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Abstract

We theoretically analyze the implicit regular-
ization of deep learning for tensor comple-
tion. We show that deep Tucker factorization
trained by gradient descent induces a struc-
tured sparse regularization. This leads to a
characterization of the effect of the depth of
the neural network on the implicit regular-
ization and provides a potential explanation
for the bias of gradient descent towards solu-
tions with low multilinear rank. Numerical
experiments confirm our theoretical findings
and give insights into the behavior of gradient
descent in deep tensor factorization.

1 INTRODUCTION

The question how deep neural networks generalize well
has not been answered; it continues to stimulate re-
search and generate hypotheses (Zhang et al., 2021;
Belkin et al., 2019; Bartlett et al., 2020). An interest-
ing line of research suggests that implicit regularization
could provide a means to understand the underlying
mechanisms behind the ability of neural networks to
generalize even when the number of learning parame-
ters is much larger than the number of training exam-
ples (Neyshabur et al., 2014). This paper pursues this
line of attack by characterizing the implicit regulariza-
tion in deep Tucker tensor factorization.

A number of studies have investigated the role of im-
plicit regularization in deep learning (see Gunasekar
et al., 2017; Arora et al., 2019; Chizat and Bach, 2020;
Razin and Cohen, 2020; Li et al., 2021a; Gissin et al.,
2020; Li et al., 2021b; Milanesi et al., 2021; Razin
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et al., 2021; Ge et al., 2021; Ziyin, 2023 and references
therein). Among these works, two papers have particu-
larly attracted our attention. First, Arora et al. (2019)
considered deep matrix factorization in overparameter-
ized regime and showed that even when the rank of the
factorized matrix is not constrained, adding depth to
matrix factorization promotes the convergence of gra-
dient descent to low-rank solutions. This was observed
empirically and also analyzed theoretically through the
characterization of the singular value dynamics dur-
ing training. Then, Razin et al. (2021) pushed the
analysis further and extended it to tensor factorization.
They considered Canonical-Polyadic (CP) factorization
which are based on decomposing a tensor into the sum
of rank-one tensors. The canonical rank of a tensor is
the minimum number of rank-one tensors of the CP
decomposition. Razin et al. (2021) studied the dynam-
ics of the norms of these rank-one tensors and showed
that under some conditions, gradient descent over CP
factorization exhibits an implicit regularization towards
low tensor rank. This means that only a small number
of rank-one tensors will emerge (i.e., will not be too
close to zero) after learning.

Expanding the analysis of implicit regularization from
matrix factorization to tensor factorization is impor-
tant as it has the potential to go beyond linear neural
networks. Indeed, previous work showed connections
between tensor decompositions and certain types of
nonlinear neural networks (Cohen et al., 2016; Razin
et al., 2021). Recently, Hariz et al. (2022) considered
a generalized overparameterized CP decomposition,
which can be viewed as a deep extension of the stan-
dard CP tensor model, and showed that the effect of
the implicit regularization towards low CP rank in deep
tensor CP factorization via gradient descent may grow
polynomially with the depth of the factorization. In
the same line, Razin et al. (2022) considered hierarchi-
cal Tucker (HT) factorization. This choice was moti-
vated by the fact that HT factorization corresponds
to a certain deep convolutional neural network (Cohen
et al., 2016). Similar to the CP decompostion, they
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established implicit regularization of gradient descent
towards low hierarchical Tucker rank. To complete the
picture, we focus in this work on Tucker factorization
optimized through gradient-based methods and the
induced implicit regularization.

In this paper, we make the following contributions:

• we analyze overparameterized Tucker tensor factor-
ization and theoretically characterize its evolution
during gradient-descent learning,

• we prove that deep Tucker factorization trained
by gradient descent induces a structured sparse
regularization,

• we show how this sparse implicit regularization
promotes low-rank solutions,

• we conduct numerical experiments that confirm
our theoretical findings, offering insights into the
behavior of gradient descent in deep Tucker fac-
torization.

It is worth noting that the convergence of gradient-
descent in overparameterized Tucker factorization to
solutions with low tensor rank has been empirically ob-
served in Milanesi et al. (2021) but was not theoretically
investigated. Previous work which has theoretically
studied implicit regularization in tensor factorization
focused on the canonical rank and the hierarchical
rank (Razin et al., 2021; Ge et al., 2021; Hariz et al.,
2022; Razin et al., 2022). In this work, we consider
overparameterized Tucker factorization and so inter-
ested in the multilinear rank of a tensor. Finally, a
recent paper Li et al. (2023) asked the question whether
gradient descent can induce other forms of implicit regu-
larization than ℓ2-norm, sparsity and low-rankness, and
showed for a certain type of networks, called diagonally
grouped linear neural network, that it biases towards
solutions with a group sparsity structure. From this
point of view our results show a similar behavior in
overparameterized Tucker factorization. To the best of
our knowledge, this has not been previously reported.

2 PRELIMINARIES

In this section we introduce tensors and the related
multi-linear algebra. For a more comprehensive ac-
count on this subject we refer the reader to Kolda and
Bader (2009). We use the notation J1, NK for the set
{1, . . . , N}. We will denote vectors by lowercase let-
ters, e.g. v ∈ RI1 whereas matrices and tensors will
be denoted respectively by uppercase and calligraphic
letters, e.g. M ∈ RI1×I2 and T ∈ RI1×I2×···×IN . We
use ∥ · ∥ to denote the Euclidean norm of the vectors.
For a matrix M , ∥M∥ denotes its Frobenius norm and

∥M∥2 its spectral norm, i.e., the largest singular value.
The Kronecker product of two matrices M ∈ RI1×I2

and N ∈ RJ1×J2 is denoted by M1 ⊙M2 ∈ RI1J1×I2J2 .
The (i1, i2, . . . , iN )-th entry of T ∈ RI1×I2×···×IN will
be denoted by Ti1,i2,...,iN where in = 1, 2, . . . , In, for
all n ∈ J1, NK. Given two tensors T ,S ∈ RI1×I2×···×IN

their scalar product writes

⟨T ,S⟩ =
∑
i1

∑
i2

· · ·
∑
iN

Si1,i2···iNTi1,i2···iN ,

and the Frobenius norm of T is defined as ∥T ∥ =√
⟨T , T ⟩.

We denote by T:...:im:...: the subtensor of T ∈
RI1×I2×···×IN obtained by fixing the m-th index of
the tensor T with value equal to im and varying all the
other indexes. For a 3-rd order tensor T ∈ RI1×I2×I3 ,
the subtensors are the slices of the tensor, which are the
matrices obtained by fixing one index: as an example,
T:i2: ∈ RI1×I3 is the slice obtained by fixing the second
index to i2.

Given N vectors v1 ∈ RI1 , v2 ∈ RI2 , . . . , vN ∈ RIN ,
their outer product is the tensor whose (i1, . . . , iN )-
th entry writes (v1 ⊗ v2 ⊗ · · · ⊗ vN )i1,i2...,iN =
(v1)i1(v2)i2 . . . (vN )iN for all in ∈ [1, . . . , In], n ∈
[1, . . . , N ]. An N -th order tensor T is called a rank-1
tensor if it can be written as the outer product of N
vectors, i.e. T = v1 ⊗ v2 ⊗ · · · ⊗ vN . In this work, we
focus on the multilinear rank of a tensor. It is based on
unfolding a tensor along each of its modes to obtain ma-
tricizations. The n-unfolding of a tensor is defined as
follows: Given an N -th order tensor T ∈ RI1×I2×···×IN ,
the matrix T(n) ∈ RIn×(I1I2...In−1In+1In+2...IN ) is called
the unfolding of T along the n-th mode. This bring us
to define the n-rank and the multilinear rank.

Definition 2.1. The tensor n-rank of T is defined
as the rank of T(n). The multilinear rank, also called
Tucker rank, is defined as the N -tuple whose i-th entry
is the i-th rank of T .

