considered as representing only a basic and
limited type of selection, if they are taken into account
at all in the emergence of natural selection [7, 16, 19, 21].
This limitation has spurred research into identifying the
physical basis of sub-exponential growth and defining
the requirements autocatalysts must meet to achieve
exponential growth. By analyzing a minimal autocat-

alytic model, von Kiedrowski demonstrated that sub-
exponential growth is due to product inhibition, i.e. the
propensity of autocatalytic models to inhibit their cat-
alytic activity by binding to each other.

In 1993, von Kiedrowski demonstrated, through the
analysis of a minimal model of autocatalysis, that sub-
exponential growth originates from product inhibition,
the propensity of autocatalytic templates to inhibit their
catalytic activity by binding to each other [19]. He es-
tablished thermodynamic and species concentration con-
ditions under which product inhibition is negligible, that
is, under which exponential growth can occur. However,
his analysis was based on several assumptions: a local
equilibrium between substrates and templates, a local
equilibrium between free and complexed templates, and
a substrate concentration well in excess of the total au-
tocatalyst concentration. This left open the question of
what may happen beyond these local equilibria and be-
yond the initial stages of the reaction.

In the meantime, much experimental efforts has gone
into designing autocatalysts that mitigate product inhi-
bition. The first type of solutions involve external drives
applied in a cyclical pattern, such as heat [18, 22, 23],
mechanical stress [24], light [25, 26], tidal cycling [27], or
magnetic fields [28]. Approaches based on the intrinsic
properties of the autocatalyst rather than external fac-
tors have also been proposed [25, 29–36]. For instance,
at the molecular level, the affinity between autocatalysts
can be diminished by coupling the formation of a bound
within autocatalysts to the breaking of a bound between
autocatalysts [33, 34], or by entropic mechanisms like
toeholds and handholds strand displacements when us-
ing nucleic acids [25, 35, 36]. These approaches, al-
though effective in specific settings, raise several ques-
tions. First, it is often ambiguous whether the pro-
posed mechanism mitigates product inhibition, the bind-
ing of two preformed autocatalysts, or accelerate prod-
uct release, the unbinding of a newly formed autocata-
lyst from a preformed catalyst, which is known to impact
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the growth rate but not the growth order of autocataly-
sis [25, 32, 35, 37]. Second, these mechanisms are often
idiosyncratic to the context in which they are designed,
which limits the scope of their applicability. Finally, and
perhaps most importantly, the designs are generally intri-
cate and fine-tuned, which defeats the purpose of study-
ing autocatalysis as a means to understand the accretion
of complexity.

This poses a major problem for origin-of-life scenar-
ios based on autocatalysis. Consequently, most scenar-
ios currently focus on autocatalytic networks composed
of multiple molecules rather than single-molecule auto-
catalysts [38–44]. This orientation reflects the belief
that these networks are more likely to emerge sponta-
neously [2, 45–50]. However, networks raise similar chal-
lenges [20, 51], as well as posing new ones, e.g., the likely
appearance of parasites [52, 54].

In either case, whether based on a single species or
a network of species, the design of autocatalysts has so
far mainly remained in the realm of empirical studies.
In particular, no theoretical work has, to our knowledge,
examined the minimum requirements autocatalysts must
meet to achieve exponential growth beyond the assump-
tions made by von Kiedrowski [19]. Here, we propose to
fill this gap by showing through a systematic approach
that simple and generic exponential autocatalysts are
designable, although with limitations that we clarify. By
simple, we mean autocatalysts composed of very few ele-
ments (two) with no internal structure or internal degree
of freedom [53]. By generic, we mean an entropic mecha-
nism of autocatalysis by proximity that is present in any
chemistry or colloidal system subject to thermal noise.

Our starting point is a physical model of interacting
particles, from which we derive a kinetic model described
by a Markov chain. This choice ensures that our pa-
rameterization of kinetic rates captures the fundamental
physical trade-offs inherent in autocatalytic systems. It
also helps us to identify the actual range of parameters
in which such an autocatalyst could be experimentally
implemented. Our approach is to treat autocatalysis as
a special case of catalysis – namely when the product is a
catalyst – and to apply a previously developed method-
ology to define, construct and optimize minimal cata-
lysts [55, 56]. However, this is only a starting point:
as we show, this methodology needs to be extended to
account for the constraints arising from the identity be-
tween products and catalysts, which introduces a fun-
damental distinction between catalysis and autocataly-
sis. As a result, we demonstrate that it is possible to
design simple generic autocatalysts that grow exponen-
tially, but that it is equally possible to design simple sub-
exponential autocatalysts that out-compete them in con-
ditions of resource limitation.

I. METHODS

Model

We study the design of autocatalysts AB composed
of two units A and B which catalyze their own for-
mation through a templating reaction summarized by
AB +A +B → 2AB (Fig. 1A). Guided by simplicity, we
consider for A and B spherical particles of same diam-
eter σ, immersed in a thermal bath at temperature T
within a two-dimensional box of dimension L × L. For
illustration and to indicate the experimentally feasibil-
ity of our design, we take inspiration from DNA-coated
colloids [57] and present numerical results using a short-
range, pairwise potential with a reverse barrier (Materials
and methods). As represented in Fig. 1B, this potential
features a cutoff distance of rc = 1.1 σ, and a minimum at
rmin = 1.03 σ [58, 59]. Thus, only two parameters are left
to specify the interaction between two particles of types
X and Y : the energy barrier for dimer association, ε+XY ,
and the energy barrier for dimer dissociation, ε−XY .

