
HAL Id: hal-04524135
https://hal.science/hal-04524135v1

Submitted on 27 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Symbolic Representation for Probabilistic Dynamic
Epistemic Logic

Sebastien Gamblin, Alexandre Niveau, Maroua Bouzid

To cite this version:
Sebastien Gamblin, Alexandre Niveau, Maroua Bouzid. A Symbolic Representation for Prob-
abilistic Dynamic Epistemic Logic. 21st International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2022), May 2022, Auckland (Nouvelle-Zélande), New Zealand.
�10.5555/3535850.3535901�. �hal-04524135�

https://hal.science/hal-04524135v1
https://hal.archives-ouvertes.fr

A Symbolic Representation for
Probabilistic Dynamic Epistemic Logic

Sébastien Gamblin
Normandie Univ, UNICAEN,
ENSICAEN, CNRS, GREYC

14000 Caen, France
sebastien.gamblin@unicaen.fr

Alexandre Niveau
Normandie Univ, UNICAEN,
ENSICAEN, CNRS, GREYC

14000 Caen, France
alexandre.niveau@unicaen.fr

Maroua Bouzid
Normandie Univ, UNICAEN,
ENSICAEN, CNRS, GREYC

14000 Caen, France
maroua.bouzid-

mouaddib@unicaen.fr

ABSTRACT
Probabilistic Dynamic Epistemic Logic (PDEL) is a formalism for
reasoning about the higher-order probabilistic knowledge of agents,
and about how this knowledge changes when events occur. While
PDEL has been studied for its theoretical appeal, it was only ever
applied to toy examples: the combinatorial explosion of probabilis-
tic Kripke structures makes the PDEL framework impractical for
realistic applications, such as card games.

This paper is a first step towards the use of PDEL in more practi-
cal settings: in line with recent work applying ideas from symbolic
model checking to (non-probabilistic) DEL, we propose a “symbolic”
representation of probabilistic Kripke structures as pseudo-Boolean
functions, which can be represented with several data structures
of the decision diagram family, in particular Algebraic Decision
Diagrams (ADDs). We show that ADDs scale much better than
explicit Kripke structures, and that they allow for efficient symbolic
model checking, even on the realistic example of the Hanabi card
game, thus paving the way towards the practical application of
epistemic planning techniques.

KEYWORDS
Knowledge Representation; Probabilistic Dynamic Epistemic Logic;
Symbolic Model Checking; Hanabi; Decision Diagrams

ACM Reference Format:
Sébastien Gamblin, Alexandre Niveau, andMaroua Bouzid. 2022. A Symbolic
Representation for Probabilistic Dynamic Epistemic Logic. In Proc. of the
21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
The card game Hanabi [3] has recently drawn interest from the
AI community [2]. Hanabi is a multiplayer cooperative game with
imperfect information in which higher-order knowledge plays a
very important role, i.e., players need to make decisions depend-
ing on what they know about what other players know, and so
on. With the ultimate goal of computing strategies for games like
Hanabi, our focus is on approaches based on Dynamic Epistemic
Logic (DEL) [26], a formalism allowing one to reason about the
higher-order knowledge of agents, and about how this knowledge
changes when events occur. DEL constructs allow for an elegant
approach to multi-agent epistemic planning [4], and more recently,

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

to the problems of controller and distributed strategy synthesis in
adversarial games [18].

However, in many realistic games, in particular those with imper-
fect or incomplete information such as Hanabi, winning strategies
generally do not exist; what is usually desired in these cases is an
optimal strategy, one that maximizes the expectation of a victory.
A natural direction is to study an adaptation of epistemic planning
to Probabilistic Dynamic Epistemic Logic (PDEL) [10, 17, 23], a
generalization of DEL which is interpreted on Kripke structures
augmented with probabilistic information. Yet, while there has been
effort lately to make DEL useable in practice by applying ideas from
symbolic model checking, thus avoiding the combinatorial explo-
sion of explicit Kripke structures [7, 8, 15, 24], there has been no
such work for PDEL. To the best of our knowledge, it remains an
entirely theoretical framework, only ever applied to toy examples.

This paper is a first step towards the use of PDEL in more practi-
cal settings: we propose a “symbolic” representation of probabilistic
Kripke structures as pseudo-Boolean functions, which can be repre-
sented with several data structures of the decision diagram family.
Our experiments using Algebraic Decision Diagrams (ADDs) on a
modelization of Hanabi show that the size of these representations
scale much better than explicit Kripke structures, while allowing
for efficient symbolic model checking, even for near-realistic game
sizes. The next step is to generalize epistemic planning to a proba-
bilistic setting, so as to study optimal strategy synthesis for games
with imperfect or incomplete information; our results indicate that
such a generalization would not only be of theoretical interest, but
could also be useful in practice.

After presenting some background, such as Hanabi and PDEL
(§ 2), we introduce our symbolic representation and model checking
procedure (§ 3), then report about experimental results (§ 4).

2 BACKGROUND
2.1 Hanabi
Hanabi [3] is a cooperative card game where players must play
their cards in order; its specificity is that players can never look at
their cards, although they see those of other players and can give
them information. There are five card colors, and five card values
(numbers from 1 to 5) per color. The goal is to play as many cards as
possible on the table, but the cards of each color must be played in
increasing order (an error costs one red token, out of three in total).
At their turn, each player can either play a card on the table, make
an announcement (which costs one blue token), or discard a card
(which gives one blue token back). An announcement consists in

showing to another player the positions of all cards of one specific
color or value in their hand.

Hanabi is an interesting game to study because finding efficient
strategies seems to require the modeling of a theory of mind – this
is how Google/DeepMind researchers explain that they found this
game to be harder to solve than Go [2]. Epistemic logic approaches
being specifically designed for reasoning about higher-order knowl-
edge, they look like a good fit to the “Hanabi challenge”. Now, non-
probabilistic DEL is enough to represent Hanabi, and as it happens
a recent study coupled such a DEL representation with a Monte-
Carlo Tree Search algorithm [20]. Yet, we would like to study exact
approaches to optimal strategy synthesis; but in Hanabi it is not
always possible to make a safe move, so looking for “strong plans”
in an epistemic planning version of Hanabi is doomed to fail. Prob-
abilistic reasoning is necessary to evaluate strategies according to
the expectation of rewards. Concretely, we want to be able to ask
questions such as “how likely is it that Alice knows that this card is
green?” or “is it more likely than not that playing this card would
cost us a red token?”, which are very natural to express in PDEL.

We will represent the “physical” state of the game (indepen-
dant from the knowledge acquired by the players) using proposi-
tional variables, which basically describe where each card is located.
Clearly, this is not sufficient to represent the real state of a game:
the knowledge of each player about their cards evolves during a
game, and in order to reason about how best to play, it is necessary
to have a model of this knowledge – we use epistemic logic for this.

2.2 Probabilistic Epistemic Logic
We fix a finite set 𝔄 of agents and a countable set PS of propo-
sitional symbols. We first define probabilistic Kripke structures,
which model the epistemic and probabilistic knowledge of agents.
There are various options for the latter; e.g., some general defini-
tions rely on 𝜎-algebras [11]. Although our approach can be applied
to richer settings, in this paper we use the simplest case of proba-
bility functions. For reasons explained later, we do not require our
probability functions to be normalized; we borrow the term “lottery”
from van Eijck and Schwarzentruber [27] (with a slightly different
definition) to refer to non-normalized probability functions.

Definition 1 (𝑋 -lottery). An 𝑋 -lottery is a function 𝐿 : 𝑋 →
Q+ from a (finite) set 𝑋 of outcomes to the set of positive rationals.
We call support of 𝐿 the set of outcomes to which 𝐿 assigns a nonzero
value: supp(𝐿) B {𝑥 ∈ 𝑋 | 𝐿(𝑥) > 0}. Last, we define N𝐿, the
normalization of 𝐿, to be the 𝑋 -lottery associating to each 𝑥 ∈ 𝑋 the
value N𝐿(𝑥) B 𝐿(𝑥)/∑𝑥 ′∈𝑋 𝐿(𝑥 ′) if supp(𝐿) ≠ ∅, else 0.

Definition 2 ((probabilistic) Kripke structure). A (proba-
bilistic) Kripke structure for a vocabulary𝑉 ⊆ PS is a tupleℳ = ⟨𝑊,

𝑅, 𝜇, val⟩ such that: (i)𝑊 is a nonempty finite set of worlds, (ii) 𝑅
associates to each agent 𝔞 ∈ 𝔄 an accessibility relation 𝑅𝔞 ⊆𝑊 ×𝑊 ,
(iii) 𝜇 associates to each agent 𝔞 ∈ 𝔄 and each world 𝑤 ∈ 𝑊 a
𝑊 -lottery 𝜇𝔞 (𝑤), and (iv) val is a valuation function𝑊 → 2𝑉 , indi-
cating the set of propositions that are true in each world. A pointed
Kripke structure is a pair, denoted ℳ𝑤 , of a Kripke structure and
one of its worlds, which is interpreted as being the “real” world.

