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Abstract

Supervised learning in reproducing kernel
Hilbert space (RKHS) and vector-valued
RKHS (vvRKHS) has been investigated for
more than 30 years. In this paper, we provide a
new twist to this rich literature by generalizing
supervised learning in RKHS and vvRKHS to
reproducing kernel HilbertC∗-module (RKHM),
and show how to construct effective positive-
definite kernels by considering the perspective
of C∗-algebra. Unlike the cases of RKHS and
vvRKHS, we can use C∗-algebras to enlarge
representation spaces. This enables us to con-
struct RKHMs whose representation power
goes beyond RKHSs, vvRKHSs, and existing
methods such as convolutional neural networks.
Our framework is suitable, for example, for
effectively analyzing image data by allowing the
interaction of Fourier components.

1 INTRODUCTION

Supervised learning in reproducing kernel Hilbert
space (RKHS) has been actively investigated since the
early 1990s (Murphy, 2012; Christmann & Steinwart,
2008; Shawe-Taylor & Cristianini, 2004; Schölkopf &
Smola, 2002; Boser et al., 1992). The notion of repro-
ducing kernels as dot products in Hilbert spaces was first
brought to the field of machine learning by Aizerman
et al. (1964), while the theoretical foundation of repro-
ducing kernels and their Hilbert spaces dates back to at
least Aronszajn (1950). By virtue of the representer theo-
rem (Schölkopf et al., 2001), we can compute the solution
of an infinite-dimensional minimization problem in RKHS
with given finite samples. In addition to the standard
RKHSs, applying vector-valued RKHSs (vvRKHSs) to
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supervised learning has also been proposed and used in
analyzing vector-valued data (Micchelli & Pontil, 2005;
Álvarez et al., 2012; Kadri et al., 2016; Minh et al., 2016;
Brouard et al., 2016; Laforgue et al., 2020; Huusari &
Kadri, 2021). Generalization bounds of the supervised
problems in RKHS and vvRKHS are also derived (Mohri
et al., 2018; Caponnetto & De Vito, 2007; Audiffren &
Kadri, 2013; Huusari & Kadri, 2021).

Reproducing kernel Hilbert C∗-module (RKHM) is a gen-
eralization of RKHS and vvRKHS by means of C∗-
algebra. C∗-algebra is a generalization of the space of com-
plex values. It has a product and an involution structures.
Important examples are the C∗-algebra of bounded linear
operators on a Hilbert space and the C∗-algebra of contin-
uous functions on a compact space. RKHMs have been
originally studied for pure operator algebraic and math-
ematical physics problems (Manuilov & Troitsky, 2000;
Heo, 2008; Moslehian, 2022). Recently, applying RKHMs
to data analysis has been proposed by Hashimoto et al.
(2021). They generalized the representer theorem in RKHS
to RKHM, which allows us to analyze structured data such
as functional data with C∗-algebras.

In this paper, we investigate supervised learning in RKHM.
This provides a new twist to the state-of-the-art kernel-
based learning algorithms and the development of a novel
kind of reproducing kernels. An advantage of RKHM
over RKHS and vvRKHS is that we can enlarge the C∗-
algebra characterizing the RKHM to construct a represen-
tation space. This allows us to represent more functions
than the case of RKHS and make use of the product struc-
ture in the C∗-algebra. Our main contributions are:

• We define positive definite kernels from the perspective
of C∗-algebra, which are suitable for learning in RKHM
and adapted to analyze image data.

• We derive a generalization bound of the supervised learn-
ing problem in RKHM, which generalizes existing re-
sults of RKHS and vvRKHS. We also show that the
computational complexity of our method can be reduced
if parameters in the C∗-algebra-valued positive definite
kernels have specific structures.

• We show that our framework generalizes existing meth-
ods based on convolution operations.
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Important applications of the supervised learning in
RKHM are tasks whose inputs and outputs are images.
If the proposed kernels have specific parameters, then the
product structure is the convolution, which corresponds to
the pointwise product of Fourier components. By extend-
ing the C∗-algebra to a larger one, we can enjoy more gen-
eral operations than the convolutions. This enables us to
analyze image data effectively by making interactions be-
tween Fourier components. Regarding the generalization
bound, we derive the same type of bound as those ob-
tained for RKHS and vvRKHS via Rademacher complex-
ity theory. This is to our knowledge, the first generaliza-
tion bound for RKHM hypothesis classes. Concerning the
connection with existing methods, we show that using our
framework, we can reconstruct existing methods such as
the convolutional neural network (LeCun et al., 1998) and
the convolutional kernel (Mairal et al., 2014) and further
generalize them. This fact implies that the representation
power of our framework goes beyond the existing methods.

The remainder of this paper is organized as follows: In Sec-
tion 2, we review mathematical notions related to this pa-
per. We propose C∗-algebra-valued positive definite ker-
nels in Section 3 and investigate supervised learning in
RKHM in Section 4. Then, we show connections with
existing convolution-based methods in Section 5. We con-
firm the advantage of our method numerically in Section 6
and conclude the paper in Section 7. All technical proofs
are documented in the supplementary material (SM).

2 PRELIMINARIES

2.1 C∗-Algebra and Hilbert C∗-Module

C∗-algebra is a Banach space equipped with a product and
an involution that satisfies the C∗ identity.

Definition 2.1 (C∗-algebra) A set A is called a C∗-
algebra if it satisfies the following conditions:

1. A is an algebra over C and equipped with a bijection
(·)∗ : A → A that satisfies the following conditions for
α, β ∈ C and a, b ∈ A:

• (αa + βb)∗ = αa∗ + βb∗, • (ab)∗ = b∗a∗,
• (a∗)∗ = a.

2. A is a normed space endowed with ∥ · ∥A, and for
a, b ∈ A, ∥ab∥A ≤ ∥a∥A∥b∥A holds. In addition, A
is complete with respect to ∥ · ∥A.

3. For a ∈ A, ∥a∗a∥A = ∥a∥2A holds.

A C∗-algebra A is called unital if there exists a ∈ A such
that ab = b = ba for any b ∈ A. We denote a by 1A.

An example of C∗-algebra is group C∗-algebra (Kirillov,
1976). Let p ∈ N, and let Z/pZ be the set of integers
modulo p.

Definition 2.2 (Group C∗-algebra on a finite cyclic group)
Let ω = e2π

√
−1/p. The group C∗-algebra on Z/pZ, which

is denoted as C∗(Z/pZ), is the set of maps from Z/pZ
to C equipped with the following product, involution, and
norm:
• (x · y)(z) =

∑
w∈Z/pZ x(z − w)y(w) for z ∈ Z/pZ,

• x∗(z) = x(−z),
• ∥x∥ = maxn∈{0,...,p−1} |

∑
z∈Z/pZ x(z)ω

zn|.