With two particle types, A and B, we generally need
six parameters to specify the interaction potentials. We
reduce this number to two by making additional simplify-
ing assumptions. First, we consider that the dimerization
reaction, A+B → AB, is irreversible (ε−AB =∞), and that
the interaction between A and B is therefore described by
a single parameter ε+AB , the association barrier. Second,
we consider that the interaction potentials between two A
or two B are the same, with same depth (ε−AA = ε−BB) and
no association barrier (ε+AA = ε+BB = 0), leaving a single
parameter ε−AA, the interaction strength, to describe their
interaction. Also to simplify the analysis, we assume that
no molecule of size larger than four can be formed. As
summarized in Fig. 1C, the model has a total of three
dimensionless parameters: L/σ, ε+AB/kBT and ε−AA/kBT
where kB is the Boltzmann constant. Without loss of
generality, we set σ = 1 to define the length scale, and
kBT = 1 to define the energy scale. To these three phys-
ical parameters, we must add the current concentrations
of molecular species. Again for simplicity, we assume
that A and B have the same concentration [A] = [B].
The only remaining parameter is then [AB], the concen-
tration of free products, or [AB]tot, the total concentra-
tion of products, including those in complex with other
species.

Questions

In the context of this model, the questions raised in the
introduction can be formulated as follow: What are the
physical parameters L, ε+AB , ε

−

AA and the chemical con-
ditions [A] and [AB] for (i) optimal autocatalysis, that
is, leading to a maximal acceleration of the dimerization
reaction A+B → AB by a pre-existing AB? (ii) exponen-
tial growth, d[AB]tot/dt = k[AB]tot? (iii) exclusion of an
alternative autocatalyst AD sharing with AB a common
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FIG. 1: Model for the design of minimal autocatalysts A. Au-
tocatalytic cycle in which particles A and B can attach to
dimer AB catalyzing their dimerization. The scheme repre-
sents A binding AB before B but the reverse order is also
possible. Green arrows indicate diffusion processes, depen-
dent on the area L2. Red arrows represent dissociations of
two identical particles, dependent on the interaction strength
ε−AA. Blue arrows represent association between distinct par-
ticles, dependent on the interaction barrier ε+AB . The spon-
taneous reaction involves both diffusion and association and
is indicated by a two-colored arrow. B. Potentials by which
particles interact (Materials and methods). Between iden-
tical particles, the potential depth is ε−AA, and association
is diffusion-limited. Between distinct particles, the potential
depth is very large (infinite), and association limited by a
barrier ε+AB .

constituent A?

Approach

As an intermediate step towards the design of an au-
tocatalyst AB, we first consider a dimeric catalyst C =
A′B′, which is distinguishable from AB, but has identical
physical properties (ε+A′B′ = ε+AB and ε−A′A′ = ε−B′B′ = ε−AA).
Studying the catalysis C + A + B → C + AB enables us
to apply and extend the methods previously developed
to design a minimal catalyst for the reverse reaction, the
dissociation of AB into A +B [55], and provides a basis
for subsequently exposing the nuances between catalysis
and autocatalysis.

More precisely, we derive constraints on the design of
minimal autocatalysts in four steps, starting from stan-
dard catalysis in the simplest setting and progressively
introducing elements of feedback inherent to autocatal-
ysis: (1) We determine the conditions under which a
dimer C = A′B′ can accelerate the dimerization reaction
A+B → AB. This is done by comparing the time for the
spontaneous formation of a dimer AB in the presence
and in the absence of a C [56]. (2) Next, given a catalyst
C = A′B′, we determine the conditions for its optimal
efficiency. This is done by minimizing the cycling time
T 0
cycle, defined as the mean time taken by one C = A′B′

to turn a substrate A +B into a product AB.
Following previous work [55], we solve (1) and (2) in

conditions that are most favorable for catalysis, namely

in the absence of any product AB [56]. (3) One unique
feature of autocatalysis, however, is that it necessarily
takes place in the presence of products, since the cata-
lyst is itself a product. Products generally cause product
inhibition, whereby a product binds a catalyst and in-
hibits its activity. We first analyze the consequence of
product inhibition in standard catalysis, when the cata-
lyst C = A′B′ differs from the product AB and show that
it increases the mean cycling time to Tcycle = T 0

cycle+Tinhib
with an additional time Tinhib that depends on the con-
centration [AB] of products. (4) Finally, we apply the
previous results to C = AB and highlight how autocatal-
ysis departs from catalysis. In particular, while for stan-
dard catalysis the rate of product formation is, when as-
suming the spontaneous reaction to be negligible, pro-
portional to the concentration of catalysts, i.e., of the
form d[AB]tot/dt = k[C] with k = 1/Tcycle, this is no
longer the case for autocatalysis because Tcycle depends
on [AB] with AB = C.