This definition is that of van Benthem et al. [23], except that 𝜇
is defined using𝑊 -lotteries rather than probability functions. As

post: ℎ
𝑒1

post: ℎ
𝑒2

1/21/2 1

1/2

1

1/2

𝑑

¬𝑑

1
0
1/2
1/2

𝔟
𝔯

ℎ𝑑

𝑤1𝑒1

ℎ𝑑

𝑤2𝑒1

ℎ𝑑

𝑤2𝑒2

2/3

1
1/3
1/21/3

2/3
1/21/2

11/2

ℎ𝑑

𝑤1

ℎ𝑑

𝑤2

1/2
1

1/2
11/2

1/2

Figure 1: A Kripke structure (top; Ex. 3), an update model
(left; Ex. 7), and their product update (bottom right; Ex. 10).

long as the semantics of the logic language is adapted accordingly
with an additional normalization (as we do later in Def. 5), this is
completely equivalent, since we only consider finite sets of worlds.
Note also that although we took the “lottery” terminology from
van Eijck and Schwarzentruber [27], we do not use their simplified
setting, but the full-blown PDEL of van Benthem et al. [23]. Finally,
even though we formally define valuations as sets of true atoms,
in examples we use a more explicit, assignment-like notation: for
example, valuation {𝑞} ∈ 2{𝑝,𝑞,𝑟 } is written 𝑝𝑞𝑟 .

Intuitively, the accessibility relation of agent 𝔞 links worlds that
𝔞 considers as undistinguishable, and 𝜇𝑎 (𝑤1) (𝑤2) gives the proba-
bility that 𝔞 assigns to being in world𝑤2 when it is actually in𝑤1.

Example 3. Consider a heads-up coin on the table: ℎ (for “heads”)
is true and everyone knows it. The coin is either double-headed (𝑑)
or it is fair (¬𝑑): agent 𝔟 (for “blue”) knows the value of 𝑑 , but not
agent 𝔯 (for “red”), who considers that the probability of the coin
being fair is 1/2. The corresponding Kripke structure is illustrated in
Figure 1 (top right), and formally defined as follows:𝑊 = {𝑤1,𝑤2},
𝑅𝔯 = {⟨𝑤1,𝑤1⟩, ⟨𝑤1,𝑤2⟩, ⟨𝑤2,𝑤2⟩, ⟨𝑤2,𝑤1⟩}, 𝑅𝔟 = {⟨𝑤1,𝑤1⟩, ⟨𝑤2,
𝑤2⟩}, val(𝑤1) = ℎ𝑑 , val(𝑤2) = ℎ𝑑 , 𝜇𝔯 (𝑤1) = 𝜇𝔯 (𝑤2) = {𝑤1 : 1/2,
𝑤2 : 1/2}, 𝜇𝔟 (𝑤1) = {𝑤1 : 1}, 𝜇𝔟 (𝑤2) = {𝑤2 : 1}. Note that in all our
examples, the support of the lotteries will always coincide with the
accessibility relation, so we do not draw the latter; but in all generality,
lotteries are not restricted to accessible worlds.

Having both an accessibility relation and probability functions
may seem redundant, but it has two advantages: (i) it allows one to
model an unquantified uncertainty between possible worlds, which
is not the same as assigning them a uniform probability, and (ii) it
allows one to distinguish between having a 0 probability of being
true and being truly impossible. See Fagin and Halpern [11] for an
in-depth discussion. Yet, it is quite natural and intuitive to consider
only what Demey and Kooi [10] call i-consistent structures, in which
𝜇𝔞 (𝑤) gives a positive probability only to states accessible via 𝑅. All
examples in this paper indeed respect this constraint, although our
framework does not enforce it (nor any other constraint between 𝑅

and 𝜇), because it is actually simpler this way. Any useful constraint
can be easily added anyway, if need be.

Similarly, we make no hypothesis about accessibility relations –
contrary to a large part of the DEL literature, which generally
focuses on the modal logic S5, and thus on equivalence relations for
𝑅. Although for simplicity our examples are all S5, our approach

does not rely on this condition, and can be directly applied to more
expressive logics such as KD45.

Definition 4 (probabilistic epistemic languageℒPEL). Given
a vocabulary𝑉 , the languageℒPEL (𝑉) of probabilistic epistemic logic
is defined by the following grammar in Backus-Naur form:

𝜙 F 𝑝 | ¬𝜙 | 𝜙1 ∧ 𝜙2 | □𝔞𝜙 | 𝛼1Pr𝔞 (𝜙1) + · · · + 𝛼𝑘Pr𝔞 (𝜙𝑘) ≥ 𝛽

where 𝑝 ∈ 𝑉 , 𝔞 ∈ 𝔄, 𝛼1, . . . , 𝛼𝑘 , 𝛽 are rationals, and 𝑘 ≥ 1.

We also use parentheses in formulas for disambiguation, as
well as usual abbreviations like ∨, →, ↔, and

∑𝑘
𝑖=1 𝛼𝑖Pr𝔞 (𝜙𝑖). In

addition to propositional formulas (the language of which we de-
note ℒprop (𝑉)), ℒPEL (𝑉) allows for higher-order formulas such as
□𝔟 (Pr𝔯 (𝑑) ≥ 1/2) or Pr𝔟 (□𝔯𝑑) ≥ 1/2. For example, the first formula
states that agent 𝔟 knows that agent 𝔯 estimates that the probability
that 𝑑 holds is greater than or equal to 1/2. Next, we explain how
one decides whether a formula in ℒPEL holds in a given state of
epistemic and probabilistic knowledge:

Definition 5 (semantics of PEL). Let ℳ𝑤 be a pointed Kripke
structure for a vocabulary 𝑉 . We define the semantics of PEL induc-
tively as follows, where 𝑝 ∈ 𝑉 , 𝑘 ≥ 1, 𝜙,𝜓, 𝜙1, . . . , 𝜙𝑘 ∈ ℒPEL, 𝔞 ∈ 𝔄,
and 𝛼1, . . . , 𝛼𝑘 , 𝛽 ∈ Q:

ℳ𝑤 |= 𝑝 iff 𝑝 ∈ val(𝑤)
ℳ𝑤 |= ¬𝜙 iff ℳ𝑤 |̸= 𝜙

ℳ𝑤 |= 𝜙 ∧𝜓 iff ℳ𝑤 |= 𝜙 andℳ𝑤 |= 𝜓

ℳ𝑤 |= □𝔞𝜙 iff ℳ𝑤′ |= 𝜙 for all𝑤 ′ s.t. ⟨𝑤,𝑤 ′⟩ ∈ 𝑅𝔞

ℳ𝑤 |= ∑𝑘
𝑖=1 𝛼𝑖Pr𝔞 (𝜙𝑖) ≥ 𝛽 iff

𝑘∑
𝑖=1

𝛼𝑖
©«

∑
𝑤′ |ℳ𝑤′ |=𝜙𝑖

N𝜇𝔞 (𝑤) (𝑤 ′)ª®¬ ≥ 𝛽

Note that the last case uses normalized lotteries, i.e., probability
functions, or the constant 0 if the lottery has empty support. The
definition is thus equivalent to that of van Benthem et al. [23].

2.3 Updating Knowledge
Kripke structures, probabilistic or not, only represent a static state of
knowledge. To account for changes, e.g. due to player actions, they
have to be coupled with update models (also called “action models”
or “event models”). They have several definitions in the probabilistic
epistemic logic literature; the following is adapted from that of van
Benthem et al. [23], notably adding postcondition functions and
using lotteries instead of normalized probability functions.

Definition 6 ((probabilistic) update model). A (probabilis-
tic) update model for vocabulary 𝑉 is a tuple ℰ = ⟨𝐸, 𝑅ℰ , 𝜇ℰ ,Φ, pre,
post⟩, where (i) 𝐸 is a nonempty set of events, (ii) 𝑅ℰ associates to
each agent 𝔞 ∈ 𝔄 an accessibility relation 𝑅ℰ𝔞 ⊆ 𝐸 × 𝐸, (iii) 𝜇ℰ asso-
ciates to each agent 𝔞 ∈ 𝔄 and each event 𝑒 ∈ 𝐸 an 𝐸-lottery 𝜇𝔞 (𝑒),
(iv) Φ is a finite set of pairwise inconsistent formulas from ℒPDEL (𝑉)
(Def. 9),1called preconditions, (v) pre assigns to each precondition
𝜙 ∈ Φ an 𝐸-lottery pre(𝜙), (vi) post is a postcondition function
𝐸 ×𝑉 → ℒprop (𝑉). A pointed update model is a pair, denoted ℰ𝑒 ,

1For simplicity, as is customary in the DEL literature, we directly use ℒPDEL (which is
only defined later and depends on Def. 6) as the language of preconditions; behind the
apparent cyclic definitions only lies a harmless simultaneous recursion [23].

of an update model and one of its events, considered to be the actual
event taking place.

Preconditions in this definition are different from those of classi-
cal DEL update models [26], in which there is simply one precon-
dition formula for each event. As van Benthem et al. [23] argue,
this allows one to independently consider observation probabili-
ties, given by 𝜇ℰ , which quantify the distinguishability of events;
and occurrence probabilities, given by Φ and pre, which indicate the
probability with which each event can occur in each situation. More
precisely, given a pointed structure ℳ𝑤 , the occurence probability
of 𝑒 at 𝑤 , denoted by pre(𝑤) (𝑒), is defined as pre(𝜙) (𝑒), where 𝜙
is the formula in Φ such that ℳ𝑤 |= 𝜙 , or 0 if there is no such 𝜙 .
We take this more general approach in this paper – except that we
use lotteries instead of probability functions, which is once again
completely equivalent since we have modified the semantics of the
Pr operator in Def. 5.