Since the product is the convolution, group C∗-algebras of-
fer a new way to define positive definite kernels, which are
effective in analyzing image data as we will see in Sec-
tion 3. Elements in C∗(Z/pZ) are described by circulant
matrices (Gray, 2006). Let Circ(p) = {x ∈ Cp×p |
x is a circulant matrix}. Moreover, we denote the circu-
lant matrix whose first row is v as circ(v). The dis-
crete Fourier transform (DFT) matrix, whose (i, j)-entry
is ω(i−1)(j−1)/

√
p, is denoted as F .

Lemma 2.3 Any circulant matrix x ∈ Circ(p) has an
eigenvalue decomposition x = FΛxF

∗, where

Λx = diag

( ∑
z∈Z/pZ

x(z)ωz·0, . . . ,
∑

z∈Z/pZ

x(z)ωz(p−1)

)
.

Lemma 2.4 The group C∗-algebra C∗(Z/pZ) is C∗-
isomorphic to Circ(p).

We now review important notions about C∗-algebra. We
denote a C∗-algebra by A.

Definition 2.5 (Positive) An element a of A is called pos-
itive if there exists b ∈ A such that a = b∗b holds. For
a, b ∈ A, we write a ≤A b if b− a is positive, and a ⪇A b
if b− a is positive and not zero. We denote by A+ the sub-
set of A composed of all positive elements in A. For any
a ∈ A+, there exists a unique b ∈ A+ such that a = b2.
We denote b by a1/2.

Definition 2.6 (Minimum) For a subset S of A, a ∈ A is
said to be a lower bound with respect to the order ≤A, if
a ≤A b for any b ∈ S . Then, a lower bound c ∈ A is said
to be an infimum of S, if a ≤A c for any lower bound a of
S. If c ∈ S, then c is said to be a minimum of S.

Hilbert C∗-module is a generalization of Hilbert space.
We can define an A-valued inner product and a (real
nonnegative-valued) norm as a natural generalization of the
complex-valued inner product. See Section A in SM for
further details. Then, we define Hilbert C∗-module as fol-
lows.

Definition 2.7 (Hilbert C∗-module) Let M be a C∗-
module over A equipped with an A-valued inner product.
If M is complete with respect to the norm induced by the
A-valued inner product, it is called a Hilbert C∗-module
over A or Hilbert A-module.
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2.2 Reproducing Kernel Hilbert C∗-Module

RKHM is a generalization of RKHS by means of C∗-
algebra. Let X be a non-empty set for data.

Definition 2.8 (A-valued positive definite kernel) An A-
valued map k : X × X → A is called a positive definite
kernel if it satisfies the following conditions:
• k(x, y) = k(y, x)∗ for x, y ∈ X ,
•
∑n
i,j=1 c

∗
i k(xi, xj)cj ≥A 0 for n ∈ N, ci ∈ A, xi ∈ X .

Let ϕ : X → AX be the feature map associated with k,
which is defined as ϕ(x) = k(·, x) for x ∈ X . We construct
the followingC∗-module composed of A-valued functions:

Mk,0 :=

{ n∑
i=1

ϕ(xi)ci

∣∣∣∣ n ∈ N, ci ∈ A, xi ∈ X
}
.

Define an A-valued map ⟨·, ·⟩Mk
: Mk,0 ×Mk,0 → A as

〈 n∑
i=1

ϕ(xi)ci,

l∑
j=1

ϕ(yj)bj
〉
Mk

:=

n∑
i=1

l∑
j=1

c∗i k(xi, yj)bj .

By the properties of k in Definition 2.8, ⟨·, ·⟩Mk
is well-

defined and has the reproducing property

⟨ϕ(x), v⟩Mk
= v(x),

for v ∈ Mk,0 and x ∈ X . Also, it is an A-
valued inner product. The reproducing kernel Hilbert A-
module (RKHM) associated with k is defined as the com-
pletion of Mk,0. We denote by Mk the RKHM associated
with k.

Hashimoto et al. (2021) showed the representer theorem in
RKHM.

Proposition 2.9 (Representer theorem) Let A be a uni-
tal C∗-algebra. Let x1, . . . , xn ∈ X and y1, . . . , yn ∈
A. Let h : X × A × A → A+ be an error func-
tion and let g : A+ → A+ satisfy g(a) ⪇A g(b) for
a ⪇A b. Assume the module (algebraically) generated
by {ϕ(xi)}ni=1 is closed. Then, any u ∈ Mk minimizing∑n
i=1 h(xi, yi, u(xi)) + g(|u|Mk

) admits a representation
of the form

∑n
i=1 ϕ(xi)ci for some c1, . . . , cn ∈ A.

Notation In the following, we denote the inner product,
absolute value, and norm in Mk by ⟨·, ·⟩k, | · |k, and ∥ · ∥k,
respectively. See Table A in SM for more details.

3 C∗-ALGEBRA-VALUED POSITIVE
DEFINITE KERNELS

To investigate the supervised learning problem in RKHM,
we begin by constructing suitable C∗-algebra-valued pos-
itive definite kernels. The product structure used in these

kernels will be shown to be effective in analyzing image
data. However, the proposed kernels are general, and their
application is not limited to image data.

Let A1 be a C∗-algebra. By the Gelfand–Naimark theo-
rem (see, for example, Murphy 1990), there exists a Hilbert
space H such that A1 is a subalgebra of the C∗-algebra A2

of bounded linear operators on H. For image data we can
set A1 and A2 as follows.

Example 3.1 (Image data analysis) Let p ∈ N, A1 =
C∗(Z/pZ), and A2 = Cp×p. Then, A1 is a subalgebra
of A2. Indeed, by Lemma 2.4, A1 ≃ Circ(p). For exam-
ple, in image processing, we represent filters by circulant
matrices (Chanda & Majumder, 2011). If we regard Z/pZ
as the space of p pixels, then elements in C∗(Z/pZ) can be
regarded as functions from pixels to intensities. Thus, we
can also regard grayscale and color images with p pixels as
elements in C∗(Z/pZ) and C∗(Z/pZ)3, respectively. Note
that A2 is noncommutative, although A1 is commutative.

We consider the case where the inputs are in Ad
1 for d ∈ N

and define linear, polynomial, and Gaussian C∗-algebra-
valued positive definite kernels as follows. For example,
we can consider the case where inputs are d images.

Definition 3.2 Let X ⊆ Ad
1 and x = [x1, . . . , xd] ∈ X .

1. For ai,1, ai,2 ∈ A2, the linear kernel k : X × X → A2

is defined as k(x, y) =
∑d
i=1 a

∗
i,1x

∗
i a

∗
i,2ai,2yiai,1.

