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Self-avoiding space-filling
folding curves in dimension 3

Francis OGER

Abstract. Various examples of folding curves in R2 have been considered:
dragons and other square curves, terdragons and other triangular curves,
Peano-Gosper curves based on hexagons. They are self-avoiding. They form
coverings of R2, by one curve or by a small number of curves, which satisfy
the local isomorphism property. They were used to define some fractals. We
construct an example with similar properties in R3.

Various examples of folding curves in R2 have been considered:
- square folding curves such as the dragon curve are constructed from a
regular tiling of R2 by squares: s-folding curves are obtained by folding s
times a strip of paper in 2, each time possibly left or right, then unfolding it
with π/2 angles;
- triangular folding curves such as the terdragon curve are constructed from
a regular tiling of R2 by equilateral triangles: s-folding curves are obtained
by folding s times a strip of paper in 3, each time possibly left then right or
right then left, then unfolding it with π/3 angles;
- Peano-Gosper curves are constructed from a regular tiling of R2 by hexagons.

These curves have two characteristic properties: First, they are self-
avoiding. Second, s-curves of the same type completely cover larger and
larger parts of R2 when s becomes larger. They were used to construct
fractals.

Any inductive limit of s-curves is a curve with 1 endpoint or without
endpoint. In [6], [7] and [8], we proved that any such curve can be completed,
in an essentially unique way, into a covering of R2 by a set of curves without
endpoints which satisfies the local isomorphism property defined below.

This covering consists of at most 6 curves. It is locally isomorphic to a
covering constructed in the same way which consists of only 1 curve.

The object of the present paper is to construct a similar example in R3.
As only regular tilings by cubes exist in R3, it is natural to use them. For
that purpose, one idea was to fold several times a wire in 2 according to the 3
possible directions of the space, then unfold it with π/2 angles. However, [4]
shows that the curves obtained in that way are generally not self-avoiding.
Another possible direction of research was mentioned in [1].
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In the first section, we show how convolution products can be used to
construct coverings of R2, and also coverings of Rn for n ≥ 3, by sets of
folding curves which satisfy the local isomorphism property. In the second
section, we give an example in R3.

1. Coverings constructed from convolution products.

For each integer n ≥ 2, we consider Rn equipped with the euclidian
distance δ. For each x ∈ Rn and each s ∈ R+, we write B(x, s) = {y ∈ Rn |
δ(x, y) ≤ s}.

For any E,F ⊂ Rn, an isomorphism from E to F is a translation τ
such that τ(E) = F . They are locally isomorphic if, for each x ∈ Rn (resp.
y ∈ Rn) and each s ∈ R+, there exists y ∈ Rn (resp. x ∈ Rn) such that
(B(x, s) ∩ E, x) ∼= (B(y, s) ∩ F, y).

We say that E ⊂ Rn satisfies the local isomorphism property if, for any
x ∈ Rn and s ∈ R+, there exists t ∈ R+ such that each B(y, t) with y ∈ Rn

contains some z with (B(z, s) ∩ E, z) ∼= (B(x, s) ∩ E, x).
These notions are used for the study of aperiodic tilings. There exist

some finite sets of prototiles and matching rules from which it is possible to
construct non periodic tilings, but not periodic tilings. Such tilings are said
to be aperiodic.

The first examples in R2 used a large number of prototiles. Later on, R.
Penrose constructed an example with 2 prototiles. More recently, an example
with 1 prototile was obtained (see [3]). Some examples were also constructed
in Rn for n ≥ 3.

In each example, 2ω isomorphism classes of locally isomorphic tilings are
obtained and each tiling satisfies the local isomorphism property.

Let us consider the tilings of Rn which are obtained from some given
set of prototiles and matching rules, and the langage which consists of one
relational symbol for each possible configuration of one tile and its neighbours
in such a tiling. Then, by [5, Th. 2.3], two such tilings are locally isomorphic
if and only if the associated relational structures are elementarily equivalent.

The following method is used to construct a non periodic tiling in such
a situation: Each prototile is cut into smaller tiles which are obtained by
reducing the sizes of the prototiles by the same ratio. In that way, from each
bounded cluster of nonoverlapping tiles, we obtain a cluster with more tiles
which satisfies the same rules. By repeting the process, we cover the whole
space.
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This operation is called deflation and the inverse opération is called in-
flation. We are going to use similar operations for folding curves.

We consider the canonical basis (e1, . . . , en) of Rn. We call segments the
non oriented intervals [x, x+ ei] for x ∈ Zn and 1 ≤ i ≤ n.

A curve is a nonoriented sequence of segments which is finite, or indexed
by N, or indexed by Z, and such that:
(i) two consecutive segments have one and only one common endpoint;
(ii) the common endpoints of a segment with the preceding one and with the
following one, when these two segments exist, are different.

Two sets of curves are said to be equivalent if they are equivalent modulo
a positive isometry, and isomorphic if they are equivalent up to translation.

For any sets of curves E ,F , we write E ≺ F if each segment of a curve of
E is a segment of a curve of F and if each connexion between 2 segments of
a curve of E also exists in F .

We say that a curve is self-avoiding if each of its segments appears only
once. Two curves are said to be disjoint if they have no common segment.

Two consecutive segments of a curve are aligned or form a π/2 angle. In
R2, if a curve without aligned consecutive segments is self-avoiding according
to the definition above, then we can make it self-avoiding in the geometrical
sense by rounding the angles between consecutive segments. For n ≥ 3,
we can do the same thing in Rn, even for curves with aligned consecutive
segments.

In order to preserve the properties of invariance through translations, we
have to do the rounding in the same way for all endpoints of segments such
that the connexions between the segments at these endpoints are the same
up to translation.

For n ≥ 2, we say that a set E of self-avoiding curves covers X ⊂ Rn

if each segment containing a point of X appears in one and only one of the
curves. We say that E is a covering of Rn if it covers Rn.

A covering of Rn can be interpreted as a tiling by tiles equipped with
drawings: we associate to each segment its Voronoi tile, which consists of the
points for which this segment is the nearest one.

For k ∈ N∗ and l ∈ kN∗, we say that a set A of curves of Rn satisfies (H)
for (k, l) if A is a covering of Rn, if each cuve of A has endpoints x, x + kei
with x ∈ kZn and 1 ≤ i ≤ n, if any 2 such points are joined by a unique
curve of A and if lZn +A = A.

