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Highlights Impact and implications
� JAK1 exhibits an unexpected proviral activity during HDV
infection in various in vitro models, including primary hu-
man hepatocytes.

� JAK1 proviral activity is independent of the MDA5-mediated
innate immune response and the activation of STAT3.

� JAK1 depletion is associated with inhibition of HDV repli-
cation via modulation of ERK1/2 and S-HDAg phosphory-
lation levels.

� FDA-approved JAK1-specific inhibitors such as upadaciti-
nib are efficient antivirals for the treatment of hepatitis D.
https://doi.org/10.1016/j.jhep.2023.10.030

© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association

license (http://creativecommons.org/licenses/by-nc-nd/4.0/). J. Hepatol. 2024, 80, 2
Chronic hepatitis D is the most aggressive form of chronic viral
hepatitis. As no curative treatment is currently available, new
therapeutic strategies based on host-targeting agents are ur-
gently needed. Here, using loss-of-function strategies, we un-
cover an unexpected interaction between JAK1, a major player
in the innate antiviral response, and HDV infection. We
demonstrated that JAK1 kinase activity is crucial for both the
phosphorylation of the delta antigen and the replication of the
virus. By demonstrating the antiviral potential of several FDA-
approved JAK1 inhibitors, our results could pave the way for
the development of innovative therapeutic strategies to tackle
this global health threat.
for the Study of the Liver. This is an open access article under the CC BY-NC-ND
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Viral Hepatitis
JAK1 promotes HDV replication and is a potential target for
antiviral therapy

Margaux J. Heuschkel1, Charlotte Bach1, Laura Meiss-Heydmann1, Emma Gerges1, Emanuele Felli2, Fabio Giannone2, Patrick Pessaux2,
Catherine Schuster1, Julie Lucifora3, Thomas F. Baumert1,2,4, Eloi R. Verrier1,*

Journal of Hepatology 2024. vol. 80 j 220–231
Background & Aims: Chronic co-infection with HBV and HDV leads to the most aggressive form of chronic viral hepatitis. To
date, no treatment induces efficient viral clearance, and a better characterization of virus-host interactions is required to develop
new therapeutic strategies.
Methods: Using loss-of-function strategies, we validated the unexpected proviral activity of Janus kinase 1 (JAK1) – a key player
in innate immunity – in the HDV life cycle and determined its mechanism of action on HDV through various functional analyses
including co-immunoprecipitation assays.
Results: We confirmed the key role of JAK1 kinase activity in HDV infection. Moreover, our results suggest that JAK1 inhibition is
associated with a modulation of ERK1/2 activation and S-HDAg phosphorylation, which is crucial for viral replication. Finally, we
showed that FDA-approved JAK1-specific inhibitors are efficient antivirals in relevant in vitro models including primary hu-
man hepatocytes.
Conclusions: Taken together, we uncovered JAK1 as a key host factor for HDV replication and a potential target for new anti-
viral treatment.

© 2023 The Authors. Published by Elsevier B.V. on behalf of European Association for the Study of the Liver. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction
Chronic hepatitis D is the most severe form of chronic viral
hepatitis and is caused by HDV, a small defective hepatotropic
virus identified in 1977.1 This satellite virus of HBV, the leading
cause of hepatocellular carcinoma (HCC) worldwide, is char-
acterized by a small genome that does not encode its own
envelope proteins and is dependent on the expression of
hepatitis B surface antigens (HBsAg) for the completion of its
replicative cycle and the secretion of infectious viral particles.2

Hepatitis D is therefore the result of either HBV and HDV co-
infection or HDV/HBV superinfection in patients chronically
infected with HBV.3 At least twenty-five million people are
chronically coinfected with HBV and HDV4 but this number
remains unclear and fluctuates between studies, some of them
estimating the number of chronically HDV-infected patients at
seventy-two million individuals worldwide with a variable and
increasing prevalence across regions, especially in developed
countries, despite the availability of a preventive HBV vaccine
that also protects against HDV infection.5,6