2. For q ∈ N and ai,j ∈ A2 (i = 1, . . . d, j = 1, . . . q+1),
the polynomial kernel k : X × X → A2 is defined as

k(x, y) =

d∑
i=1

( q∏
j=1

a∗i,jx
∗
i

)
a∗i,q+1ai,q+1

( q∏
j=1

yiai,q+1−j

)
.

3. Let Ω be a measurable space and µ is an A2-valued
positive measure on Ω.1 For ai,1, ai,2 : Ω → A2, the
Gaussian kernel k : X × X → A2 is defined as

k(x, y) =

∫
ω∈Ω

e−
√
−1

∑d
i=1 ai,1(ω)

∗x∗
i ai,2(ω)

∗
dµ(ω)

× e
√
−1

∑d
i=1 ai,2(ω)yiai,1(ω).

Here, we assume the integral does not diverge. In ad-
dition, the exponential is defined as the exponential of a
bounded linear operator in H.

Remark 3.3 We can construct new kernels by the compo-
sition of functions to the kernels defined in Definition 3.2.
For example, let ψi,j : A1 → A2 for i = 1, . . . d and
j = 1, . . . , q + 1. Then, the map defined by replacing xi
and yi in the polynomial kernel by ψi,j(xi) and ψi,j(yi) is
also an C∗-algebra-valued positive definite kernel.
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Figure 1: Representing samples in RKHM

Figure 2: Product in A1 and A2 in Example 3.4

If A1 = A2 = C, then the above kernels are reduced to
the standard complex-valued positive definite kernels and
the RKHMs associated with them are reduced to RKHSs.
In this case, if X = Ad, the input space and the RKHS
are both Hilbert spaces (Hilbert C-modules). On the other
hand, for RKHMs, if we choose A1 ⊊ A2, then the in-
put space X is a Hilbert A1-module, but the RKHM is a
Hilbert A2-module, not A1-module. Applying RKHMs,
we can construct higher dimensional spaces than input
spaces but also enlarge the C∗-algebras characterizing the
RKHMs, which allows us to represent more functions than
RKHSs and make use of the product structure in A2. Fig-
ure 1 schematically shows the representation of samples in
RKHM. We show an example related to image data below.

Example 3.4 (Image data analysis) If A1 = C∗(Z/pZ),
A2 = Cp×p (A1 ⊊ A2), and ai,j ∈ A1, then ai,j in Defi-
nition 3.2 behaves as convolutional filters. In fact, by Def-
inition 2.2, the multiplication of ai,j and xi is represented
by the convolution. The convolution of two functions cor-
responds to the multiplication of each Fourier component
of them. Thus, each Fourier component of xi does not in-
teract with other Fourier components. Choosing ai,j ∈ A2

outside A1 corresponds to the multiplication of different
Fourier components of two functions. Indeed, let x ∈ A1.
Then, by Lemma 2.4, x is represented as a circulant matrix
and by Lemma 2.3, it is decomposed as x = FΛxF

∗. In
this case, Λx is the diagonal matrix whose ith diagonal is
the ith Fourier component (FC) of x. Thus, if ai,j ∈ A1,
then we have xai,j = FΛxΛai,jF

∗ and each Fourier com-
ponent of x is multiplied by the same Fourier component of
ai,j . On the other hand, if ai,j ∈ A2 \A1, then Λai,j is not
a diagonal matrix, and the elements of ΛxΛai,j are com-
posed of the weighted sum of different Fourier components
of x. Figure 2 summarizes this example.

1A2-valued measure which takes its values in (A2)+.
See Hashimoto et al. (2021, Appendix B) for a rigorous defini-
tion of C∗-algebra-valued measure.

Figure 3: Comparison of RKHM with vvRKHS

Comparison with vvRKHS From the perspective of
vvRKHS, defining kernels as in Definition 3.2 is difficult
since for vvRKHS, the output space is a Hilbert space, and
we do not have product structures in it. Indeed, the inner
product in a vvRKHS is described by an action of an opera-
tor on a vector. We can regard the vector as a rank-one op-
erator whose range is the one-dimensional space spanned
by the vector. Thus, the action is regarded as the product of
only two operators. On the other hand, from the perspective
of C∗-algebra, we can multiply more than two elements in
C∗-algebra, which allows us to define C∗-algebra-valued
kernels naturally in the same manner as complex-valued
kernels. See Figure 3 for a schematic explanation.

4 SUPERVISED LEARNING IN RKHM

We investigate supervised learning in RKHM. We first for-
mulate the problem and derive a learning algorithm. Then,
we characterize its generalization error and investigate its
computational complexity.

We do not assume X ⊆ Ad
1 in Subsections 4.1 and 4.2. The

input space X can be an arbitrary nonempty set in these
sections. Thus, although we focus on the case of X ⊆ Ad

1

in this paper, the supervised learning in RKHM is applied
to general problems whose output space is a C∗-algebra A.

4.1 Problem Setting

Let x1, . . . , xn ∈ X be input training samples and
y1, . . . , yn ∈ A be output training samples. Let k :
X × X → A be an A-valued positive definite kernel, and
let ϕ and Mk be the feature map and RKHM associated
with k, respectively. We find a function f : X → A in Mk

that maps input data to output data. For this purpose, we
consider the following minimization problem:

min
f∈Mk

( n∑
i=1

|f(xi)− yi|2A + λ|f |2k
)
, (1)

where λ ≥ 0 is the regularization parameter. By the rep-
resenter theorem (Proposition 2.9), we find a solution f in
the submodule generated by {ϕ(x1), . . . , ϕ(xn)}. As the
case of RKHS (Schölkopf et al., 2001), representing f as
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∑n
j=1 ϕ(xj)cj (cj ∈ A), the problem is reduced to

min
cj∈A

( n∑
i=1

∣∣∣∣ n∑
j=1

k(xi, xj)cj − yi

∣∣∣∣2
A
+ λ

∣∣∣∣ n∑
j=1

ϕ(xj)cj

∣∣∣∣2
k

)
= min
cj∈A

(c∗G2c− c∗Gy − y∗Gc+ λc∗Gc), (2)

where G is the An×n-valued Gram matrix whose (i, j)-
entry is defined as k(xi, xj)∈ A, c = [c1, . . . , cn]

T , y =
[y1, . . . , yn]

T , and |a|A = (a∗a)1/2 for a ∈ A. Note that
G is a bounded linear operator on the Hilbert A-module
An. If G + λI is invertible, the solution of Problem (2) is
c = (G+ λI)−1y.

4.2 Generalization Bound

We derive a generalization bound of the supervised prob-
lem in RKHM. We first define an A-valued Rademacher
complexity. Let (Ω, P ) be a probability space. For a ran-
dom variable (measurable map) g : Ω → A, we denote by
E[g] the Bochner integral of g, i.e.,

∫
ω∈Ω

g(ω)dP (ω).