For each pair (k, l), each set A of curves which satisfies (H) for (k, l) and
each set B of disjoint self-avoiding curves, the convolution product A ∗ B is
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defined as follows: We apply to B a homothety of center 0 and ratio k, then
we remplace each of the segments obtained in that way by the curve of A
which has the same endpoints.

We have A ≺ A ∗ B and A ∗ B is a set of disjoint self-avoiding curves. If
B is a covering (resp. consists of 1 curve), then A ∗ B is a covering (resp.
consists of 1 curve).

If A and B satisfy (H) for (i, j) and (k, l) respectively, then A∗B satisfies
(H) for (ik, lcm(j, il)), and therefore satisfies (H) for (ik, jl); we have (A ∗
B) ∗ C = A ∗ (B ∗ C) for each set C of disjoint self-avoiding curves.

This product is analogous to the convolution product defined by M.
Dekking in [2, p. 21] for folding sequences in R2. Its two-sided identity
is the covering which consists of all curves with 1 segment.

For each set A of curves which satisfies (H) for a pair (k, l), we denote
by A0 the identity and we write As+1 = A ∗ As for each s ∈ N. Each As

satisfies (H) for (ks, ls). We have As+t = As ∗ At for any s, t ∈ N since ∗ is
associative.

For each s ∈ N, we have As ≺ As+1 = As ∗ A. We denote by Â the
inductive limit of the sets As for ≺. In Â, the connexions between segments
are defined in each point except 0. The equalities As+1 = A ∗ As imply
Â = A ∗ Â.

We write ei = −ei for 1 ≤ i ≤ n and E = {e1, e1, . . . , en, en}. For

each pairing relation R defined on E, we denote by ÂR the covering of Rn

by curves without endpoints which is obtained from Â by connecting the
segments with endpoint 0 according to R.

For each x = (x1, . . . , xn) ∈ Zn and each h ∈ N∗, we write
Px,h = [x1 − h, x1 + h]× · · · × [xn − h, xn + h].

We say that a covering E of Rn satisfies (C) if, for each x ∈ Zn and each
h ∈ N∗, there exists y ∈ Zn −Px,h such that E ↾ Py,h

∼= E ↾ Px,h. We observe
that the last property is true for each x ∈ Zn if it is true for some w ∈ Zn,
since each Px,h is contained in some Pw,g.

For each covering of Rn, the local isomorphism property implies (C). The

sets ÂR which satisfy (C) are locally isomorphic since they only differ in 0.

Proposition 1.1. For each ÂR, (C) implies the local isomorphism property.

Proof. For each h ∈ N∗, let us consider xh ∈ Zn − P0,h such that ÂR ↾
P0,h

∼= ÂR ↾ Pxh,h. Then there exists s ∈ N∗ such that Pxh,h ∩ ksZn = ∅. For
each y ∈ xh + lsZn, we have Py,h ∩ ksZn = ∅, and therefore

4



ÂR ↾ Py,h = As ↾ Py,h
∼= As ↾ Pxh,h = ÂR ↾ Pxh,h

∼= ÂR ↾ P0,h. ■

Remark. Necessarily, there exists R such that ÂR satisfies (C) and therefore
satisfies the local isomorphism property. Actually, for each R, each s ∈ N∗

and each x ∈ lsZn, we have ÂR ↾ P0,ks−1
∼= ÂR ↾ Px,ks−1 if the connexions of

the curves of ÂR in 0 and x are equivalent up to translation.

For each set E of curves, each x ∈ Zn and each s ∈ N∗, we denote by
Ωs,x(E) the set of curves obtained from E by suppressing the connexions
between the segments which have their common endpoint in x + ksZn. We
have Ωs,0(ÂR) = As for each s ∈ N∗ and each pairing relation R defined on
E.

Proposition 1.2. No ÂR is invariant through a nontrivial translation.

Proof. We write E = ÂR and we consider w ∈ Zn−{0} such that w+E = E .
For each s ∈ N∗, we have lsZn +Ωs,0(E) = Ωs,0(E). If lsZn + E ̸= E , then

ksZn = {x ∈ Zn | lsZn +Ωs,x(E) = Ωs,x(E)}. Consequently, ksZn is invariant
through the translation v → v + w and we have w ∈ ksZn.

For the remainder of the proof, we consider an integer s such that w /∈
ksZn, and therefore such that lsZn + E = E . The last property implies
lsZn+C ∈ E for each C ∈ E . Consequently, the curves of E belong to finitely
many isomorphism classes.

For each r ∈ N∗, each curve C ∈ E contains a curve D ∈ Ar. For each
endpoint x of D, there exist some distinct endpoints x1, . . . , xr of segments
of D such that xi ∈ x+ Z {e1, . . . , en} for 1 ≤ i ≤ r.

Consequently, for each C ∈ E and each r ∈ N∗, there exist i ∈ {1, . . . , n}
and y1, . . . , yr distinct endpoints of segments of C such that yk−yj ∈ Zei for
1 ≤ j, k ≤ r. As each x ∈ Zn is an endpoint of only 2n segments, it follows
that there exist some distinct segments S, T of C with endpoints x, y such
that y − x ∈ lsZei and (y − x) + S = T , which implies (y − x) + C = C.
Then there exists a bounded curve B ⊂ C such that C = Z(y − x) +B.

As the curves C ∈ E belong to finitely many isomorphism classes, we can
give a bound for the sizes of the curves B ⊂ C above. Using that fact and
the properties Â = Ar ∗ Â for r ∈ N∗, we see that the segments of each curve
of E are aligned, whence a contradiction. ■

For each set E of disjoint self-avoiding curves and any x, y ∈ Zn, we write
x ∼E y if the connexions between segments of E in x and y are the same up
to translation.
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Theorem 1.3. Let E be a covering of Rn by curves without endpoints which
is locally isomorphic to some ÂR. Then there exists a sequence (xs)s∈N∗ ⊂ Zn,
such that Ωs,xs(E) ∼= As for each s ∈ N∗.

