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Capillary-lubrication force between rotating cylinders separated by a fluid interface
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Two cylinders rotating next to each other generate a large hydrodynamic force if the intermediate
space is filled with a viscous fluid. Herein, we explore the case where the cylinders are separated
by two layers of viscous immiscible fluids, in the limit of small capillary deformation of the fluid
interface. As the interface deformation breaks the system’s symmetry, a novel force characteristic
of soft lubrication is generated. We calculate this capillary-lubrication force, which is split into
velocity-dependant and acceleration-dependant contributions. Furthermore, we analyze the varia-
tions induced by modifying the viscosity ratio between the two fluid layers, their thickness ratio,
and the Bond number. Unlike standard elastic cases, where a repelling soft-lubrication lift force has
been abundantly reported, the current fluid bilayer setting can also exhibit an attractive force due to
the non-monotonic deflection of the fluid interface when varying the sublayer thickness. Besides, at
high Bond numbers, the system’s response becomes analogous to the one of a Winkler-like substrate
with a viscous flow inside.

Keywords: low-Reynolds-number flows, lubrication theory, capillarity, fluid interfaces, fluid-structure inter-
actions, contact mechanics.

I. INTRODUCTION

The movement of solid objects in viscous fluids has been the subject of detailed research in fluid sciences for more
than a century [1, 2]. As opposed to particle motion in a bulk fluid [3–6], when an object moves in close proximity
to a boundary, the resulting pressure field and the force exerted on the object are modified [7–10]. Such lubricated
contacts have implications spanning over different domains, from tribology [11] to biomechanics of synovial fluids in
joints [12, 13] or the transport of cells in the blood [14]. The understanding of single particle dynamics then further
helps explaining the properties of clusters and suspensions [15–19].

Over the past decades, dedicated research has explored the influence of soft boundaries on the motion of the particles
to understand the role of boundary elasticity on hydrodynamic flow. The force and torque felt by the particle
approaching the boundary have been calculated [20, 21] and have been used to design the contactless rheological
probes employed for soft materials [22, 23]. Surprisingly, as opposed to rigid boundaries, particles translating parallel
to soft boundaries feel a repulsive lift force that arises out of the symmetry breaking induced by the elasticity of
the wall [24–40]. The scope has been further expanded to explore the influence of fluid compressibility [41], fluid
inertia [42], viscoelasticity of the boundary [34], and the inhomogeneities in slippage at the boundary [43].

As the solids become softer, capillary stresses dominate over the material’s bulk elasticity, and inner flows become
increasingly important. The latter start to modify the force and torque generated. In the limit of point forces, previous
research [44, 45] has highlighted the pumping flow that can be observed when the interface deflection is accounted for.
On the other hand, Leal and coworkers calculated the force felt by a finite-sized sphere moving near a fluid interface,
by utilizing Lorentz’s Reciprocal Theorem, for the regime of a large gap as compared to the size of the sphere [46–49].
Further developments included advancements in slender-body theory [50] to explain the swimming of microorganisms
near fluid interfaces [51, 52], as well as the formation of floating biofilms [53]. A recent study on viscoelastic fluid
substrates [54] also highlighted that capillary interfaces could result in an attractive force instead of a repulsive lift
one.

While previous research has shown the importance and applicability of understanding the motion near a fluid
interface, the characterization across different viscosity ratios and arbitrary layer thicknesses, for immiscible fluids,
remains to be done. In the present article, we study the system of two rotating cylinders in close proximity to each
other, separated by two viscous fluid layers. We calculate the force generated on one of the cylinders in the limit of small
deformation of the fluid interface, as characterized by the capillary compliance. The article is organized as follows.
We start by describing the viscocapillary lubrication problem at stake, followed by the theoretical methodology to
obtain the different fields using perturbation analysis at small capillary compliance. We then discuss the implications
of the deformable interface and the sub-layer flows on the force generated on the cylinder.
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II. CAPILLARY-LUBRICATION THEORY

We consider two rigid infinite cylinders of radii a1 and a2 rotating with prescribed time-dependent angular velocities
ω1 and ω2 near a fluid interface, as shown in Fig. 1. The interface is characterized by its surface tension σ, and separates
two incompressible Newtonian viscous fluids, with dynamic shear viscosities η1 and η2, as well as mass densities ρ1
and ρ2 (with ρ2 < ρ1). The acceleration of gravity is denoted g. The thickness profiles z = −h1(x) and z = h2(x) of
the bottom and top cylinders, depend on the horizontal position x. We denote by z the vertical position and by t the
time.