Although recent progress has been made in the under-
standing of the molecular virology of HDV, therapeutic
options for chronic hepatitis D are still limited. Current antiviral
Keywords: Hepatitis D virus; host factor; replication; antiviral treatment; HDAg; kinase.
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treatments against HBV infection are generally not effective
against HDV, and the absence of a HDV-specific polymerase
complicates attempts to identify appropriate therapeutic tar-
gets. For decades, the main treatment consisted of the use of
pegylated-interferon alpha (PEG–IFN–a) but only a limited
number of patients achieve a sustained response, which is the
foundation of eventual improvement in related liver fibrosis.7 In
this context, host-targeting agents, which target cellular factors
that are essential for the viral cycle, have been successfully
explored for the development of new antivirals. This is exem-
plified by the development of the entry inhibitor bulevirtide,
which received approval for medical use in the European Union
in July 2020.8 While the main steps of the HDV life cycle have
been characterized, notably through the development of
adapted study models based on NTCP-expressing cells,9 the
underlying molecular mechanisms of hepatocyte-HDV in-
teractions still need to be more deeply investigated.

HDV is a small spherical virus that possesses a lipidic en-
velope in which the three HBsAg (L-, M-, and S-) are anchored.
This envelope contains the ribonucleoprotein complex that in-
cludes the viral genome associated with the two isoforms of the
hepatitis delta antigen (HDAg), S-HDAg for the short form and
r 2023; available online 2 November 2023
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L-HDAg for the long form.10 These two viral proteins undergo
numerous modifications and play a key role in the viral repli-
cation cycle. Notably, phosphorylation of S-HDAg is important
for viral replication while farnesylation of L-HDAg is essential to
negatively regulate replication and promote the assembly of
new virions.2,10

HDV is a non-cytopathic virus strongly activating the type
I and III interferon (IFN) response upon recognition of viral RNA
in the cytoplasm by the cytosolic sensor melanoma differenti-
ation associated gene 5 (MDA5).11 This recognition leads to
increased expression of IFN-stimulated genes (ISGs), such as
MX2 and radical S-adenosyl methionine domain containing 2
(RSAD2), thus contributing to the inhibition of HBV replication in
coinfected hepatocytes.12,13 The virus seems sensitive to a
limited degree to this endogenous response,11 while stages in
the early life cycle of HDV are moderately affected by exoge-
nous type I IFN.11,14,15 In addition to the interaction of viral RNA
with the RNA sensing machinery, L-HDAg has been suggested
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to activate the transcription factors NF-jB and signal trans-
ducer and activator of transcription (STAT)3 through oxidative
stress,16 putatively contributing to the persistence of the virus
in hepatocytes.17

In the context of a complex interaction between HDV and
innate immune factors and the need of new antiviral targets, we
previously performed a loss-of-function screen using pools of
four small-interfering RNAs (siRNAs) targeting more than 7,500
genes belonging to the druggable genome and identified 191
candidates potentially important for the HDV cycle. Among the
primary candidates were key members of the pyrimidine
biosynthesis pathway but also, surprisingly, Janus kinase 1
(JAK1).18 Although JAK1 plays a key role in the innate immune
response against viral infection,19 we observed an unexpected
proviral activity of this kinase in a bona fide infection system.
The aim of this study was the validation of JAK1 as a key host
factor in HDV infection and the evaluation of its potential as an
antiviral target for innovative therapies against HDV.
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JAK1 promotes HDV replication
Materials and methods
Materials and methods are fully presented in the CTAT table
and supplementary information.
Results

Validation of JAK1 as a cellular host factor for
HDV infection

To confirm the results from the primary screen,18 we first per-
formed the deconvolution of the siRNA pool targeting JAK1
expression prior to HDV infection in Huh7-NTCP cells. As
shown in Fig. 1A-E, the silencing efficacy of the four individual
siRNAs correlated with the inhibition of HDV infection. The
inhibitory impact of JAK1 knockdown (KD) on HDV infection
when the siRNA pool was transfected after viral inoculation
further suggests a role for JAK1 in the replication of the virus
(Fig. S1). We next validated this result by knocking down JAK1
A

DC

E
Nuclei           HDAg

Huh7-NTCP-Cas9 Huh7-NTCP-YBX1-KO Huh7-NTCP

HDAg st

C
trl

YB
X1

-K
O

JA
K1

-K
O

Em
pt

y 
v.