The postcondition functions (not used by van Benthem et al.
[23], but present in other probabilistic DEL approaches such as
that of van Eijck and Schwarzentruber [27]) allow update models
to have ontic effects, i.e., to change the state of the world and not
only the knowledge state of agents [25]; this is indeed crucial if we
want to use PDEL to reason about games such as Hanabi. By fixing
post(𝑒, 𝑥) = 𝑥 for all 𝑒 ∈ 𝐸 and all 𝑥 ∈ 𝑉 , we get a purely epistemic
update model, with no ontic effect.

Example 7. Let us continue Ex. 3 by considering a coin flip: agent
𝔯 tosses the coin, but hides the result from agent 𝔟. If the coin is fair
(i.e., if 𝑑 is false), the two possible results are equiprobable, but if
it is double-headed, the result cannot be tails. These specifications
define the following update model, illustrated in Fig. 1 (left): 𝐸 =

{𝑒1, 𝑒2}, 𝑅ℰ𝔯 = {⟨𝑒1, 𝑒1⟩, ⟨𝑒2, 𝑒2⟩}, 𝑅ℰ𝔟 = 𝐸 × 𝐸, Φ = {𝑑,¬𝑑}, pre(𝑑) =
{𝑒1 : 1/2, 𝑒2 : 1/2}, pre(¬𝑑) = {𝑒1 : 1, 𝑒2 : 0}, 𝜇ℰ𝔯 (𝑒1) associates 1 to 𝑒1
and 0 to 𝑒2, 𝜇ℰ𝔯 (𝑒2) associates 1 to 𝑒2 and 0 to 𝑒1, 𝜇ℰ𝔟 (𝑒1) = 𝜇ℰ

𝔟
(𝑒2) =

1/2, post(𝑒1, ℎ) = ⊤, post(𝑒2, ℎ) = ⊥. Note how the agents’ distinct
levels of information are modeled by observation probabilities between
the events themselves: 𝔟 always considers that the two events are
equiprobable, while in each possible event 𝔯 gives probability 1 to the
current event and 0 to the other. On the other hand, the fairness of the
coin controls the probability of each event taking place: in particular,
because of occurrence probabilities, if 𝑑 holds, only 𝑒1 can occur.

Now that we have update models to represent events that can
occur in the real world (either by a voluntary action of an agent,
or not), and how these events are perceived by the agents, we will
explain how we can use them. The mechanism used in PDEL to
compute the new state after an event took place is called product
update; it is more or less a simple Cartesian product of the Kripke
structure representing the previous knowledge state and of the
update model representing the event.

Definition 8 (probabilistic product update). Let ℳ𝑤 be a
pointed Kripke structure and ℰ𝑒 be a pointed update model for the
same vocabulary 𝑉 . The product update of ℳ by ℰ is the Kripke
structure ℳ ⊗ ℰ B ⟨𝑊 ⊗, 𝑅⊗, 𝜇⊗, val⊗⟩, where

• 𝑊 ⊗ B {⟨𝑤, 𝑒⟩ ∈𝑊 × 𝐸 | pre(𝑤) (𝑒) > 0};
• ⟨⟨𝑤1, 𝑒1⟩, ⟨𝑤2, 𝑒2⟩⟩ ∈ 𝑅⊗

𝔞 iff ⟨𝑤1,𝑤2⟩ ∈ 𝑅𝔞 and ⟨𝑒1, 𝑒2⟩ ∈ 𝑅ℰ𝔞 ;
• 𝜇⊗𝔞 (⟨𝑤1, 𝑒1⟩)(⟨𝑤2, 𝑒2⟩) B 𝜇𝔞 (𝑤1) (𝑤2)·pre(𝑤2) (𝑒2)·𝜇ℰ𝔞 (𝑒1) (𝑒2);

• val⊗ (⟨𝑤, 𝑒⟩) B {𝑝 ∈ 𝑉 | ℳ𝑤 |= post(𝑒, 𝑝)}.
The product update of the pointed structures is accordingly defined as
ℳ𝑤 ⊗ ℰ𝑒 B (ℳ ⊗ ℰ)⟨𝑤,𝑒 ⟩ .

Note that contrary to the original PDEL definition on which ours
is based [23], no normalization is needed to compute 𝜇⊗ – the one
we added in the semantics of Pr (Def. 5) is sufficient. Now, thanks
to the product update, the logic language can be augmented with a
new operator that means “after the application of this event, this
formula is true”. This is how the logic becomes “dynamic”.

Definition 9 (PDEL). Given a vocabulary 𝑉 , the probabilistic
dynamic epistemic languageℒPDEL (𝑉) is defined by the BNF ofℒPEL
(Def. 4) augmented with the production rule 𝜙 F [ℰ𝑒]𝜙 , where ℰ𝑒 is
a pointed probabilistic update model. The semantics of this additional
operator is defined as follows: ℳ𝑤 |= [ℰ𝑒]𝜙 iff pre(𝑤, 𝑒) > 0 =⇒
(ℳ ⊗ ℰ)⟨𝑤,𝑒 ⟩ |= 𝜙.

Example 10. We go on with the coin flip example. Figure 1 shows
the Kripke structure of the initial situation (top right), the update
model (bottom left) and the resulting structure (bottom right). Double
borders indicate pointed worlds and events. First, note how there is
no world labeled “𝑤1𝑒2” in the final structure: indeed, the occurrence
probability pre(𝑤1) (𝑒2) is 0 (¬ℎ cannot occur if 𝑑 holds). Before the
toss, we have □𝔯ℎ ∧ □𝔟ℎ ∧ □𝔟¬𝑑 ∧ ¬□𝔯¬𝑑 , Pr𝔟¬𝑑 ≥ 1, Pr𝔯¬𝑑 ≥ 1/2
and ¬(Pr𝔯¬𝑑 ≥ 0.51). After the toss, 𝔟 still knows that the coin is
fair, 𝔯 knows that it is not heads up, and 𝔟 does not know that it is
heads up, i.e., [ℰ𝑒2] (□𝔟¬𝑑 ∧ □𝔯¬ℎ ∧ ¬□𝔟ℎ) holds; but interestingly,
[ℰ𝑒2] (□𝔯¬𝑑 ∧ □𝔟 (Pr𝔯 (¬𝑑) ≥ 1/3)) also holds, i.e., after the toss 𝔯
knows that the coin is fair (because of𝑤1𝑒2 having been filtered out),
and 𝔟 knows that the probability that 𝔯 assigns to the coin being fair
is more than 1/3, even without knowing how the coin landed.

We are interested in the model checking problem, which consists
in deciding, given a pointed Kripke structureℳ𝑤 and a formula
𝜙 ∈ ℒPDEL, whetherℳ𝑤 |= 𝜙 .

3 SYMBOLIC REPRESENTATION
Because of the combinatorial nature of Kripke structures, the size of
such representations quickly becomes huge in practical examples,
even moderately realistic. To avoid this problem, an idea is to use a
“symbolic” representation of Kripke structures, in which redundan-
cies are factored out, so that knowledge states remain scalable while
still allowing for reasonably efficient model checking. The idea of
symbolic model checking [19] has recently been applied to dynamic
epistemic logic, the symbolic representation of Kripke structures
being either accessibility programs (called “mental programs” in
[7, 8]) or Binary Decision Diagrams (BDDs) [15, 24], BDDs being a
well-known efficient representation of Boolean formulas [5].

We now show how these concepts apply to probabilistic DEL;
contrary to Shirazi and Amir [22], who also represent probabilistic
Kripke structures in a factored way (using Bayesian networks), we
are not only interested in static structures. In order to represent
probabilities, we must go beyond the usual Boolean formulas of
symbolic approaches to DEL, and use pseudo-Boolean functions.

Definition 11 (pseudo-Boolean function). Given 𝑋 = {𝑥1,
. . . , 𝑥𝑛} ⊆ PS a finite set of propositional symbols, we call pseudo-
Boolean function (PBF) over 𝑋 a total function of the type 𝑓 : 2𝑋 →

Q. (The somewhat abusive expression “over 𝑋 ” must be understood as
“over variables from 𝑋 .”)

There are several ways to represent pseudo-Boolean functions,
notably generalizations of BDDs; let us mention Algebraic Deci-
sion Diagrams (ADDs) [1], Semiring-Labelled Decision Diagrams
(SLDDs)[13, 28], Affine Algebraic Decision Diagrams (AADDs) [21],
and Probabilistic Sentential Decision Diagrams (PSDDs) [16]. These
languages are of varying succinctness (i.e., some are able to repre-
sent PBFs more compactly than others) and do not have the same
efficiency for operations (such as summing PBFs or “forgetting”
variables). There is a tradeoff to be found, depending on the ap-
plication; systematically studying and quantifying such tradeoffs
is the goal of the literature about the knowledge compilation map
[9, 12]. In this paper, we remain as general as possible and only
talk about PBFs; it should be implicitly understood that they are
represented in some efficient language, such as ADD, which we use
in our experiments and briefly present in § 4.