A. Governing equations

We neglect fluid inertia and assume the typical thicknesses di, of the two fluids indexed by i = 1, 2, to be much
smaller than the relevant horizontal length scales, defined by the hydrodynamic radii

√
2aidi [20], allowing us to

invoke lubrication theory [55, 56]. Introducing the excess pressure fields pi(x, z, t) with respect to the hydrostatic
contributions, and the horizontal velocity fields ui(x, z, t), the incompressible Stokes equations thus read at leading
lubrication order:

∂pi
∂z

= 0 , (1)

∂pi
∂x

= ηi
∂2ui
∂z2

. (2)

In the near-contact region, in the limit of small gap, the shapes of the cylinders can be approximated by their

FIG. 1: Schematic of the system. Two rigid infinite cylinders rotate with prescribed velocities near a
capillary interface between two incompressible Newtonian viscous fluids. The origin of spatial coordinates is
located at the undeformed fluid interface (z = 0) in the line joining the centers of mass of the cylinders
(x = 0). The deformed fluid interface is located at z = δ(x, t).

parabolic expansions, as:

h1(x) ≃ d1 +
x2

2a1
, (3)

and:

h2(x) ≃ d2 +
x2

2a2
. (4)

Finally, we close the equations by setting the flow boundary conditions. We impose no slip at the three interfaces
alongside the balance of tangential and normal stresses at the fluid interface located at z = δ(x, t). Hence, at z = −h1,
one has:

u1 = −ω1a1 , (5)
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at z = h2, one has:

u2 = ω2a2 , (6)

and at z = δ, one has:

u2 = u1, (7)

η2
∂u2
∂z

= η1
∂u1
∂z

, (8)

p2 − p1 ≃ σ
∂2δ

∂x2
+ gδ(ρ2 − ρ1) . (9)

Let us now non-dimensionalize the equations through:

h1(x) = d2H1(X) , h2(x) = d2H2(X) , x = lX , z = d2Z ,

t =
l

c
T , u1(x, z, t) = cU1(X,Z, T ) , u2(x, z, t) = cU2(X,Z, T ) ,

p1(x, t) =
η2cl

d 2
2

P1(X,T ) , p2(x, t) =
η2cl

d 2
2

P2(X,T ) , δ(x, t) = d2∆(X,T ) ,

with the upper hydrodynamic radius l =
√
2a2d2, and where c represents a characteristic horizontal velocity scale,

e.g. a2ω2. Moreover, the viscosity ratio is denoted by M = η1/η2. Using these dimensionless variables, Eqs. (3,4)
become:

H1(X) = α+
X2

β
, (10)

H2(X) = 1 +X2 , (11)

where α = d1/d2 and β = a1/a2 are the geometrical aspect ratios of the problem. The solutions of the dimensionless
versions of Eqs. (1,2) are of the form:

U1 =
P ′
1Z

2

2M
+ C1Z + C2 , (12)

U2 =
P ′
2

2
Z2 + C3Z + C4 , (13)

where the prime symbol corresponds to the partial derivative with respect to X, and where the coefficients Cj , with
j = 1, 2, 3, 4, can be calculated by using the boundary conditions of Eqs. (5,6,7,8). Doing so, we obtain the velocity
profiles:

U1 = P ′
1

{
Z2 −H2

1

2M
+

Z +H1

M(∆−H2)− (∆ +H1)

[
∆2 −H2

1

2M
−∆(∆−H2)