Huh7-NTCP-Cas9
JAK1-KO

Cell viability

0

50

100

150

R
el

at
iv

e 
ce

ll 
vi

ab
ilit

y 
(%

)

JA
K1

re
s

JA
K1

m
ut

HDV RNA

0

50

100

150

R
el

at
iv

e 
H

D
V 

in
fe

ct
io

n 
(%

)

*** ***

*

C
trl

YB
X1

-K
O

JA
K1

-K
O

Em
pt

y 
v.

Huh7-NTCP-Cas9
JAK1-KO

JA
K1

re
s

pCAS9_sgYBX1

pCAS9_sgJAK1

YBX1-KO cells

JAK1-KO cellsHuh7-NTCP

Clonal
selection

JAK1res

JAK1mut

HDV

IF
RT-q

Fig. 2. JAK1 is a key host factor for HDV infection. (A) Generation of the cell li
assessed by western blot. One representative experiment is shown. (C-E) JAK1 kinas
After 8 days, cell viability was controlled (C) and HDV infection was assessed by
periments are presented. Alternatively, HDV infection was assessed by IF (E). One r
100 lm. IF, immunofluorescence; KO, knockout; RT-qPCR, reverse-transcription q

222 Journal of Hepatology, Febru
expression in primary human hepatocytes (PHHs) and
observed a significant inhibition of HDV infection associated
with a decrease in JAK1 expression in siJAK1-Pool-transfected
PHHs (Fig. 1F-I). We next engineered a stable Huh7-NTCP-
derived JAK1 knockout (KO) clone named Huh7-NTCP-JAK1-
KO, and two derived cell lines named JAK1res and JAK1mut,
expressing a wild-type version of JAK1 resistant to the single-
guide RNA used to produce the KO cell line or a mutant version
of the protein unable to bind ATP20 carrying L633 K and K622A
mutations in the pseudo-kinase domain, respectively (Fig. 2A).
The previously described Huh7-NTCP-YBX1-KO cell line21 was
used as a control as the loss of YBX1 (Y-box binding protein 1)
protein expression had no effect on HDV infection. To assess
the kinase activity of JAK1 in these cell lines, cells were stim-
ulated with IFN-a-2a and the level of phosphorylated STAT1
and STAT3 (pSTAT1 and pSTAT3) proteins was analyzed by
western blot. As shown in Fig. 2B, both JAK1-KO cells and
JAK1mut cells were unable to phosphorylate STAT1 and STAT3
B
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upon IFN-a-2a stimulation. To validate the role of JAK1 in the
viral life cycle, these cell lines were then infected with HDV.
HDV infection level was strongly reduced in JAK1-KO cells
while the infectious phenotype was rescued in the JAK1res cell
line (Fig. 2C-E). Furthermore, no rescue was observed in
JAK1mut cells, thus demonstrating the key role of JAK1 kinase
activity in the HDV life cycle. To test the impact of clonal
selection on cellular susceptibility to HDV infection, Huh7-
NTCP-Cas9 and JAK1-KO cells were differentiated for 1
week in DMSO-containing medium (to induce the susceptibility
to HBV infection). As shown in Fig. 3B, DMSO-mediated dif-
ferentiation had no impact on JAK1 expression levels. Cells
were then infected with HBV or HDV. As shown in Fig. 3C-F,
HDV infection was markedly reduced in JAK1-KO cells
compared to control cells while HBV infection level remained
similar between the two cell lines, suggesting a comparable
susceptibility to HBV and HDV entry in JAK1-KO and control
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cells. Taken together, we demonstrated the key role of JAK1
kinase activity in HDV replication.
JAK1 inhibitors exhibit antiviral activity against
HDV infection

To investigate the potential of JAK1 as an antiviral target, we
tested an FDA-approved JAK1-inhibitor, upadacitinib, used for
the treatment of rheumatoid arthritis,22 in comparison with a
JAK2-specific inhibitor, fedratinib, another FDA-approved
molecule notably used for the treatment of myelofibrosis.23