The multilinear rank is intimately related to the higher-
order singular value decomposition. The first step to
take is to define a proper way to multiply a tensor and
a matrix.

Definition 2.2. The n-mode product of a tensor T ∈
RI1×I2×···×IN with a matrix U ∈ RJ×In is a tensor of
size (I1 × I2 × · · · In−1 × J × In+1 · · · × IN ) denoted by
T ×n U and its entries are defined as

(T ×n U)i1···in−1jin+1···iN =

In∑
in=1

Ti1···in−1inin+1···iNUjin .

The n-mode product satisfies to the following property:
given T ∈ RI1×I2×···×IN and two matrices F ∈ RJ×In ,
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G ∈ RK×J , one has

(T ×n F )×n G = T ×n (G · F ) ,

which generalizes to more than two matrices. We
are in shape to write a Singular Value Decomposi-
tion (SVD) applying to tensors, named Higher-Order
Singular Value Decomposition (HOSVD).
Theorem 2.3 (HOSVD De Lathauwer et al., 2000).
Any tensor T ∈ RI1×I2×···×IN can be written as the
product

T = C ×1 U
(1) ×2 U

(2) · · · ×N U (N),

where

1. U (n) is an orthogonal (In × In)-matrix, usually
denoted as factor matrix;

2. C is a (I1 × I2 × · · · IN )-tensor, usually referred
to as core tensor, of which the subtensors Cin=α

obtained by fixing the n-th index to α are such that

(i) they are mutually orthogonal: given two sub-
tensors Cin=α and Cin=β, they are orthogo-
nal for all possible values of n, α, β subject to
α ̸= β:

⟨Cin=α, Cin=β⟩ = 0,

(ii) they are ordered:

∥Cin=1∥ ≥ ∥Cin=2∥ · · · ≥ ∥Cin=In∥ ≥ 0.

The analogy with matrix SVD is straightforward: the
Frobenius norm of subtensors ∥Cin=i∥ := σ

(n)
i are the

n-mode singular values and the column vectors of the
matrices U (n) are the n-mode singular vectors. As in
the matrix case, where the number of non-zero singular
values controls the rank, in the higher-order setup we
have that, if Rn is equal to the highest index for which
∥Cin=Rn

∥ > 0 then one has that the n-rank of T is
equal to Rn. Tucker decomposition (Tucker, 1966) with
rank (R1, R2, . . . , RN ) can be obtained from HOSVD
by considering only the first Rn column vectors of the
matrix U (n) for each n ∈ [1, . . . , N ].

3 DEEP TUCKER FACTORIZATION

Following the terminology in Jiang et al. (2017), a
Tucker decomposition of a tensor W ∈ Rd1×···×dN is
the factorization of W as the product of a core tensor
G and N factor matrices V (n), n = 1, . . . , N , i.e.,

W = G ×1 V
(1) ×2 V

(2) · · · ×N V (N). (1)

A Tucker decomposition is said to be orthonormal if
each factor matrix has orthonormal columns. The or-
thonormal Tucker decomposition corresponds to the
HOSVD (see Theorem 2.3). In the literature, the term
Tucker decomposition generally refers to the orthonor-
mal Tucker decomposition.

Figure 1: Overparameterized Deep Tucker Factoriza-
tion

Tensor completion and overparameterized
Tucker factorization The learning problem we con-
sider is tensor completion. Let A ∈ Rd1×···×dN be the
tensor with missing entries to be recovered. We denote
by Ω ⊂ J1, d1K × . . . × J1, dN K the set of indexes with
non-zero (i.e., observed) entries. We consider a tensor
learning problem based on minimizing the following
objective function:

L(W) :=
1

|Ω|
∑

(i1,...,iN )∈Ω

ℓ(Wi1,...,iN −Ai1,...,iN ), (2)

where ℓ is a differentiable and locally smooth loss func-
tion.

Our goal is to study implicit regularization in over-
parameterized regimes. So, the tensor W is overpa-
rameterized using a deep Tucker decomposition. More
formally, W has the same form as in (1) with a core
tensor G ∈ Rd1×···×dN , which has the same dimen-
sion as to the original tensor W, and factor matri-
ces V (n) ∈ Rdn×dn , ∀n ∈ J1, NK, which are also
overparameterized via a product of multiple matri-
ces, i.e., V (n) =

[∏kn

i=1 A
n,1
i ωn

1 , . . . ,
∏kn

i=1 A
n,dn

i ωn
dn

]
,

where An,rn
i ∈ Rdn×dn and ωn

rn ∈ Rdn , ∀i ∈ J1, knK
and ∀rn ∈ J1, dnK. The core tensor G, the matrices
An,rn

i and the weight vectors wn
rn are the parameters

to be learned. kn + 1 is the depth along the n-th
mode. Figure 1 schematically shows the overparame-
terized Tucker factorization. Note that the deep tucker
decomposition of W can also be written as follows

W =

d1∑
r1=1

. . .

dN∑
rN=1

Gr1,...,rN

N⊗
n=1

kn∏
i=1

An,rn
i ωn

rn .

If Gr1,...,rN = 0 unless r1 = . . . = rN , we obtain the
deep CP decomposition (Hariz et al., 2022).

In the following, we consider learning the over-
parameterized Tucker factorization of W by mini-
mizing (2) using gradient descent. Let L(W) =
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Figure 2: Neural network corresponding to deep Tucker model. It is composed of: representation, 1×1 convolution,
outer-product pooling and dense layers.

Φ
(
{ωn

rn}n,rn , {A
n,rn
i }n,rn,i, {Gr1,...,rN }r1,...,rN

)
, ∀n ∈

J1, NK,∀rn ∈ J1, dnK,∀i ∈ J1, knK. Following previous
work on implicit regularization in matrix and tensor
factorization (Arora et al., 2019; Razin et al., 2021), we
consider gradient flow, which can be viewed as the limit
of gradient descent for infinitesimally small learning
rates:

d

dt
ωm
rm(t) =

− ∂

∂ωm
rm

Φ
(
{ωn

rn(t)}, {A
n,rn
i (t)}, {Gr1,...,rN (t)}

)
,

d

dt
Am,rm

j (t) =

− ∂

∂Am,rm
j

Φ
(
{ωn

rn(t)}, {A
n,rn
i (t)}, {Gr1,...,rN (t)}

)
,

and
d

dt
Gr1,...,rN (t) =

− ∂

∂Gr1,...,rN

Φ
(
{ωn

rn(t)}, {A
n,rn
i (t)}, {Gs1,...,sN (t)}

)
.

Our aim is to characterize the dynamics during gradient
flow of the norms of the subtensors {G:...:rn:...:}rn of
the core tensor G, as well as those of the norms of the
weight matrices {An,rn

i }n,rn,i and vectors {ωn
rn}n,rn .

Connection to deep neural networks Cohen et al.
(2016) showed that tensor completion using CP tensor
decomposition is equivalent to solving a prediction task
with a certain type of neural networks, consisting of
a representation layer which is followed by a single
hidden layer and the output layer (see also Razin et al.,
2021). From this point of view, the overparameterized
Tucker factorization can also be represented by a neural
network. As in deep CP (Hariz et al., 2022), the neural
network equivalent to tensor completion using deep
Tucker factorization adds depth to the representation
layer using the matrices An,rn

i . More formally, the deep
Tucker neural network computes the function:

f(x1, . . . , xN ):=
∑

r1,...,rN

Gr1,...,rN

N∏
n=1

〈
wn

rn ,
( kn∏
j=1

An,rn
j

)⊤
xn

〉
.