]}
+ P ′

2

{
(Z +H1)(∆−H2)

2

2 [M (∆−H2)− (∆ +H1)]

}
− (V1 + V2)(Z +H1)

M(∆−H2)− (∆ +H1)
− V1 ,

(14)

U2 = − P ′
1

{
(Z −H2)(∆ +H1)

2

2(M(∆−H2)− (∆ +H1))

}
+ P ′

2

{
Z2 −H2

2

2
+ (Z −H2)

[
−∆+

M(∆−H2)
2

2[M(∆−H2)− (∆ +H1)]

]}
− M(V1 + V2)(Z −H2)

M(∆−H2)− (∆ +H1)
+ V2 ,

(15)

where Vi = aiωi/c. We then calculate the flow rates within the two fluid films, as:

Q1 =

∫ ∆

−H1

U1dZ = −P ′
1

(∆ +H1)
3

12M

4M (∆−H2)− (∆ +H1)

M (∆−H2)− (∆ +H1)
+

P ′
2 (H1 +∆)

2
(H2 −∆)

2

4 [M (∆−H2)− (∆ +H1)]

− V1 (∆ +H1)−
(∆ +H1)

2
(V1 + V2)

2 [M (∆−H2)− (∆ +H1)]
, (16)
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Q2 =

∫ H2

∆

U2dZ =
P ′
1

4

(∆−H2)
2
(∆ +H1)

2

[M (∆−H2)− (∆ +H1)]
− P ′

2

(H2 −∆)
3

12

M (∆−H2)− 4 (∆ +H1)

M (∆−H2)− (∆ +H1)

+ V2 (H2 −∆) +
M (∆−H2)

2
(V1 + V2)

2 [M (∆−H2)− (∆ +H1)]
, (17)

which, by introducing ad-hoc auxiliary functions Fi and Ii, can be rewritten in a more compact fashion, as:

Q1 = F1(H1, H2,∆)P ′
1 + F2(H1, H2,∆)P ′

2 + I1(H1, H2,∆) , (18)

Q2 = F3(H1, H2,∆)P ′
1 + F4(H1, H2,∆)P ′

2 + I2(H1, H2,∆) . (19)

The thin-film equations for this system can be derived by invoking volume conservation in the two fluid layers, as:

∂∆

∂T
+Q′

1 = 0 , (20)

∂∆

∂T
−Q′

2 = 0 . (21)

Finally, Eq. (9) reads in dimensionless form:

∆′′ − Bo∆ = κ (P2 − P1) , (22)

where Bo = (l/lc)
2 denotes the Bond number of the problem which compares the relevant dynamical horizontal length

scale l to the capillary length lc =
√
σ/[g(ρ1 − ρ2)]). The dimensionless compliance of the fluid interface is denoted by

κ = Ca/ϵ3, where Ca = η2c/σ is a capillary number and ϵ = d2/l is a small lubrication parameter. The problem has
three unknown fields: ∆, P1 and P2. These obey the set of three coupled differential equations given by Eqs. (20-22),
together with the following spatial boundary conditions: Pi → 0 and ∆ → 0 at X → ±∞.

III. PERTURBATION ANALYSIS

Following the approach of previous soft-lubrication studies [24, 26, 28, 30, 57], we assume that κ≪ 1 and perform
an expansion of the fields up to first order in κ, as:

∆ ≃ 0 + κ∆1 , (23)

P1 ≃ P10 + κP11 , (24)

P2 ≃ P20 + κP21 , (25)

U1 ≃ U10 + κU11 , (26)

U2 ≃ U20 + κU21 , (27)

where κ∆1 is the deformation profile of the fluid interface at first order in κ, κjPij the excess pressure field in layer i at
perturbation order j, and κjUij the velocity field in layer i at perturbation order j. Given the respective symmetries
of the fields at each order in κ, it is more convenient to focus only on the X > 0 domain, and impose the following
equivalent spatial boundary conditions: Pi0 = 0, P ′

i1 = 0 and ∆1 = 0 at X = 0, as well as Pij → 0 and ∆1 → 0 at
X → +∞.