Interestingly, only upadacitinib inhibits the phosphorylation of
STAT1 and STAT3 upon IFN-a-2a stimulation in Huh7-NTCP
cells (Fig. 4A), suggesting no impact of fedratinib on JAK1
activity at the tested concentrations. We next assessed the
effect of these compounds on HDV infection by treating cells
with the inhibitors 24 h prior to viral inoculation and for 8 days
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of infection. As shown in Fig. 4B,C, only upadacitinib dose-
dependently inhibited HDV infection by contrast with fedrati-
nib. Moreover, upadacitinib treatment at various stages post
viral inoculation dose-dependently inhibits HDV infection levels
(Fig. S2A-C). This is notably illustrated by the marked inhibition
of viral replication by 1 lM upadacitinib administrated 3 days
post infection (Fig. 4D,E), suggesting an impact on the repli-
cation of the virus even after its initiation. To eliminate any non-
specific effect in the observed antiviral activity of upadacitinib,
Huh7-NTCP-Cas9, JAK1-KO, and JAK1Res cells were infected
with HDV (Fig. S2D,E) and treated with increasing doses of
upadacitinib. Upadacitinib dose-dependently inhibited HDV
infection in the control and the JAK1Res cells. By contrast,
upadacitinib treatment had no effect on the relative levels of
HDV infection observed in JAK1-KO cells, thus confirming that
upadacitinib’s antiviral activity against HDV infection was
JAK1 dependent. Interestingly, the antiviral potential of upa-
dacitinib was also validated in HDV-infected PHHs (Fig. 4F). Of
note, two other JAK1-specific inhibitors, oclacitinib and filgo-
tinib (Fig. 5A), also inhibited HDV infection in both HDV-infected
Huh7-NTCP cells (Fig. 5B) and PHHs (Fig. 5C,D). Finally, since
JAK/STAT signaling pathways are known to be modulated by
224 Journal of Hepatology, Febru
several viruses,19,24 we evaluated the impact of JAK1 inhibition
in additional infection models. As shown in Fig. S3, contrary to
its effect on HDV infection, upadacitinib treatment exhibits no
antiviral activity against HCV, HBV, nor SARS-CoV-2, sug-
gesting a specific interaction between HDV and the kinase.
Taken together, our results highlight the specific antiviral
potential of JAK1 inhibitors on HDV infection.
JAK1 proviral activity is independent of the MDA5-mediated
innate immune response and the activation of STAT3

JAK1 plays a key role in the transduction of the type I IFN
signal. In this context, HDV RNA is recognized by the innate
immune sensor MDA5 leading to the activation of the type I and
III IFN pathways and the JAK1-mediated induction of ISG
expression.11 We first hypothesized that the proviral activity of
JAK1 may be linked to the induction of proviral ISG upon
infection, like MOV10, known to be involved in the HDV life
cycle.25 Thus, we first aimed to assess the innate immune
response after HDV infection in two cellular models, Huh7-
NTCP and HepG2-NTCP cells, the latest being known to
express ISG upon HDV infection.11 RSAD2 was selected as the
ary 2024. vol. 80 j 220–231
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most upregulated ISG upon HDV infection in vitro.13 As shown
in Fig. 6A,B, no induction of RSAD2 expression was observed
in Huh7-NTCP cells in contrast to HepG2-NTCP cells, con-
firming a previous result suggesting no type I IFN response
upon HDV infection in Huh7-NTCP cells.11 Interestingly, JAK1-
KD in HepG2-NTCP cells is also associated with inhibition of
HDV infection (Fig. 6C-F) despite a differential innate immune
activation compared to Huh7-NTCP cells. In the same manner,
upadacitinib inhibits HDV infection in HepG2-NTCP with an
IC50 lower than 1 nM (Fig. S4A), suggesting the existence of an
innate immunity-independent proviral activity of JAK1. We next
aimed to validate this observation in a more relevant model for
innate immune pathways and took advantage of differentiated
HepaRG (dHepaRG) cells, with IFIH1 (encoding MDA5) KO.13