Proof. For each s ∈ N∗, as elements with the same properties exist for ÂR

by Proposition 1.2, there exist x, y ∈ Zn such that y − x ∈ lsZn and x ≁E y.
For each h ∈ N∗ such that y ∈ Px,h−1, we consider an element zh ∈ Zn

such that the translation x → zh induces an isomorphism θh : E ↾ Px,h →
ÂR ↾ Pzh,h. We have zh ∈ ksZn since zh ≁ÂR

θh(y), and θh induces an

isomorphism from Ωs,x(E) ↾ Px,h to Ωs,zh(ÂR) ↾ Pzh,h = As ↾ Pzh,h.
There exists an infinite set M of integers such that y ∈ Px,h−1 for h ∈ M

and zg − zh ∈ lsZn for g, h ∈ M . For g, h ∈ M and g < h, the translation
zg → zh induces an automorphism of As. Consequently, each translation
x → zh for h ∈ M induces an isomorphism from Ωs,x(E) to As. We write
xs = x. ■

Theorem 1.4. Consider a covering E of Rn by curves without endpoints
and a sequence (xs)s∈N∗ ⊂ Zn such that Ωs,xs(E) ∼= As for each s ∈ N∗.
Then we have xs − xr ∈ krZn for r < s. If there exists no x ∈ Zn such that
x − xr ∈ krZn for each r, then E satisfies (C). If E satisfies (C), then E is

locally isomorphic to each ÂR which satisfies (C).

Proof. First suppose that there exist r < s such that xs − xr /∈ krZn. Then
we have x ∼E x + lry for x ∈ Zn − (xr + krZn) and y ∈ Zn. We also have
x ∼E x+ lsy for x ∈ Zn − (xs + ksZn) and y ∈ Zn. It follows x ∼E x+ lsy for
each x ∈ E and each y ∈ Zn, since Zn = (Zn−(xr+krZn))∪(Zn−(xs+ksZn)).

By Proposition 1.2, there exist t > s, and v, w ∈ ksZn − ktZn such
that w − v ∈ lsZn and v ≁At w. As Ωt,xt(E) ∼= At, there also exist x, y ∈
xt+(ksZn−ktZn) such that y−x ∈ lsZn and x ≁E y, whence a contradiction.

Now suppose that there exists no x ∈ Zn such that x − xr ∈ krZn for
each r. Then, for each x ∈ Zn and each h ∈ N∗, there exists s ∈ N∗

such that Px,h ∩ (xs + ksZn) = ∅, since, otherwise, some y ∈ Px,h would
belong to infinitely many xt+ktZn, and therefore belong to all of them since
xt ∈ xu + ktZn for t < u. For such an s, each isomorphism σ : Ωs,xs(E) → As

induces an isomorphism from E ↾ Px,h = Ωs,xs(E) ↾ Px,h to As ↾ Pσ(x),h =

ÂR ↾ Pσ(x),h.

It follows that E is locally isomorphic to each ÂR which satisfies the
local isomorphism property. Consequently, E satisfies the local isomorphism
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property, and in particular satisfies (C).
Now suppose that E satisfies (C) and that there exists x ∈ Zn such

that x − xr ∈ krZn for each r. Then, for each ÂR which satisfies the local
isomorphism property, in order to prove that E is locally isomorphic to ÂR,
il suffices to show that, for each h ∈ N∗, there exists z ∈ Zn such that
E ↾ Px,h

∼= ÂR ↾ Pz,h.
We consider y ∈ Zn − Px,h such that E ↾ Py,h

∼= E ↾ Px,h and s ∈ N∗ such
that Py,h ∩ (x + ksZn) = ∅. For each isomorphism σ : Ωs,x(E) = Ωs,xs(E) →
As, we have
E ↾ Px,h

∼= E ↾ Py,h = Ωs,x(E) ↾ Py,h
∼= As ↾ Pσ(y),h = ÂR ↾ Pσ(y),h. ■

Remark. Suppose that there exists x ∈ Zn such that x − xs ∈ ksZn for
each s ∈ N∗. If there exists a sequence (ys)s∈N∗ ⊂ Zn − {x} such that
ys ∈ x + lsZn and ys ∼E x for each s ∈ N∗, then E satisfies (C) since
E ↾ Px,ks−1

∼= E ↾ Pys,ks−1 for each s ∈ N∗. Otherwise, it is possible to change
the connexions of the segments of E with endpoint x so that (ys)s∈N∗ exists.

Remark. If E is locally isomorphic to some ÂR which satisfies (C), then E
satisfies the local isomorphism property like ÂR.

The two examples below concern folding curves in R2. The example in
R3 that we give in Section 2 has some common points with the first of them.

For each s ∈ N∗, an s-folding curve is obtained by folding s times a strip
of paper in 2, each time possibly left or right, then unfolding it with π/2
angles.

Figure 1 shows a set A of equivalent curves which satisfies (H) for (2, 4).
For each s ∈ N∗, the curves of As are called positive 2s-folding curves or
2s-dragon curves: in each of them, all the foldings are done in the same
direction.

Figure 2 shows the curves of A2 with endpoint 0. We see that Â is
the union of 4 curves with endpoint 0 which are equivalent modulo positive
isometries. It follows from [6] that each of the 2 ways to realize the connexions

in 0 gives an ÂR which satisfies the local isomorphism property. It consists
of 2 curves without endpoints.

We define a fractal as follows: For each s ∈ N∗, we consider the 2s-
dragon curve Ds ∈ As with endpoints 0, 2se1; we denote by Fs the image
by a homothety of center 0 and ratio 1/2s of the union of the Voronoi tiles
associated to the segments of Ds. The fractal is the limit of the sets Fs.
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Figure 3 shows a set B of equivalent curves which also satisfies (H) for
(2, 4). For each s ∈ N∗, the curves of Bs are alternate 2s-folding curves,
obtained by folding 2s times a strip of paper in 2, alternatively left and
right.

Figure 4 shows the curves of B2 which are contained in [−4,+4]2, and in
particular the 4 curves which have 0 as an endpoint. We see that, contrary to
the preceding case, B̂ is not the union of 4 curves with endpoint 0. It follows
from [6] that, also in this case, each of the 2 ways to realize the connexions

in 0 gives a B̂R which satisfies the local isomorphism property. It consists of
6 curves without endpoints.

We show in [6] that each covering ÂR or B̂R is locally isomorphic to a
covering which consists of one curve. The same property will be true for the
coverings considered below.

2. Construction of the example in R3.

From now on, we represent each element of R3 as a triple (a, b, c). We
write 0 instead of (0, 0, 0) when there is no ambiguity. For the sake of brevity,
we write n instead of −n for each n ∈ N∗.

For each curve D, we consider the curve D obtained by reversing the
order of the segments. We write D1 = ([0, e1]). For s ≥ 1, we write Ds+1 =
(Ds, [es, es + es+1] , es+1 +Ds) and Cs+1 = (Ds+1, [es+1, 2es+1]).

