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Optimality conditions for spatial search with multiple marked vertices
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We contribute to fulfill the long-lasting gap in the understanding of the spatial search with multiple marked
vertices. The theoretical framework is that of discrete-time quantum walks (QW), i.e., local unitary matrices that
drive the evolution of a single particle on the lattice. QW based search algorithms are well understood when they
have to tackle the fundamental problem of finding only one marked element in a d-dimensional grid and it has
been proven they provide a quadratic advantage over classical searching protocols. However, once we consider
searching more than one element, the behavior of the algorithm may be affected by the spatial configuration
of the marked elements and even the quantum advantage is no longer guaranteed. Here our main contribution
is threefold: (i) we provide sufficient conditions for optimality for a multi-items QWSearch algorithm; (ii) we
provide analytical evidence that almost, but not all spatial configurations with multiple marked elements are
optimal; and (iii) we numerically show that the computational advantage with respect to the classical counterpart
is not always certain and it does depend on the proportion of searched elements over the total number of grid
points.

DOI: 10.1103/PhysRevResearch.5.033021

I. INTRODUCTION

One of the main applications of quantum computing is
algorithmic. Considered to be still beyond the reach of today’s
quantum computers, it has had a major impact in several
fields, from cryptography [1] and quantum machine learning
[2] to quantum simulation [3]. The first quantum algorithms
were formulated in the early 1990s [4,5], and since then
researchers have continued to create new ones over the past
30 years [6], trying to optimize computing time and quantum
resources. However, compared to the thousands of nonquan-
tum algorithms, the number of quantum algorithms is still
modest. This is essentially due to the difficulty of proving the
advantage that each of them has over its classical counterpart.
An example is given by one of the most studied problems in
quantum computing: the quantum search in an unstructured
set of N elements. The first algorithm aiming to solve this
problem appeared in Grover’s [7] work. The basic idea was
to introduce a quantum oracle, which recognizes a solution
to a search problem when it sees one. The Grover algorithm
could solve this problem in O(

√
N ) time, i.e., quadratically

faster than what a classical computer needs to complete the
same task, and it soon seemed to be extraordinary advanta-
geous to speedup many classical algorithms that use search
heuristic [8–10]. In fact the Grover search algorithm can be
applied to any decision problems whose solutions can be
checked efficiently [11], with a clear polynomial speedup.
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Such quantum advantage has been proven for several gener-
alizations, for instance when the target elements are multiple
[12]. However, the situation may be dramatically different
for spatial searching, where quadratic speedup is known to
be possible only for some specific case. Spatial search may
come in different forms, in continuous time and discrete time.
The first example of spatial search algorithm in continuous
time has been introduced by Childs and Goldstone [13] in the
quantum walk framework, where the searching method now
involves a Hamiltonian defined over an arbitrary graph, which
has to be able to solve the searching problem. In this context,
it has been proven that only for some certain graphs, such as
a complete graph or the hypercube, the hitting time shows a
quadratic speedup with respect to the classical counterpart.
This long-standing problem has been recently addressed by
Chakraborty, Novo, and Roland [14], who obtained the neces-
sary and sufficient conditions for the Childs and Goldstone
algorithm to be optimal for any graph that meets certain
general spectral properties. Another open problem that has
remained poorly understood until now is the spatial search
of multiple target items, both in continuous and discrete time.
While the hitting time in the case we search only one target
item is in line with the one recovered by the Grover algorithm,
when the items are multiple, their spatial configuration can
affect significantly the performance (also known as the time
complexity) of the algorithm. The intuitive reason behind it
is that the marked vertices interfere among them, and the
interplay between constructive and destructive interference
may determine a very different scenario. Such a scenario has
been mentioned first by Aaronson and Ambainis [15] and
recently observed by Bezerra et al. [16], but has never been
studied and fully understood. Yet traditionally, it has been
assumed that when the number of elements searched is low,
the spatial search algorithm is optimal. In this paper, we will
prove this assumption false. In fact, we will prove that even
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when considering only two searched elements, there is always
a set of spatial configurations for which the search algorithm
is suboptimal. Fortunately, we need not worry because this
number is small compared to the number of optimal configu-
rations, for all practical purposes. More specifically, we will
show that almost all configurations with two marked elements
are optimal [complexity in O(

√
Npolylog(N )], and we will

be able to precisely upper bound the number of nonoptimal
configurations [complexity in O(N )]. As a byproduct of this
rigorous result, we will provide a set of sufficient conditions
on the searched elements’ relative position on the grid to
ensure the optimality of the algorithm. Finally, we discuss the
results and we provide strong numerical evidence that such
nonoptimality issue is not only present when the number of
marked elements is two. More generally, the quantum ad-
vantage will be shown to not always be guaranteed and also
strictly depending on the ratio of marked elements M/N , with
M the number of the searched elements on the grid.