We first confirm the importance of MDA5 for the expression
of ISG upon HDV infection (Fig. 6G). Interestingly, upadacitinib
treatment in HDV-infected dHepaRG wild-type cells and dHe-
paRG-MDA5-KO cells revealed a comparable antiviral activity
of this inhibitor (Fig. 6H), reinforcing the hypothesis of an
independence between JAK1 proviral activity and the HDV-
induced innate immune response. Thus, we hypothesized that
the proviral activity of JAK1 may be associated with STAT3
activation, as it was previously demonstrated that L-HDAg can
Journal of Hepatology, Febru
activate STAT3 through oxidative stress independently of the
IFN-mediated response.16 Although we confirmed STAT3
activation in HDV-infected Huh7-NTCP cells and to a lesser
extent in HDV-infected HepG2-NTCP cells (Fig. S4B,C), STAT3
activation was no longer observed in HDV-infected dHepaRG-
MDA5-KO cells (Fig. 6I), suggesting that the IFN-independent
STAT3 activation by HDV was specific to the Huh7 or HepG2
background. As upadacitinib still exhibits an antiviral activity in
absence of ISG expression and STAT3 activation in the
dHepaRG model, our results highlight a proviral activity of JAK1
independent of the innate immune response and pro-
inflammatory factors activated by the virus upon infection.
JAK1 promotes HDAg phosphorylation through
ERK1/2 activation