We have C2 = ([0, e1] , [e1, e1 + e2] , [e1 + e2, e2] , [e2, 2e2]) and
C3 = ([0, e1] , [e1, e1 + e2] , [e1 + e2, e2] , [e2, e2 + e3] ,

[e2 + e3, e1 + e2 + e3] , [e1 + e2 + e3, e1 + e3] , [e1 + e3, e3] , [e3, 2e3]).
The positive 2-folding curve considered in the example above is equivalent

to C2. Similarly, in order to construct our example in dimension 3, we are
going to use the curve
C = ([0, e2] , [e2, e2 + e3] , [e2 + e3, e3] , [e3, e1 + e3] ,

[e1 + e3, e1 + e2 + e3] , [e1 + e2 + e3, e1 + e2] , [e1 + e2, e1] , [e1, 2e1]),
which is equivalent to C3 (see Figure 5). We can hope that the curves Cs for
s ≥ 4 give analogous examples in higher dimensions.

In each curve which is equivalent to C, we say that the image of 0 (resp.
2e1) is an endpoint of type 0 (resp. 1).

The curve C belongs to a unique block which consists of 6 disjoint equiv-
alent curves having 0 as an endpoint of type 0. The curves of this block, are
shown in Figure 6. They contain:
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(i) the segments contained in P0,1, except the 12 segments contained in its 6
edges which have (1, 1, 1) or (1, 1, 1) as an endpoint;
(ii) the 6 segments having one endpoint in the center of a face of P0,1 and
the other endoint outside P0,1.

Theorem 2.1. The curve C can be completed into 2 equivalent coverings
C1, C2 of R3 by curves which are equivalent to C. Each Ci satisfies 4Z3+Ci =
Ci. For each Ci, each x ∈ Z3 is an endpoint of type 0 (resp. 1) for 6 curves if
x = (2k, 2l, 2m) with k, l,m ∈ Z and k + l +m even (resp. odd); no other
x ∈ Z3 is an endpoint.

Proof. We denote by B0 the block mentioned above. Figures 7 and 8 show
the 2 possible ways to place 3 blocks B1, B2, B3, which are images of B0 by
rotations with axes parallel to e3 and angles π/2, π, 3π/2, in such a way
that:
(i) the curves of B0, B1, B2, B3 are disjoint;
(ii) each of the 3 edges of P0,1 having (1, 1, 1) as an endpoint is covered by 2
segments of B1, or 2 segments of B2, or 2 segments of B3.
In these figures, we only represent the edges of the cubes associated to the 4
blocks which are covered by segments of these blocks.

In both cases, the sets 4u + Bi with u ∈ Z3 and 0 ≤ i ≤ 3 are disjoint.
They form a covering of R3 since B0 ∪ B1 ∪ B2 ∪ B3 contains exactly 192
segments like [0,+4[3.

The covering associated to Figure 8 is the image of the covering associated
to Figure 7 by the positive isometry
((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)) → ((0, 0, 0), (0, 1, 0), (1, 0, 0), (0, 0, 1)). ■

From now on, we consider the covering C associated to Figure 7. By
Theorem 2.1, C satisfies (H) for (2, 4). We define the sets Cs according to
Section 1.

The block B0 consists of the 6 curves
((0, 0, 0), (0, 1, 0), (0, 1, 1), (0, 0, 1), (1, 0, 1), (1, 1, 1), (1, 1, 0), (1, 0, 0), (2, 0, 0)),
((0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0), (1, 1, 0), (1, 1, 1), (1, 0, 1), (1, 0, 0), (2, 0, 0)),
((0, 0, 0), (0, 0, 1), (1, 0, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1), (0, 1, 1), (0, 1, 0), (0, 2, 0)),
((0, 0, 0), (1, 0, 0), (1, 0, 1), (0, 0, 1), (0, 1, 1), (1, 1, 1), (1, 1, 0), (0, 1, 0), (0, 2, 0)),
((0, 0, 0), (1, 0, 0), (1, 1, 0), (0, 1, 0), (0, 1, 1), (1, 1, 1), (1, 0, 1), (0, 0, 1), (0, 0, 2)),
((0, 0, 0), (0, 1, 0), (1, 1, 0), (1, 0, 0), (1, 0, 1), (1, 1, 1), (0, 1, 1), (0, 0, 1), (0, 0, 2)).

The block B1 consists of the 6 curves
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((2, 2, 0), (2, 3, 0), (2, 3, 1), (2, 2, 1), (3, 2, 1), (3, 3, 1), (3, 3, 0), (3, 2, 0), (4, 2, 0)),
((2, 2, 0), (2, 2, 1), (2, 1, 1), (2, 1, 0), (1, 1, 0), (1, 1, 1), (1, 2, 1), (1, 2, 0), (0, 2, 0)),
((2, 2, 0), (3, 2, 0), (3, 2, 1), (2, 2, 1), (2, 3, 1), (3, 3, 1), (3, 3, 0), (2, 3, 0), (2, 4, 0)),
((2, 2, 0), (2, 2, 1), (1, 2, 1), (1, 2, 0), (1, 1, 0), (1, 1, 1), (2, 1, 1), (2, 1, 0), (2, 0, 0)),
((2, 2, 0), (2, 1, 0), (3, 1, 0), (3, 2, 0), (3, 2, 1), (3, 1, 1), (2, 1, 1), (2, 2, 1), (2, 2, 2)),
((2, 2, 0), (1, 2, 0), (1, 3, 0), (2, 3, 0), (2, 3, 1), (1, 3, 1), (1, 2, 1), (2, 2, 1), (2, 2, 2)).

The block B2 consists of the 6 curves
((2, 0, 2), (2, 0, 3), (2, 1, 3), (2, 1, 2), (3, 1, 2), (3, 1, 3), (3, 0, 3), (3, 0, 2), (4, 0, 2)),
((2, 0, 2), (2, 1, 2), (2, 1, 1), (2, 0, 1), (1, 0, 1), (1, 1, 1), (1, 1, 2), (1, 0, 2), (0, 0, 2)),
((2, 0, 2), (1, 0, 2), (1, 0, 3), (2, 0, 3), (2, 1, 3), (1, 1, 3), (1, 1, 2), (2, 1, 2), (2, 2, 2)),
((2, 0, 2), (2, 0, 1), (3, 0, 1), (3, 0, 2), (3, 1, 2), (3, 1, 1), (2, 1, 1), (2, 1, 2), (2, 2, 2)),
((2, 0, 2), (3, 0, 2), (3, 1, 2), (2, 1, 2), (2, 1, 3), (3, 1, 3), (3, 0, 3), (2, 0, 3), (2, 0, 4)),
((2, 0, 2), (2, 1, 2), (1, 1, 2), (1, 0, 2), (1, 0, 1), (1, 1, 1), (2, 1, 1), (2, 0, 1), (2, 0, 0)).