Optimality. In this article, the quantum walk search algo-
rithm we consider is based on an alternated coined quantum
walk, as introduced by Di Franco et al. [17], defined on a
grid of size

√
N × √

N with M the number of marked el-
ements. We call a configuration for which the QWSearch
algorithm solve the searching problem in O(

√
N/M ) modulo

some log(N/M ) coefficient optimal. These configurations are
called optimal because we cannot do better than that for this
specific algorithm on a grid. However, in this work, we show
that we can surprisingly do worse without having the search-
ing process completely collapsing for M = 2.

Related work. The search problem for multiple marked el-
ements has been addressed by several authors and in different
frameworks. In the discrete-time mathematical framework,
Ambainis and Rivosh tackled this problem using a quantum
walk-based algorithm and observed for the first time that some
specific configurations could lead to a failure while search-
ing [18]. They named this kind of configuration “exceptional
configurations.” This work was followed by Nahimovs and
Rivosh [19], in the framework of the Grover coined QW,
where the authors used topological arguments to prove the ex-
istence of such configurations for which the search completely
fails. Later on, Bezerra et al. [16] argued that the relative
position of the marked elements might affect the searching
behavior. However, the general solution to this problem re-
mained essentially open. In fact, all the above results lack
generality and rely on very specific configurations. In partic-
ular, most of them qualify this configuration of exceptional.
It is important here to distinguish exceptional configurations,
for which the searching algorithms fail, from the nonoptimal
configurations. For such configurations, there exist solutions
to the searching problem, but they are nonoptimal. We aim
to investigate such configurations in this article. Multitarget
searching has been studied also in the continuous time frame-
work, e.g., by Wong et al. [20], who showed how one can
search multiple marked vertices on the simplex of complete
graphs. They provided numerical evidence that, for some
particular configurations of marked elements, the search is
affected and might even fail entirely. Moreover, only a few
of the aforementioned authors provided analytical solutions.
Finally, in all of them the common conjecture is that for a well
defined QWSearching algorithm, the search would either be

optimal or completely fail for rare exceptional configurations.
In the following, we prove the existence of configurations for
which the search is working but suboptimal. Moreover, we do
not only prove that nonoptimal configurations of two marked
elements exist, we also introduce a necessary condition for
them to appear and bound their number.

II. A TWO-DIMENSIONAL, DISCRETE TIME QUANTUM
WALK SEARCH (QWSEARCH) ALGORITHM

A discrete time quantum walk on a grid is the quantum ana-
log of a two-dimensional random walk. The quantum walker
lives in a composite Hilbert space: The coin state space, en-
coding the walker direction, and the position state space. The
physical space here is a grid of size

√
N × √

N . A generic
state of the walker reads as follows:

|ψ〉 =
∑

v∈{0,1}

√
N−1∑

x=0

√
N−1∑

y=0

αv,x,y|v, x, y〉,

where the coin state space is spanned by the z basis {|0〉, |1〉}.
The walker evolves driven by the usual split-step operator:

U = �y(Cy ⊗ IN )�x(Cx ⊗ IN ),

where Cy and Cx are two noncommutative U (2) operators and
the �i, are coin state dependent shift operators along direction
i = x, y, defined as follows:

�i|v〉|i〉 = |v〉|i − (−1)v〉.

The search algorithm based on the aforementioned quantum
walk scheme (QWSearch), for a set of marked vertices |m〉 ∈
M, was already considered in, e.g., [21], and it is imple-
mented as follows: (i) Initialize the quantum walker ψ (0) to
the equal superposition over all states; when n is a power
of two this can be done by applying n single bit Hadamard
operation to the ground state |0〉. (ii) Given a coin oracle R =
1 − 2

∑
m∈M |d, m〉〈d, m|, where |d〉 is the diagonal state

|0〉+|1〉√
2

in the coin state space, apply the perturbed evolution
operator U ′ = UR for topt steps, the hitting time. (iii) Measure
the state in the |v, x, y〉 basis. The success probability of the
walker p(t ) after t time steps is given by

p(t ) =
∑

m∈M
|〈d, m|U ′t |ψ (0)〉|2.