Definition 4.1 Let σ1, . . . , σn be i.i.d and mean zero A-
valued random variables and let x1, . . . , xn ∈ X be given
samples. Let σ = {σi}ni=1 and x = {xi}ni=1. Let F be
a class of functions from X to A. The A-valued empirical
Rademacher complexity R̂A(F ,σ,x) is defined as

R̂A(F ,σ,x) = E

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(xi)
∗σi

∣∣∣∣
A

]
.

We derive an upper bound of the complexity of a function
space related to the RKHM Mk. We assume A is a unital
C∗-algebra (See Definition 2.1).

Proposition 4.2 Let B > 0 and let F = {f ∈ Mk |
∥f∥k ≤ B} and let C = ∥E[|σi|2A] ∥A. Then, we have

R̂A(F ,σ,x) ≤A
B
√
C

n

( n∑
i=1

∥k(xi, xi)∥A
)1/2

1A.

Here, 1A is the unit in A.

To prove Proposition 4.2, we first show the following A-
valued version of Jensen’s inequality.

Lemma 4.3 For a positive A-valued random variable c :
Ω → A+, we have E[c1/2] ≤A E[c]1/2.

4.2.1 Results for A ⊆ Cp×p

In the following, we focus on that case and consider the
trace of matrices. In Example 3.4, we focused on the case
of A ⊆ Cp×p, which is effective, for example, in analyzing
image data. Thus, the results in this subsection are valid for
these practical situations.

Deriving a bound for general C∗-algebras is technically
difficult. One reason is the fact that the Radmecher com-
plexity is C∗-algebra-valued and not scalar-valued. Thus,
we focus on the the case of matrices and provide a stan-
dard way of transforming a matrix into a scalar value using
the trace. The trace gives us more detailed information on
eigenvalues compared to other measures, such as the oper-
ator norm. Indeed, for a positive definite matrix, the trace is
the sum of the eigenvalues, while the operator norm is the
largest eigenvalue. Moreover, the trace is linear and forms
the Hilbert–Schmidt inner product.

Let B > 0 and E > 0. We put F = {f ∈ Mk |
∥f∥k ≤ B, f(x) ∈ Rp×p for any x ∈ X}, G(F) =
{X × Y ∋ (x, y) 7→ |f(x) − y|2A ∈ A | f ∈ F}, and
Y = {y ∈ Rp×p | ∥y∥A ≤ E}. Let x1, . . . , xn ∈ X
and y1, . . . , yn ∈ Y . We assume there exists D > 0 such
that for any x ∈ X , ∥k(x, x)∥A ≤ D. In addition, let
L = 2

√
2(B

√
D + E) and M = DB2 + 2

√
DBE + E2.

Using the upper bound of the Rademacher complexity, we
derive the following generalization bound.

Proposition 4.4 Let tr(a) be the trace of a ∈ Cp×p. For
any g ∈ G(F), any random variable z : Ω → X × Y , and
any δ ∈ (0, 1), with probability ≥ 1− δ, we obtain

tr

(
E[g(z)]− 1

n

n∑
i=1

g(xi, yi)

)

≤ 2
LB

√
Dp√
n

+ 3
√
2Mp

√
log(2/δ)

n
.

Note that the same type of bounds is derived for
RKHS (Mohri et al., 2018, Theorem 3.3) and for
vvRKHS (Huusari & Kadri, 2021, Corollary 16, Sind-
hwani et al., 2013, Theorem 3.1, Sangnier et al., 2016, The-
orem 4.1). Proposition 4.4 generalizes them to RKHM.

To show Proposition 4.4, we first evaluate the Rademacher
complexity with respect to the squared loss function
(x, y) 7→ |f(x)−y|2A. We use Theorem 3 of Maurer (2016)
to obtain the following bound.

Lemma 4.5 Let s1, . . . , sn be {−1, 1}-valued
Rademacher variables (i.e. independent uniform ran-
dom variables taking values in {−1, 1}) and let σ1, . . . , σn
be i.i.d. A-valued random variables each of whose
element is the Rademacher variable. Let s = {si}ni=1, and
z = {(xi, yi)}ni=1. Then, we have

R̂C(trG(F), s, z) ≤ L tr R̂A(F ,σ,x),

where trG(F) = {z 7→ tr(g(z)) | g ∈ G(F)}.

Next, we use Theorem 3.3 of Mohri et al. (2018) to derive
an upper bound of the generalization error.

Lemma 4.6 Let z : Ω → X ×Y be a random variable and
let g ∈ G(F). Under the same notations and assumptions
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as Lemma 4.5, for any δ ∈ (0, 1), with probability ≥ 1− δ,
we have

tr

(
E[g(z)]− 1

n

n∑
i=1

g(xi, yi)

)

≤ 2R̂C(trG(F), s, z) + 3
√
2Mp

√
log(2/δ)

n
.

4.3 Computational Complexity

As mentioned at the beginning of this section, we need to
compute (G+ λI)−1y for a Gram matrix G ∈ An×n and
a vector y ∈ An for solving the minimization problem (2).
When A = Cp×p, we have An×n = Cnp×np, and G is
huge if n, the number of samples, or p, the dimension of
A, is large. If we construct the np by np matrix explicitly
and compute (G + λI)−1y with a direct method such as
Gaussian elimination and back substitution (for example,
see Trefethen & Bau 1997), the computational complexity
is O(n3p3). However, if X = Ad

1, A1 ⊊ A2, and parame-
ters in the positive definite kernel have a specific structure,
then we can reduce the computational complexity. For ex-
ample, applying the fast Fourier transform, we can com-
pute a multiplication of the DFT matrix F and a vector
with O(p log p) (Van Loan, 1992). Let A1 = C∗(Z/pZ)
and let A2 = Cp×p. Let k be an A1 or A2-valued positive
definite kernel defined in Definition 3.2.

Proposition 4.7 For ai,j ∈ A1, the computational com-
plexity for computing (G + λI)−1y by direct methods for
solving linear systems of equations is O(np2 log p+ n3p).

We can use an iteration method for linear systems, such as
the conjugate gradient (CG) method (Hestenes & Stiefel,
1952) to reduce the complexity with respect to n. Note that
we need O(np2 log p) operations after all the iterations.

Proposition 4.8 For ai,j ∈ A1, the computational com-
plexity for 1 iteration step of CG method is O(n2p).

Proposition 4.9 Let ai,j ∈ A2 whose number of nonzero
elements isO(p log p). Then, the computational complexity
for 1 iteration step of CG method is O(n2p2 log p).

Remark 4.10 If we do not use the structure of A1, then the
computational complexities in Propositions 4.7, 4.8, and
4.9 are O(n3p3), O(n2p3), and O(n2p3), respectively.

In the case of RKHSs, techniques such as the random
Fourier feature have been proposed to alleviate the compu-
tational cost of kernel methods (Rahimi & Recht, 2007).
It could be interesting to inspect how to further reduce
the computational complexity of learning in RKHM using
random feature approximations for C∗-algebra-valued ker-
nels; this is left for future work.