II. DESIGN PRINCIPLES FOR MINIMAL
AUTOCATALYSTS (AUTO)CATALYSTS

Conditions for catalysis

To determine the conditions under which a dimer
C = A′B′ can cause the acceleration of the reaction
A + B → AB, we first consider a closed system with
only one particle A and one particle B and determine
the mean time TA+B→AB for a dimer AB to form [55].
We compare this time to TC+A+B→C+AB , the mean time
for AB to form when a prospective catalyst C is added.
Catalysis occurs when this later time is shorter than the
former, that is, when the relative catalytic efficiency de-
fined by the ratio TA+B→AB/TC+A+B→C+AB is superior
to 1. In previous work, we showed that a molecule acts
as an (auto)catalyst in presence of multiple molecules A
and B only if it acts as one in presence of a single A and
a single B [56].

A first necessary condition is for the dimerization onto
the catalyst to be faster than the spontaneous reaction
in the bulk, i.e., TC(A+B)→C(AB) < TA+B→AB [56]. As
expected from Arrhenius equation, we verify with molec-
ular dynamics (MD) simulations that both these times
scale exponentially with the association barrier ε+AB when
it is sufficiently large (Fig. S1): TA+B→AB ≈ L2eε

+

AB and
TC(A+B)→CAB ≈ eε+AB . Catalysis therefore requires a min-
imal area L2 to occur. For the design at hand, we find
that an area of (L/σ)2 ≳ 50 is necessary (Fig. 2A).

Assuming such sufficiently large area L2, we next study
the impact of the two physical parameters, ε+AB and ε−AA.
To extend this study beyond the range of parameter val-
ues accessible by MD, we approximate the dynamics by a
Markov model with five distinct states, corresponding to
the various states of bonding between the autocatalyst,
the monomers A and B, and the product AB (Fig. 1A).
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FIG. 2: Conditions for catalysis of the dimerization A+B → AB. A. Mean times for the dimerization A+B → AB in the absence
of C = A′B′ (in blue) and for the dimerization C(A +B) → C(AB) when A,B are kept attached to C (in red). A necessary
condition for catalysis is TA+B→AB > TC(A+B)→C(AB) [56]. Since the first time scales with the reaction area L2 while the second
is independent of it, catalysis requires a sufficiently large value of L2. The lines are from the Markov model presented in the
text and the bars from MD. B. The catalytic efficiency of C shows a maximum at an intermediary value of the interaction
strength ε−AA, consistent with Sabatier principle. The value of this maximum increases with the interaction barrier ε+AB . C.
The catalytic efficiency for optimal ε−AA increases both with the reaction barrier ε+AB and with the reaction area L2.

Formally, the catalytic cycle is described by

C+A+B
k1ÐÐ⇀↽ÐÐ
k−1

CA+B
k2ÐÐ⇀↽ÐÐ
k−2

C(A+B) k3Ð→ C(AB) k4Ð→ C+AB,
(1)

closed by adding C +A+B
k0ÐÐ⇀↽ÐÐ
k−0

C +AB to represent the

spontaneous reaction without any interaction with the
catalyst. Here we assume that A and B are equivalent
and we therefore do not differentiate between CA + B
and CB + A. We also assume that release occurs in a
single step, which is a good approximation when ε−AA is
sufficiently large (Fig S2). We take the dependence of
the rate on the parameters to be given by

k1 ≈ 2L−2, k2 ≈ L−2, k3 ≈ e−ε
+

AB , k4 ≈ e−2ε
−

AA ,

k−1 ≈ e−ε
−

AA , k−2 ≈ 2e−ε
−

AA .
(2)

Pre-factors can be introduced to obtain a better fit to the
MD simulations (Supplementary Materials and Fig. S3),
but they have no major impact on the results (Fig. S8)
and are omitted here to simplify the presentation. The
main purpose of this physical parameterization is indeed
not to accurately describe a particular system, but to
capture the generic relationships between kinetic rates.

The catalytic efficiency depends both on the interac-
tion strength ε−AA and on the association barrier ε+AB . For
a given association barrier ε+AB , we observe an optimal in-
teraction strength ε−AA (Fig. 2B). This observation follows
Sabatier’s principle, which applies broadly to catalytic
systems with no internal degrees of freedom [60, 61], and
states that an optimal interaction between a catalyst and
its substrate must strike a balance between too weak an
interaction that cannot hold the substrates until they re-
act, and too strong an interaction that cannot release the
product rapidly.

A second observation is that larger association bar-
riers ε+AB enable greater relative catalytic efficiencies
TA+B→AB/TC+A+B→C+AB (Fig. 2B) This is again a

generic feature: the larger the barrier for the sponta-
neous reaction, the more potential for catalysis. In fact
no catalysis can occur if the barrier is too small [55]. Fi-
nally, increasing the reaction area also increases the rela-
tive efficiency of the catalyst (Fig. 2C). This is simply the
consequence of increasing the mean time of the sponta-
neous dimerization reaction in solution without changing
the dimerization reaction on the catalyst.

In summary, catalysis of the reaction A + B → AB is
favored by a large reaction barrier ε+AB , a large reaction
volume L2 and a particular, finite value of the interaction
strength ε−AA that depends on ε+AB and L2.