The block B3 consists of the 6 curves
((0, 2, 2), (0, 2, 1), (0, 3, 1), (0, 3, 2), (1, 3, 2), (1, 3, 1), (1, 2, 1), (1, 2, 2), (2, 2, 2)),
((0, 2, 2), (0, 1, 2), (0, 1, 3), (0, 2, 3), (1, 2, 3), (1, 1, 3), (1, 1, 2), (1, 2, 2), (2, 2, 2)),
((0, 2, 2), (0, 2, 3), (1, 2, 3), (1, 2, 2), (1, 3, 2), (1, 3, 3), (0, 3, 3), (0, 3, 2), (0, 4, 2)),
((0, 2, 2), (1, 2, 2), (1, 2, 1), (0, 2, 1), (0, 1, 1), (1, 1, 1), (1, 1, 2), (0, 1, 2), (0, 0, 2)),
((0, 2, 2), (0, 3, 2), (1, 3, 2), (1, 2, 2), (1, 2, 3), (1, 3, 3), (0, 3, 3), (0, 2, 3), (0, 2, 4)),
((0, 2, 2), (1, 2, 2), (1, 1, 2), (0, 1, 2), (0, 1, 1), (1, 1, 1), (1, 2, 1), (0, 2, 1), (0, 2, 0)).

We write ∆(x) = 2x for each x ∈ Z3 and ∆(D) = C ∗D for each set D of
disjoint self-avoiding curves. We denote by Γ the inverse operation: In each
∆(D), we first replace each piece of curve with endpoints in 2Z3 consisting
of 8 segments by the segment which joins its endpoints, then we apply a
homothety of center 0 and ratio 1/2.

The operations Γ and ∆ are analogous to the inflation and the deflation
considered for tilings. We have Cn+1 = ∆(Cn) for n ∈ N and Ĉ = ∆(Ĉ).

We note that, for n ≥ 2, two consecutive segments of Cn can be aligned
or form a π/2 angle. Actually, one of the examples after Theorem 2.7 below
gives a curve of C2 such that

[
(2, 2, 1), (2, 2, 0)

]
and [(2, 2, 0), (2, 2, 1)] are

consecutive segments.
For each n ∈ N, Cn is a covering of R3 by self-avoiding curves which

consist of 8n segments. Each curve has endpoints 2nu, 2n(u+ei) with u ∈ Z3

and i ∈ {1, 2, 3}. We have 2n+1Z3 + Cn = Cn.
For any integers m,n ≥ 1, Cm+n is obtained from Cn by applying a

homothety of center 0 and ratio 2m, then remplacing each segment by the
curve of Cm which has the same endpoints.
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We have Cm+n = ∆m(Cn) and Cn = Γm(Cm+n). The connexions between
segments of Cm+n in a point x ∈ Z3 originate from Cn via ∆m if and only if
x ∈ 2mZ3. By suppressing these connexions in Cm+n, we get Cm.

Remark. The group consisting of isometries which stabilize B0 is generated
by ρ and σ with ρ(e1) = e2, ρ(e2) = e3, ρ(e3) = e1, σ(e1) = e2, σ(e2) = e1,
σ(e3) = e3.

The isometry ρ stabilizes C since it is linear and permutes the sets Bi. On
the other hand, σ does not stabilize C. Actually, it sends the center (2, 0, 2)
of B2 to (0, 2, 2), which is the center of (0, 4, 4)+B3, but it sends (1, 1, 3),
which is not an endpoint of segments of curves of B2, to (1, 1, 3), which is an
endpoint of segments of curves of (0, 4, 4)+B3.

For each s ∈ N∗, the group consisting of isometries which stabilize Cs is
generated by ρ and the translations x → x + 2s+1u for u ∈ {e1, e2, e3}. The

only isometries which stabilize Ĉ are Id, ρ and ρ2. For each pairing relation
R defined on E, ρ and ρ2 stabilize ĈR if and only if R is invariant through ρ.

Lemma 2.2. Each curve of C4 contains a curve of C2 which passes 3 times
through some point.

Proof. First we show that the curve of C2 with endpoints (0, 0, 0) and (4, 0, 0)
passes 3 times through some point. It is obtained from the curve
((0, 0, 0), (0, 0, 1), (0, 1, 1), (0, 1, 0), (1, 1, 0), (1, 1, 1), (1, 0, 1), (1, 0, 0), (2, 0, 0))
of C by first applying a homothety of center (0, 0, 0) and ratio 2, then rem-
placing each of the segments
[(0, 0, 0), (0, 0, 2)], [(0, 0, 2), (0, 2, 2)], [(0, 2, 2), (0, 2, 0)], [(0, 2, 0), (2, 2, 0)],
[(2, 2, 0), (2, 2, 2)], [(2, 2, 2), (2, 0, 2)], [(2, 0, 2), (2, 0, 0)], [(2, 0, 0), (4, 0, 0)]
by the curve of C which has the same endpoints.

The segments [(0, 0, 2), (0, 2, 2)],
[(0, 2, 0), (2, 2, 0)] = (4, 0, 0) + [(4, 2, 0), (2, 2, 0)],
[(2, 2, 0), (2, 2, 2)] = (4, 0, 0) + [(2, 2, 0), (2, 2, 2)]
are respectively replaced by the curves
((0, 0, 2), (0, 1, 2), (1, 1, 2), (1, 1, 1), (0, 1, 1), (0, 2, 1), (1, 2, 1), (1, 2, 2), (0, 2, 2)),
((0, 2, 0), (1, 2, 0), (1, 3, 0), (1, 3, 1), (1, 2, 1), (2, 2, 1), (2, 3, 1), (2, 3, 0), (2, 2, 0)),
((2, 2, 0), (2, 1, 0), (1, 1, 0), (1, 2, 0), (1, 2, 1), (1, 1, 1), (2, 1, 1), (2, 2, 1), (2, 2, 2)).