A. Zeroth-order solution

At zeroth order in κ, the fluid interface is undeformed. Equations (20,21) then lead to the following coupled ordinary
differential equations for the two pressure fields:

F10P
′
10 + F20P

′
20 = k1 − I10 , (28)

F30P
′
10 + F40P

′
20 = k2 − I20 , (29)

where the ki are integration constants, and where we have evaluated the above auxiliary functions at zeroth order in
κ, as:

F10 = − H3
1

12M

4MH2 +H1

MH2 +H1
, F20 = F30 = − H2

1H
2
2

4 (MH2 +H1)
, F40 = −H

3
2

12

MH2 + 4H1

MH2 +H1
, (30)
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I10 =
H2

1 (V1 + V2)

2 (MH2 +H1)
− V1H1 , I20 = V2H2 −

MH2
2 (V1 + V2)

2 (MH2 +H1)
. (31)

The derivatives of the pressure fields can then be evaluated from the above expressions, to give:

P ′
10 =

F40 (k1 − I10)− F20 (k2 − I20)

F10F40 − F20F30
, (32)

P ′
20 =

F10 (k2 − I20)− F30 (k1 − I10)

F10F40 − F20F30
. (33)

The latter equations can be integrated, e.g. with Mathematica or an explicit finite-difference numerical method –
both giving identical results. The obtained solutions will be analyzed in the discussion section.

B. First-order solution

According to Eq. (22), the zeroth-order pressure fields calculated above lead to a deflection of the interface at first
order in κ, which satisfies:

∆′′
1 − Bo∆1 = P20 − P10 . (34)

The formal solution of Eq. (34) satisfying the above boundary conditions reads:

∆1(X,T ) = ∆c(T ) sinh
(
X
√
Bo

)
− 1√

Bo

∫ X

0

dY [P20(Y, T )− P10(Y, T )] sinh
[
(Y −X)

√
Bo

]
, (35)

where ∆c(T ) =
(
1/
√
Bo

) ∫∞
0

dY [P10(Y, T )− P20(Y, T )] exp
(
−Y

√
Bo

)
. This solution can be numerically evaluated

for fixed parameters Bo, M , α and β.
Then, from the obtained deflection at first order in κ, one can calculate the pressure fields at first order in κ, as

explained hereafter. To begin with, the auxiliary functions are evaluated at first order in κ, as:

Fn ≃ Fn0 + κ∆1
∂Fn

∂∆

∣∣∣∣
∆=0

, (36)

Im ≃ Im0 + κ∆1
∂Im
∂∆

∣∣∣∣
∆=0

, (37)

for n = 1, 2, 3, 4 and m = 1, 2. Introducing Gn0 = ∂Fn

∂∆ |∆=0, and Em0 = ∂Im
∂∆ |∆=0, and expending the fluxes as

Qi ≃ Qi0 + κQi1, one gets the first-order corrections to the fluxes:

Q11 ≃ F10P
′
11 +∆1G10P

′
10 + F20P

′
21 +∆1G20P

′
20 +∆1E10 , (38)

Q21 ≃ F30P
′
11 +∆1G30P

′
10 + F40P

′
21 +∆1G40P

′
20 +∆1E20 . (39)

Furthermore, the thin-film equations and the X = 0 boundary conditions imply:

Q11 = −
∫ X

0

∂∆1

∂T
dX , (40)

Q21 =

∫ X

0

∂∆1

∂T
dX . (41)

Combining the last four equations leads to:

F10P
′
11 + F20P

′
21 = −K − J1 , (42)

F30P
′
11 + F40P

′
21 = K − J2 , (43)

with:

J1 = ∆1 (G10P
′
10 +G20P

′
20 + E10) , (44)

J2 = ∆1 (G30P
′
10 +G40P

′
20 + E20) , (45)

K =

∫ X

0

∂∆1

∂T
dX . (46)
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(a) (b)

FIG. 2: Zeroth-order excess pressure fields, P10 (a) and P20 (b), as functions of the horizontal coordinate X,
as evaluated from Eqs. (32,33) for α = 15 and β = 99, with V1 = 1 and V2 = 1, and different values of M as
indicated. The black line in panel (b) represents the pressure profile Ps generated near a solid boundary [10].