It consists of:

• a representation layer: a (deep) series of dense
layers using weight matrices An,rn

j that com-
putes a new representation of xn, i.e., fn

rn(xn) :=
j=kn∏

1

(
An,rn

j

)⊤
xn, ∀n ∈ J1, NK,∀rn ∈ J1, dnK,∀xn ∈

Rdn ;

• a hidden layer which is composed of:
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1. a 1 × 1 convolution operator with learnable
filters {wn

rn}
N
n=1 which computes the vectors

an ∈ Rdn such that (an)rn = ⟨wn
rn , f

n
rn(xn)⟩,

∀n ∈ J1, NK, rn ∈ J1, dnK;
2. a global pooling that outputs pool(:) =

vec(a1 ⊗ . . . ⊗ aN )—this corresponds to a
product pooling operation which computes∏N

n=1⟨wn
rn , f

n
rn(xn)⟩, (r1, . . . , rN ) ∈ J1, d1K ×

. . .× J1, dN K;

• a fully connected layer with weights Gr1,...,rN to
compute the output ⟨vec(G), vec(a1⊗ . . .⊗aN )⟩ =∑

r1,...,rN
Gr1,...,rN

∏N
n=1

〈
wn

rn , f
n
rn(xn)

〉
.

In the case of tensor completion, the input of this neural
network is the multi-index (i1, . . . , iN ) ∈ [d1]× . . . [dN ]
encoded via one hot encoding (x1, . . . , xN ) ∈ Rd1 ×
. . .RdN . The output is

Wi1,...,iN =
∑

r1,...,rN

Gr1,...,rN

N∏
n=1

 kn∏
j=1

An,rn
j wn

rn


in

=
∑

r1,...,rN

Gr1,...,rN

N∏
n=1

〈
kn∏
j=1

An,rn
j wn

rn , xn

〉
=f(x1, . . . , xN ).

Figure 2 provides a schematic representation of the
neural network corresponding to the deep Tucker fac-
torization model.

4 THEORETICAL ANALYSIS

This section contains the main theoretical results of the
paper. All the proofs are given in the supplementary
material.

4.1 Dynamics of Gradient Flow Over Deep
Tucker Factorization

Before stating our main theorem, we need the following
lemma.
Lemma 4.1. For all m ∈ J1, NK, rm ∈ J1, dmK, i, j ∈
J1, kmK, the following hold ∀t ≥ 0

i. ∥ωm
rm(t)∥2 − ∥G:...:rm:...:(t)∥2 = ∥ωm

rm(0)∥2 −
∥G:...:rm:...:(0)∥2,

ii. ∥Am,rm
i (t)∥2 − ∥ωm

rm(t)∥2 = ∥Am,rm
i (0)∥2 −

∥ωm
rm(0)∥2,

iii. ∥Am,rm
i (t)∥2 − ∥Am,rm

j (t)∥2 = ∥Am,rm
i (0)∥2 −

∥Am,rm
j (0)∥2.

We proved this result by showing that, ∀m ∈
J1, NK,∀rm ∈ J1, dmK,∀i ∈ J1, kmK,∀t ≥ 0,

d

dt
∥ωm

rm(t)∥2 =
d

dt
∥G:...:rm:...:(t)∥2 =

d

dt
∥Am,rm

i (t)∥2.

Lemma 4.1 shows that for every column vector wm
rm , the

corresponding subtensor G:...:rm:...: of the core tensor
G satisfies that ∥G:...:rm:...:(t)∥2 −∥ωm

rm(t)∥2 is constant
over time. So, the Frobenius norms of the subten-
sors of the core tensor in the m-th mode can be ob-
tained from the ℓ2-norms of the column vectors. If
at initialization ∥G:...:rm:...:(0)∥2 = ∥ωm

rm(0)∥2, then
∥G:...:rm:...:(t)∥2 = ∥ωm

rm(t)∥2, ∀t ≥ 0. This time-
invariant dynamic pattern also holds for the weight
matrices Am,rm

i .

Lemma 4.1 leads to a notion of unbalancedness magni-
tude for the deep Tucker factorization, as in previous
work on matrix and tensor decomposition (Arora et al.,
2019; Razin et al., 2021; Hariz et al., 2022; Razin et al.,
2022).
Definition 4.2. The unbalancedness magnitude at
time t ≥ 0 of deep Tucker factorization is defined as:

ε(t) = max (ε1(t), ε2(t)) ,

where

ε1(t) = max
m=1...N

rm=1...dm

∣∣∥ωm
rm(t)∥2 − ∥G:...:rm:...:(t)∥2

∣∣ ,
and

ε2(t) = max
m=1...N

rm=1...dm
i=1...km

∣∣∥ωm
rm(t)∥2 − ∥Am,rm

i (t)∥2
∣∣ .

By Lemma 4.1, the unbalancedness magnitude stays
constant during gradient descent training. So, if at
initialization ε(0) = 0, the unbalancesdness magnitude
at time t, ε(t) remains zero. This leads to the fact that,
∀m ∈ J1, NK,∀rm ∈ J1, dmK,∀i ∈ J1, kmK,

∥ωm
rm(t)∥ = ∥G:...:rm:...:(t)∥ = ∥Am,rm

i (t)∥. (3)

We are now able to state our main result.
Theorem 4.3. Assume that ε(0) = 0. Then, for any
m ∈ J1, NK, rm ∈ J1, dmK and time t ≥ 0 at which∏N

n=1

∏dn

rn=1

∥∥∥∏kn

j=1 A
n,rn
j (t)ωn

rn(t)
∥∥∥ ̸= 0, the subten-

sors of the core tensor and the weight vectors of the
deep Tucker factorization evolve according to

d

dt
∥G:...:rm:...:(t)∥ =

d

dt
∥ωm

rm(t)∥

=

∥∥∥∥∥∥
km∏
j=1

Am,rm
j (t)ωm

rm(t)

∥∥∥∥∥∥
∥ωm

rm(t)∥
δrm(t),

where

δrm(t) :=
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

∏
n ̸=m

∥∥∥∥∥∥
kn∏
j=1

An,rn
j (t)ωn

rn(t)

∥∥∥∥∥∥
∆r1,...,rN (t)
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with

∆r1,...,rN(t) :=

〈
−∇L(W(t)),

N⊗
n=1

kn∏
j=1

An,rn
j (t)ωn

rn(t)∥∥∥∥∥∥
kn∏
j=1

An,rn
j (t)ωn

rn(t)

∥∥∥∥∥∥
〉
.

Theorem 4.3 provides a differential equation that char-
acterizes the dynamics of gradient flow when solving
a tensor completion problem with a deep Tucker fac-
torization. A natural question is whether an implicit
regularization arises from performing gradient descent
and how it changes with the depth of the factorization,
which we address next.

4.2 Implicit Bias Towards Structured Sparsity

We now study the effect of the depth on the evolution
of the subtensor norms during gradient flow.

Corollary 4.4. Under the same assump-
tions as in Theorem 4.3 and if the matrices
{An,rn

i (0)} N dn kn
n=1 rn=1 i=1 satisfy An,rn

i (0)⊤An,rn
i (0) =

An,rn
i+1 (0)An,rn

i+1 (0)⊤ for all i ∈ J1, kn − 1K with kn ≥ 2,
rn ∈ J1, dnK and n ∈ J1, NK, we have:

i. if
d

dt
∥G:...:rm:...:(t)∥ ≥ 0, then

(
∥G:...:rm:...:(t)∥√

dm

)km

αrm(t)δrm(t) ≤

d

dt
∥G:...:rm:...:(t)∥ ≤ ∥G:...:rm:...:(t)∥kmδrm(t),

where αrm(t) :=
∣∣⟨v1,mrm (t), ω̂m

rm(t)⟩
∣∣ with ω̂m

rm(t) :=
ωm

rm
(t)

∥ωm
rm

(t)∥ and v1,mrm (t) being the first left singular

vector of Am,rm(t) :=
∏km

i=1 A
m,rm
i (t),

ii. if
d

dt
∥G:...:rm:...:(t)∥ ≤ 0, the inequalities are re-

versed,

iii. if in addition
∏

n ̸=m

∥∥∥∏kn

j=1 A
n,rn
j (t)ωn

rn(t)
∥∥∥ ≤ 1,

for all rn ∈ J1, dnK and n ̸= m, then

|δrm(t)| ≤ M∥G:...:rm:...:(t)∥,

with M = supt∈[0,T ]

√ ∑
r1,...,rm−1,rm+1,...,rN

∆2
r1,...,rN (t)

and training time T .