Before going on, we need to introduce some conventions and
notations. First, we use a convenient notation for PBFs in exam-
ples: e.g., given mutually inconsistent formulas 𝜙,𝜓 ∈ ℒprop (𝑋),
notation {𝜙 : 0.4,𝜓 : 0.8} designates a PBF associating 0.4 to mod-
els of 𝜙 , 0.8 to models of 𝜓 , and implicitly 0 to other valuations.
We consider that Boolean functions, i.e., functions of the form
𝑓 : 2𝑋 → B, are particular PBFs, and for simplicity we often iden-
tify propositional formulas 𝜙 over𝑋 with the Boolean function they
represent; i.e., we see 𝜙 as the Boolean function {𝜙 : 1}. We call
support of f, written supp(𝑓), the set 𝑌 ⊆ 2𝑋 where 𝑓 is nonzero:
supp(𝑓) = {𝑣 ∈ 2𝑋 | 𝑓 (𝑣) ≠ 0}. Note that if 𝜙 is a propositional
formula over 𝑋 , supp(𝜙) is the model set of 𝜙 .

For two PBFs 𝑓 and 𝑔 over 𝑋 ⊆ PS, we denote Cut≥ (𝑓 , 𝑔) the
Boolean function associating a valuation 𝑣 ∈ 2𝑋 to 1 if 𝑓 (𝑣) ≥ 𝑔(𝑣),
and to 0 otherwise. Let𝑋,𝑌, 𝑍 ⊆ PS such that𝑋 ⊆ 𝑌 and 𝑌 ∩𝑍 = ∅,
and let𝑚 : 𝑋 → ℒprop (𝑍). For 𝑓 a PBF over 𝑌 , we denote by [𝑚] 𝑓
the substitution of 𝑋 via𝑚 in 𝑓 , defined by [𝑚] 𝑓 : 𝑣 ↦→ 𝑓 ((𝑣 \𝑍) ∪
{𝑥 ∈ 𝑋 | (𝑣∩𝑍) |=𝑚(𝑥)}). A special case of substitution is variable
renaming; we write [𝑋 ⊲𝑋 ′] 𝑓 for the substitution of variables in 𝑋

by variables in 𝑋 ′ when the mapping between 𝑋 and 𝑋 ′ is clear
from the context. Following Gattinger [15], given 𝑣 ∈ 2𝑋 , we denote
𝑣 ⊑ 𝑋 the formula on 𝑋 that sets all variables in 𝑣 to true and all
the others to false, i.e., 𝑣 ⊑ 𝑋 B

∧
𝑝∈𝑣 𝑝 ∧ ∧

𝑝∈𝑋\𝑣 ¬𝑝; and we
write [𝑣 ⊑ 𝑋] 𝑓 for [𝑣 → ⊤, (𝑋 \ 𝑣) → ⊥] 𝑓 (the conditioning of 𝑓
by valuation 𝑣 ∈ 2𝑋).

Finally, let ⊙ : Q × Q→ Q be an associative and commutative
operation with a neutral element (such as addition, multiplication,
min, max, or the Boolean connectives ∨ and ∧), let 𝑋 ⊆ 𝑌 ⊆ PS
and let 𝑓 be a PBF over 𝑌 . The ⊙-marginalization of 𝑋 in 𝑓 , de-
noted Marg⊙

𝑋
(𝑓), is the function 𝑔 : 2𝑌\𝑋 → Q defined by 𝑔(𝑣) B⊙

𝑣′∈2𝑌 |𝑣=(𝑣′\𝑋) 𝑓 (𝑣 ′) . Note that if 𝑓 is a Boolean function, ∨-
marginalization (resp. ∧-marginalization) of 𝑌 corresponds to exis-
tentially (resp. universally) forgetting the variables in 𝑌 . We write
Forget∃

𝑌
(𝑓) = Marg∨

𝑌
(𝑓) and Forget∀

𝑌
(𝑓) = Marg∧

𝑌
(𝑓).

3.1 Static Structures
Let us now show how to represent a probabilistic Kripke structure
with PBFs. The basic idea is to identify worlds with their valuations,
so that propositional formulas over 𝑉 directly represent sets of

worlds. Obviously, it is not possible in the general case: two distinct
worlds in a Kripke structure can have the same valuation. The
symbolic representation only works for structures whose valuation
function val is injective, i.e., such that ∀𝑤1,𝑤2 ∈𝑊 : 𝑤1 ≠ 𝑤2 →
val(𝑤1) ≠ val(𝑤2); we call such structures valuation-injective. In
this case, for a valuation 𝑣 ∈ 2𝑉 such that ∃𝑤 ∈ 𝑊 : val(𝑤) = 𝑣 ,
we write val−1 (𝑣) to designate𝑤 .

While valuation-injective Kripke structures have considerably re-
duced expressiveness (e.g., the satisfiable formula □𝔞𝑝∧¬□𝔟 (□𝔞𝑝∨
□𝔞¬𝑝) has no valuation-injective S5 or KD45 model for vocabu-
lary 𝑉 = {𝑝}), the setting still applies to a lot of games – notably
those in which all uncertainty is reducible to uncertainty about
the “physical state” of the game. This is the case for Hanabi: e.g.,
even though Alice does not know what the other players know
about her cards, she can enumerate the possible game states (i.e. her
possible hands). For each one, assuming it is the actual game state,
she knows exactly what other players know. This would not be the
case if there were private announcements (e.g., one player gives
information to another without being heard by the others) or secret
actions (e.g., two players switch one of their cards without others
noticing). Note that this restriction is not unusual; it also holds for
existing approaches to symbolic model checking for epistemic logic.
Moreover, if more expressiveness is needed, it is always possible to
add fresh symbols to distinguish worlds with the same valuation
– but this is only necessary for the initial Kripke structure: as we
will see, symbolic updates automatically disambiguate worlds that
would have the same valuation in explicit form.

We now define “symbolic” Kripke structures; they are an exten-
sion of the “belief structures” of the SMCDEL framework [15, 24].

Definition 12 (symbolic Kripke structure). A symbolic Kripke
structure is a tuple ℱ = ⟨𝑉 , 𝜃,Ω,Π⟩ such that:

• 𝑉 ⊆ PS is a finite set of symbols called the vocabulary,
• 𝜃 is a Boolean function over 𝑉 , called the state law;
• Ω associates to each agent 𝔞 ∈ 𝔄 a Boolean function Ω𝔞 over
𝑉 ∪𝑉 ′, called the observation law;

• Π associates to each agent 𝔞 ∈ 𝔄 a PBF Π𝔞 over𝑉 ∪𝑉 ′, called
the probability law.

Any 𝑠 ⊆ 𝑉 such that 𝑠 |= 𝜃 is called a state of ℱ , and the pair ⟨ℱ , 𝑠⟩
is called a pointed symbolic Kripke structure and denoted ℱ𝑠 .

These symbolic Kripke structures are very generic, since, as we
already mentioned, there is no constraint as to how the pseudo-
Boolean functions defining the three laws are represented. The
choice of concrete representations can thus depend on the intended
tradeoff between spatial and temporal efficiency for various applica-
tions. Anyway, it should be clear that symbolic Kripke structure can
yield exponential space savings: a trivial example (for one agent) is
𝐹 = ⟨𝑉 ,⊤,⊤, 1⟩ (where 1 is the constant PBF), which represents a
Kripke structure with 2 |𝑉 | distinct worlds (that are undistinguish-
able and all considered equally probable by the agent).

We now formalize the relationship between “explicit” Kripke
structures and symbolic ones by defining how to translate a Kripke
structure into a symbolic one, which is rather straightforward:

Definition 13 (symbolic representation of a Kripke struc-
ture). The symbolic representation of a valuation-injective Kripke
structureℳ = ⟨𝑊,𝑅, 𝜇, val⟩ for vocabulary𝑉 is the symbolic Kripke

structure symb(ℳ) = ⟨𝑉 , 𝜃,Ω,Π⟩ where (i) 𝜃 B
∨

𝑤∈𝑊 (val(𝑤) ⊑
𝑉); (ii) Ω𝔞 B

∨
𝑤1𝑅𝔞𝑤2 (val(𝑤1) ⊑ 𝑉) ∧ (val(𝑤2) ⊑ 𝑉)′; (iii) for

any 𝑣1, 𝑣2 ∈ 2𝑉 , Π𝔞 (𝑣1 ∪ (𝑣2)′) B 𝜇𝔞 (val−1 (𝑣1), val−1 (𝑣2)) if val−1
is defined for both 𝑣1 and 𝑣2, and 0 otherwise.

The key point is that each state of symb(ℳ) corresponds to
a unique world of ℳ, thanks to valuation-injectivity; it should
be clear that Ω𝔞 and Π𝔞 are direct representations of 𝑅𝔞 and 𝜇𝔞 .
However, Def. 12 does not constrain Ω and Π as to the values
they give to valuations in 2𝑉 that are not states (i.e., not models
of 𝜃). This can be useful, depending on the data structures used to
represent PBFs, because it can yield more compact representations
(by removing dependencies between variables). Although Def. 13
does not allow this for simplicity (keeping symb a function), it
would be easy to relax the notion of symbolic representation of a
Kripke structure by taking advantage of this flexibility. Note also
that symb allows any Kripke structure – be it S5, KD45, or another
combination of epistemic logic axioms – to be represented as a
symbolic Kripke structure.