5 CONNECTION WITH EXISTING
METHODS

5.1 Connection with Convolutional Neural Network

Convolutional neural network (CNN) has been one of the
most successful methods for analyzing image data (LeCun
et al., 1998; Li et al., 2021). We investigate the connection
of the supervised learning problem in RKHM with CNN.
In this subsection, we set X ⊆ A1 = C∗(Z/pZ) and A2 =
Cp×p. Since the product in C∗(Z/pZ) is characterized by
the convolution, our framework with a specific A1-valued
positive definite kernel enables us to reconstruct a similar
model as the CNN.

We first provide an A1-valued positive definite kernel re-
lated to the CNN.

Proposition 5.1 For a1, . . . , aL, b1, . . . , bL ∈ A1 and
σ1, . . . , σL : A1 → A1 each of which has a uniformly
convergent series expansion σj(x) =

∑∞
l=1 αj,lx

l with
αj,l ≥ 0, let k̂ : X × X → A1 be defined as

k̂(x, y) =σL(b
∗
LbL + σL−1(b

∗
L−1bL−1 + · · ·

+ σ2(b
∗
2b2 + σ1(b

∗
1b1 + x∗a∗1a1y)a

∗
2a2) · · ·

× a∗L−1aL−1)a
∗
LaL). (3)

Then, k̂ is an A1-valued positive definite kernel.

Using the positive definite kernel (3), the solution f of the
problem (2) is written as

f(x) =

n∑
i=1

σL(b
∗
LbL + σL−1(b

∗
L−1bL−1 + · · ·

+ σ2(b
∗
2b2 + σ1(b

∗
1b1 + x∗a∗1a1xi)a

∗
2a2) · · ·

× a∗L−1aL−1)a
∗
LaL)ci, (4)

for some ci ∈ A1. We regard a∗1a1xi and a∗jaj for
j = 2, . . . , L as convolutional filters, b∗j bj for j = 1, . . . , L
as biases, and σj for j = 1, . . . , L as activation func-
tions. Then, optimizing a1, . . . , aL, b1, . . . , bL simulta-
neously with ci corresponds to learning the CNN of the
form (4).

The following proposition shows that the C∗-algebra-
valued polynomial kernel defined in Definition 3.2 is gen-
eral enough to represent the A1-valued positive definite
kernel k̂, related to the CNN. Therefore, by applying A2-
valued polynomial kernel, not A1-valued polynomial ker-
nel, we can go beyond the method with the convolution.

Proposition 5.2 The A1-valued positive definite kernel k̂
defined as Eq. (3) is composed of the sum of A1-valued
polynomial kernels.
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5.2 Connection with Convolutional Kernel

For image data, a (C-valued) positive definite kernel called
convolutional kernel is proposed to bridge a gap between
kernel methods and neural networks (Mairal et al., 2014;
Mairal, 2016). In this subsection, we construct two C∗-
algebra-valued positive definite kernels that generalize the
convolutional kernel. Similar to the case of the CNN, we
will first show that we can reconstruct the convolutional
kernel using a C∗-algebra-valued positive definite kernel.
Moreover, we will show that our framework gives another
generalization of the convolutional kernel. A generaliza-
tion of neural networks to C∗-algebra-valued networks is
proposed (Hashimoto et al., 2022). This generalization al-
lows us to generalize the analysis of the CNNs with kernel
methods to that of C∗-algebra-valued CNNs.

Let Ω be a finite subset of Zm. For example, Ω is the space
of m-dimensional grids. Let Ã1 be the space of C-valued
maps on Ω and X ⊆ Ã1. The convolutional kernel is de-
fined as follows (Mairal et al., 2014, Definition 2).

Definition 5.3 Let β, σ > 0. The convolutional kernel k̃ :
X × X → C is defined as

k̃(x, y) =
∑
z,z′∈Ω

|x(z)| |y(z′)|e−
1

2β2 ∥z−z′∥2

× e−
1

2σ2 |x̃(z)−ỹ(z′)|2 . (5)

Here, ∥ · ∥ is the standard norm in Cm. In addition, for
x ∈ X , x̃(z) = x(z)/|x(z)|.

Let Ω = {z1, . . . , zp}, A1 = C∗(Z/pZ), and A2 = Cp×p.
We first construct an A1-valued positive definite kernel,
which reconstructs the convolutional kernel (5).

Proposition 5.4 Define k̂ : X × X → A1 as

k̂(x, y) =

∫
R

∫
Rm

cx(ω, η)
∗cy(ω, η) dλβ(ω)dλσ(η), (6)

where dλβ(ω) = βe−
β2ω2

2 dω for β > 0 and

cx(ω, η) = circ
(
|x(z1)|e

√
−1ω·z1e

√
−1η·x̃(z1), · · · ,

|x(zp)|e
√
−1ω·zpe

√
−1η·x̃(zp)

)
,

for x ∈ X , ω ∈ Rm, and η ∈ R. Then, k̂ is an A1-
valued positive definite kernel, and for any l = 1, . . . , p, k̃
in Eq. (5) is written as

k̃(x, y) =
1

p

p∑
i,j=1

k̂(x, y)i,j =

p∑
j=1

k̂(x, y)l,j ,

where k̂(x, y)i,j is the (i, j)-entry of k̂(x, y).

Remark 5.5 Similar to Subsection 5.1, we can generalize
k̂ by replacing cx(·, ·)∗cy(·, ·) by an A2-valued polynomial
kernel with respect to cx(·, ·) and cy(·, ·) in Eq. (6).

Instead of A1-valued, we can also construct an Ã1-valued
kernel, which reconstructs the convolutional kernel (5).

Definition 5.6 Let β, σ > 0. Define ǩ : X × X → Ã1 as

ǩ(x, y)(w) =
∑
z,z′∈Ω

|x(ψ(z, w))| |y(ψ(z′, w))|

× e
−1

2β2 ∥ψ(z,w)−ψ(z′,w)∥2

e
−1

2σ2 |x̃(ψ(z,w))−ỹ(ψ(z′,w))|2 (7)

for w ∈ Ω. Here, ψ : Ω × Ω → Ω is a map satisfying
ψ(z, 0) = z for any z ∈ Ω.

The Ã1-valued map ǩ is a generalization of the (C-valued)
convolutional kernel k̃ in the following sense, which is di-
rectly derived from the definitions of ǩ and k̃.

Proposition 5.7 For k̃ and ǩ defined as Eqs. (5) and (7),
respectively, we have ǩ(x, y)(0) = k̃(x, y).

We further generalize the Ã1-valued kernel ǩ to an A2-
valued positive definite kernel.