The inequalities in the above corollary also hold when
kn = 1. Corollary 4.4 shows that the derivative of
the subtensor norms is bounded by quantities which

are proportional to their size raised to the power of
the depth. As a result, the norms of the subtensors
can move faster when large and slower when small,
especially in situations where δrm is dominated by the
subtensor norms. This is ensured when the condition
in (iii) of Corollary 4.4 is satisfied. This effect enhances
the convergence to solutions with core tensors having
a few number of subtensors with non-nonzero norms.
A structured sparsity in the core tensor G is then pro-
moted. To see this more clearly, consider a 3-rd order
core tensor G ∈ Rd1×d2×d3 , the subtensors of G in the
mode 2 are the slices (i.e., matrices) {G:r2:}

d2
r2=1. The

evolution rates of the norm of these slices are propor-
tional to their norm raised to the power of k2. When
the depth k2 increases, the norms of some slices, those
which have the highest norms, will increase, while slices
with very small norms will remain with small norm
during training. At the end of the process, many en-
tries of the core tensor G will be near to zero, and
moreover these entries will be grouped into slices. This
leads to a structured sparse core tensor G. The same
holds for the other modes of the tensor and this ef-
fect is more pronounced with larger depths. The same
reasoning applies to vector norms ∥ωn

rn(t)∥ and ma-
trix norms ∥An,rn

i (t)∥ since they evolve similarly over
time (see (3)).

We now consider Tucker factorization without
depth (i.e., k1 = . . . = kN = 0).
Corollary 4.5. Under the same assumptions as in
Theorem 4.3 and if k1 = . . . = kN = 0, we have
d

dt
∥ωm

rm(t)∥ =
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)
∏
n ̸=m

∥∥ωn
rn(t)

∥∥ ∆̂r1,...,rN (t),

and
d

dt
∥G:...:rm:...:(t)∥ =

∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)
(∏
n ̸=m

∥G:...:rn:...:(t)∥

∆̂r1,...,rN (t)
)
,

where ∆̂r1,...,rN (t) =

〈
−∇L(W(t)),

N⊗
n=1

ωn
rn(t)∥∥ωn
rn(t)

∥∥
〉

.

Corollary 4.5 shows that in contrast to the deep fac-
torization model, the derivative of the norm of the
subtensor G:...:rm:...: in the case of Tucker decompos-
tion without depth does not depend on its norm but
only on the norms of the subtensors in the other modes.
The norms of all subtensors interact with each other,
and then the implicit bias towards sparse solutions is
less visible.

4.3 Relation to Multilinear Rank

Since our task is tensor completion, one can ask whether
the previous results on the dynamics of gradient flow
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3: Evolution of the squared norms of the core slices ||Gi,:,:(t)||2 (right column) and overparameterized
vectors ||

∏
A1,i

k (t)ω1
i (t)|| (left column) of deep Tucker factorization for mode 1 during gradient descent iterations.

Rows 1 to 4 correspond to model depth from 1 to 4, respectively.

could also describe implicit regularization towards low
tensor rank. The following proposition shows that the
structured sparsity of the core tensor G promotes low
multilinear rank solutions.

Proposition 4.6. Let We = G ×1

V (1) ×2 V (2) · · · ×N V (N), where V (n) =[∏kn

i=1 A
n,1
i ωn

1 , . . . ,
∏kn

i=1 A
n,dn

i ωn
dn

]
, the deep Tucker

factorization learned with gradient descent. Assume
that ∥V (n)∥ ̸= 0, ∀n ∈ J1, NK. For any ϵ > 0 and
n ∈ J1, NK, let Rn be the number of mode-n subtensors
of G satisfying ∥G:...:rn:...:∥ >

ϵ
√
dnN

∏N
n=1 ∥V (n)∥2

,

then we have

inf
W∈Rd1×···×dN

multirank(W)≤(R1,...,RN)

∥We −W∥ ≤ ϵ. (4)

Note that Rn in Proposition 4.6 becomes smaller when
the number of subtensors of the core tensor G with
near zero-norm increases. When the depth is large,
this effect is more pronounced. This means that we
are able to well-approximate the solution by a tensor

with low multilinear rank. To get some intuition, by
applying mode-n matricization to (1), we obtain

[W](n) = V (n)[G](n)
(
V (N) ⊙ . . .

⊙ V (n+1) ⊙ V (n−1) ⊙ . . . V (1)
)⊤

,

where [G](n) is the matricization of G in the mode
n. The number of non-zero rows of [G](n) is equal to
the number of subtensors of G in the mode n with
non-zero norm, which is small at the end of the op-
timization because of the implicit structured sparsity
regularization. Thus [G](n) is a low-rank matrix. Since
rank([W](n)) ≤ rank([G](n)), then [W](n) is also of
low-rank for every mode n, and by consequence W has
a low multilinear rank.

5 NUMERICAL EXPERIMENTS

We present and discuss numerical results on synthetic
data to illustrate our theoretical findings. We ana-
lyze the training of deep Tucker models to observe
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Figure 4: Effect of the depth on sparsity and gen-
eralization error. This figure shows the number of
overparameterized vectors from mode 1 with squared
norm greater than 0.01 at the end of training. Col-
ors corresponds to generalization performance, lighter
green the better, ranging from 10−12 to 10−4 MSE.
Deeper models lead to sparse and good solutions.

how it may lead to an implicit regularization towards
structured sparsity.

Synthetic data We consider a (10, 10, 10) random
tensor of Tucker multirank (3, 3, 3), built such that
each slice of its Tucker core has a norm less than 1.
The tensor is low-rank but not sparse. We train various
completion models from shallow to deep with 70% of
observed values; the goal is to complete the 30% missing
values. We used Tensorflow toolbox (Abadi et al., 2015)
and optimized our models with Adam and a learning
rate in {0.001, . . . , 0.005}. In the set of experiments
below, we initialized the parameters from a normal
distribution with zero mean and standard deviation in
{0.0005, .., 0.005}.

Effect of depth on structured sparsity Figure 3
depicts the norms of deep Tucker parameters over it-
erations during the training for various depths from 1
(3a and 3b) to 4 (3g and 3h). The left column shows
the evolution of ||

∏K
k=1 A

1,i
k (t)ω1

i (t)|| where K+1 is
the depth of the model. The right column shows the
squared norm of the corresponding slices of the tucker
core ||Gi,:,:(t)||2 through iterations. Rows 1 to 4 corre-
spond to model depth from 1 to 4, respectively.

We observe that structured sparsity is favored by deeper
models. For depth 1 and depth 2, some of the slices
emerge then ultimately drop closer to zero. With more
overparameterization (i.e., depth 3 to 4), sparsity is
more pronounced and is reached much faster.

We now focus on the generalization performance of so-
lutions found by deep tucker factorization. We consider
various models from depth 1 to 4 with the same initial-
ization used for Figure 3 and various seeds, ignoring

Figure 5: Effect of the depth on the rank. The figure
shows the number of slices of the tensor core in mode 1
with norm greater than 10−4 at the end of training after
HOSVD (without rank constraint). Colors corresponds
to generalization performance, ranging from 10−12 to
10−4 MSE, lighter green the better. Deeper models
lead to low-rank and good solutions.

runs that does not converge after our max iteration
budget. Every reported model achieves an error less
than 10−6.

Figure 4 shows the number of overparameterized vec-
tors

∏
A1,i

k ω1
i with a norm greater than 0.01 , at the

end of training , for many models varying in depth, ini-
tialization and optimization settings. The color of each
point depicts test error at convergence from green (low-
est error) to brown (highest error). We see that deeper
models converged to sparse solutions while achieving
low test error. Figure 5 reports the Tucker rank in the
mode 1 after performing HOSVD (without rank con-
straint) on the solution. We can see that the implicit
regularization towards structured sparsity in the model
parameters induces an implicit regularization towards
low Tucker rank.