Example 14. The symbolic representation of the Kripke structure
in Ex. 3 is ℱ = ⟨𝑉 , 𝜃,Ω,Π⟩ with 𝑉 = {ℎ,𝑑}, 𝜃 ≡ ℎ, Ω𝔯 ≡ ℎ ∧ ℎ′,
Ω𝔟 ≡ ℎ ∧ ℎ′ ∧ 𝑑 ↔ 𝑑 ′, Π𝔯 = 1/2, and Π𝔟 = {Ω𝔟 : 1}.

3.2 Model Checking on Static Structures
In order to decide whether a Kripke structure represented sym-
bolically is a model of an ℒPEL formula, we can build a Boolean
function over its vocabulary whose models are the worlds of the
structure in which the formula holds. This can be done using dy-
namic programming thanks to the following inductive definition,
also extending that of Gattinger [15], van Benthem et al. [24].

Definition 15 (local Boolean translation of formula). Let
ℱ = ⟨𝑉 , 𝜃,Ω,Π⟩ be a symbolic Kripke structure and 𝜙 be a formula
in ℒPEL (𝑉). The local Boolean translation of 𝜙 in ℱ , denoted ∥𝜙 ∥ℱ ,
is the Boolean function defined inductively as follows:

• ∥𝑝 ∥ℱ B 𝑝 ;
• ∥¬𝜙 ∥ℱ B ¬∥𝜙 ∥ℱ ;
• ∥𝜙 ∧𝜓 ∥ℱ B ∥𝜙 ∥ℱ ∧ ∥𝜓 ∥ℱ ;
• ∥□𝔞𝜙 ∥ℱ B Forget∀

𝑉 ′ ((Ω𝔞 ∧ 𝜃 ′) → (∥𝜙 ∥ℱ)′);
• ∥∑𝑘

𝑖=1 𝛼𝑖Pr𝔞 (𝜙𝑖) ≥ 𝛽 ∥ℱ B Cut≥ (𝒩 , 𝛽 ×𝒟), where𝒩 is de-

fined as 𝒩 B
∑𝑘
𝑖=1

(
𝛼𝑖 ·Marg+

𝑉 ′ ((Π𝔞 × 𝜃 ′) × (∥𝜙𝑖 ∥ℱ)′))
)
,

and 𝒟 B nonzero(Marg+
𝑉 ′ (Π𝔞))), in which nonzero(𝑓) is

the PBF associating 𝑣 to 𝑓 (𝑣) if 𝑓 (𝑣) ≠ 0, and to ∞ otherwise.

Let us briefly explain the last point: the first marginalization
buids a PBF 𝒩 associating to each world the sum of the lottery
values of all the worlds that satisfy 𝜙 . The second marginalization
computes the denominator in the definition of N𝜇𝔞 (Def. 1). The
nonzero function is a trick for taking care of the empty support
lotteries (it works even when 𝛽 = 0 and when 𝛽 < 0, provided
that we fix 0 × ∞ = 0 by convention). Finally, the Cut operator
removes worlds that do not meet the threshold 𝛽 . Note that the
normalization used here would also be required if the probability
law was normalized; it is not a consequence of using lotteries.

It should be clear that the complexity of building the local trans-
lation of a formula depends on the concrete representations used.

Nonetheless, all necessary operations can be considered as elemen-
tary operations on PBF representations; they are notably used by
Fargier et al. [12] as criteria to compare the efficiency of several
languages of the decision diagram family. Finally, the following
result can be proved by induction:

Proposition 16 (symbolic model checking on PEL). Let ℳ =

⟨𝑊,𝑅, 𝜇, val⟩ be a valuation-injective Kripke structure; for any for-
mula 𝜙 ∈ ℒPEL and any 𝑤 ∈ 𝑊 , it holds that ℳ𝑤 |= 𝜙 ⇐⇒
val(𝑤) |= ∥𝜙 ∥symb(ℳ) .

3.3 Symbolic Updates
Now that we have defined a symbolic Kripke structure and showed
how PEL model checking can be done on it, we will show how
these structures can be updated through symbolic update models.
We would like to use the same principle as for Kripke structures
to represent accessibility relations and observation probabilities
of update models; however, that is not possible, since events have
no valuation. Moreover, each event has to be linked to its pre-
conditions (which can be epistemic formulas) and postconditions.
We use the approach of van Benthem et al. [24] in their SMCDEL
framework, that is, we label events using a fresh vocabulary 𝑉 +,
effectively “pretending” that events have valuations. Of course,
we chose this valuation function carefully to ensure that it be in-
jective. The symbolic representation of accessibility relations and
observation probability functions of update models can then be
represented exactly as those of Kripke structures – respectively as
Boolean functions and PBFs over the double vocabulary 𝑉 + ∪𝑉 +′ .

Definition 17 (event labeling function). Let ℰ = ⟨𝐸, 𝑅ℰ , 𝜇ℰ ,
pre, post⟩ be a Kripke structure for vocabulary 𝑉 . An event labeling
function 𝜆 for ℰ is an injective function 𝜆 : 𝐸 → 2𝑉

+
, where𝑉 + ⊆ PS

is a set of fresh symbols (𝑉 ∩𝑉 + = ∅) that we denote voc(𝜆).

Given an event labeling function, we denote byℳℰ,𝜆 the Kripke
structure for vocabulary voc(𝜆) defined as ⟨𝐸, 𝑅ℰ , 𝜇ℰ , 𝜆⟩; it is the
“underlying” Kripke structure of ℰ , using the labeling function as its
valuation function. We can then use the observation and probability
laws of symb(ℳℰ,𝜆) to represent 𝑅ℰ and 𝜇ℰ symbolically.

Preconditions, however, are a bit more complex to handle in
PDEL than in DEL. In SMCDEL, symbolic events (called “transform-
ers”) contain an event law 𝜃+ which is a possibly epistemic formula
over𝑉 ∪𝑉 + that links each precondition formula to the set of events
of which it is a precondition. In PDEL, each precondition formula
does not correspond to a “flat” set of events, but to an occurrence
probability function over events. We chose to remain as simple as
possible in our symbolic update models by keeping the set Φ of
precondition formulas as is, and by including for each 𝜙 ∈ Φ a PBF
𝜃pre (𝜙) over 𝑉 + representing its occurrence probability function
(which is, as usual in this paper, represented by a lottery).

Finally, we manage postconditions following the SMCDEL ap-
proach [15]: our symbolic update models feature a subset 𝑉− ⊆ 𝑉

of all propositional symbols that are modified by at least one event,
together with a Boolean function 𝜃− (𝑝) over 𝑉 ∪𝑉 + for each such
symbol 𝑝 ∈ 𝑉−. An assignment of 𝑉 ∪𝑉 + can be interpreted as a
pair ⟨𝑤, 𝑒⟩ of a world and an event; the value given by 𝜃− (𝑝) to this
assignment is the value that the postcondition function of 𝑒 gives
to 𝑝 if the previous world was𝑤 .

Definition 18 (symbolic update model). A symbolic update
model for the vocabulary 𝑉 is a tuple 𝜒 = ⟨𝑉 +,Ω+,Π+,Φ, 𝜃pre,𝑉−,
𝜃−⟩ where: (i)𝑉 + is a set of fresh propositional symbols:𝑉 ∩𝑉 + = ∅,
(ii)Ω+ associates to each agent𝔞 ∈ 𝔄 a Boolean function over𝑉 +∪𝑉 +′

called the event observation law of 𝔞, (iii) Π+ associates to each agent
𝔞 ∈ 𝔄 a PBF over 𝑉 + ∪𝑉 +′ called the probabilistic observation law
of 𝔞, (iv) Φ is a set of pairwise inconsistent formulas of ℒPDEL (𝑉),
called precondition formulas, (v) 𝜃pre associates to each 𝜙 ∈ Φ a PBF
𝜃pre (𝜙) over 𝑉 + called its occurrence probability law, (vi) 𝑉− ⊆ 𝑉

is a subset of the original vocabulary called the modified subset,
(vii) 𝜃− associates to each modified symbol 𝑝 ∈ 𝑉− a Boolean function
𝜃− (𝑝) over𝑉 ∪𝑉 + called the change law of 𝑝 . Any 𝑥 ⊆ 𝑉 + such that
∃𝜙 ∈ Φ : 𝜃pre (𝜙) (𝑥) > 0 is called a state of 𝜒 .

Definition 19 (symbolic representation of anupdatemodel).
Let ℰ = ⟨𝐸, 𝑅ℰ , 𝜇ℰ ,Φ, pre, post⟩ be an update model for vocabulary
𝑉 and 𝜆 be an event labeling function for ℰ . The symbolic represen-
tation of ℰ via 𝜆 is the symbolic update model symb𝜆 (ℰ) = ⟨𝑉 +,Ω+,

Π+,Φ, 𝜃pre,𝑉−, 𝜃−⟩ where
• 𝑉 + B voc(𝜆),
• Ω+ is the observation law of symb(ℳℰ,𝜆),
• Π+ is the probability law of symb(ℳℰ,𝜆),
• for 𝜙 ∈ Φ and 𝑣 ∈ 𝑉 +, 𝜃pre (𝜙) (𝑣) B pre(𝜙) (𝜆−1 (𝑣)) if 𝜆−1
is defined on 𝑣 , and 0 otherwise,

• 𝑉− B {𝑝 ∈ 𝑉 | ∃𝑒 ∈ 𝐸 : post(𝑒, 𝑝) . 𝑝}, and
• 𝜃− (𝑝) B

∧
𝑒∈𝐸 (𝜆(𝑒) ↔ post(𝑒, 𝑝)).