Definition 5.8 Let β, σ > 0 and ai ∈ A2 for i = 1, 2, 3, 4.
Let ψ be the same map as that in Eq. (7). Let k : X ×X →
A2 be defined as

k(x, y) =

∫
R

∫
Rm

∑
z,z′∈Ω

a∗1x(z)a
∗
2b(z, ω)

∗a∗3x̃(z, η)
∗

× a∗4a4ỹ(z
′, η)a3b(z

′, ω)a2y(z
′)a1 dλβ(ω)dλσ(η) (8)

for x, y ∈ X . Here, for x ∈ X ,

x(z) = diag(|x(ψ(z, z1)|, . . . , |x(ψ(z, zp))|) ∈ A2,

x̃(z, ω)

= diag(e−
√
−1ω·x̃(ψ(z,z1)), . . . , e−

√
−1ω·x̃(ψ(z,zp))) ∈ A2,

b(z, ω) = diag(e−
√
−1ω·ψ(z,z1), . . . , e−

√
−1ω·ψ(z,zp)) ∈ A2.

Proposition 5.9 The A2-valued map k defined as Eq. (8)
is an A2-valued positive definite kernel.

The following proposition shows k is a generalization of ǩ,
which means we finally generalize the (C-valued) convolu-
tion kernel k̃ to an A2-valued positive definite kernel. This
allows us to generalize the relationship between the CNNs
and the convolutional kernel to that of a C∗-algebra-valued
version of the CNNs and the C∗-algebra-valued convolu-
tional kernel k.

Proposition 5.10 If ai = I , then the A2-valued positive
definite kernel k defined as Eq. (8) is reduced to the A1-
valued convolutional kernel ǩ defined as Eq. (7).

6 NUMERICAL RESULTS

6.1 Experiments with Synthetic Data

We compared the performances of supervised learning
in RKHMs and vvRKHSs. We generated n samples
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(a) Regularization parameter λ (b) Number of samples n

Figure 4: Mean test error versus hyperparameters (Mean value ± standard
deviation of 5 runs).

Original

Input

3-layer CNN

RKHM + 1-layer CNN

Figure 5: Comparison between RKHM
and CNN

(a) 2-layer models (b) 3-layer models

Figure 6: Mean test error versus the number of epochs (Mean value ± standard deviation of 5 runs).

Table 1: Comparison between an RKHM and
vvRKHSs (Mean value ± standard deviation of 5 runs)

Mean error

vvRKHS, Gaussian

(k̃(x, y) = e−c∥x−y∥2 )

k = k̃I 0.640± 0.122

k = k̃T 0.603± 0.028

Nonsep 0.650± 0.051

vvRKHS, Laplacian
(k̃(x, y) = e−c∥x−y∥)

k = k̃I 0.538± 0.027

k = k̃T 0.590± 0.021

Nonsep 0.650± 0.048

vvRKHS, Polynomial
(k̃(x, y) =∑3

i=1(1− cx · y)i)

k = k̃I 0.800± 0.032

k = k̃T 0.539± 0.012

Nonsep 0.539± 0.012

RKHM (k(x, y) =
∑3

i=1 R
∗
x(I −

cQ∗
x)

i(I − cQy)
iRy)

0.343± 0.022

T =

[
1 1

1 1

]
, Nonsep: k(x1, x2)i,j = k̃(x1,i, x2,j)

x1, . . . , xn in [0, 1]2 each of whose elements is indepen-
dently drawn from the uniform distribution on [0, 1]. For
a generated sample xi = [xi,1, xi,2], we added noise ξi ∈
R2, each of whose elements is independently drawn from
the Gaussian distribution with mean 0 and standard devia-
tion 0.1. We generated the corresponding output sample yi
as yi = [sin(x̃i,1 + x̃i,2), sin(x̃i,1 + x̃i,2) + sin(0.5(x̃i,1 +
x̃i,2))] ∈ R2, where x̃i = xi + ξi. We learned a function f
that maps xi to yi in different RKHMs and vvRKHSs and
different values of the regularization parameter λ. To com-
pare the performances, we generated 100 test input sam-

ples x̂1, . . . , x̂100 in [0, 1]2 each of whose elements is in-
dependently drawn from the uniform distribution on [0, 1].
We also generated ŷ1, . . . , ŷ100 given by ŷi = [sin(x̂i,1 +
x̂i,2), sin(x̂i,1+x̂i,2)+sin(0.5(x̂i,1+x̂i,2))]. We computed
the mean error 1/100

∑100
i=1 ∥f(x̂i) − ŷi∥. The results for

n = 30 are illustrated in Table 1 and Figure 4. Regarding
Table 1, we executed a cross-validation grid search to find
the best parameters c and λ, where c is a parameter in the
positive definite kernels and λ is the regularization parame-
ter. Regarding Figure 4 (a), we set c as the parameter found
by the cross-validation and computed the error for different
values of λ. We remark that the mean error for the RKHM
becomes large as λ becomes large, but because of the scale
of the vertical axis, we cannot see the change clearly in the
figure. We can see that RKHM outperforms vvRKHSs. We
also show the relationship between the mean error and the
number of samples in Figure 4 (b). We can see that the
mean error becomes small as the number of samples be-
comes large.

Regarding the learning in RKHMs, for i = 1, . . . , n, we
transformed xi ∈ [0, 1]2 into circ(xi) ∈ Circ(2). Then,
we set A1 = Circ(2) and A2 = C2×2. We computed
the solution of the minimization problem (2) and obtained
a function f̂ ∈ Mk that maps circ(xi) to circ(yi). Since
the output of the learned function f̂ takes its value on A2,
we computed the mean value of (1, 1) and (2, 2) entries of
f̂(x̂i) for obtaining the first element of the output vector in
R2 and that of (1, 2) and (2, 1) entries for the second ele-
ment. Regarding the C∗-algebra-valued kernel for RKHM,
we set k(x, y) =

∑3
i=1R

∗
x(I − cQ∗

x)
i(I − cQy)

iRy for
x ∈ A1, where x = QxRx is the QR decomposition of x.
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6.2 Experiments with MNIST

We compared our method with CNNs using MNIST (Le-
Cun et al., 1998). Our objective is to find a function that
maps a noisy image to its original image using an RKHM
and a CNN. For i = 1, . . . , 20, we generated training
samples as follows: We added noise to each pixel of an
original image yi and generated a noisy image xi. The
noise is drawn from the normal distribution with mean
0 and standard deviation 0.01. Moreover, each digit (0–
9) is contained in the training sample set equally (i.e.,
the number of samples for each digit is 2). The image
size is 28 × 28. We represent input and output images
xi and yi as the circulant matrices circ(xi) and circ(yi)
whose first rows are xi and yi. Then, we learned the func-
tion in the RKHM associated with a polynomial kernel
k(x, y) = (a∗3σ(xa1 + a2)