When searching one marked element, it can be shown that
the final complexity is O(

√
N ln3/2 N ), which is quite conven-

tional compared to other quantum walked search algorithms.
In the next sections we will investigate what happens when
several vertices are marked.

III. ANALYTICAL RESULTS FOR TWO
MARKED VERTICES

Let us now consider the algorithm presented above when
there are two marked vertices, m0 = (0, 0) and m1 = (x, y).
The success probability of the walker p(t ) after t time steps is
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given by

p(t ) =
∑

m∈M
|〈d, m|U ′t |ψ (0)〉|2

=
∑
j=0,1

∣∣∣∣∣
∑

θ

eiθt 〈d, mj |θ〉〈θ |ψ (0)〉
∣∣∣∣∣
2

,

where the operator U ′ has been diagonalized on its basis. The
main aim here is to find the hitting time topt which maximizes
the above probability. Assuming that the search algorithm
converges in finite time, one shall expect that the eigenspace
of U ′ be approximately spanned by {|λ+〉, |λ−〉}, with eiλ+ and
eiλ− the two closest eigenvalues to unity:

λ+ = min
eiθ∈σ

(U ′), θ > 0θ and λ− = max
eiθ∈σ

(U ′), θ < 0θ.

Thus, let us cast all the negligible contributions as εm:

p(t ) =
∑
j=0,1

|β+, je
iλ+t + β−, je

iλ−t + εm|2. (1)

To analytically calculate the probability of success, we must
therefore obtain an explicit expression of the coefficients
βi, j = 〈d, mj |λi〉〈λi|ψ (0)〉. To begin with, let us consider the
eigenmodes of the QW operator |ψ±k,l〉 with eigenvalues
eiφ±k,l . We can point out that 〈ψ±k,l |λi〉 can be expressed in
terms of 〈d, mj |λi〉. In fact,

〈ψ±k,l |U ′|λi〉
= eiφ±k,l 〈ψ±k,l |λi〉 − 2eiφ±k,l

∑
j=0,1

〈ψ±k,l |d, mj〉〈d, mj |λi〉,

which leads to

〈ψ±k,l |λi〉 = 2

1 − ei(λi−φ±k,l )

∑
j=0,1

〈ψ±k,l |d, mj〉〈d, mj |λi〉.

(2)

Moreover, since λi is close to zero, the prefactor of the sum
can be approximated as follows:

2

1 − ei(λi−φ±k,l )
= 1 + ibλ

±k,l ,

where

bλ
±,k,l =

{ 2
λi

+ O(λi ) if φ±,k,l = 0
−1

1−cos φ±,k,l
(λi + sin φ±,k,l ) + O

(
λ2

i

)
otherwise.

From Eq. (2) and using the completeness relation, we recover
the characteristic equation:

�λ〈d, mj |λi〉 = 0, (3)

where the symmetric square matrix � has elements

�λ
j, j′ =

∑
a=±,k,l

bλ
a,k,l〈d, mj | ψa,k,l〉〈ψa,k,l | d, mj′ 〉.

A. Computation of �λ

We will now start computing �λ, but, before that, we
provide the explicit expressions for the eigenvalues and eigen-
vectors of U :

|ψa,k,l〉 = |va,k,l〉 ⊗ 1√
N

∑
j, j′

e2iπ k j+l j′√
N | j, j′〉, (4)

φa,k,l = a arccos

(
cos

2πk√
N

cos
2π l√

N

)
, (5)

|〈d | va,k,l〉|2 = 1

2
− a

1

4

sin 2πk√
N

sin 2π l√
N

sin φ+,k,l
1φa,k,l �=0. (6)

We recall that

�λ
j, j′ =

∑
a=±,k,l

bλ
a,k,l〈d, mj | ψa,k,l〉〈ψa,k,l | d, mj′ 〉.