Example 20. The symbolic representation of the coin flip update
model (Ex. 7) via the event labeling function defined as 𝜆(𝑒1) B 𝑞

and 𝜆(𝑒2) B 𝑞 is 𝜒 = ⟨𝑉 +,Ω+,Π+,Φ, 𝜃pre,𝑉−, 𝜃−⟩ where 𝑉 + = {𝑞},
Ω+

𝔯 ≡ 𝑞 ↔ 𝑞′, Ω+
𝔟
≡ ⊤, Π+

𝔯 = {Ω+
𝔯 : 1}, Π+

𝔟
= 0.5, Φ = {𝑑,¬𝑑},

𝜃pre (𝑑) = {𝑞 : 1}, 𝜃pre (¬𝑑) = 1/2, 𝑉− = {ℎ}, 𝜃− (ℎ) ≡ 𝑞.

We can now explain how to compute the product update on
symbolic structures. Following the SMCDEL framework, modified
symbols are historicized: they are replaced by fresh symbols for each
application of the product update (i.e., each update has its own fresh
vocabulary 𝑉 ◦

−). Thanks to this, the resulting structure keeps track
of the previous valuations. Now, an aspect that is quite different
from SMCDEL is the treatment of preconditions. We do not have a
𝜃+ (see above) of whichwe can compute the local translation to filter
states. We must compute the translation of each 𝜙 ∈ Φ and multiply
the result by the occurrence probability law 𝜃pre (𝜙). The PBF we
obtain represents the occurrence probability function of each state
that satisfies 𝜙 . Summing the PBFs of all 𝜙 ’s yields the occurrence
probability function of each state (this is sound because the 𝜙 ’s are
required to be mutually inconsistent). The resulting PBF can be
seen as a probabilistic equivalent of the 𝜃+ from SMCDEL, and we
thus denote it by Θ+. In particular, the support of Θ+ contains all
pairs state-event whose occurrence probability is nonzero, i.e., it
corresponds exactly to the event law 𝜃+ of SMCDEL transformers.

Example 21. We illustrate the construction of Θ+ for the symbolic
update model 𝜒 of Ex. 20:Θ+ is defined as 𝜃pre (𝑑)×∥𝑑 ∥ℱ +𝜃pre (¬𝑑)×
∥¬𝑑 ∥ℱ , but since the precondition formulas are Boolean, their local
translations do not depend on ℱ . Hence, Θ+ only has to be computed
once and can be reused for all product updates with 𝜒 . Specifically,
Θ+ = {𝑞 : 1}×{𝑑 : 1}+1/2×{¬𝑑 : 1} and thusΘ+ = {𝑑∧𝑞 : 1,¬𝑑 : 1/2}.
We can understand Θ+ as follows: if the coin is fair, there is a 50%

chance that it lands heads (𝑞) or tails (𝑞), but if it is rigged, there is
a 100% chance that event 𝑞 occurs (i.e., the coin must land heads).
The support of Θ+ is the model set of ¬𝑑 ∨ (𝑑 ∧ 𝑞) ≡ 𝑑 → 𝑞, which
represents the fact that the event labeled 𝑞 cannot occur if 𝑑 is true.

Definition 22 (symbolic product update). Given a pointed
symbolic Kripke structureℱ𝑠 and a pointed symbolic update model 𝜒𝑥
for vocabulary 𝑉 , the symbolic product update of ℱ = ⟨𝑉 , 𝜃,Ω,Π⟩
by 𝜒 = ⟨𝑉 +,Ω+,Π+,Φ, 𝜃pre,𝑉−, 𝜃−⟩, is the symbolic Kripke structure
ℱ ⊗ 𝜒 = ⟨𝑉 ⊗, 𝜃 ⊗,Ω⊗,Π⊗⟩ defined by

• 𝑉 ⊗ B 𝑉 ∪𝑉 +∪𝑉 ◦
− , where𝑉

◦
− is a set of fresh symbols (distinct

from the 𝑉 ◦
− of previous product updates),

• 𝜃 ⊗ B [𝑉−⊲𝑉 ◦
−] (𝜃∧supp(Θ+))∧∧𝑝∈𝑉− (𝑝 ↔ [𝑉−⊲𝑉 ◦

−] (𝜃− (𝑝))),
• Ω⊗

𝑎 B ([𝑉−⊲𝑉 ◦
−] [(𝑉−)′⊲(𝑉 ◦

−)′]Ω𝑎) ∧Ω+
𝑎 , and

• Π⊗
𝑎 B ([𝑉−⊲𝑉 ◦

−] [(𝑉−)′⊲(𝑉 ◦
−)′] (Π𝑎 × (Θ+)′)) × Π+,

where Θ+ B
∑
𝜙 ∈Φ (𝜃pre (𝜙) × ∥𝜙 ∥ℱ). The product update of the

pointed structures is (ℱ ⊗ 𝜒)𝑠 ·𝑥 , with 𝑠 · 𝑥 B (𝑠\𝑉−) ∪ (𝑠 ∩𝑉−)◦ ∪
𝑥 ∪ {𝑝 ∈ 𝑉− | 𝑠 ∪ 𝑥 |= 𝜃− (𝑝)}.

The symbolic product update behaves exactly like the explicit
one, in that the occurrence probabilities and the two observation
probabilities are simply multiplied together. In particular, there is
no need to normalize anything, which is one of the main advan-
tages of using lotteries: normalization is only ever required during
model checking, when the formula contains a

∑
𝛼 ≥ 𝛽 construct.

The lottery approach can thus be seen as a “lazy” one, in which
dealing with probabilities is deferred until the last moment. This
is interesting in terms of the number of operations to be carried
out, but the decisive advantage of this lazy approach is that it can
significantly shorten PBF representations (intuitively, normalizing
makes them more constrained and thus generally larger) which in
turn greatly improves the efficiency of operations.

Example 23. Let us compute the product update of ℱ from Ex. 14
and 𝜒 from Ex. 20. First, the new vocabulary is𝑉 ⊗ = {ℎ,𝑑, 𝑞, ℎ◦}: we
get variables ℎ and 𝑑 from ℱ , 𝑞 is from the labeling function, and
ℎ◦ is the historicized version of ℎ, that stores the value it had before
the update (there is no 𝑑◦ because 𝑑 is not modified by any event,
so it is not in the modified vocabulary of 𝜒). The new state law is
𝜃 ⊗ ≡ ℎ◦ ∧ (𝑑 → 𝑞) ∧ (ℎ ↔ 𝑞), i.e., ℎ was true before the update,
the event labelled 𝑞 cannot occur if 𝑑 was true, and the new value of
ℎ is directly given by the event that occurred). The observation law
is given by Ω⊗

𝔯 = ℎ◦ ∧ ℎ◦
′ ∧ 𝑞 ↔ 𝑞′, Ω⊗

𝔟
= ℎ◦ ∧ ℎ◦

′ ∧ 𝑑 ↔ 𝑑 ′.
Before showing the probability law, let us note that valuations ℎ◦𝑞ℎ𝑑 ,
ℎ◦𝑞ℎ𝑑 , ℎ◦𝑞ℎ𝑑 respectively represent worlds𝑤1𝑒1,𝑤2𝑒1,𝑤2𝑒2 in Fig. 1
(bottom right). For example, ℎ◦𝑞ℎ𝑑 must be read like this: ℎ was true
before and is now false, the event that occurred is 𝑞, and 𝑑 was and is
still false. Denoting 𝜙𝑤1𝑒1 (resp. 𝜙𝑤2𝑒1 , 𝜙𝑤2𝑒2) the term corresponding
to valuation ℎ◦𝑞ℎ𝑑 (resp. ℎ◦𝑞ℎ𝑑 , ℎ◦𝑞ℎ𝑑), we have Π𝔯 = {(𝜙𝑤1𝑒1 ∨
𝜙𝑤2𝑒1) ∧ 𝜙 ′

𝑤1𝑒1 : 2/3, (𝜙𝑤1𝑒1 ∨ 𝜙𝑤2𝑒1) ∧ 𝜙 ′
𝑤2𝑒1 : 1/3, 𝜙𝑤2𝑒2 ∧ 𝜙 ′

𝑤2𝑒2 : 1}
and Π𝔟 = {𝜙𝑤1𝑒1∧𝜙 ′

𝑤1𝑒1 : 1, (𝜙𝑤2𝑒1∨𝜙𝑤2𝑒2)∧ (𝜙𝑤2𝑒1∨𝜙𝑤2𝑒2)′ : 1/2}.