∗ + a∗4)(σ(ya1 + a2)a3 + a4),
where σ(x) = (I−cQx)Rx+(I−cQx)3Rx. Since k has 4
A2-valued parameters, it corresponds to a generalization of
2-layer CNN with 28× 28 filters (see Subsection 5.1). Re-
garding the parameters ai, we used the simple gradient de-
scent method and optimized them. We generated 100 noisy
images for test samples in the same manner as the train-
ing samples and computed the mean error with respect to
them. For comparison, we also trained a 2-layer CNN with
28× 28 filters with the same training samples. The results
are illustrated in Figure 6 (a). We can see that the RKHM
outperforms the CNN. Moreover, we combined the RKHM
with a 1-layer CNN with a 3 × 3 filter, whose inputs are
the outputs of the function learned in the RKHM. We also
trained a 3-layer CNN with 3× 3 filters and a 2-layer CNN
with 28 × 28 filters combined with a 1-layer CNN with a
3×3 filter. The results are illustrated in Figures 5 and 6 (b).
We can see that by replacing convolutional layers with an
RKHM, we can achieve better performance. RKHMs and
convolutional layers with 28× 28 filters capture global in-
formation of images. According to the results of the CNN
with 28× 28 filters and the RKHM in Figure 6 (b), we can
see that the RKHM can capture global information of the
images more effectively. On the other hand, convolutional
layers with 3 × 3 filters capture local information. Since
the 2-layer RKHM combined with a 1-layer CNN with a
3 × 3 filter outperforms a 3-layer CNN with 3 × 3 filters,
we conclude that the combination of the RKHM and CNN
captures the global and local information more effectively.

7 CONCLUSION AND DISCUSSION

We investigated supervised learning in RKHM and pro-
vided a new twist and insights for kernel methods. We con-
structed C∗-algebra-valued kernels from the perspective of
C∗-algebra, which is suitable, for example, for analyzing
image data. We investigated the generalization bound and
computational complexity for RKHM learning and showed
the connection with existing methods. RKHMs enable us

to construct larger representation spaces than the case of
RKHSs and vvRKHSs, and generalize operations such as
convolution. This fact implies the representation power of
RKHMs goes beyond that of existing frameworks.

There are several interesting topics for future work. First,
more results for infinite-dimensionalC∗-algebras would be
helpful for analyzing functional data, as Hashimoto et al.
(2021) proposed. Results about generalization bounds in
Subsection 4.2.1 are not applicable to infinite-dimensional
C∗-algebras since the trace is not available for general
bounded linear operators. Finding a nice transformation of
elements in general C∗-algebras into a scalar value and de-
riving a bound based on the transformation can help us un-
derstand the generalization property of kernel methods for
functional data. We may also define a C∗-algebra-valued
generalization error and bound it directly with the order in
C∗-algebras. Then, improving results in Subsection 4.2.1
using the features of C∗-algebras can tell us more advan-
tages of applying C∗-algebras to kernel methods.

Studying excess risk is another interesting topic (see, for
example, Marteau-Ferey et al. (2019b,a). We documented
an argument how we can apply existing results to our prob-
lem for finite-dimensionalC∗-algebras in Section C in SM.
Similar to the case of generalization error, generalizing and
improving these results using the features of C∗-algebras
is interseting.

Finally, applying groupC∗-algebras on non-abelian groups
would enable us to investigate group equivalent kernel
methods and neural networks (for example, Sonoda et al.
(2022)). We discussed the connection between RKHMs
over C∗(Z/pZ) and CNNs. Since the product in group
C∗-algebras is defined by the group convolution, generaliz-
ing our results for an abelian group Z/pZ to a non-abelian
group help us understand the connection between RKHMs
and group equivalent neural networks.
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Notation

The typical notations in this paper are listed in Table A.

A Hilbert C∗-module

We provide definitions and a lemma related to Hilbert C∗-module.

Definition A.1 (C∗-module) Let M be an abelian group with an operation +. If M is equipped with a (right) A-
multiplication, then M is called a (right) C∗-module over A.

Definition A.2 (A-valued inner product) Let M be a C∗-module over A. A C-linear map with respect to the second
variable ⟨·, ·⟩M : M×M → A is called an A-valued inner product if it satisfies the following properties for u, v, w ∈ M
and a, b ∈ A:

1. ⟨u, va+ wb⟩M = ⟨u, v⟩M a+ ⟨u,w⟩M b,

2. ⟨v, u⟩M = ⟨u, v⟩∗M,

3. ⟨u, u⟩M ≥A 0,

4. If ⟨u, u⟩M = 0, then u = 0.

Definition A.3 (A-valued absolute value and norm) Let M be a C∗-module over A. For u ∈ M, the A-valued absolute
value |u|M on M is defined by the positive element |u|M of A such that |u|2M = ⟨u, u⟩M. The nonnegative real-valued
norm ∥ · ∥M on M is defined by ∥u∥M =

∥∥|u|M∥∥
A.

Similar to the case of Hilbert spaces, the following Cauchy–Schwarz inequality for A-valued inner products is avail-
able (Lance, 1995, Proposition 1.1).

Lemma A.4 (Cauchy–Schwarz inequality) Let M be a Hilbert A-module. For u, v ∈ M, the following inequality
holds:

| ⟨u, v⟩M |2A ≤A ∥u∥2M ⟨v, v⟩M .

B Proofs

We provide the proofs of the propositions and lemmas in the main thesis.

Lemma 2.4 The group C∗-algebra C∗(Z/pZ) is C∗-isomorphic to Circ(p).

Proof Let f : C∗(Z/pZ) → Circ(p) be a map defined as f(x) = circ(x(0), . . . , x(p − 1)). Then, f is linear and
invertible. In addition, we have

f(x)f(y) = circ

( ∑
z∈Z/pZ

x(0− z)y(z), . . . ,
∑

z∈Z/pZ

x(p− 1− z)y(z)

)
= circ((x · y)(0), . . . , (x · y)(p− 1)) = f(x · y),

f(x)∗ = circ(x(0), x(p− 1), . . . , x(1)) = f(x∗),

∥f(x)∥ =

∥∥∥∥F diag

( ∑
z∈Z/pZ

x(z)e2π
√
−1z·0/p, . . . ,

∑
z∈Z/pZ

x(z)e2π
√
−1z(p−1)/p

)
F ∗

∥∥∥∥ = ∥x∥,

where the last formula is derived by Lemma 2.3. Thus, f is a C∗-isomorphism. □

In the following, for a probability space Ω and a random variable (measurable map) g : Ω → C, the integral of g is denoted
by E[g].
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Table A: Notation table

A A C∗-algebra
A+ The subset of A composed of all positive elements in A
≤A For a, b ∈ A, a ≤A b means b− a is positive
⪇A For a, b ∈ A, a ⪇A b means b− a is positive and nonzero
| · |A The A-valued absolute value in A defined as |a|A = (a∗a)1/2 for a ∈ A.
X An input space
Y An output space
k An A-valued positive definite kernel
ϕ The feature map endowed with k

Mk The RKHM associated with k
G The A-valued Gram matrix defined as Gi,j = k(xi, xj) for given samples x1, . . . , xn ∈ X
F The discrete Fourier transform (DFT) matrix, whose (i, j)-entry is ω(i−1)(j−1)/

√
p

Lemma 4.3 For a positive A-valued random variable c : Ω → A+, we have E[c1/2] ≤A E[c]1/2.