Optimal cycling time in the absence of products

Having determined the conditions under which a
molecule C acts as a catalyst, we now analyze how the
catalytic turnover depends on the concentration of sub-
strates [A] = [B]. To this end, we can ignore the spon-
taneous reaction. As a first step, we also assume that
products are systematically removed so that [AB] = 0.
The rates of the elementary processes along the cycle are
formally obtained by replacing L−2 by [A] in Eq. (2), to
account for the possible presence of multiple substrates.
In other terms, in what follows, we approximate the
constant diffusion rates to 1 so that the reaction rates
simply become proportional to the concentration of the
species. The Markov chain for the complete cycle can be
represented graphically as a kinetic energy diagram [62]
(Fig. 3A).

Kinetic barrier diagrams provide a rigorous framework
for systematically analyzing different growth regimes, de-
fined by different limiting processes. For our model, each
of the five states i in the diagram (i = 1 for C, i = 2 for
CA, i = 3 for C(A+B), i = 4 for C(AB) and i = 5 for
C +AB) is represented at an energy level Gi and succes-
sive states are separated by transition states at energy
level G‡

i , such that the differences of energies between
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states and transition states report the rates as

ki = e−(G
‡
i−Gi), k−i = e−(G

‡
i−Gi+1). (3)

In this representation, the mean cycling time has a simple
expression [62–64],

T
(0)
cycle([A]) = ∑

1≤i≤j≤4

eG
‡
j−Gi (4)

where the sum is over each pair i ≤ j of transition state
j following a ground state i and where the subscript (0)
indicates that no product is present. This sum is typically
dominated by its largest term so that

T
(0)
cycle([A]) ≈ emax1≤i≤j≤4(G

‡
j−Gi). (5)

The exponent defines the limiting barrier, also known
as the energy span [63, 65], which is represented in ki-
netic barrier diagrams by the largest difference of energy
between successive – but not necessarily consecutive –
levels. This limiting barrier formalizes the intuitive but
problematic notion of “limiting step”, which takes only
into account successive levels [65]. As we show below,
reducing the estimation of the mean cycling time to the
determination of the limiting barrier simplifies the analy-
sis and the interpretation of the results without changing
qualitatively the conclusions.

Limiting barriers can be of two types, direct barriers
between successive states and indirect barriers between
non-successive states. Direct barriers report the mean
time to perform one elementary transition. The depen-
dence of the direct barriers G‡

i −Gi = − lnki on the pa-
rameters is given by Eq. (2),

G‡
1 −G1 ≈ − ln[A] − ln 2,

G‡
2 −G2 ≈ − ln[A],

G‡
3 −G3 ≈ ε+AB ,

G‡
4 −G4 ≈ 2ε−AA.

(6)

The first two barriers describe the diffusion of substrates
to the catalyst, the third barrier the dimerization reac-
tion on the catalyst, and the last the release of the prod-
uct.

The total cycling time is, however, more than the ad-
dition of these elementary transition times. Indeed, once
a state has been reached, the next elementary transition
may be a backward transition and not a forward one,
corresponding to a recrossing event. This is the origin
of the indirect barriers between non-consecutive states,
given by

G‡
2 −G1 = ln

k−1
k1k2

≈ −ε−AA − 2 ln[A] − ln 2,

G‡
3 −G1 = ln

k−1k−2
k1k2k3

≈ −2ε−AA + ε+AB − 2 ln[A],

G‡
3 −G2 = ln

k−2
k2k3

≈ −ε−AA + ε+AB − ln[A] + ln 2.

(7)

These indirect barriers are all the smaller than the back-
ward direct barriers – the direct barriers for the catalysis
of the reverse reaction AB → A +B – are higher. Hence,
a short cycling time requires not only low forward direct
barriers but also high backward direct barriers. As ap-
parent in Eqs. (6) and Eqs. (7), the different barriers are
not independent but controlled by the same physical and
chemical parameters. These relationships capture the es-
sential trade-offs involved in the design of catalysis.

For instance, at low substrate concentration, the opti-
mal interaction energy is ε̂−AA = (ε+AB − 2 ln[A])/4. Con-
sistent with Sabatier principle, this optimum strikes a
balance between the indirect barrier for substrate bind-
ing and dimerization G‡

3−G1 (in green in Fig. 3B), which
is diminished by increasing ε−AA, and the direct barrier for
product release G‡

4 −G4 (in orange in Fig. 3B), which is
conversely increased by increasing ε−AA. The same reason-
ing applies at higher substrate concentrations, where the
direct barrier for product release is in trade-off with other
indirect barriers related to substrate binding (segments
(a) and (b) in Fig. 3B, see Supplementary Material).

The analysis of limiting barriers in kinetic barrier di-
agrams thus reveals how different trade-offs control the
design of optimal catalysts, depending on chemical and
physical parameters (Fig. 3B).