The following result ties everything together:

Proposition 24. Let 𝑉 be a vocabulary; let ℳ𝑤 be a pointed
Kripke structure for 𝑉 ; let ℰ𝑒 be a pointed update model for 𝑉 and 𝜆
an event labeling function for ℰ ; and let 𝜙 ∈ ℒPEL (𝑉). We have

(ℳ⊗ℰ)⟨𝑤,𝑒 ⟩ |= 𝜙 ⇐⇒ val(𝑤)·𝜆(𝑒) |= ∥𝜙 ∥symb(ℳ) ⊗symb𝜆 (ℰ)

𝑥

𝑦 𝑧

𝑧

2

0

3 Equivalent PBF:
𝑥 ∧ 𝑦 ∧ 𝑧 : 2
(¬𝑥 ∨ ¬𝑦)

∧¬𝑧 : 3

Figure 2: Example of an ADD (dashed arcs represent “if vari-
able is false” and solid ones, “if variable is true”).

For space reasons, we omit the proof, and stop here without
giving the Boolean translation of [ℰ𝑒]; it is not hard, but rather
long, and of secondary interest (update models with full PDEL pre-
conditions have virtually no use in realistic games — as for Hanabi,
its update models only use propositional pre- and postconditions).

4 EXPERIMENTS ON HANABI
We now report on experiments we ran on our Python implemen-
tation of the PDEL framework, comparing the memory and time
efficiency of using “explicit” and symbolic model checking (prob-
abilistic and non-probabilistic), on the game Hanabi (§ 2.1). The
concrete languagewe used to represent PBFs is that of ADDs, which,
while strictly less succinct than other decision diagram languages
such as SLDDs, has efficient algorithms for almost all the oper-
ators we need [12]. We used a (heavily) modified version of the
ADD package in pyddlib [6]. Let us now briefly introduce ADDs:
Algebraic decision diagrams [1] are a generalization to non-Boolean
values of the BDD language, in which the two terminal nodes 0
and 1 of BDDs are replaced by as many nodes as necessary. More
precisely, an ADD is a directed acyclic graph with one root, where
every node 𝑁 is labelled with a symbol 𝑥 ∈ PS and has two outgo-
ing arcs for then and else, respectively. On any path from the root
to a leaf, symbols must be encountered only once and always in
the same order; such paths correspond to assignments of Boolean
values to all symbols. Figure 2 gives an example of an ADD.

Basic operations on ADDs are polynomial; e.g., applying an
operator (or, and, sum, product) between two ADDs is quadratic (it
is basically done as an automaton product). Things are not so nice
for marginalization or forgetting: they are quadratic in the worst
case, for a single variable, so they can yield exponential results
when one needs to apply them a lot. However, things can still work
reasonably well in practice because (1) marginalizations remain
polynomial if the variables to be forgotten are at the end of the
order, (2) there are a lot of symmetries in the structures, and (3)
since we use lotteries and a uniform distribution (which is the most
common setting in games), ADDs representing symbolic structures
do not need many leaves (only two in our experiments), up to the
point when normalization is applied during model checking. The
aim of the experiments is precisely to assess whether in practice,
at scales sufficient to represent Hanabi, our approach works.

The variable order in ADDs is of crucial importance to get small
representations. We use a natural order that arises when compiling
formulas, after having experimentally checked that varying the
position of variable groups (e.g., putting variables from 𝑉 closer to
𝑉 ′ or to 𝑉 ◦) did not seem to yield much better results.

(a) Creation of Kripke structures (b) Updating knowledge (c) Model checking with PEL formulas

Figure 3: Computation time for creating Kripke structures (left), updating knowledge (center), and model checking, for the
explicit and symbolic (with and without probabilities) approaches. “nbH:X” means there are X cards in hand.

Let us now describe our experiments: each one has a a setting
(explicit PDEL, symbolic PDEL, or symbolic DEL) and two param-
eters – the total number of cards (nbT, varying from 6 to 50, the
latter being the number of cards in the real game) and the number
of cards in the hands of each player (nbH, varying from 2 to 3).
We always limit the number of players to 2; thus, the number of
variables needed to model a Hanabi game only depends on nbT
and nbH. Last, we consider a uniform distribution of cards. Each
experiment is a sequence of three steps: (1) build the initial Kripke
structure and all update models, (2) compute some product updates,
(3) perform model checking for a few fixed formulas. In our runs,
each of the three steps had a timeout of 2400 seconds. In order
to execute different experiments simultaneously, we used a server
with 4 AMD Opteron 6282SE 2.6GHz processors, 64 cores and 512G
RAM, but no experiment exploited any parallelism or multithread-
ing. Similarly, the RAM capacity was not used in full: as reported
by /usr/bin/time, no experiment with nbH = 2 needed more than
8.3G; with nbH = 3, it was 8.7G for 32 cards, 16.7G for 38, 35.7G
for 46, and 41.9G for 50. We ran each experiment twenty times, but
the variance is very low; standard deviation is indicated as a black
vertical line on the graphs when it is more than 5 seconds. All the
code needed to reproduce the experiments (and to run unit tests
on random structures and formulas) is available online [14].

Fig. 3a shows the creation times of both static Kripke structures
and update models. For the explicit case, curves clearly show the
combinatorial explosion of the number of worlds.With the symbolic
approach, generating the initial Kripke structure of the game with
50 cards is actually quite fast, but generating the update models is
not – the reason is that they feature dependencies between many
variables present at different positions in the variable order.

Fig. 3b shows the time taken to update the initial knowledge
structure by applying actions from the game, implemented as se-
quences of product updates. We chose two actions: “annonc.” is
agent 𝔞 announcing to agent 𝔟 that it has a “1” in its hand, and
“play+draw” is agent 𝔞 playing its first card and then drawing a new
one. The symbolic product update is feasible up to 50 cards, but the
explicit version looks like it would already take quite a long time
for 30 cards, although it could not be tested on more than 18 cards
because of the timeout during the initial creation of structures. We

also looked at the evolution of the size of ADDs when applying up-
dates in sequence: roughly, announcements reduce ADD sizes (they
remove uncertainty), as do “play” and “discard” actions, whereas
“draw” actions increase ADD sizes. Clearly, it is likely that simulat-
ing a long sequence of “draw” actions would yield an exponentially
large ADD, but in Hanabi at least these actions are virtually always
interspersed with uncertainty-reducing actions.

Finally, Fig. 3c shows the time taken to model check each of
the following four PEL formulas, where 𝜙1𝔞 is the formula repre-
senting “the first card of agent 𝔞 is a 1”: □𝔞𝜙1𝔞 , Pr𝔞 (𝜙1𝔞) ≥ 0.25,
Pr𝔞 (Pr𝔟 (𝜙1𝔞) ≥ 0.25) ≥ 0.25, and Pr𝔟 (Pr𝔞 (𝜙1𝔞) ≥ 0.25) ≥ 0.25, re-
spectively denoted in the caption by □a, Pra, PraPrb, and PrbPra.
We do not show the time taken to model check propositional for-
mulas – it is always virtually instantaneous. Results for explicit
structures (when they could have been built) are quite good for
formulas of depth 1, not so much for formulas of depth 2; on sym-
bolic structures, the order of the Pr operators has a huge impact,
but model checking remains feasible all the way up to 50 cards.

5 CONCLUSION
We presented a symbolic representation of the probabilistic Kripke
structures and probabilistic update models of PDEL using pseudo-
boolean functions, extending the SMCDEL framework to the man-
agement of probabilities. This makes it possible to do model check-
ing and to compute product updates symbolically. Our approach is
fully implemented, using ADDs as the data structure representing
PBFs. We conducted experiments on the game Hanabi; the results
show that our approach scales quite well for near-realistic instances
of Hanabi. In future work, we intend to generalize epistemic plan-
ning to a probabilistic setting, and to study optimal strategy syn-
thesis for Hanabi and other games with imperfect or incomplete
information; our results make us confident that such synthesis
could be made feasible in practice.

ACKNOWLEDGMENTS
This work has been partly supported by the Région Normandie, the
European Regional Development Fund, and the PING/ACK project
of the French National Agency for Research (ANR-18-CE40-0011).

REFERENCES
[1] R. Iris Bahar, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,

Abelardo Pardo, and Fabio Somenzi. 1997. Algebraic Decision Diagrams and
Their Applications. Formal Methods in System Design 10, 2/3 (1997), 171–206.
https://doi.org/10.1023/A:1008699807402

[2] Nolan Bard, Jakob N. Foerster, Sarath Chandar, Neil Burch, Marc Lanctot, H. Fran-
cis Song, Emilio Parisotto, Vincent Dumoulin, SubhodeepMoitra, EdwardHughes,
Iain Dunning, Shibl Mourad, Hugo Larochelle, Marc G. Bellemare, and Michael
Bowling. 2020. The Hanabi challenge: A new frontier for AI research. Artif. Intell.
280 (2020), 103216. https://doi.org/10.1016/j.artint.2019.103216

[3] Antoine Bauza. 2010. Hanabi. http://www.antoinebauza.fr/?tag=hanabi. accessed
2018-06-11.