As a major kinase involved in many cellular processes, we
hypothesized that JAK1 could affect HDAg phosphorylation,
especially S-HDAg phosphorylation at serine 177 (Ser177),
which is known to be crucial for HDV replication.26 To assess
the impact of JAK1 activity on HDAg phosphorylation, Huh7-
NTCP cells with altered JAK1 expression were transfected
with a plasmid expressing S-HDAg to avoid the effect of JAK1
ary 2024. vol. 80 j 220–231 225
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JAK1 promotes HDV replication
on HDV replication that would affect HDAg expression levels in
an infectious context. HDAg phosphorylation was assessed by
co-immunoprecipitation using an anti-phospho-serine antibody
(Fig. 7A). Analysis of HDAg phosphorylation indicated that
JAK1 depletion was associated with a loss of S-HDAg phos-
phorylation; either in JAK1-KO (Fig. 7B) or JAK1-KD (Fig. 7C)
cells. Similar results were obtained by co-immunoprecipitation
with an anti-HDAg antibody followed by detection of
phosphorylated peptides by western blotting using the anti-
phospho-serine antibody (Fig. 7D-F). As a technical control,
226 Journal of Hepatology, Febru
no phosphorylated S177A S-HDAg was detected (Fig. 7G-H),
strongly suggesting that the pS177 is the major phosphoryla-
tion site detectable through our approach. To validate this
observation in an infection model, we treated HDV-infected
Huh7-NTCP cells with 1 lM upadacitinib 4 days after viral
inoculation, as described in Fig. 4E and Fig. S2B, to avoid too
pronounced an inhibition of HDAg synthesis by the drug.
Upadacitinib treatment was associated with a decrease in
S-HDAg phosphorylation levels at day 7 and 10 after viral
inoculation, confirming our previous observations (Fig. S5).
ary 2024. vol. 80 j 220–231
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Given that JAK1 is a tyrosine kinase and due to the absence
of tyrosine residues in the sequence of HDAg, we then hy-
pothesized the involvement of an intermediate kinase that
could phosphorylate HDAg upon a JAK1-dependent activation.
To assess the impact of JAK1 depletion on the activity of
cellular kinases, we performed a human phospho-kinase array
using control and JAK1-KO cells. We had a particular focus on
ERK1/2 and p38a that have been described as major kinases
phosphorylating HDAg Ser177.27 As shown in Fig. 8A and in
Fig. S6A, among the analyzed kinases, no phosphorylated
ERK1/2 (pERK1/2) was detected in JAK1-KO cells, while a
slight decrease was observed in phosphorylated p38a levels.
No other major variation between the tested kinases was
observed, except AKT1/2/3 in Array B. We then focused on
pERK1/2 for further analyses. To link ERK1/2 activity and HDV
infection in a JAK1-KO context, we first tested whether
interleukin-6 (IL-6) stimulation could rescue pERK1/2 levels, as
IL-6 is a documented activator of mitogen-activated protein
Journal of Hepatology, Febru
kinases.28 As shown in Fig. 8A, IL-6 treatment does restore
pERK1/2 levels in JAK1-KO cells, a result confirmed by western
blot (Fig. 8B and Fig. S6A), suggesting a regulation of ERK1/2
phosphorylation by JAK1. We then confirmed this result with
the JAK inhibitors. Interestingly, upadacitinib, but not fedratinib
induced a loss of ERK1/2 phosphorylation in both Huh7-NTCP
cells and PHHs (Fig. 8C,D), confirming the importance of JAK1
in the phosphorylation of ERK1/2. More importantly, we
showed that the restoration of pERK1/2 levels by IL-6 treatment
was associated with a rescue of the HDV infectious phenotype
in infected JAK1-KO cells (Fig. 8E,F), suggesting a JAK1-
dependent association between pERK1/2 and HDV replica-
tion. In line with a previous result linking HDAg Ser177
phosphorylation by ERK1/2 and HDV RNA-RNA polymerase II
interaction,27 we observed that a suboptimal dose of upada-
citinib (to avoid too pronounced a decrease in HDV RNA levels)
was associated with a slight decrease in the interaction
between HDV RNA and RNA polymerase II (Fig. S6B-C),
ary 2024. vol. 80 j 220–231 227
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JAK1 promotes HDV replication
although this result would benefit from deeper investigations.
Taken together, we demonstrated that the proviral activity of
JAK1 is associated with the activation of ERK1/2 and
the phosphorylation of S-HDAg, known to be crucial for
HDV replication.
Discussion
HDV is responsible for the most severe and aggressive form of
chronic viral hepatitis, and currently no treatment results in viral
cure in HBV/HDV-coinfected patients. In this context, host-
targeting agents have demonstrated great potential as
228 Journal of Hepatology, Febru
antivirals for innovative therapy in recent years.29 Previously,
we identified a pool of cellular factors important for HDV
infection and potential antiviral targets.18 In this study, we
confirmed the importance of one of these candidates, the Ja-
nus kinase JAK1 in the HDV life cycle. The unexpected proviral
activity of JAK1 was highlighted by: (1) a marked decrease in
HDV infection levels upon JAK1 depletion in numerous in vitro
models including PHHs; (2) the modulation of pERK1/2 and
phosphorylated levels of HDAg in JAK-KO cells; (3) the efficient
antiviral activity of FDA-approved JAK1 inhibitors such as
upadacitinib in in vitro infection models, including PHHs. Pre-
viously, a proviral activity of JAK1 was reported in the context
ary 2024. vol. 80 j 220–231
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of HIV infection using JAK1-specific siRNA in HeLa-derived cell
lines.30,31 However, during HIV infection, the proviral role of
JAK1 was associated with the activation of STAT1 and STAT3
proteins, which promoted enhanced inflammation and viral
replication.32 Thus, our study provides, for the first time, evi-
dence of a virus hijacking a cellular kinase, which is normally
involved in the antiviral response, to activate a viral protein and
enhance viral replication.