In order to simplify the coefficients of �λ, we use the explicit
form of ψa,k,l to show that

〈d, mj | ψa,k,l〉〈ψa,k,l | d, mj′ 〉
= 〈d | va,k,l〉〈mj | ψa,k,l〉〈va,k,l | d〉〈ψa,k,l | mj′ 〉

= |〈d | va,k,l〉|2
N

exp2iπ
k(x j −x j′ )+l (y j −y j′ )

√
N ,

then

〈d, mj | ψa,k,l〉〈ψa,k,l | d, mj′ 〉

=
⎧⎨
⎩

|〈d|va,k,l 〉|2
N if j = j′

|〈d|va,k,l 〉|2
N e±2iπ kx+ly√

N otherwise.
(7)

The main idea now is to use Eq. (3) to cut the coefficients �λ
j, j′

into three cases. Let us start for the coefficients �λ
j, j :

N�λ
j, j = N

∑
a=±,k,l

bλ
a,k,l〈d, mj | ψa,k,l〉〈ψa,k,l | d, mj〉, according to Eq. (3)

=
∑

a=±,k,l

bλ
a,k,l |〈d | va,k,l〉|2, using Eq. (7)

∼
∑

φa,k,l =0

2

λ
|〈d | va,k,l〉|2 −

∑
φa,k,l �=0

(sin φa,k,l ) + λ

1 − cos φa,k,l
|〈d | va,k,l〉|2, using Eq. (3)

= 1

λ

∑
φa,k,l =0

1 + 1

2

∑
φ+,k,l �=0

sin 2πk√
N

sin 2π l√
N

1 − cos 2πk√
N

cos 2π l√
N

− λ
∑

φ+,k,l �=0

1

1 − cos 2πk√
N

cos 2π l√
N

, using Eq. (4).
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First, it is straightforward to prove that there are four possible
cases for φa,k,l = 0, thus

∑
φa,k,l =0 1 = 4. Furthermore, one

can show that the second sum 1
2

∑
φ+,k,l �=0

sin 2πk√
N

sin 2π l√
N

1−cos 2πk√
N

cos 2π l√
N

=
1
2

∑
φk,l �=0 Sk,l is vanishing, using the symmetry Sk,l =

−Sn−k,l . Moreover the last sum can be approximated us-
ing integral bounding, resulting in

∑
φ+,k,l �=0

1
1−cos 2πk√

N
cos 2π l√

N

∼
1
π

N ln N . And finally,

�λ
j, j ∼ 4

λ
− λ

N ln N

π
. (8)

Let us now compute the other half of the �λ’s coefficients. By
using a similar procedure,

N�λ
j, j ∼ 1

λ

∑
φa,k,l =0

e±2iπ kx+ly√
N

+ 1

2

∑
φ+,k,l �=0

sin 2πk√
N

sin 2π l√
N

1 − cos 2πk√
N

cos 2π l√
N

e±2iπ kx+ly√
N

− λ
∑

φ+,k,l �=0

1

1 − cos 2πk√
N

cos 2π l√
N

e±2iπ kx+ly√
N .

Now, we can study separately case i and case ii.
Case i: x + y odd. All three above addends are identi-

cally vanishing by symmetry. In particular, for each addend
Sk+ n

2 ,l+ n
2

= (−1)x+ySk,l . Consequently,

�λ
j, j′ = 0, (9)

with j �= j′ and x + y odd.

Case ii: x + y even. The first sum
∑

φa,k,l =0 e±2iπ kx+ly√
N = 4.

The other two sums are harder to compute. We can, however,
retrieve the expressions of I and M by using the symmetry
Sn−k,n−l = Sk,l . This symmetry implies that the sum is real.
We can thus discard the imaginary part. In conclusion,

N�λ
j, j ∼ 4

λ
− I − λM,

where

I = −1

2

∑
φ+,k,l �=0

sin 2πk√
N

sin 2π l√
N

1 − cos 2πk√
N

cos 2π l√
N

cos

(
2π

kx + ly√
N

)

and

M =
∑

φ+,k,l �=0

cos
(

2π
kx+ly√

N

)
1 − cos 2πk√

N
cos 2π l√

N

.

To summarize, we have
Case i. For x + y odd, then

N�λ
j, j′ ∼

{
4
λ

− λN ln N
π

if j = j′

0 otherwise,
(10)

Case ii. For x + y even:

N�λ
j, j′ ∼

{
4
λ

− λN ln N
π

if j = j′

4
λ

− I − λM otherwise.
(11)

Now, being the columns of � are linearly dependent, its
determinant is zero. Thus, using Eqs. (10) and (11), we can
compute the roots of the equation det � = 0 which will give
us λ±.