[4] Thomas Bolander. 2017. A Gentle Introduction to Epistemic Planning: The DEL
Approach. Electronic Proceedings in Theoretical Computer Science 243 (Mar 2017),
1–22. https://doi.org/10.4204/eptcs.243.1

[5] Randal E. Bryant. 1986. Graph-Based Algorithms for Boolean Function Manipu-
lation. IEEE Trans. Computers 35, 8 (1986), 677–691. https://doi.org/10.1109/TC.
1986.1676819

[6] Thiago Pereira Bueno. 2017. pyddlib, a Python3 library for manipulating decision
diagrams. https://github.com/thiagopbueno/pyddlib/

[7] Tristan Charrier, Sophie Pinchinat, and François Schwarzentruber. 2019. Symbolic
model checking of public announcement protocols. J. Log. Comput. 29, 8 (2019),
1211–1249. https://doi.org/10.1093/logcom/exz023

[8] Tristan Charrier and François Schwarzentruber. 2017. A Succinct Language for
Dynamic Epistemic Logic. In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS 2017, São Paulo, Brazil, May 8-12, 2017,
Kate Larson, Michael Winikoff, Sanmay Das, and Edmund H. Durfee (Eds.). ACM,
123–131. http://dl.acm.org/citation.cfm?id=3091148

[9] Adnan Darwiche and Pierre Marquis. 2002. A Knowledge Compilation Map. J.
Artif. Intell. Res. 17 (2002), 229–264. https://doi.org/10.1613/jair.989

[10] Lorenz Demey and Barteld Kooi. 2014. Logic and Probabilistic Update. In Johan
van Benthem on Logic and Information Dynamics, Alexandru Baltag and Sonja
Smets (Eds.). Springer, 381–404. https://doi.org/10.1007/978-3-319-06025-5_13

[11] Ronald Fagin and Joseph Y. Halpern. 1994. Reasoning About Knowledge and
Probability. J. ACM 41, 2 (1994), 340–367. https://doi.org/10.1145/174652.174658

[12] Hélène Fargier, Pierre Marquis, Alexandre Niveau, and Nicolas Schmidt. 2014.
A Knowledge Compilation Map for Ordered Real-Valued Decision Diagrams. In
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July
27 -31, 2014, Québec City, Québec, Canada, Carla E. Brodley and Peter Stone (Eds.).
AAAI Press, 1049–1055. http://www.aaai.org/ocs/index.php/AAAI/AAAI14/
paper/view/8195

[13] Hélène Fargier, Pierre Marquis, and Nicolas Schmidt. 2013. Semiring Labelled
Decision Diagrams, Revisited: Canonicity and Spatial Efficiency Issues. In IJCAI
2013, Proceedings of the 23rd International Joint Conference on Artificial Intelligence,
Beijing, China, August 3-9, 2013, Francesca Rossi (Ed.). IJCAI/AAAI, 884–890.
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6623

[14] Sébastien Gamblin, Alexandre Niveau, and Maroua Bouzid. 2022. Reproduction
Package for “A Symbolic Representation for Probabilistic Dynamic Epistemic
Logic” (AAMAS 2022). https://doi.org/10.5281/zenodo.5966036

[15] Malvin Gattinger. 2018. New directions in Model Checking Dynamic Epistemic
Logic. Ph.D. Dissertation. Universiteit van Amsterdam.

[16] Doga Kisa, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche. 2014. Prob-
abilistic Sentential Decision Diagrams. In Principles of Knowledge Representation

and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014,
Vienna, Austria, July 20-24, 2014, Chitta Baral, Giuseppe De Giacomo, and Thomas
Eiter (Eds.). AAAI Press. http://www.aaai.org/ocs/index.php/KR/KR14/paper/
view/8005

[17] Barteld P. Kooi. 2003. Probabilistic Dynamic Epistemic Logic. Journal of Logic,
Language and Information 12, 4 (2003), 381–408. https://doi.org/10.1023/A:
1025050800836

[18] Bastien Maubert, Sophie Pinchinat, and François Schwarzentruber. 2019. Reacha-
bility Games in Dynamic Epistemic Logic. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China,
August 10-16, 2019, Sarit Kraus (Ed.). ijcai.org, 499–505. https://doi.org/10.24963/
ijcai.2019/71

[19] Kenneth L. McMillan. 1993. Symbolic model checking. Kluwer. https://doi.org/
10.1007/978-1-4615-3190-6

[20] Daniel Reifsteck, Thorsten Engesser, Robert Mattmüller, and Bernhard Nebel.
2019. Epistemic Multi-agent Planning Using Monte-Carlo Tree Search. In KI
2019: Advances in Artificial Intelligence, Christoph Benzmüller and Heiner Stuck-
enschmidt (Eds.). Springer International Publishing, Cham, 277–289.

[21] Scott Sanner and David A. McAllester. 2005. Affine Algebraic Decision Dia-
grams (AADDs) and their Application to Structured Probabilistic Inference. In
IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Artifi-
cial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, Leslie Pack
Kaelbling and Alessandro Saffiotti (Eds.). Professional Book Center, 1384–1390.
http://ijcai.org/Proceedings/05/Papers/1439.pdf

[22] Afsaneh Shirazi and Eyal Amir. 2008. Factored Models for Probabilistic Modal
Logic. In Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence,
AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, Dieter Fox and Carla P. Gomes
(Eds.). AAAI Press, 541–547. http://www.aaai.org/Library/AAAI/2008/aaai08-
086.php

[23] Johan van Benthem, Jelle Gerbrandy, and Barteld P. Kooi. 2009. Dynamic Update
with Probabilities. Studia Logica 93, 1 (2009), 67–96. https://doi.org/10.1007/
s11225-009-9209-y

[24] Johan van Benthem, Jan van Eijck, Malvin Gattinger, and Kaile Su. 2018. Symbolic
model checking for Dynamic Epistemic Logic — S5 and beyond. Journal of Logic
and Computation 28, 2 (11 2018), 367–402. https://doi.org/10.1093/logcom/exx038
arXiv:http://oup.prod.sis.lan/logcom/article-pdf/28/2/367/24261865/exx038.pdf

[25] Johan van Benthem, Jan van Eijck, and Barteld P. Kooi. 2006. Logics of
communication and change. Inf. Comput. 204, 11 (2006), 1620–1662. https:
//doi.org/10.1016/j.ic.2006.04.006

[26] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi. 2007. Dynamic
Epistemic Logic (1st ed.). Springer Publishing Company, Incorporated.

[27] Jan van Eijck and François Schwarzentruber. 2014. Epistemic Probability Logic
Simplified. In Advances in Modal Logic 10, invited and contributed papers from
the tenth conference on "Advances in Modal Logic," held in Groningen, The Nether-
lands, August 5-8, 2014, Rajeev Goré, Barteld P. Kooi, and Agi Kurucz (Eds.).
College Publications, 158–177. http://www.aiml.net/volumes/volume10/Eijck-
Schwarzentruber.pdf

[28] NicWilson. 2005. Decision Diagrams for the Computation of Semiring Valuations.
In IJCAI-05, Proceedings of the Nineteenth International Joint Conference on Arti-
ficial Intelligence, Edinburgh, Scotland, UK, July 30 - August 5, 2005, Leslie Pack
Kaelbling and Alessandro Saffiotti (Eds.). Professional Book Center, 331–336.
http://ijcai.org/Proceedings/05/Papers/0857.pdf

https://doi.org/10.1023/A:1008699807402
https://doi.org/10.1016/j.artint.2019.103216
http://www.antoinebauza.fr/?tag=hanabi
https://doi.org/10.4204/eptcs.243.1
https://doi.org/10.1109/TC.1986.1676819
https://doi.org/10.1109/TC.1986.1676819
https://github.com/thiagopbueno/pyddlib/
https://doi.org/10.1093/logcom/exz023
http://dl.acm.org/citation.cfm?id=3091148
https://doi.org/10.1613/jair.989
https://doi.org/10.1007/978-3-319-06025-5_13
https://doi.org/10.1145/174652.174658
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8195
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8195
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6623
https://doi.org/10.5281/zenodo.5966036
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8005
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8005
https://doi.org/10.1023/A:1025050800836
https://doi.org/10.1023/A:1025050800836
https://doi.org/10.24963/ijcai.2019/71
https://doi.org/10.24963/ijcai.2019/71
https://doi.org/10.1007/978-1-4615-3190-6
https://doi.org/10.1007/978-1-4615-3190-6
http://ijcai.org/Proceedings/05/Papers/1439.pdf
http://www.aaai.org/Library/AAAI/2008/aaai08-086.php
http://www.aaai.org/Library/AAAI/2008/aaai08-086.php
https://doi.org/10.1007/s11225-009-9209-y
https://doi.org/10.1007/s11225-009-9209-y
https://doi.org/10.1093/logcom/exx038
https://arxiv.org/abs/http://oup.prod.sis.lan/logcom/article-pdf/28/2/367/24261865/exx038.pdf
https://doi.org/10.1016/j.ic.2006.04.006
https://doi.org/10.1016/j.ic.2006.04.006
http://www.aiml.net/volumes/volume10/Eijck-Schwarzentruber.pdf
http://www.aiml.net/volumes/volume10/Eijck-Schwarzentruber.pdf
http://ijcai.org/Proceedings/05/Papers/0857.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Hanabi
	2.2 Probabilistic Epistemic Logic
	2.3 Updating Knowledge

	3 Symbolic representation
	3.1 Static Structures
	3.2 Model Checking on Static Structures
	3.3 Symbolic Updates

	4 Experiments on Hanabi
	5 Conclusion
	Acknowledgments
	References