These curves are obtained by translations from the 4th curve of B3, the
1st curve of B1 and the 5th curve of B1; they all pass through the point
(1, 2, 1).
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Now, for each i ∈ {1, 2, 3} and each x ∈ 8Z3, let us denote by Ci,x the
curve of C2 which joins x−4ei and x. We have just proved that C1,0 passes 3
times through some point. The same property is true for C2,0 and C3,0 since
they are images of C1,0 by ρ and ρ2. It is also true for each curve Ci,x since
it is an image of Ci,0 by a translation.

It suffices to show that each curve A ∈ C4 contains a curve Ci,x. For that
purpose, we consider 2 parallel segments [x, x+ 8ei], [x+ 8ej, x+ 8ei + 8ej],
with x ∈ 8Z3 and i ̸= j, which have the same endpoints as 2 curves of C3 con-
tained inA. Then, the segments [x+ 4ei, x+ 8ei], [x+ 4ei + 8ej, x+ 8ei + 8ej]
have the same endpoints as the curves Ci,x+8ei and Ci,x+8ei+8ej . One of these
curves is necessarily contained in A. ■

For each integer s ≥ 1, we denote by Ds the set of all curves of Cs which
have 0 as an endpoint.

Proposition 2.3. D2 covers P0,1.

Proof. The curves of D1 contain the segments contained in P0,1, except
the 12 segments contained in the 6 edges having (1, 1, 1) or (1, 1, 1) as an
endpoint.

Each of these 12 segments is contained in a curve with endpoints 2x, 2y,
where [x, y] is a segment with x ∈ {(u, v, w) ∈ Z3 | |u| + |v| + |w| = 1} and
y ∈ {(u, v, w) ∈ Z3 | |u| + |v| + |w| = 2}. This curve is contained in a curve
of D2 since its image [x, y] by Γ belongs to a curve of D1. ■

Proposition 2.4. For each integer s ≥ 4, Ds covers P0,2s−3 . In particular,

Ĉ is the union of 6 curves with endpoint 0.

Proof. We write ∥(u, v, w)∥ = sup(|u| , |v| , |w|) for (u, v, w) ∈ R3 and
d(x, y) = ∥y − x∥ for x, y ∈ R3. For each x ∈ Z3 and each set E of curves, we
write d(x, E) = inf{d(x, y) | y point of a curve of E}. We show by induction
on s that d(0, Cs −Ds) ≥ 2s−3 + 1 for s ≥ 3.

We have d(0, C3−D3) ≥ 2 since, by Proposition 2.3, for each A ∈ C3−D3,
no segment of Γ(A) is contained in P0,1, and therefore no segment of A is
contained in the interior of P0,2.

For s ≥ 3, as Cs+1 − Ds+1 = ∆(Cs − Ds), we have d(0, Cs+1 − Ds+1) ≥
2d(0, Cs−Ds)−1. Consequently, d(0, Cs−Ds) ≥ 2s−3+1 implies d(0, Cs+1−
Ds+1) ≥ 2s−2 + 1. ■
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Proposition 2.5. For each integer s ≥ 8, each curve of Cs covers some
Px,2s−8 . In particular, each curve of Ĉ covers arbitrarily large cubes.

Proof. By Lemma 2.2, each curve of C4 passes 3 times through some point.
Consequently, each curve A ∈ Cs passes 3 times through some point x ∈
2s−4Z3.

The translation 0 → x sends Ds−5 to the set of curves of Cs−5 which have
x as an endpoint. The curves of that set are contained in A. They cover
Px,2s−8 since Ds−5 covers P0,2s−8 by Proposition 2.4. ■

Lemma 2.6 below will be used to prove Theorem 2.7.
For each set E of curves, each x ∈ Z3 and each s ∈ N∗, we denote by

Σs,x(E) the set of curves obtained from E as follows: for each curve D ∈ E
with x ∈ D, we take the curve or the 2 curves with endpoint x contained in
D and having maximal length, with this length limited to 8s.

For each x ∈ 2s+1Z3, we have Σs,x(Cs) = x+ Σs,0(Cs) and Σs,x(Cs) is the
set of curves of Cs which have x as an endpoint.

Lemme 2.6. For each s ∈ N∗, there exists no x ∈ Z3 − 2s+1Z3 such that
Σs,x(Cs) ≺ x+ Σs,0(Cs).

Proof. We first observe that it suffices to show this result for s = 1. Actually,
if we have 1 ≤ t < s for the largest integer t such that x ∈ 2t+1Z3, then
Σs,x(Cs) ≺ x + Σs,0(Cs) implies Σs−t,x/2t(Cs−t) ≺ x/2t + Σs−t,0(Cs−t) since
Γt(Cs) = Cs−t and Γt(x) = x/2t; it follows Σ1,x/2t(C) = Σ1,x/2t(Cs−t) ≺
x/2t + Σ1,0(Cs−t) = x/2t + Σ1,0(C) with x/2t ∈ 2Z3 − 4Z3.

Now let us consider x ∈ Z3 − 4Z3 such that Σ1,x(C) ≺ x+ Σ1,0(C).
First suppose that x ∈ Z3 − 2Z3. Consider a curve B ∈ C which passes

through x and write B = B1 ∪ B2 with B1, B2 ∈ Σ1,x(C). Then we see that
B1 and B2 cannot simultaneously be images of subcurves of C by positive
isometries which send 0 to x, which contradicts Σ1,x(C) ≺ x+ Σ1,0(C).

Now suppose that x ∈ 2Z3−4Z3. Then, there exists y = α1e1+α2e2+α3e3
with (α1, α2, α3) ∈ {0, 2}3 − {(0, 0, 0)} such that x ∈ y + 4Z3. We have
Σ1,y(C) ∼= Σ1,x(C) and therefore Σ1,y(C) ≺ y + Σ1,0(C).

If α1 + α2 + α3 = 2 or α1 + α2 + α3 = 6, then y is an endpoint of
type 1 for the curves of Σ1,y(C), which contradicts Σ1,y(C) ≺ y + Σ1,0(C). If
α1 + α2 + α3 = 4, then Σ1,y(C) is the image of Σ1,0(C) by the composition of
a translation and a rotation of angle π/2, π or 3π/2, which also contradicts
Σ1,y(C) ≺ y + Σ1,0(C). ■
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In Ĉ, the connexions between the segments which have the same endpoint
x are defined for x ̸= 0. Only the connexions in 0 remain to be defined.