Previous studies demonstrated the importance of S-HDAg
in HDV replication.33 The phosphorylation of S-HDAg mediated
by cellular kinases, such as ERK1/2,27 PKR (RNA-activated
protein kinase),34 PKC (protein kinase C) or CKII (caseine kinase
II),35 is essential for the interaction between the RNA poly-
merase II and HDV RNA. Due to its specific genomic structure,
HDV is the only documented virus that hijacks RNA polymerase
II activity to synthesize RNA from an RNA matrix.33 Although it
has been demonstrated that S-HDAg participates in the for-
mation of a transcription pre-initiation complex36 and that S-
HDAg interacts in vitro and in vivo with chromatin remodeling
complexes, in particular with the bromodomain regulatory
protein BAZ2B (bromodomain-associated to zinc finger protein
2B) to recruit the RNA polymerase II on HDV RNA,33 the
mechanisms by which HDAg and cellular factors interact in
HDV replication is not yet fully understood. Here, the results of
our study demonstrated that JAK1 inhibitors affect the ability of
RNA polymerase II to bind HDV RNA, confirming the impor-
tance of HDAg phosphorylation in the recruitment of the poly-
merase for viral replication37 and highlighting a new key cellular
factor involved in that process. Interestingly, this result was
associated with an apparent decrease in the interaction be-
tween HDV RNA and HDAg (Fig. S6). Deeper investigations are
needed to determine whether this observation is either due to a
lower immunoprecipitation efficacy/lower HDAg expression in
the context of upadacitinib treatment or if HDAg phosphoryla-
tion status is also important for its interaction with genomic and
antigenomic RNA. More generally, additional efforts should be
made to determine whether JAK1 is directly responsible for the
phosphorylation of ERK1/2 or if other intermediate kinases
whose activation can be modulated by JAK1, such as p38-a or
Akt1/2/3 (Fig. 8A), are involved in S-HDAg phosphorylation.

JAK1 is a major actor of the innate immune response, which
acts as the first line of defense upon viral infection and can be
activated in response to several cytokines, notably IFNs.38,39 In
the case of HDV infection, IFN treatment moderately affects the
first stages of the viral life cycle and suppresses HDV RNA
amplification during hepatocyte proliferation. Nevertheless, IFN
weakly impacts the intra-nuclear HDV replication in resting
Journal of Hepatology, Febru
cells,40 highlighting the complex interaction between HDV and
the innate immune response. Notably, the antiviral ISGs tar-
geting HDV replication still need to be identified. So far, only
proviral ISGs have been described for HDV (such as MOV10),
and our study shed light on another actor of the innate immune
response facilitating viral replication, putatively explaining the
weak efficacy of IFN treatment in patients and the relative
antiviral capacity of both endogenous and exogenous IFN
in vitro. Interestingly, our results suggest that no activation of
JAK1 is required to drive the phosphorylation of HDAg, sug-
gesting the existence of a basal kinase activity of JAK1 in the
absence of any stimulation by cytokines.

Recently, JAK inhibitors, already approved in the treatment
of rheumatologic, dermatologic, hematologic, and gastroin-
testinal indications, were tested for the treatment of viral in-
fections, notably for the prevention of cytokine storms during
SARS-CoV-2 infection.41 JAK inhibitors like ruxolitinib and fil-
gotinib have also been proposed as antiviral agents against HIV
independently of their original clinical indications.24 Their po-
tential as putative inhibitors of HIV-1 transcription has also
been investigated.42 Here, the use of such FDA-approved
JAK1-inhibitors (upadacitinib, filgotinib), known to be gener-
ally safe and effective,24 showed an antiviral potential in
different in vitro models including PHHs. Our study demon-
strated that JAK1 inhibitors are antiviral candidates for pre-
clinical studies in the context of HDV infection. However, their
investigation in bona fide in vivo models is needed to assess
their potential for antiviral therapy. Moreover, their interaction
with IFN co-treatment should be carefully analyzed, and of
note, due to their immunosuppressive properties, JAK1 in-
hibitors may be associated with increased risk of viral infections
in patients.43 Therefore, the antiviral effects of upadacitinib
should be evaluated in a meticulous way in the context of HBV/
HDV co-infection in preclinical models. Thus, given the exis-
tence of intermediate kinases involved in the proviral activity of
JAK1, the use of compounds inhibiting downstream pathways,
such as mitogen-activated protein kinase inhibitors, should be
explored to limit the putative side effects of JAK inhibitors.

In conclusion, by identifying and characterizing JAK1 as a
new key host factor for HDV infection, our results significantly
improve our understanding of the HDV life cycle and its in-
teractions with the host innate immune response. We also
propose a new function of the key innate immunity-related ki-
nase in the absence of apparent stimulation by cytokines.
Finally, our findings pave the way to the development of
innovative therapeutic strategies to tackle hepatitis D, a global
health threat.
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