Decoupling the equations, leads to:

P ′
11 =

F40H1 − F20H2

F10F40 − F20F30
, (47)

P ′
21 =

F10H2 − F30H1

F10F40 − F20F30
, (48)

with H1 = −K − J1 and H2 = K − J2. These can be numerically integrated over X, for fixed parameters Bo, M , α
and β, using the far-field boundary conditions. The obtained solutions will be analyzed in the discussion section.

We conclude this section by an important remark. In the above expressions, we see that K involves the accelerations
of the cylinders, while J1 and J2 both involve squared velocities instead. Moreover, the first-order corrections of the
pressure fields are linear combinations of K and Ji, which is reminiscent of past soft-lubrication studies [38, 58, 59].
Therefore, in order to address these two independent forcing modes later on, we split H1 and H2 into their: i)
squared-velocity-dependant contributions (Hi)U2 , generically denoted by the subscript “U2”, and referred to as “lift”

terms ; and ii) acceleration-dependant contributions (Hi)U̇ , generically denoted by the subscript “U̇”, and referred to
as “inertial” terms. These contributions read:

(H1)U2 = −J1 , (49)

(H2)U2 = −J2 , (50)

(H1)U̇ = −K , (51)

(H2)U̇ = K . (52)

IV. DISCUSSION

Hereafter, keeping β ≫ 1 in order to approach the situation of a cylinder moving near a thin, supported and flat
fluid film, we discuss the zeroth-order and first-order solutions, and investigate the influence of the three other key
dimensionless parameters of the problem: the viscosity ratio M , the gap ratio α, and the Bond number Bo.

A. Zeroth-order pressure

The zeroth-order excess pressure fields in the two layers are computed from Eqs. (32,33) and plotted in Fig. 2, for
α = 15 and β = 99, and for different values of the viscosity ratio M . For comparison, we also show the pressure
Ps(X) = −2V2X/(1+X

2)2 [10] generated if the fluid interface was replaced by a no-slip solid boundary. The pressure
fields in both layers appear to have opposite signs. Furthermore, due to the allowed flow in the bottom layer, the
pressure generated in the top layer is lower than if the interface was a no-slip solid substrate. However, increasing
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(a)

FIG. 3: Zeroth-order excess pressure fields, P10 (a) and P20 (b), as functions of the horizontal coordinate X,
as evaluated from Eqs. (32,33) for M = 2 and β = 99, with V1 = 1 and V2 = 1, and different values of α as
indicated. The black line in panel (a) represents the top-layer pressure field for α = 0.001, with the
appropriate scale on the right y-axis. The black line in panel (b) represents the pressure profile Ps generated
near a solid boundary [10].

M , i.e. increasing the viscosity of the bottom layer with respect to the one in the top layer increases the pressure
magnitude in both layers. Eventually, at largeM , the pressure field in the top layer saturates towards Ps, as expected.
In Fig. 3, we investigate the effect of the ratio α between the bottom-layer and top-layer thicknesses. Reducing α

increases the magnitude of the pressure generated in the top layer, as expected due to the reducing flow ability in
the bottom layer. Once again, the curves eventually saturate towards the no-slip solid pressure Ps. Interestingly, at
some point, the decrease of α leads to a sign change for the bottom-layer pressure. The transition point of such a sign
change depends (not shown) upon the chosen values of M and β.