B. Computation of λi and |βi, j|2

We start by using Eqs. (10) and (11) combined with
det �λ = 0 [which can be deduced from Eq. (3)] to get λ±.
Therefore, we note that |〈d, m0 | λ±〉|2 = |〈d, m1 | λ±〉|2 be-
cause of the symmetry of �λ. Combining the latter with
Eq. (2), we can deduce that

|〈λa|ψ (0)〉|2 = ∣∣1 + ibλa
+,0,0

∣∣2

∣∣∣∣∣∣
∑
j=0,1

〈ψ±k,l |d, mj〉〈d, mj |λa〉
∣∣∣∣∣∣
2

∼ 8|〈d, m | λ〉|2
Nλ2

, (12)

where |ψ (0)〉 = |ψ+,0,0〉. One can similarly use Eq. (2) in∑
±,k,l |〈ψ±,k,l | λ〉|2 = 1 to show that

|〈d, m | λ〉|2 ∼ 1

4

N
N ln N

π
+ M1{x+y even}

. (13)

Now, using the above result in the expression of |〈λa|ψ (0)〉|2,
we get

|〈λa|ψ (0)〉|2 ∼ 2 + 2.1x+y even

λ2
(

N ln N
π

+ M1{x+y even}
) . (14)

Again, let us consider case i and case ii separately.
When x + y odd (case i), we have

det �λ = 0 ⇔ 4

λ
− λ

N ln N

π
∼ 0

⇔ λ2 ∼ 4
π

N ln N

⇔ λ± ∼ ±2

√
π

N ln N
. (15)

We can now solve explicitly Eqs. (13) and (14) for Case i :

|〈d, m | λ±〉|2 ∼ π

4 ln N
and |〈λ±|ψ (0)〉|2 ∼ 1

2
. (16)

Notice that the latter expression implies that εm → 0. We get
4|β+, j |2 ∼ π

8 ln N . The λi are equal up to a sign, thus Eq. (1)
reduces to

p(t ) ∼ 4|β+, j |2 sin2(λt + cte) + O(εm), (17)

where λ = |λ±| and 4|β+, j |2 ∼ π
8 ln N , and the hitting

time topt ∼
√

πN ln N
4 . Thus the overall complexity time is

O(
√

N ln N ) for a success probability scaling as O(ln−1 N ),
in line with previous QWSearch for only one element on the
grid. We know that this bound is unlikely to be improved,
given the strong arguments given by [22–24]. This is not
unexpected because the QW operator acts independently onto
the sublattice Le = {(i, j) | i + j even}, with even vertices
and the one with odd vertices Lo = {(i, j) | i + j odd}, as we
can see in Fig. 1(a). This is due to the bipartite nature of
a QW in discrete time makes, so that if the two searched

033021-4



OPTIMALITY CONDITIONS FOR SPATIAL SEARCH WITH … PHYSICAL REVIEW RESEARCH 5, 033021 (2023)

elements are located respectively on white cells and black
cells of a chessboard, the QWSearch is running two parallel

and independent searches. Now, let us consider x + y even.
The determinant of � reads:

det �λ = 0 ⇔ (
�λ

0,0

)2 − (
�λ

1,0

)2 = 0 because �λ is symmetric

⇔ (
�λ

0,0 − �λ
1,0

)(
�λ

0,0 + �λ
1,0

) = 0

⇔
[
I − λ

(
N ln N

π
− M

)][
8

λ
− I − λ

(
N ln N

π
+ M

)]
= 0 using Eq. (11)

⇔ λ± ∈

⎧⎪⎨
⎪⎩

−I +
√
I2 + 32

(
N ln N

π
+ M

)
2
(

N ln N
π

+ M
) ,

−I −
√
I2 + 32

(
N ln N

π
+ M

)
2
(

N ln N
π

+ M
) ,

I
N ln N

π
− M

⎫⎪⎬
⎪⎭.

(a)

(b)

(c)

FIG. 1. Three examples of spatial configuration for which the
QWSearch algorithms behave differently. (a) Optimal configura-
tion. The searched elements are respectively on the odd and even
partition of the grid. The algorithm is always optimal for this con-
figuration. (b) Optimal configuration. Here the optimality of the
algorithm is ensured by the condition I � M + N ln N

π
, leading to

a success probability O(1/ ln N ). (c) Nonoptimal configuration. For
this configuration the condition min(x, n − x)min(y, n − x) � n does
not hold, leading to a success probability O(1/N ).

The coefficients βi, j = 〈d, mj |λi〉〈λi|ψ (0)〉 in Eq. (1) read

|βi, j |2 ∼ N

λ2
i

(
N ln N

π
+ M

)2 .

Notice that there are cases where we can manifestly recover
optimality. One example is given in Fig. 1(b). Indeed, in the
limit

I2 � M + N ln N

π
, (18)

the λ± ∼ ± 2
√

2√
M+ N ln N

π

, and again the success probability, re-

duces to Eq. (17) with λ = |λ±| and |β+, j |2 ∼ N
8( N ln N

π
+M)

.