Optimal cycling time in the presence of products

We now extend the analysis to the presence of free
products, [AB] ≠ 0. The presence of product gener-
ally increases the mean cycling time, because a catalyst
can bind to a product instead of a substrate, thus form-
ing a non-productive complex that we denote C(AB).
This non-productive complex C(AB) is physically indis-
tinguishable from the unreleased complex C(AB) that
constitutes the last step along a catalytic cycle (Fig. 1A)
but the recognition that they are two different kinetic
states is key to our analysis. Since C(AB) is a complex
with a previously free AB, while C(AB) is a complex
with a newly made AB, they are indeed associated with
two distinct constraints on catalysis, namely product in-
hibition and product release. Formally, Eq. (1) already
accounts for product release, and additionally accounting
for product inhibition is done by extending it to include

C(AB)
kIÐÐ⇀↽ÐÐ
k−I

C +AB (8)

where kI ≈ k−4 ≈ [AB] and k−I ≈ e−2ε
−

AA .
The total mean cycling time Tcycle([A], [AB]) is then

increased by the mean time Tinhib([A], [AB]) spent in
the inhibited state C(AB),

Tcycle([A], [AB]) = T (0)cycle([A]) + Tinhib([A], [AB]). (9)

The slowdown due to product inhibition is a particular
form of competitive inhibition where the product itself
acts as the inhibitor [66].
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by dimerization, and orange for the dissociation of the product. Backward direct barriers are indicated with dashed lines. In
the presence of products, an additional state i = 0 can be reached, representing a non-productive complex C(AB), here placed
on the left of the diagram. B. Limiting barrier as a function of the substrate concentration [A] and the interaction strength
ε−AA, for ε

+
AB = 10, and no product, [AB] = 0. The red line represents the optimal interaction strength with three different

regimes, (a), (b), (c), depending on which two barriers are in trade-off (see Supplementary Material).

Tinhib([A], [AB]) can be expressed by extending the
kinetic barrier diagram to include a state i = 0 associated
with C(AB), leading to

Tinhib([A], [AB]) =
3

∑
i=1

eG
‡
i−G0 , (10)

where the new kinetic barriers to consider are obtained
from the previous ones as

G‡
i −G0 = G‡

i −G1 + ln
kI
k−I

(11)

for i = 1,2,3, leading to

G‡
1 −G0 ≈ 2ε−AA − ln[A] + ln[AB] − ln 2,

G‡
2 −G0 ≈ ε−AA − 2 ln[A] + ln[AB] − ln 2,

G‡
3 −G0 ≈ ε+AB − 2 ln[A] + ln[AB].

(12)

As shown in Fig. 4A, those additional barriers can
dominate the others, leading the mean cycling time to
be limited by product inhibition, Tcycle ≈ Tinhib. In par-
ticular, this happens for large relative concentration of
products, [AB] ≫ [A], such that the catalyst is more
likely to bind a product than a substrate, and for large
interaction strength with respect to the concentration of
product, ε−AA ≫ − ln[AB]/2, such that the time spent
in the inhibited complex C(AB) is long (SM). Since the
barriers associated with product inhibition increase with
ε−AA, one consequence of the accumulation of products
is generally a decreased optimal interaction strength, as
illustrated in Fig. 4A.

III. GROWTH LAWS FOR MINIMAL
AUTOCATALYSTS

Production rate

Assuming a buffered concentration of free substrates
A and B, and a negligible spontaneous reaction, the rate
of product formation is obtained from the mean cycling
time as [67]

d[AB]tot
dt

= 1

Tcycle([A], [AB])[C]tot, (13)

where [AB]tot is the total concentration of products, in-
cluding those which, after being formed, bind to a cata-
lyst or a substrate, and where [C]tot is the total concen-
tration of catalysts, either free or bound. With standard
catalysis, [C]tot remains constant and the rate of product
formation is simply proportional to it. With autocataly-
sis, however, C = AB, and the total concentration of cat-
alysts increases as more products are formed. Eq. (13)
becomes

d[AB]tot
dt

= 1

Tcycle([A], [AB])[AB]tot, (14)

which is generally a non-linear function of [AB]tot since
[AB] is itself a function of [AB]tot. Special conditions
are therefore required for exponential growth to occur,
where d[AB]tot/dt = k[AB]tot with a rate k independent
of [AB]tot.
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nA C−ln[AB] = 3 −ln[AB]tot = 3 −ln[AB]tot = 3

−ln[A]

ϵ− A
A

ϵ− A
A

−ln[A] −ln[A]

ϵ− A
A

B

̂ϵ−
AA

̂ϵ−
AA

̂ϵ−
AA

FIG. 4: Limiting barriers in the presence of products. A. Limiting barriers for a given concentration of free product [AB].
Compared to Fig. 3B, the limiting barrier can be associated with product inhibition (regimes in darker colors), in which
case Tcycle ≈ Tinhib. As a consequence, the optimal interaction strength ε−AA is changed (red line). B. Limiting barriers
when fixing the total concentration of autocatalyst [AB]tot instead of the concentration of free autocatalyst [AB]. The
results are similar at low ε−AA, when [AB]tot ≃ [AB], but different at large ε−AA, when [AB]tot ≃ [(AB)(AB)]. In these two
cases, [(AB)(AB)] ≪ [AB]tot, implying two opposite limits with no product inhibition and, therefore, exponential growth.
C. Reaction order n, as computed from simulations of the ordinary differential equations describing the Markov model (Materials
and methods). In comparison to B, we see that n < 1 even in regions where the limiting barrier is not associated with product
inhibition. This is because product inhibition is always present, even when it does not control the limiting barrier. A value
n > 0.9 is nevertheless observed for a large range of parameter values (dark blue).

Conditions for exponential growth

The decomposition of the cycling time in Eq. (9) makes
explicit the conditions for exponential growth to occur:
since Tinhib([A], [AB]) depends on [AB] but T (0)cycle([A])
does not, we must have T (0)cycle([A]) ≫ Tinhib([A], [AB]),
i.e., product inhibition must be negligible.