B. Interface deflection

The first-order interface deflection field is calculated using Eq. (35) and plotted in Fig. 4 for several Bo values. While
the horizontal range and the magnitude are both affected by Bo, the former can be absorbed into a rescaled horizontal
coordinate X

√
Bo. This is characteristic of problems involving capillarity and a direct consequence of the Young-

Laplace condition of Eq. (34). Besides, the deflection magnitude decreases as Bo is increased, since gravitational
resistance towards interface deformation is increased. However, the decrease does not seem to follow a simple scaling
law with Bo.

Let us now investigate the influence of the viscosity ratio M and gap ratio α. The results are plotted in Fig. 5.
As M increases, the zeroth-order pressure fields increase in magnitude monotonically, leading to a corresponding
increase in the magnitude of the interface deflection. Similarly, decreasing α increases the magnitude of the interface
deflection. However, the sign change for the bottom-layer pressure field observed previously at small α leads to an
intricate behaviour of the interface deflection profile. Further decreasing (not shown) α can even lead to a complete
sign flip of the interface deflection.

C. First-order pressure

Integrating Eqs. (47,48) allows us to find the first-order pressure corrections Pi1 =U2 Pi1+ U̇Pi1, which are separated
into two different contributions as mentioned beforehand: i) lift terms U2Pi1 ; and ii) inertial terms U̇Pi1. We further
stress that our discussion below focuses only on the top layer, as our goal is to eventually calculate the force generated
on the top cylinder. The lift and inertial terms in the top layer are shown in Fig. 6 for a given set of parameters. As
we see, they typically push the cylinder away from the interface. Besides, as the Bond number Bo is increased, one
observes (not shown) a decrease in both the lift and inertial terms, which is due to the reducing interface deflection
observed above.

Moreover, the effects of the viscosity ratio M and gap ratio α are presented in Figs. 7 and 8. Increasing M , or
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FIG. 4: First-order interface deflection profile ∆1 as a function of rescaled horizontal coordinate X
√
Bo, as

calculated from Eq. (35) with M = 2, α = 15, β = 99, V1 = 0, V2 = 1, and for several Bo values as indicated.

(a) (b)

FIG. 5: First-order interface deflection profile ∆1 as a function of horizontal coordinate X, as calculated from
Eq. (35) with Bo = 0.01, β = 99, V1 = 0 and V2 = 1, for: (a) α = 15 and varying M as indicated; and (b) M = 2
and varying α as indicated.

decreasing α, increases the magnitude of both the lift and inertial terms. This is explained once again by the reducing
flow ability in the bottom layer. However, interestingly, for very small α values, where the zeroth-order pressure field
in the bottom layer changes sign, the first-order pressure field in the top layer reduces in magnitude.

D. Capillary-lubrication force

In dimensional units, the normal force per unit length F felt by the top cylinder can be found by integrating the
pressure field p2 in the top layer along the horizontal coordinate x. At zeroth order, the force is null by symmetry of
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FIG. 6: First-order pressure correction P21 in the top layer as a function of horizontal coordinate X, as
obtained from numerically solving Eqs. (47,48) for M = 2, α = 15, β = 99, and Bo = 0.01. Both the lift term

U2P21 (blue) for V1 = 0 and V2 = 1, and inertial term U̇P21 (red) for V̇1 = 0 and V̇2 = 1, are shown.

(a) (b)

FIG. 7: First-order pressure correction P21 in the top layer as a function of horizontal coordinate X, as
obtained from numerically solving Eqs. (47,48) with α = 15, β = 99, and Bo = 0.01, and for various M as

indicated. Both the lift term U2P21 (a) with V1 = 0 and V2 = 1, and inertial term U̇P21 (b) with V̇1 = 0 and

V̇2 = 1, are shown.

the excess pressure fields. At leading order in perturbation, one thus has:

F =

∫ ∞

−∞
p2dx ≃ η22ω

2
2a

2
2

σ

(
a2
d2

)5/2

U2ψ21 +
η22ω̇2a

2
2

σ

(
a2
d2

)2

U̇ψ21 , (53)

where U2ψ21 = (27/2/V 2
2 )

∫∞
0 U2P21dX and U̇ψ21 = (24/V̇2)

∫∞
0 U̇P21 are dimensionless coefficients corresponding to

the lift and inertial terms, respectively. These two coefficients are plotted in Fig. 9 as functions of the viscosity ratio
M and for various gap ratios α. Two main comments can be made on the results. First, the coefficients vary by orders
of magnitude upon changing the two ratios, which indicates the possibility of tuning the conditions to modify, control
and optimize the capillary-lubrication effects. Moreover, in direct contrast to classical elastic soft lubrication [39],
the coefficients signs can be changed too, as already reported for the lift force in a recent study on viscoelastic fluid
substrates [54].