For x ∈ 2Z3 and u, v ∈ E, we write θx(u) = v if the curve of C which
connects x and x+ 2u contains the segment [x, x+ v].

For x ∈ Z3−{0} and u, v ∈ E, we write Rx(u, v) if the segments [x, x+ u]

and [x, x+ v] are connected. As Γ(Ĉ) = Ĉ, we have Rx(u, v) if and only if
R2x(θ2x(u), θ2x(v)).

As C is stabilized by the translations u → u + 4v for v ∈ Z3, we have
Rx = Rx+4y for x ∈ Z3 − 2Z3 and y ∈ Z3, and θx = θx+4y for x ∈ 2Z3 and
y ∈ Z3. It follows Rx = Rx+8y for x ∈ 2Z3 − 4Z3 and y ∈ Z3.

We consider the permutation θ of E with θ(e1) = e2, θ(e2) = e3, θ(e3) = e1
and θ2 = Id. We have θx = θ for each x ∈ 4Z3.

For each relation R defined on E and any u, v ∈ E, we write Rθ(u, v) if
and only if R(θ(u), θ(v)). For each x ∈ 2Z3, as θ2x = θ, we have Rx = R
(resp. Rx = Rθ) if and only if R2x = Rθ (resp. R2x = R).

For each pairing relation R defined on E, we consider the set of complete
curves ĈR obtained from Ĉ by defining the connexions in 0 according to R.

We say that R satisfies (P) if there exists x ∈
{
2, 0, 2, 4

}3−{0, 4}3 such that
Rx = R or Rx = Rθ.

Theorem 2.7. ĈR satisfies the local isomorphism property if and only if R
satisfait (P).

Proof. If ĈR satisfies the local isomorphism property, then there exists
u ∈ Z3 − P0,2 such that ĈR ↾ P0,2

∼= ĈR ↾ Pu,2. It follows Ru = R and
Σ1,u(C) ≺ Σ1,0(C). By Lemma 2.6, we have u ∈ 2s+1Z3 − 2s+2Z3 for the
largest integer s such that Σs,u(Cs) ≺ Σs,0(Cs).

There exists v ∈ 2Z3 − 4Z3 such that u = 2sv. We have Rv = R (resp.
Rv = Rθ) if s is even (resp. odd). The same property is true if we remplace
v by any w ∈ Z3 such that w−v ∈ 8Z3. There exists such a w which belongs

to
{
2, 0, 2, 4

}3
.

Conversely, let us suppose that there exists x ∈ 2Z3−4Z3 such that Rx =
R (resp. Rx = Rθ). Then we have R2sx+2s+3y = R for each even (resp. odd)
integer s and each y ∈ Z3. We also have Σs−1,2sx+2s+3y(Cs−1) ∼= Σs−1,0(Cs−1)

for any such s, y. Now, it follows from Proposition 2.4 that ĈR satisfies the
local isomorphism property. ■

Examples. Here, we give examples of values of Rx for x ∈
{
2, 0, 2, 4

}3 −
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{0, 4}3. By Theorem 2.7, they are also values of R such that ĈR satisfies the
local isomorphism property.

For x = (a, b, c) with a + b + c odd, as 2x is an endpoint of type 1, we
have θ2x = Id and therefore R2x = Rx. In particular,
R1,1,1 = ⟨(e1, e3), (e2, e1), (e3, e2)⟩ and
R1,1,1 = R1,0,0 = R1,0,0 = R0,1,0 = R0,1,0 = R0,0,1 = R0,0,1

= ⟨(e1, e2), (e2, e3), (e3, e1)⟩
respectively imply R2,2,2 = ⟨(e1, e3), (e2, e1), (e3, e2)⟩ and
R2,2,2 = R2,0,0 = R2,0,0 = R0,2,0 = R0,2,0 = R0,0,2 = R0,0,2

= ⟨(e1, e2), (e2, e3), (e3, e1)⟩.
We also have R1,1,0 = ⟨(e1, e3), (e2, e3), (e1, e2)⟩ and

θ2,2,0 : (e1, e1, e2, e2, e3, e3) → (e2, e3, e1, e3, e2, e1).
It follows R2,2,0 = ⟨(e1, e2), (e2, e1), (e3, e3)⟩. We note that the aligned seg-
ments

[
(2, 2, 1), (2, 2, 0)

]
and [(2, 2, 0), (2, 2, 1)] are connected. By applying

the isometry ρ, we obtain R0,2,2 = ⟨(e1, e1), (e2, e3), (e3, e2)⟩ and R2,0,2 =
⟨(e1, e3), (e2, e2), (e3, e1)⟩.

The following theorem gives a characterization of the sets of curves which
are locally isomorphic to the sets ĈR for R satisfying (P).

By Lemma 2.6, for s, t ∈ N∗, s ≤ t and x, y ∈ Z3, we have x+Cs ≺ y+Ct

if and only if y − x ∈ 2s+1Z3. For each sequence X = (xs)s∈N∗ ⊂ Z3 with

xs+1 − xs ∈ 2s+1Z3 for s ∈ N∗, we denote by ĈX the inductive limit of the
sets xs + Cs.

Theorem 2.8. For each relation R which satisfies (P), any set of curves E
is locally isomorphic to ĈR if and only if it satisfies 1) or 2) below:

1) E ∼= ĈS for a relation S which satisfies (P);

2) E ∼= ĈX for a sequence X = (xs)s∈N∗ such that
⋂

s∈N∗ xs + 2s+1Z3 = ∅.

Proof. It follows from Theorems 1.4 and 2.7 that E is locally isomorphic to
ĈR if 1) is true, and also if 2) is true since

⋂
s∈N∗ xs+2s+1Z3 =

⋂
s∈N∗ xs+2sZ3.

By Theorem 1.3, if E is locally isomorphic to ĈR, then, for each s ∈ N∗,
there exists xs ∈ Z3 such that (Ωs,xs(E), xs) ∼= (Cs, 0). For each s ∈ N∗,
(Ωs,xs(E), xs) ∼= (Ωs,xs+1(E), xs+1) ∼= (Cs, 0) implies xs+1 − xs ∈ 2s+1Z3 by
Lemma 2.6.

The property 2) is true if
⋂

s∈N∗ xs+2s+1Z3 is empty. If
⋂

s∈N∗ xs+2s+1Z3

contains an element x, then the inductive limit of the sets Ωs,x(E) = Ωs,xs(E)
is the image of Ĉ by the translation u → x + u. It follows that E is the
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image of ĈS by this translation for a relation S; this relation satisfies (P) by
Theorem 2.7. ■

Theorem 2.9. There exists a covering of R3 by a self-avoiding curve which
is locally isomorphic to the sets ĈR for R satisfying (P).