Fig. 4A shows that this occurs when release rates sig-
nificantly exceed diffusion rates, ε−AA ≪ − ln[A], which a
systematic analysis of limiting barriers confirms (Supple-
mentary Material). Fig. 4A is drawn for a fixed con-
centration of free product [AB], but it is often more
informative to fix the total concentration of products,
[AB]tot, which better reflects the progression of the dy-
namics and the consumption of resources – a determining
factor when considering competitions as below.

When considering a fixed [AB]tot, Fig. 4B also shows
that product inhibition is negligible when ε−AA ≪ − ln[A].
This coincides with the results of Fig. 4A because in
this case most products are free, i.e., [AB]tot ≈ [AB],
which implies that inhibiting complexes (AB)(AB) are
negligible (Fig. S6). However, a significant difference
appears in the opposite limit ε−AA ≫ − ln[A] where, in
contrast to Fig. 4A, Fig. 4B shows an extended regime
where product inhibition is negligible (in orange). In
this regime, most products are in the form of unreleased
complexes (AB)(AB) and therefore also not forming in-
hibiting complexes (AB)(AB) (Fig. S6). The distinction
made in Eq. (8) and Fig. 3A between the physically iden-
tical but kinetically distinct states of unreleased and in-
hibiting complexes is critical to understand this regime.
Indeed, without this distinction, the total concentra-
tion of duplexes, [(AB)(AB)]+[(AB)(AB)], would sim-
ply appear to increase with higher interaction strength,

masking the underlying shift from faster product release
and higher product inhibition – high [(AB)(AB)] – to
slower product release but lower product inhibition – high
[(AB)(AB)].

Reducing the analysis to the identification of limit-
ing barriers is an approximation that provides necessary
but not sufficient conditions for strictly exponential au-
tocatalysis: a barrier associated with product inhibition
may indeed contribute significantly to the cycling time
even if it is not the limiting barrier. To go beyond this ap-
proximation, we approximate the dynamics with the phe-
nomenological equation d[AB]tot/dt = k[AB]ntot (Materi-
als and Methods) and analyze the conditions under which
n ≈ 1. We verify that these conditions are more demand-
ing than those for which the limiting barrier is not as-
sociated with product inhibition, but nevertheless verify
that autocatalytic growth is nearly exponential growth
for a large number of parameters, even taking into ac-
count the constraint that the growth rate must exceed
the spontaneous reaction rate (Fig. 4C).

The conditions for exponential growth, either weak
or large interaction strengths, are in direct contrast to
the conditions for minimal cycling time which, following
Sabatier principle, requires an intermediate interaction
strength (Fig. 2B). As illustrated in Fig. 4C, this trans-
lates into a generic trade-off between the reaction con-
stant k and the reaction order n. The strength of this
trade-off depends, however, on the values of the interac-
tion barrier ε+AB : increasing ε

+

AB mitigates this trade-off,
drawing the optimal values of k and n closer together
(Fig. S7). This occurs for large values of both ε+AB and
ε−AA, when ε+AB > ε−AA > − ln[AB]/2. Indeed, as ε+AB
increases, the optimal ε−AA also increases according to
Sabatier’s principle, until a point where it saturates and
where no free autocatalyst remains, thereby preventing
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product inhibition.

IV. COMPETITION RULES FOR MINIMAL
AUTOCATALYSTS

One consequence of product inhibition is that the cy-
cling time alone does not determine the outcome of com-
petitions between autocatalysts. To demonstrate this, we
consider in Fig. 5 a simple setting with three autocata-
lysts in a chemostat, AB, AD, and AE, all competing for
a common resource A. Substrates A, B, D, and E are
supplied at a uniform constant rate τ−1, and all molecules
are diluted at the same rate τ−1, so that τ represents the
typical residence time in the chemostat.

Previous theoretical investigations have emphasized a
fundamental difference between exponential (n = 1) and
sub-exponential (n < 1) autocatalysts in such condi-
tions: while exponential autocatalysts invariably com-
pete to exclude one another, sub-exponential autocat-
alysts typically coexist [6–8, 68]. In recent work, we
considered the competition of autocatalysts of different
order n and noted that, somewhat counterintuitively, a
sub-exponential autocatalyst (n < 1) can exclude an ex-
ponential one (n = 1) if its reaction constant k is suffi-
ciently large [69]. This occurs, notably, at high dilution
rates, when the mean residence time of the molecules in
the chemostat is short relative to the mean cycling time,
or, equivalently, when resources are scarce. In such con-
ditions, autocatalysts are kept at a low concentration,
mitigating product inhibition and making reaction con-
stants k the determining factor. This is verified in this
model, where in comparison to our previous work, the
phenomenological parameters k and n are constrained by
physical parameters of the autocatalysts and by extrinsic
conditions. When competing AB with AD, an autocat-
alyst of higher n but lower k, AD dominates AB only
for sufficiently large values of τ (Fig. 5A). Thus, not only
does an optimal cycling rate not guarantee dominance,
but no intrinsic property of the autocatalyst guarantees
it independently of the extrinsic conditions in which the
competition takes place. Finally, this figure also illus-
trates how multiple autocatalysts competing for the same
resource may either coexist or exclude each other, despite
no strict exponential growth (n is never strictly 1).