We saw earlier that increasing Bo reduces the deflection of the interface and in turn the first-order pressures.
The variation of the lift coefficient U2ψ21 is thus plotted in Fig. 10 against Bo and for different values of α. For
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(a) (b)

FIG. 8: First-order pressure correction P21 in the top layer as a function of horizontal coordinate X, as
obtained from numerically solving Eqs. (47,48) with M = 2, β = 99, and Bo = 0.01, and for various α as

indicated. Both the lift term U2P21 (a) with V1 = 0 and V2 = 1, and inertial term U̇P21 (b) with V̇1 = 0 and

V̇2 = 1, are shown.

(a) (b)

FIG. 9: Lift coefficient U2ψ21 (a) and inertial coefficient U̇ψ21 (b) of the first-order normal force per unit
length (see Eq. (53)) exerted on the top cylinder as functions of the viscosity ratio M and for various gap
ratios α. These coefficients were obtained from numerical integration of P21 along X, as computed for Bo
= 0.01, β = 99, and for either V1 = 0, V2 = 1 (a), or V̇1 = 0, V̇2 = 1 (b). The squares denote the absolute values in
the case of negative values.

small Bo values, the decrease is affine. For large Bo values, the lift coefficient becomes inversely proportional to
Bo. Interestingly, in the latter regime, the curvature term in Eq. (34) becomes negligible, and the interface response
becomes Winkler-like [30]. However, it is to be remarked that, in contrast to pure Winkler solids, there are still flows
in the bottom layer here.

Finally, in dimensional units, the torque per unit length T generated on the top cylinder is found by integrating
the shear stress, as:

T = −a2
∫ ∞

−∞
η2
∂u2
∂z

∣∣∣∣
z=h2

dx ≃ −η2ω2a
2
2

(
a2
d2

)1/2

ϕ20 , (54)

with ϕ20 = (23/2/V2)
∫∞
0

∂U20

∂Z

∣∣
Z=H2

dX the zeroth-order dimensionless coefficient. Indeed, by symmetry of the

velocity field, there is no contribution at first order in compliance. The zeroth-order coefficient ϕ20 is plotted in
Fig. 11 against the viscosity ratio M , and for different values of the gap ratio α. We first see that for all α the
zeroth-order coefficient saturates to two limiting values, for M → 0 and M → ∞ respectively. The latter corresponds
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FIG. 10: Lift coefficient U2ψ21 of the first-order normal force per unit length (see Eq. (53)) exerted on the
top cylinder as a function of the Bond number Bo and for various gap ratios α. This coefficient was obtained
from numerical integration of P21 along X, as computed for M = 1, β = 99, V1 = 0, and V2 = 1. The solid line
corresponds to an affine decrease with Bo, while the dashed line corresponds to a ∼ 1/Bo power law.

(a) (b)

FIG. 11: (a) Coefficient ϕ20 of the zeroth-order torque per unit length (see Eq. (??)) exerted on the top
cylinder, and normalized by the value for a rigid no-slip boundary, as a function of the viscosity ratio M and
for various gap ratios α. This coefficient was computed for β = 99, V1 = 0, and V2 = 1. (b) Same data with a
rescaled parameter M/α on the x-axis.

to the no-slip rigid case, as expected. Moreover, inspired by our previous study on the normal motion [59], we observe
a collapse when using the rescaled parameter M/α, for α > 1.