Real data and baseline comparison We per-
formed experiments using real-world data. We used IL-
21 and COVID2 datasets, which contain mutein treat-
ment responses and COVID-19 systems serology, result-
ing in tensors of dimensions (11, 4, 12) and (10, 6, 11),
respectively. The results are depicted in Figures 1 and
2, which show completion performance with 70% of
missing data for multiple runs with various initializa-
tions and learning rates. Every single point stands for
an experiment. Points are plotted with a small random
displacement in x and y coordinates to better see point
clouds. Colors correspond to R2-score, lighter green
the better, ranging from 0.94 to 0.97 and 0.8 to 0.9 for

1http://tensorly.org/stable/modules/generated/
tensorly.datasets.load_IL2data.html

2http://tensorly.org/stable/modules/generated/
tensorly.datasets.load_covid19_serology.html

http://tensorly.org/stable/modules/generated/tensorly.datasets.load_IL2data.html
http://tensorly.org/stable/modules/generated/tensorly.datasets.load_IL2data.html
http://tensorly.org/stable/modules/generated/tensorly.datasets.load_covid19_serology.html
http://tensorly.org/stable/modules/generated/tensorly.datasets.load_covid19_serology.html
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Figure 6: Effect of the depth on sparsity and general-
ization error on IL-2 dataset. Colors corresponds to
R2-score performance, lighter-green the better, ranging
from 0.94 to 0.97.

Figure 7: Effect of the depth on sparsity and general-
ization error on COVID dataset. Colors corresponds to
R2-score performance, lighter-green the better, ranging
from 0.8 to 0.9.

IL-2 and COVID datasets respectively. These experi-
mental results corroborate the simulations and confirm
our theoretical findings. In Table 1, we also compare
R2-score on both datasets with Tucker-HOOI (Kolda
and Bader, 2009)(available in Tensorly) using the multi-
rank for which our model converged. We observe a
better performance for our method, notably for deeper
models.

6 DISCUSSION

This work is the first to our knowledge to theoretically
characterize implicit regularization in Deep Tucker fac-
torization. Compared to previous works, which con-
sidered matrix rank or tensor CP rank (Arora et al.,
2019; Razin et al., 2021), we focused on multilinear
rank which is based on the Tucker decomposition, a
popular technique for many data analysis and ML ap-
plications (Cichocki et al., 2016). In addition, we have
shown an implicit regularization towards structured

Methods Rank R2
IL-2 dataset

HOOI (3,4,3) 0.909
DeepTucker (depth 2) 0.968

HOOI (3,4,2) 0.925
DeepTucker (depth 3) 0.971

COVID-19 dataset
HOOI (9,6,9) 0.899

DeepTucker (depth 2) 0.869
HOOI (8,6,8) 0.625

DeepTucker (depth 4) 0.867

Table 1: Baseline comparison on the two real-world
datasets. We report the R2-score of tensor completion
with deep Tucker factorization and HOOI.

sparsity. Such an implicit regularization was observed
recently in Li et al. (2023) in the setting of linear neu-
ral networks. Our study extends this observation to
include deep nonlinear neural networks (as depicted in
Figure 2, deep Tucker decomposition corresponds to a
certain types of nonlinear neural networks). It is worth
noting that Tucker decomposition is a generalization
of CP decomposition (the core tensor of CP decompo-
sition is diagonal), and the dynamical analysis in this
case is more challenging and adds technical difficulties
which we handle by showing time-invariant dynamic
pattern between the core tensor, the weight vectors
and the depth matrices.

There are differences between our approach and that
of Razin et al. (2022) about the implicit bias over
hierarchical tensor (HT) factorization. The notion of
depth is different. In HT, depth is associated with the
hierarchy of factorization and it wasn’t shown if it has
an effect on the implicit regularization. However, we
relied on deep matrix factorization to define a notion of
depth for Tucker factorization that enhances implicit
bias. The hierarchical structure of HT imposes a notion
of locality and so the attention was towards implicit
regularization of local components of the tensor. In
deep Tucker model, we don’t have this notion of locality;
instead, we have implicit regularization that enhances
structured sparsity.

7 CONCLUSION

We provided a theoretical analysis of the dynamics of
gradient flow over Tucker tensor factorization. Our
analysis provides insight about the mechanism of im-
plicit regularization in deep learning. It shows that
deep Tucker factorization trained by gradient descent
could induce a structured sparse regularization, which
can have the effect of biasing the gradient descent to-
wards solutions with low multilinear rank.
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A Proofs

First, let us recall that A ∈ Rd1×...×dN is the ground truth tensor that we want to recover and Ω ⊂ J1, d1K× . . .×
J1, dN K is the set of indexes of observed elements. We minimize L(W) =

1

|Ω|
∑

(i1,...,iN )∈Ω

ℓ(Wi1,...,iN −Ai1,...,iN )

with W ∈ Rd1×...×dN having the following deep Tucker factorization:

W = G ×1


column 1︷ ︸︸ ︷
k1∏
i=1

A1,1
i ω1

1 , . . . ,

column d1︷ ︸︸ ︷
k1∏
i=1

A1,d1

i ω1
d1

×2 . . .×N

(
kN∏
i=1

AN,1
i ωN

1 , . . . ,

kN∏
i=1

AN,dN

i ωN
dN

)

with G ∈ Rd1×...×dN , An,rn
i ∈ Rdn×dn and ωn

rn ∈ Rdn . W can also be written:

W =

d1∑
r1=1

. . .

dN∑
rN=1

Gr1,...,rN

N⊗
n=1

kn∏
i=1

An,rn
i ωn

rn .

Consider that L(W) = Φ
({

ωn
rn

}N
n=1

, {An,rn
i } N dn kn

n=1, rn=1, i=1 , {Gr1,...,rN=1}d1,...,dN

r1=1,...,rN

)
. Using gradient descent

with infinitesimally small learning rate and near zero initialization we have:

d

dt
ωm
rm(t) = − ∂

∂ωm
rm

Φ
({

ωn
rn(t)

} N dn

n=1,rn=1
, {An,rn

i (t)} N dn kn

n=1, rn=1, i=1 , {Gr1,...,rN (t)}d1,...,dN

r1=1,...,rN=1

)
,

d

dt
Am,rm

j (t) = − ∂

∂Am,rm
j

Φ
({

ωn
rn(t)

} N dn

n=1,rn=1
, {An,rn

i (t)} N dn kn

n=1, rn=1, i=1 , {Gr1,...,rN (t)}d1,...,dN

r1=1,...,rN=1

)
,

d

dt
Gr1,...,rN (t)=− ∂

∂Gr1,...,rN

Φ
({

ωn
rn(t)

} N dn

n=1,rn=1
, {An,rn

i (t)} N dn kn

n=1, rn=1, i=1 , {Gs1,...,sN (t)}d1,...,dN

s1=1,...,sN=1

)
.

A.1 Proof of Lemma 4.1

To show Lemma 4.1, we will use the following result shown in Razin et al. (2021).

Lemma A.1. ∀A ∈ Rd1×...×dN and {wn ∈ Rdn}Nn=1 where d1, . . . dN ∈ N, it holds that

〈
A,

N⊗
n′=1

wn′

〉
=

〈
[A](n) · ⊙

n′ ̸=n
wn′

, wn

〉
, n = 1, . . . , N

where [A](n) is matricization of the tensor A in the mode n, and ⊙ is the Kronecker product.

Proof of Lemma 4.1. i. We compute
d

dt
∥ωm

rm(t)∥2. We assume that {ωn
rn}(n,rn )̸=(m,rm), {An,rn

i } N dn kn

n=1, rn=1, i=1

and {Gr1,...,rN } d1,...,dN

r1=1,...,rN=1 are fixed and consider:

Φm
rm(ωm

rm) = Φ
(
{ωn

rn}
N dn
n=1,rn=1, {A

n,rn
i } N dn kn

n=1, rn=1, i=1 , {Gr1,...,rN } d1,...,dN

r1=1,...,rN=1

)
.