V. DISCUSSION

Our analysis of minimal autocatalysis reveals that,
contrary to what previous empirical attempts might have
suggested, exponential autocatalysts can be designed
without recourse to complex internal mechanisms, com-
plicated geometries, or external drives. In particular
since von Kiedrowski original study [19], past limitations
are well-known to originate from product inhibition, the
propensity of autocatalysts to bind to each other after
they have been produced. Our analysis concurs with von

AE,  ϵ+
AE = 12, ϵ−

EE = 8

AB,  ϵ+
AB = 10, ϵ−

BB = 8
AD,  ϵ+

AD = 10, ϵ−
DD = 12

τ/eϵ+
AB

FIG. 5: Competition for a common limiting resource. Steady-
state concentrations of non-competing (dotted lines) and com-
peting (plain lines) autocatalysts AB, AD, and AE in a
chemostat, as a function of the residence time τ . The steady-
state concentrations are normalized by the concentration at
which the substrates are supplied, [A]0 = [B]0 = [C]0 =
[D]0 = e−10. While low residence times favor AB, higher
residence times favor autocatalysts AD. The figure also illus-
trates how an autocatalyst of a lower efficiency, here AE, can
be excluded.

Kiedrowski’s in recognizing product inhibition as a fun-
damental limitation of autocatalytic growth, which can,
however, be circumvented by an appropriate choice of
physical and chemical parameters.

Von Kiedrowski’s study hinged on two assumptions:
the chemical step is the limiting step of the cycle, and the
substrate concentration is much higher than that of the
autocatalyst [19]. These assumptions permit the defini-
tion of an autocatalytic cycle with just three parameters:
K1, the equilibrium association constant between sub-
strates and templates, K2, the equilibrium association
constant between templates, and ε+AB , the dimerization
barrier – with our notations, K1 = k1k2/(k−1k−2) and
K2 = k−4/k4 = kI/k−I . From these three parameters and
the concentration of the various molecular species, the
reaction order n can be determined [see Eq. (S4)]. By
expressing K1 and K2 as a function of temperature, Von
Kiedrowski found that exponential growth is possible at
low and high temperatures, regimes he called “weak” and
“strong” exponential growth respectively. However, the
assumptions required to obtain this result are rather re-
strictive in practice. In particular, they may not be valid
for exponential autocatalysts, which are generally limited
by product release, or when studying their competition
for a common resource, when the substrate is less abun-
dant than the autocatalyst.

Our approach, based on analyzing limiting barriers,
enables us to explore autocatalytic growth beyond these
assumptions. We thus recover Kiedrowski’s two expo-
nential growth regimes: weak and strong exponential
growths are respectively associated with the phases lim-
ited by G‡

3−G1 and G‡
4−G4 in Fig. 4B (see also Figs. S6-

S8). We find, however, that these phases extend beyond
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the range of parameters to which Kiedrowski’s analysis
was limited. The weak exponential growth regime is of
limited interest as the exponential growth is then slower
than the spontaneous reaction (Fig. 4C). The strong ex-
ponential regime, on the other hand, can dominate the
spontaneous reaction for a much wider range of parame-
ters than Kiedrowski’s assumptions allow. Furthermore,
our study elucidates how constraints related to product
inhibition differ from those due to product release, af-
fecting reaction rate but not necessarily altering reaction
order.

The focus on exponential growth stems from the exclu-
sion principle that it implies, which is often considered as
a core principle of natural selection [7, 19]: two exponen-
tial autocatalysts cannot coexist if they depend on the
same resource. Our results underline that exponentiality
is not an intrinsic property of an autocatalyst, but cru-
cially depends on extrinsic conditions, and that exclusion
can occur in the absence of exponential growth. However,
it can also be argued that the absence of strict exclusion
is in itself conducive to the emergence of diversity and of
evolution by natural selection [4, 6].

The key feature of our model is its definition based
solely on physical principles: all possible molecules and
reactions are derived from interaction potentials between
elementary “atoms”. This reveals how different rate con-
stants are in trade-off because they depend on the same
physical parameters. Our analysis of simple competi-
tions between autocatalysts can thus go beyond previous
studies where product inhibition is phenomenologically
described by a reaction constant k and a reaction order
n [6, 7, 68]. In particular, our model demonstrates how n
and k can be in trade-off: maximizing n to achieve expo-
nential growth (n = 1) typically comes at the expense of
a low k. In competitions between autocatalysts, whether
a large k or a large n is advantageous depends on the
chemical environment. If resources are abundant, auto-
catalysts with higher reaction order tend to prevail, but,
if resources are scarce, autocatalysts with higher reaction
constants have an advantage, irrespectively of their reac-
tion order. An exclusive focus on the reaction order n
may therefore be misleading.