Proof. We fix R which satisfies (P). We consider the cubes Px,h.
We first show that, for each cube K, there exist an integer s, a curve

A ∈ Cs and a cube L covered by A such that (L,A ↾ L) ∼= (K, ĈR ↾ K). As

ĈR satisfies the local isomorphism property, there exists h ∈ N∗ such that each
Px,h contains a cube M with (M, ĈR ↾ M) ∼= (K, ĈR ↾ K). By Proposition
2.5, for such an h, there exists s ∈ N∗ such that each A ∈ Cs covers some
Px,h, and therefore covers a cube L with (L,A ↾ L) ∼= (K, ĈR ↾ K).

As each bounded curve is contained in a cube, it follows that there exists
a sequence (Ks, As)s∈N such that, for each s ∈ N, Ks is a cube and As is
a curve covering Ks, isomorphic to a curve of some Cm, contained in the
interior of Ks+1 and restriction of As+1 to the union of the segments of As.
The union of the curves As is a self-avoiding curve covering R3 and locally
isomorphic to ĈR by Theorem 2.8. ■

Proposition 2.10. Let D be a finite set of curves such that Γn(D) is defined
for each n ∈ N. Then there exist n ∈ N and x ∈ Z3 such that each curve of
Γn(D) contains a point of Px,1.

Proof. We define the distance d as in the proof of Proposition 2.5.
For each z ∈ R3 and each D ∈ D, we have

d(Γn+1(z),Γn+1(D)) ≤ (1/2)(d(Γn(z),Γn(D)) + 1)
for each n ∈ N, and therefore d(Γn(z),Γn(D)) < 3/2 for n large enough.
Consequently, there exist y ∈ R3 and n ∈ N such that d(y,Γn(D)) < 3/2 for
each D ∈ D.

Now, let us consider x ∈ Z3 such that d(x, y) ≤ 1/2. Then, for each
D ∈ D, we have d(x,Γn(D)) ≤ d(x, y) + d(y,Γn(D)) < 3/2 + 1/2 = 2, and
therefore d(x,Γn(D)) ≤ 1 since d(x,Γn(D)) is an integer. ■

Corollary 2.11. Let D be a set of curves without endpoints such that Γn(D)
is defined for each n ∈ N. Then D consists of at most 27 curves.

Proof. It suffices to show this result for D finite. By Proposition 2.10, there
exist n ∈ N and x ∈ Z3 such that each curve of Γn(D) contains a point of
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Z3 ∩Px,1. Any such curve contains at least 2 segments with one endpoint in
(Z3 ∩ Px,1)− {x} and the other endpoint outside Px,1.

The set (Z3 ∩ Px,1)− {x} consists of:
- the 8 vertices of Px,1, each of them being an endpoint of 3 segments whose
other endpoint is outside Px,1;
- the middles of the 12 edges of Px,1, each of them being an endpoint of 2
segments whose other endpoint is outside Px,1;
- the middles of the 6 faces of Px,1, each of them being an endpoint of 1
segment whose other endpoint is outside Px,1.

As the curves of Γn(D) are disjoint, their number is at most (1/2)(3.8 +
2.12 + 6) = 27. ■

Remark. The bound given in Corollary 2.11 is not a priori optimal, contrary
to those which were given in [6] and [8] for sets of folding curves in R2.

The following result is analogous to [6, Th. 3.10] and [8, Th. 2.1], which
concern folding curves in R2.

Proposition 2.12. Let E ,F be sets of curves which are locally isomorphic to
the sets ĈR for R satisfying (P), and let A be an unbounded curve contained
in a curve of E and in a curve of F . If there exist an x ∈ Z3 and a relation S
satisfying (P) such that (E , x) ∼= (ĈS, 0), then E and F can only differ by the
connexions between their segments which have x as an endpoint. Otherwise,
we necessarily have E = F .

Proof. For each x ∈ Z3, we denote by Ωx,E (resp. Ωx,F) the set of curves
with endpoint x and length 8 contained in E (resp. F). We write Mx =
{x+ 2k1e1 + 2k2e2 + 2k3e3 | k1, k2, k3 ∈ Z and k1 + k2 + k3 even}.

We consider x ∈ Z3 such that, for each y ∈ Mx, the curves of Ωy,E are
equivalent to C and y is an endpoint of type 0 for these curves. Then, because
of the existence of A, the same property is true for F . Moreover, if y ∈ Mx is
an endpoint of a segment of A, then we have Ωy,F = Ωy,E since Ωy,E and Ωy,F
are blocks and contain the same curve which is contained in A. It follows
that Ωy,F = Ωy,E for each y ∈ Mx.

Now, let us consider the sets of curves Γ(E) and Γ(F) obtained from E
and F by remplacing each curve of ∪y∈MxΩy,E = ∪y∈MxΩy,F by the segment
which has the same endpoints, and applying a homothety of ratio 1/2. Let
us denote by Γ(A) the largest curve B such that ∆(B) ⊂ A.
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Then, Γ(E) and Γ(F) are locally isomorphic to the sets ĈR for R satisfying
(P). Moreover, Γ(A) is an unbounded curve contained in a curve of Γ(E) and
in a curve of Γ(F).

Now, the proposition follows from Theorem 2.8. ■

Similar to the case of dragon curves in R2, the present construction can
be used to define a fractal. We consider the curves Cs = ∆s(C) for s ∈ N∗.
We denote by F the limit of the sets Fs = (1/2s)(∪S∈CsV (S)) where each
V (S) is the Voronoi tile associated to S. Using Proposition 2.5, we see that
F is the closure of its interior.

We note that, similar to the fractal constructed from dragon curves, F
satisfies a property of autosimilarity : For each s ∈ N∗, there exist 8 disjoint
curves Cs,1, . . . , Cs,8 which are images of Cs by positive isometries and such
that Cs+1 = Cs,1 ∪ · · · ∪ Cs,8. Let us take them in such a way that they are
consecutive, starting from 0. Then F is the union of the 8 nonoverlapping
sets Fi obtained as limits of the sets Fi,s = (1/2s)(∪S∈Ci,s

V (S)). Each Fi is
the image of F by a positive similarity of ratio 1/2.
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