V. CONCLUSION

We have studied two rotating cylinders separated by a capillary interface in between two lubricating viscous films.
Specifically, by using a perturbative expansion in the limit of small deformation of the interface, we have numerically
calculated the pressure fields, the interface deflection, and the subsequent force generated on one cylinder. These
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were separated into lift and inertial-like contributions. We have further investigated the influence of all the relevant
geometrical and physical parameters of the problem on these contributions and have revealed a large degree of
tunability of their magnitudes and even signs. The latter peculiar feature is absent of classical elastic soft lubrication
and highlights the interest of such capillary-lubrication settings. Our results pave the way towards the characterization
of colloidal mobility near complex boundaries.
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[43] A. Rinehart, U. Lācis, T. Salez, and S. Bagheri, Lift induced by slip inhomogeneities in lubricated contacts, Physical

Review Fluids 5, 082001 (2020).
[44] K. Aderogba and J. Blake, Action of a force near the planar surface between two semi-infinite immiscible liquids at very

low reynolds numbers, Bulletin of the Australian Mathematical Society 18, 345 (1978).
[45] S. Nezamipour and A. Najafi, Flow pumping by external periodic shear applied to a soft interface, Scientific Reports 11,

15041 (2021).
[46] S. Lee, R. Chadwick, and L. G. Leal, Motion of a sphere in the presence of a plane interface. part 1. an approximate

solution by generalization of the method of lorentz, Journal of Fluid Mechanics 93, 705 (1979).
[47] S. Lee and L. Leal, Motion of a sphere in the presence of a plane interface. part 2. an exact solution in bipolar co-ordinates,

Journal of Fluid Mechanics 98, 193 (1980).
[48] S. Lee and L. Leal, The motion of a sphere in the presence of a deformable interface: Ii. a numerical study of the translation

of a sphere normal to an interface, Journal of Colloid and Interface Science 87, 81 (1982).
[49] A. Geller, S. Lee, and L. Leal, The creeping motion of a spherical particle normal to a deformable interface, Journal of

Fluid Mechanics 169, 27 (1986).
[50] S.-M. Yang and L. G. Leal, Particle motion in stokes flow near a plane fluid-fluid interface. part 1. slender body in a

quiescent fluid, Journal of Fluid Mechanics 136, 393 (1983).
[51] R. Trouilloud, S. Y. Tony, A. Hosoi, and E. Lauga, Soft swimming: Exploiting deformable interfaces for low reynolds

number locomotion, Physical review letters 101, 048102 (2008).
[52] D. Lopez and E. Lauga, Dynamics of swimming bacteria at complex interfaces, Physics of Fluids 26, 400 (2014).
[53] N. Desai and A. M. Ardekani, Biofilms at interfaces: microbial distribution in floating films, Soft Matter 16, 1731 (2020).
[54] S. Hu, F. Meng, et al., Effect of fluid viscoelasticity, shear stress, and interface tension on the lift force in lubricated

contacts, The Journal of Chemical Physics 159 (2023).
[55] O. Reynolds, On the theory of lubrication and its application to mr beauchamp tower’s experiments, including an experi-

mental determination of the viscosity of olive oil., Philos. Trans. R. Soc. Lond. 177, 157 (1886).
[56] A. Oron, S. Davis, and S. Bankoff, Long-scale evolution of thin liquid films, Rev. Mod. Phys. 69, 931 (1997).
[57] A. Pandey, S. Karpitschka, C. H. Venner, and J. H. Snoeijer, Lubrication of soft viscoelastic solids, Journal of fluid

mechanics 799, 433 (2016).
[58] F. Kaveh, J. Ally, M. Kappl, and H.-J. Butt, Hydrodynamic force between a sphere and a soft, elastic surface, Langmuir

30, 11619 (2014).



14

[59] A. Jha, Y. Amarouchene, and T. Salez, Capillary-lubrication force exerted on a two-dimensional particle moving towards
a thin fluid film, Journal of Fluid Mechanics 977, A50 (2023).