Kais Hariz, Hachem Kadri, Stéphane Ayache, Maher Moakher, Thierry Artières

For ∆ ∈ Rdm , using first-order Taylor approximation we have

Φm
rm(ωm

rm +∆) = L

(
W +

∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN

m−1⊗
n=1

kn∏
i=1

An,rn
i ωn

rn ⊗
km∏
i=1

Am,rm
i ∆⊗

N⊗
n=m+1

kn∏
i=1

An,rn
i ωn

rn

)

= L(W) +

〈
∇L(W),

∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN

m−1⊗
n=1

kn∏
i=1

An,rn
i ωn

rn ⊗
km∏
i=1

Am,rm
i ∆⊗

N⊗
n=m+1

kn∏
i=1

An,rn
i ωn

rn

)〉
+ o(∥∆∥)

= L(W) +
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN

〈
[∇L(W)](m)

⊙
n ̸=m

kn∏
i=1

An,rn
i ωn

rn

 ,

km∏
i=1

Am,rm
i ∆

〉
+ o(∥∆∥)

= L(W) +

〈 ∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN

(
km∏
i=1

Am,rm
i

)T

[∇L(W)](m)⊙
n ̸=m

kn∏
i=1

An,rn
i ωn

rn

 ,∆

〉
+ o(∥∆∥).

Since

d

dt
ωm
rm(t) = − ∂Φ

∂ωm
rm

({
ωn
rn(t)

} N dn

n=1,rn=1
, {An,rn

i (t)} N dn kn

n=1, rn=1, i=1 , {Gr1,...,rN (t)}d1,...,dN

r1=1,...,rN=1

)
,

then

d

dt
ωm
rm(t) = −

∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

(
km∏
i=1

Am,rm
i (t)

)T

[∇L(W(t))](m)

⊙
n ̸=m

kn∏
i=1

An,rn
i (t)ωn

rn(t)

 .

So we have

d

dt
∥ωm

rm(t)∥2 = 2

〈
ωm
rm(t),

d

dt
ωm
rm(t)

〉

= −2

〈
ωm
rm(t),

∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

(
km∏
i=1

Am,rm
i (t)

)T

[∇L(W(t))](m)⊙
n ̸=m

kn∏
i=1

An,rn
i (t)ωn

rn(t)

〉

= −2
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

〈
km∏
i=1

Am,rm
i (t)ωm

rm(t),

[∇L(W(t))](m)

⊙
n ̸=m

kn∏
i=1

An,rn
i (t)ωn

rn(t)

〉

= 2
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

〈
−∇L(W(t)),

N⊗
n=1

kn∏
i=1

An,rn
i (t)ωn

rn(t))

〉
. (5)
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We now compute
d

dt
Gr1,...,rN (t). We assume that {ωn

rn}
N dn

n=1 rn=1, {An,rn
i } N dn kn

n=1, rn=1, i=1 and
{Gs1,...,sN }(s1,...,sN )̸=(r1,...,rN ) are fixed and consider:

Φr1,...,rN (Gr1,...,rN ) = Φ
(
{ωn

rn}
N dn

n=1,rn=1, {A
n,rn
i } N dn kn

n=1, rn=1, i=1 , {Gs1,...,sN } d1,...,dN

s1=1,...,sN=1

)
.

For ∆ ∈ R, using first-order Taylor approximation we have

Φr1,...,rN (Gr1,...,rN +∆) = L

(
W +∆

N⊗
n=1

kn∏
i=1

An,rn
i ωn

rn

)

= L(W) +

〈
∇L(W),∆

N⊗
n=1

kn∏
i=1

An,rn
i ωn

rn

〉
+ o(∥∆∥)

= L(W) + ∆

〈
∇L(W),

N⊗
n=1

kn∏
i=1

An,rn
i ωn

rn

〉
+ o(∥∆∥)

Since

d

dt
Gr1,...,rN (t)=− ∂

∂Gr1,...,rN

Φ
({

ωn
rn(t)

} N dn

n=1,rn=1
, {An,rn

i (t)} N dn kn

n=1, rn=1, i=1 , {Gs1,...,sN (t)}d1,...,dN

s1=1,...,sN=1

)
,

then

d

dt
Gr1,...,rN (t) =

〈
−∇L(W(t)),

N⊗
n=1

kn∏
i=1

An,rn
i (t)ωn

rn(t)

〉
.

So we have

d

dt
∥ωm

rm(t)∥2 = 2
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)
d

dt
Gr1,...,rN (t)

=
∑

r1,...,rm−1,rm+1,...,rN

d

dt
(G2

r1,...,rN (t))

=
d

dt

∑
r1,...,rm−1,rm+1,...,rN

(G2
r1,...,rN (t))

=
d

dt
∥G:...:rm:...:(t)∥2,

where G:...:rm:...: ∈ Rd1×...×dm−1×dm+1×...×dN is the subtensor obtained by fixing the index of the mode m
equal to rm.

Thus, ∀rm = 1 . . . dm,

∥ωm
rm(t)∥2 − ∥G:...:,rm,:...:(t)∥2 = ∥ωm

rm(0)∥2 − ∥G:...:,rm,:...:(0)∥2.

ii. We compute
d

dt

(
∥An,r

i (t)∥2
)
. Assume that {An,rn

j }(n,rn,j) ̸=(m,rm,i), {Gr1,...,rN } d1,...,dN

r1=1,...,rN=1 and {ωn
rn}

N dn
n=1 rn=1
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are fixed.

Φm,rm
i (Am,rm

i +∆) = L

(
W +

∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN

m−1⊗
n=1

kn∏
j=1

An,rn
j ωn

rn ⊗
i−1∏
j=1

Am,rm
j ∆

km∏
j=i+1

Am,rm
j ωm

rm ⊗
N⊗

n=m+1

kn∏
j=1

An,rn
j ωn

rn

)
+ o(∥∆∥)

= L(W) +
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN

〈
∇L(W),

m−1⊗
n=1

kn∏
j=1

An,rn
j ωn

rn ⊗
i−1∏
j=1

Am,rm
j ∆

km∏
j=i+1

Am,rm
j ωm

rm ⊗
N⊗

n=m+1

kn∏
j=1

An,rn
j ωn

rn

〉
+ o(∥∆∥)

= L(W) +
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN

〈
[∇L(W)](m)

⊙
n ̸=m

kn∏
j=1

An,rn
j ωn

rn

 ,

i−1∏
j=1

Am,rm
j ∆

km∏
j=i+1

Am,rm
j ωm

rm

〉
+ o(∥∆∥)

= L(W) +
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN

〈i−1∏
j=1

Am,rm
j

T

[∇L(W)](m)

⊙
n̸=m

kn∏
j=1

An,rn
j ωn

rn


 km∏

j=i+1

Am,rm
j ωm

rm

T

,∆

〉
+ o(∥∆∥)

= L(W) +

〈 ∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN

i−1∏
j=1

Am,rm
j

T

[∇L(W)](m)

⊙
n ̸=m

kn∏
j=1

An,rn
j ωn

rn


ωmT

rm

 km∏
j=i+1

Am,rm
j

T

,∆

〉
+ o(∥∆∥).