This result leads to the very same complexity we have in
case i. It is easy to convince oneself that the condition ex-
pressed by Eq. (18) is satisfied in a finite number of cases.
In fact, after having computed the sums I,M and simplified
for large n = √

N , I = O( n2

min(x,n−x)min(y,n−x) ) and 0 � M �
N log N . Then the sufficient condition for a given spatial
configuration to be optimal is min(x, n − x)min(y, n − x) =
(n). But how many of them do not meet the above con-
dition? It is possible to prove that they are always bounded
by O(n ln n) = O(

√
N ln

√
N ). Although finite, this number

is statistically negligible for large values of n. In fact, if one
tosses a random configuration, then the probability to find a
nonoptimal configuration, such as one in Fig. 1(c), is given by

O(
√

N ln
√

N/N )
N→∞−−−→ 0.

As for case i, the latter implies εm → 0, meaning that all
other eigenvalues of U ′ can be neglected (including the last
solution of det �λ = 0). We finally get 4|β+, j |2 ∼ 1

2
N

N ln N
π

+M ,

and using M � N ln N we can deduce that the success proba-
bility psucc |β+, j |2 = O(ln−1 N ).

IV. NUMERICAL RESULTS FOR MORE THAN TWO
MARKED VERTICES

Extending the analytical results obtained in this paper to
more than two elements is mathematically prohibitive, al-
though feasible in theory. In any case, however, it is possible
to show that the number of searched elements, at constant
grid size, dramatically affects the advantage over classical
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FIG. 2. Average probability of success of QWSearch assuming
uniform distribution of the marked elements configuration in func-
tion of τ = M/N .

search algorithms. The code used to produce the numeri-
cal results of this section is available on Github [25]. Let’s
denote M the number of marked vertices and τ = M/N . In
order to search one vertex among the M marked, we may
define the following procedure: (i) Shuffle the grid to get a
random configuration; (ii) Apply the searching algorithm for
topt = �√πN/M ln N/M/4� steps; (iii) Measure the final state
over the computational basis of the walker. Figure 2 shows
the average success probability in function of τ for several
grid sizes. Quite remarkably the success probability does not
depend on the grid size. Furthermore, for τ sufficiently large,
the quantum advantage is completely lost and the success
probability coincides with the classical one.

To best characterize at what point the advantage is lost,
we compare the success probability of our quantum algorithm
with respect to a classical algorithm. Our quantum algo-
rithm makes topt queries to the oracle. For the same number
of queries, we consider a stochastic search algorithm with
success probability pcl = 1 − N−toptM

NM ∼ 1 − (1 − τ )topt . The
success probability of this algorithm (which depends of τ

only) is displayed in Fig. 2. The critical ratio τc ≈ 0.005 is
the critical ratio upon which the quantum advantage is lost.
The darker gray part shows the interval where there is a
quantum advantage (τ � τc) while the lighter gray part shows
the interval τc � τ � 0.1) in which the QWSearch amplifies
the probability of success but is worse than the classical
algorithm.

In particular, if the number of marked elements verifies
M = ln N or M = √

N , then the probability of success of the
QWSearch algorithm seems to either tend toward a nonvan-
ishing constant or tend very slowly toward zero. This can be
seen in Fig. 3. In particular, the probability of success of the
QWSearch algorithm seems to be greater than the classical
algorithm for N big enough.

FIG. 3. Average probability of success of the QWSearch algo-
rithm for M ∈ {1, ln N,

√
N} in function of

√
N .

V. CONCLUSION

We have provided definitive proof that the spatial search al-
gorithm, based on a quantum discrete-time walker, introduced
here is not always optimal. We have proved the existence
of an upper bound on the number of suboptimal configura-
tions, which remains small for large grid sizes. The proof was
obtained in the special case of only two elements searched
on the rectangular grid. We have also shown that there is
strong numerical evidence that the advantage of the quantum
algorithm depends not only on the spatial configuration but
also on the ratio of the number of elements searched over
the grid size. Such evidence is crucial in order to be able to
use the quantum search algorithm correctly, being sure of a
quantum advantage, albeit a polynomial one. The sufficiency
conditions for optimality are thus relevant for a wide range
of applications where the searching algorithm is used as sub-
routine, from simulation to optimisation and from machine
learning to distributed algorithmic.
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