We defined a generic and simple model with a view
to its implementation in various molecular or colloidal
systems. First, we chose the catalytic mechanism to be
of the most basic form: the (auto)catalyst catalyzes a
dimerization reaction simply by increasing the frequency
of interaction between substrates when they are attached
to it. This form of catalysis by proximity is universal and
applies irrespective of whether the dimerization barrier is
entropic or enthalpic. The parameters in our model also
have their direct counterpart in almost all chemical con-
texts. For example, in the realm of nucleic acids, inter-
dimer interactions correspond to base pairing via hydro-
gen bonds, while stronger intra-dimer interactions with
an association barrier correspond to nearly irreversible
endothermic phosphodiester covalent bonds [70, 71]. In
the realm of colloids whose interactions are mediated

by the hybridization of complementary DNA strands or
by magnetic forces, association barriers can correspond
to electrostatic repulsion, to an entropic barrier due to
steric effects, or to linkage-mediated interactions [28, 72–
78]. In this context, interaction strengths are typically
of the order of a few kBT and unbinding occur within
< 1 min [59, 79]. In this case, exponential growth would
require interaction strengths of the order of 10 kBT , de-
pending on the relative concentration of substrate over
product (Fig. S8). Exponential autocatalysts would then
replicate within hours, in the range of experimentally ac-
cessible timescales.

For the sake of simplicity, we assumed that no molecule
larger than four in size can form, for example, polymeric
chains ABABA. . . where a B interacts with two A si-
multaneously are excluded. This is straightforwardly
the case with molecular systems that are intrinsically
anisotropic [9, 18, 77] but, may be more difficult to im-
pose on isotropic colloids [72]. However, a simple ex-
tension of the model translates this assumption into a
constraint on the valence of atoms that is easier to imple-
ment. Our analysis indeed applies without change to the
cross-catalysis of two dimers AB and A′B′, where each
type of atom is constrained to interact with at most two
atoms of two different types, A with B and A′, B with A
and B′, A′ with A and B′, B′ with A′ and B′. DNA or
RNA replication works by such cross-catalysis between
complementary strands [18, 20, 25]. With spherical col-
loids, cross-catalysis can for instance be implemented by
limiting interactions to patches [77] (Fig. S4). However,
we constrained the size of the molecules only to sim-
plify the analysis, and the possibility of forming larger
molecules is obviously of interest on its own.

The trade-offs that constrain our model fundamentally
stem from its deliberate simplicity. In particular, the ten-
sion between chemical acceleration, on the one hand, and
product release and inhibition, on the other, which un-
derlies Sabatier principle and plays a key role in our anal-
ysis, can be overcome by a variety of mechanisms [61, 80].
In all practical cases, however, these mechanisms involve
large and complex molecules. Our analysis shows that
they are not prerequisites for exponential growth, or se-
lection by exclusion. This resolves an apparent paradox
in origin-of-life scenarios that seek to explain complex-
ity as a consequence of Darwinian evolution, but require
complex mechanisms for such evolution to take place.
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MATERIALS AND METHODS

Molecular dynamics simulations

Brownian molecular dynamics (MD) simulations were
carried out in HoomD 3.5.0 [81], using a time step
∆t = 10−5, periodic boundary conditions, and a damping
constant γ = 10, corresponding to a translational diffu-
sion coefficient kBT /γ = 0.1 length2/time, comparable to
values measured in experiments with colloids [76]. The
potential between two particles X and Y is taken to be

UXY (r) = {
ε−XY u (r) + ε+XY if r ≤ rc,
−ε−XY u (r − rc + rmin) if rc ≤ r ≤ 2rc − rmin

where ε−XY and ε+XY represent the activation barriers for
dissociation and association, respectively. The poten-
tial u(r) is a generalization of the Wang-Frenkel poten-
tial [58], with a cutoff value of rc = 1.1,

u(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α (rc) [(
σ

r
)
2

− 1] [(rc
r
)
2

− 1]
2

for r ≤ rc

0 for r > rc.

Markov model

We approximate catalytic cycles by Markov chains.
With two atoms A and B, the Markov chain involves
a total of 15 transitions. First, the spontaneous reac-
tion A + B → AB, with rate [A][B]e−ε+AB . Second, 7

association reactions, AB +A → AAB, AB +B → ABB,
AAB + B → AABB, ABB + A → AABB, AB + AB →
ABAB, A+A→ AA and B+B → BB, with rates propor-
tional to the reactant concentrations. Third, the dimer-
ization reaction on the autocatalyst, AABB → ABAB,
with rate [AABB]e−ε+AB . Finally, 8 dissociation reac-
tions, AA→ A+A, BB → B+B, AAB → A+AB, ABB →
B +AB, AABB → B +AAB, AABB → A +ABB, with
rates e−ε

−

AA , and ABAB → AB+AB, ABAB → AB+AB
with rates e−2ε

−

AA . When considering two competing au-
tocatalysts AB and AC sharing a common monomer, we
ignore for simplicity the complexes that they may form,
of the type (AB)(AC), which are less stable than ho-
motetramers (AB)(AB).

We determine the steady state of the Markov chain
by integrating numerically the ordinary differential equa-
tions that describe its dynamical evolution. We consider
the system to be either closed (Fig. 4C) or in a chemostat
(Fig. 5). In this later case, differential equations include
the description of the introduction of substrates, ∅ → A
and ∅ → B, with rate [A]0/τ , and the dilution of all
species, X → ∅, with rate 1/τ .

Reaction order and reaction constant

We estimate a reaction order n and a reaction constant
k such that d[AB]tot/dt = k[AB]ntot approximatively
holds by integrating numerically the dynamical equations
of the Markov chain with constant values of [A] = [B],
starting with [AB] = 0 and ending when reaching the tar-
geted value of [AB]tot. The values of k and n are then
obtained by linear regression of ln(d[AB]tot/dt) against
ln([AB]tot).
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