Since

d

dt
Am,rm

j (t) = − ∂

∂Am,rm
j

Φ
({

ωn
rn(t)

} N dn

n=1,rn=1
, {An,rn

i (t)} N dn kn

n=1, rn=1, i=1 , {Gr1,...,rN (t)}d1,...,dN

r1=1,...,rN=1

)
,

then

d

dt
Am,rm

i (t) = −
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

i−1∏
j=1

Am,rm
j (t)

T

[∇L(W(t))](m)

⊙
n ̸=m

kn∏
j=1

An,rn
j (t)ωn

rn(t)

ωm
rm(t)T

 km∏
j=i+1

Am,rm
j (t)

T

. (6)
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So we have

d

dt
∥Am,rm

i (t)∥2 = 2

〈
Am,rm

i (t),
d

dt
Am,rm

i (t)

〉

= 2

〈
Am,rm

i (t),−
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

i−1∏
j=1

Am,rm
j (t)

T

[∇L(W(t))](m)

⊙
n ̸=m

kn∏
j=1

An,rn
j (t)ωn

rn(t)

ωm
rm(t)T

 km∏
j=i+1

Am,rm
j (t)

T 〉

= −2
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

〈
i−1∏
j=1

Am,rm
j (t)Am,rm

i (t)

km∏
j=i+1

Am,rm
j (t)ωm

rm(t), [∇L(W(t))](m)⊙
n ̸=m

kn∏
j=1

An,rn
j (t)ωn

rn(t)

〉

= 2
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

〈
−∇L(W(t)),

N⊗
n=1

kn∏
j=1

An,rn
j (t)ωn

rn(t)

〉
.

Then,
d

dt
∥ωm

rm(t)∥2 =
d

dt
∥Am,rm

i (t)∥2, ∀i = 1, . . . , km, and thus, ∀i = 1, . . . , km, ∀t ≥ 0,

∥Am,rm
i (t)∥2 − ∥ωm

rm(t)∥2 = ∥Am,rm
i (0)∥2 − ∥ωm

rm(0)∥2 (7)

iii. Subtracting the same equation (7) with i replaced by j, we obtain, ∀i, j = 1, . . . , km, ∀t ≥ 0,

∥Am,rm
i (t)∥2 − ∥Am,rm

j (t)∥2 = ∥Am,rm
i (0)∥2 − ∥Am,rm

j (0)∥2.

A.2 Proof of Theorem 4.3

Proof. Recall that ε1(t) = max
m=1...N

rm=1...dm

∣∣∥ωm
rm(t)∥2 − ∥G:...:rm:...:(t)∥2

∣∣. If ε(0) = 0, then ε1(0) = 0. Moreover, by

Lemma 4.1 (i), we have ε1(t) is constant over time. Then ε1(t) = 0, ∀t ≥ 0, which implies that; ∀t ≥ 0

∥ωm
rm(t)∥ = ∥G:...:rm:...:(t)∥. (8)
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Then

d

dt
∥G:...:rm:...:(t)∥ =

d

dt
∥ωm

rm(t)∥ =
1

2

1

∥ωm
rm(t)∥

d

dt
∥ωm

rm(t)∥2

=
1

∥ωm
rm(t)∥

∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

〈
−∇L(W(t)),

N⊗
n=1

kn∏
j=1

An,rn
j (t)ωn

rn(t)

〉
(using (5))

=
1

∥ωm
rm(t)∥

∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

N∏
n=1

∥∥∥∥∥∥
kn∏
j=1

An,rn
j (t)ωn

rn(t)

∥∥∥∥∥∥
〈
−∇L(W(t)),

N⊗
n=1

kn∏
j=1

An,rn
j (t)ωn

rn(t)∥∥∥∥∥∥
kn∏
j=1

An,rn
j (t)ωn

rn(t)

∥∥∥∥∥∥
〉

=

∥∥∥∥∥∥
km∏
j=1

Am,rm
j (t)ωm

rm(t)

∥∥∥∥∥∥
∥ωm

rm(t)∥
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

∏
n ̸=m

∥∥∥∥∥∥
kn∏
j=1

An,rn
j (t)ωn

rn(t)

∥∥∥∥∥∥


〈
−∇L(W(t)),

N⊗
n=1

kn∏
j=1

An,rn
j (t)ωn

rn(t)∥∥∥∥∥∥
kn∏
j=1

An,rn
j (t)ωn

rn(t)

∥∥∥∥∥∥
〉
.

A.3 Proof of Corollary 4.4

Proof. First, we use the same arguments of the proof of Theorem 1 in Arora et al. (2018) to prove that:

Am,rm
i (t)⊤Am,rm

i (t) = Am,rm
i+1 (t)Am,rm

i+1 (t)⊤ , ∀i ∈ J1, km − 1K,∀t ≥ 0.

Using (6), we have

d

dt
Am,rm

i (t) = −

i−1∏
j=1

Am,rm
j (t)

⊤

[∇L(W(t))](m)

 ∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)
⊙
n ̸=m

kn∏
j=1

An,rn
j (t)ωn

rn(t)

ωm
rm(t)⊤

 km∏
j=i+1

Am,rm
j (t)

⊤

.

Since

d

dt

(
Am,rm

i (t)⊤Am,rm
i (t)

)
=

(
d

dt
Am,rm

i (t)

)⊤

Am,rm
i (t) +Am,rm

i (t)⊤
d

dt
Am,rm

i (t),
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then

d

dt

(
Am,rm

i (t)⊤Am,rm
i (t)

)
=

−
km∏

j=i+1

Am,rm
j (t)ωm

rm(t)

 ∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)
⊙
n ̸=m

kn∏
j=1

An,rn
j (t)ωn

rn(t)

⊤

[∇L(W(t))]⊤(m)

i∏
j=1

Am,rm
j (t)

−

 i∏
j=1

Am,rm
j (t)

T

[∇L(W(t))](m)

 ∑
r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)
⊙
n ̸=m

kn∏
j=1

An,rn
j (t)ωn

rn(t)

ωm
rm(t)⊤

 km∏
j=i+1

Am,rm
j (t)

⊤

.

We also compute
d

dt

(
Am,rm

i+1 (t)Am,rm
i+1 (t)⊤

)
using the same way and obtain that

d

dt

(
Am,rm

i (t)⊤Am,rm
i (t)

)
=

d

dt

(
Am,rm

i+1 (t)Am,rm
i+1 (t)⊤

)
.

Using the fact that Am,rm
i (0)⊤Am,rm

i (0) = Am,rm
i+1 (0)Am,rm

i+1 (0)⊤, we then have, ∀t ≥ 0,

Am,rm
i (t)⊤Am,rm

i (t) = Am,rm
i+1 (t)Am,rm

i+1 (t)⊤. (9)

We now consider singular value decompositions of Am,rm
i (t) and Am,rm

i+1 (t): Am,rm
i (t) =

Um,rm
i (t)Σm,rm

i (t)V m,rm
i (t)⊤ and Am,rm

i+1 (t) = Um,rm
i+1 (t)Σm,rm

i+1 (t)V m,rm
i+1 (t)⊤, where Σm,rm

i (t) and Σm,rm
i+1 (t)

are diagonal matrices whose diagonal entries are the singular values of Am,rm
i (t) and Am,rm

i+1 (t), respectively,
ordered in decreasing order. Using (9), we obtain

V m,rm
i (t)

(
Σm,rm

i (t)
)2

V m,rm
i (t)⊤ = Um,rm

i+1 (t)
(
Σm,rm

i+1 (t)
)2

Um,rm
i+1 (t), (10)

and so we have two orthogonal eigenvalue decompositions of the same matrix. Since the singular values are
positives and ordered in decreasing order, then Σm,rm

i (t) = Σm,rm
i+1 (t). Thus all the matrices Am,rm

i (t), ∀i, have
the same singular values. Let Σm,rm(t) be the diagonal matrix of singular values. It can be written as follows:
Σm,rm(t) = diag

(
λm,rm
1 (t)Iα1 , . . . , λ

m,rm
p (t)Iαp

)
, where, ∀s ∈ {1, . . . , p}, αs is the multiplicity of the singular

value λm,rm
s (t) and Iαs is the αs × αs identity matrix. Moreover, (10) also implies that

Um,rm
i+1 (t) = V m,rm

i (t)Om,rm
i (t),

where Om,rm
i (t) = diag

(
Om,rm

i,1 (t), . . . , Om,rm
i,p (t)

)
and, ∀s ∈ {1, . . . , p}, Om,rm

i,s (t) ∈ Rαs×αs is an orthogonal
matrix. Using this and the fact that, ∀i, Om,rm

i (t) and Σm,rm(t) commute, we obtain that

Am,rm(t) :=

km∏
i=1

Am,rm
i (t) = Um,rm

1 (t)

km−1∏
i=1

Om,rm
i (t)

(
Σm,rm(t)

)km
V m,rm
km

(t)⊤. (11)

This is a singular value decomposition of Am,rm(t). So if Σm,rm(t) = diag
(
σm,rm
1 (t), . . . , σm,rm

dm
(t)
)
, then the set of

singular values of Am,rm(t) is
{(

σm,rm
l (t)

)km
, 1 ≤ l ≤ dm

}
. The matrix Am,rm(t) can thus be written as follows

Am,rm(t) =

dm∑
l=1

(
σm,rm
l (t)

)km
um,rm
l (t)vm,rm

l (t)⊤,

where um,rm
l (t) and vm,rm

l (t) are the l-th left and right singular vectors of Am,rm(t), respectively.
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We are now able to compute a lower bound for
∥∥∥∥km∏
i=1

Am,rm
i (t)wm

rm(t)

∥∥∥∥2.
∥∥∥∥∥
km∏
i=1

Am,rm
i (t)wm

rm(t)

∥∥∥∥∥
2

=

∥∥∥∥∥
dm∑
l=1

(
σm,rm
l (t)

)km
um,rm
l (t)vm,rm

l (t)⊤wm
rm(t)

∥∥∥∥∥
2

=

∥∥∥∥∥
dm∑
l=1

(
σm,rm
l (t)

)km
〈
vm,rm
l (t), wm

rm(t)
〉
um,rm
l (t)

∥∥∥∥∥
2

=

dm∑
l=1

(
σm,rm
l (t)

)2km
〈
vm,rm
l (t), wm

rm(t)
〉2

≥
(
σm,rm
1 (t)

)2km
〈
vm,rm
1 (t), wm

rm(t)
〉2

= ∥Am,rm
i (t)∥2km

2

〈
vm,rm
1 (t), wm

rm(t)
〉2

≥
(
∥Am,rm

i (t)∥√
dm

)2km 〈
vm,rm
1 (t), wm

rm(t)
〉2

.

Let us now recall that ε2(t) = max
m=1...N

rm=1...dm
i=1...km

∣∣∥ωm
rm(t)∥2 − ∥Am,rm

i (t)∥2
∣∣. If ε(0) = 0, then ε2(0) = 0. Moreover, by

Lemma 4.1 (ii), we have ε2(t) is constant over time. Then ε2(t) = 0, ∀t ≥ 0, which implies that, ∀i ∈ J1, kmK,
∀t ≥ 0, ∥Am,rm

i (t)∥ = ∥wm
rm(t)∥. Using (8), we obtain that, ∀i ∈ J1, kmK, ∀t ≥ 0, ∥Am,rm

i (t)∥ = ∥G:...:rm:...:(t)∥.

We then have ∥∥∥∥∥
km∏
i=1

Am,rm
i (t)wm

rm(t)

∥∥∥∥∥ ≥
(
∥G:...:rm:...:(t)∥√

dm

)km ∣∣〈vm,rm
1 (t), wm

rm(t)
〉∣∣ . (12)

On the other hand,∥∥∥∥∥
km∏
i=1

Am,rm
i (t)wm

rm(t)

∥∥∥∥∥ ≤

∥∥∥∥∥
km∏
i=1

Am,rm
i (t)

∥∥∥∥∥∥∥wm
rm(t)

∥∥ ≤
km∏
i=1

∥Am,rm
i (t)∥

∥∥wm
rm(t)

∥∥=∥G:...:rm:...:(t)∥km
∥∥wm

rm(t)
∥∥ . (13)

i. The proof consists of applying Theorem 4.3 with (12) and (13) and using that δrm ≥ 0 if
d

dt
∥G:...:rm:...:(t)∥ ≥ 0.

ii. If
d

dt
∥G:...:rm:...:(t)∥ ≤ 0, then δrm ≤ 0, so the inequalities are reversed.

iii. Using the definition of δrm(t) provided in Theorem 4.3, we have

|δrm(t)| =

∣∣∣∣∣∣
∑

r1,...,rm−1,rm+1,...,rN

Gr1,...,rN (t)

∏
n ̸=m

∥∥∥∥∥∥
kn∏
j=1

An,rn
j (t)ωn

rn(t)

∥∥∥∥∥∥
∆r1,...,rN (t)

∣∣∣∣∣∣
≤

∑
r1,...,rm−1,rm+1,...,rN

|Gr1,...,rN (t)|

∏
n ̸=m

∥∥∥∥∥∥
kn∏
j=1

An,rn
j (t)ωn

rn(t)

∥∥∥∥∥∥
 |∆r1,...,rN (t)|

≤
∑

r1,...,rm−1,rm+1,...,rN

|Gr1,...,rN (t)||∆r1,...,rN (t)| (since
∏
n ̸=m

∥∥∥∥∥∥
kn∏
j=1

An,rn
j (t)ωn

rn(t)

∥∥∥∥∥∥ ≤ 1)

≤
√ ∑

r1,...,rm−1,rm+1,...,rN

G2
r1,...,rN (t)

√ ∑
r1,...,rm−1,rm+1,...,rN

∆2
r1,...,rN (t) (using Cauchy–Schwarz inequality)

≤ ∥G:...:rm:...:(t)∥ sup
t∈[0,T ]

√ ∑
r1,...,rm−1,rm+1,...,rN

∆2
r1,...,rN (t).
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The last inequality holds because L is locally smooth, and so t 7→
√∑

r1,...,rm−1,rm+1,...,rN
∆2

r1,...,rN (t) is
continuous and also bounded on the compact interval [0, T ].

A.4 Proof of Corollary 4.5

Proof. The proof consists of applying Theorem 4.3 with k1 = . . . = kN = 0 and using the fact that ∥ωm
rm(t)∥ =

∥G:...:rm:...:(t)∥.

A.5 Proof of Proposition 4.6

Proof. Let G̃ the tensor obtained by setting to zero the dn −Rn subtensors of G in the mode n satisfying:

∥G:...:rn:...:∥ ≤ ϵ
√
dnN

∏N
n=1 ∥V (n)∥2

, ∀n ∈ J1, NK.

We assume without loss of generality that these subtensors are in positions Rn + 1, . . . , dn. Let W̃ be the tensor
computed as follows W̃ = G̃ ×1 V

(1) ×2 V
(2) · · · ×N V (N). For all n ∈ J1, NK, G̃ has dn −Rn subtensors with zero

norm. The matricization [G̃](n), ∀n ∈ J1, NK, has then dn −Rn rows with zero norm, and so rank([G̃](n)) ≤ Rn,
∀n ∈ J1, NK. On the other hand, applying mode-n matricization to W̃, we obtain

[W̃](n) = V (n)[G̃](n)
(
V (N) ⊙ . . .⊙ V (n+1) ⊙ V (n−1) ⊙ . . . V (1)

)⊤
.

Thus, ∀n ∈ J1, NK, rank([W̃](n)) ≤ rank([G̃](n)) ≤ Rn. The multilinear rank of W̃ is then less than (R1, . . . , Rn).

Moreover,

∥We − W̃∥ = ∥(G − G̃)×1 V
(1) ×2 V

(2) · · · ×N V (N)∥
≤ ∥G − G̃∥∥V (1)∥2 . . . ∥V (N)∥2. (14)

We have:

∥G − G̃∥2 ≤
N∑

n=1

dn∑
rn=Rn+1

∥G:...:rn:...:∥2

≤
N∑

n=1

dn −Rn

dnN

ϵ2

∥V (1)∥22 . . . ∥V (N)∥22

≤ ϵ2

∥V (1)∥22 . . . ∥V (N)∥22
.

Then, using (14), we obtain ∥We − W̃∥ ≤ ϵ. Thus, we found a tensor W̃ such as ∥We − W̃∥ ≤ ϵ and
multirank(W̃) ≤ (R1, . . . ,Rn). This completes the proof.
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