Proof For any ϵ > 0, let x0 = E[c+ ϵ1A], a = 1/2x
−1/2
0 , and b = 1/2x

1/2
0 . Then, we have ax0 + b = x

1/2
0 and for any

x ∈ A+, we have

(ax+ b)∗(ax+ b)− x =
1

4
xx−1

0 x+
1

4
x+

1

4
x+

1

4
x0 − x

=

(
1

2
x
−1/2
0 x− 1

2
x
1/2
0

)∗(
1

2
x
−1/2
0 x− 1

2
x
1/2
0

)
= (ax− b)∗(ax− b) ≥A 0.

Thus, we have ax+ b = |ax+ b|A ≥A |x1/2|A = x1/2. Therefore, we have

E
[
(c+ ϵ1A)

1/2
]
≤A E[a(c+ ϵ1A) + b] = ax0 + b = x

1/2
0 = E[(c+ ϵ1A)]

1/2.

Since ϵ > 0 is arbitrary and A+ is closed, we have E[c1/2] ≤A E[c]1/2. □

Proposition 4.2 Let B > 0 and let F = {f ∈ Mk | ∥f∥k ≤ B} and let C = ∥E[|σi|2A] ∥A. Then, we have

R̂(F ,σ,x) ≤A
B
√
C

n

( n∑
i=1

∥k(xi, xi)∥A
)1/2

1A.

Proof By Lemma 4.3, we have

R̂(F ,σ,x) = E

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(xi)
∗σi

∣∣∣∣
A

]
=

1

n
E

[
sup
f∈F

∣∣∣∣〈f, n∑
i=1

ϕ(xi)σi

〉
k

∣∣∣∣
A

]

≤ 1

n
E

[
sup
f∈F

∣∣∣∣ n∑
i=1

ϕ(xi)σi

∣∣∣∣
k

∥f∥k
]
=

1

n
E

[∣∣∣∣ n∑
i=1

ϕ(xi)σi

∣∣∣∣
k

B

]
=
B

n
E

[( n∑
i,j=1

σ∗
i k(xi, xj)σj

)1/2]

≤ B

n
E

[ n∑
i,j=1

σ∗
i k(xi, xj)σj

]1/2
=
B

n

( n∑
i=1

E[σ∗
i k(xi, xi)σi]

)1/2

≤ B

n

( n∑
i=1

E[σ∗
i σi]∥k(xi, xi)∥A

)1/2

≤ B

n

( n∑
i=1

C1A∥k(xi, xi)∥A
)1/2

=
B
√
C

n

( n∑
i=1

∥k(xi, xi)∥A
)1/2

1A,

where the third inequality is derived by the Cauchy–Schwartz inequality (Lemma A.4). □
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In the following, we put A = Cp×p. The following lemmas are applied for the proofs of Lemmas 4.5 and 4.6.

Lemma B.1 Let a, b ∈ Rp×p or a, b ∈ A+. If a ≤A b, then tr(a) ≤ tr(b).

Proof Since b− a ∈ A+, we have 0 ≤ tr(b− a) = tr(b)− tr(a). □

Lemma B.2 Let S be a subset of A+. Then, tr(sups∈S s) ≥ sups∈S tr(s). If there exists ŝ ∈ S such that sups∈S s = ŝ,
then tr(sups∈S s) = sups∈S tr(s).

Proof Let ϵ > 0. Then, there exists t ∈ S such that

(1− ϵ) sup
s∈S

tr(s) ≤ tr(t) ≤ tr(sup
s∈S

s).

Since ϵ > 0 is arbitrary, we have tr(sups∈S s) ≥ sups∈S tr(s).

If there exists ŝ ∈ S such that sups∈S s = ŝ, then we have

tr(sup
s∈S

s) = tr(ŝ) ≤ sup
s∈S

tr(s).

□

Lemma B.3 Let a ∈ Rp×p. Then, tr(a) ≤ tr(|a|A).

Proof Let λ1, . . . , λp be eigenvalues of a, and let κ1, . . . , κp be singular values of a. Then, by Weyl’s inequality, we have

tr(a) =

p∑
i=1

λi ≤
p∑
i=1

|λi| ≤
p∑
i=1

κi = tr(|a|A).

□

We now show Lemmas 4.5 and 4.6.

Lemma 4.5 Let s1, . . . , sn be {−1, 1}-valued Rademacher variables (i.e. independent uniform random variables taking
values in {−1, 1}) and let σ1, . . . , σn be i.i.d. A-valued random variables each of whose element is the Rademacher
variable. Let s = {si}ni=1, and z = {(xi, yi)}ni=1. Then, we have

R̂(trG(F), s, z) ≤ L tr R̂(F ,σ,x).

Proof For f1, f2 ∈ F , we have

tr(|f1(xi)− yi|2A)− tr(|f2(xi)− yi|2A) = tr((f1(xi)− yi + f2(xi)− yi)
∗(f1(xi)− yi − f2(xi) + yi))

≤ ∥f1(xi)− yi + f2(xi)− yi∥A ∥f1(xi)− yi − f2(xi) + yi∥HS,

where the first equality holds since for a1, a2 ∈ Rp×p, tr(a∗1a2) = tr(a∗2a1) and ∥ · ∥HS is the Hilbert–Schmidt norm in
Cp×p. In addition, we have

∥f1(xi)− yi + f2(xi)− yi∥A = ∥ ⟨ϕ(xi), f1 + f2⟩k − 2yi∥A

≤ ∥k(xi, xi)∥1/2∥f1 + f2∥k + 2∥yi∥A ≤ 2(B
√
D + E) =

L√
2
.
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Thus, by setting ψi(f) = tr(|f(xi)− yi|2), ϕi(f) = L/
√
2f(xi), and ∥ · ∥ = ∥ · ∥HS in Theorem 3 of Maurer (2016), we

obtain

E

[
sup
f∈F

1

n

n∑
i=1

si tr(|f(xi)− yi|2A)
]
≤

√
2
L√
2
E

[
sup
f∈F

1

n

n∑
i=1

⟨σi, f(xi)⟩HS

]

≤ LE

[
sup
f∈F

tr

∣∣∣∣ 1n
n∑
i=1

f(xi)
∗σi

∣∣∣∣
A

]
≤ L tr E

[
sup
f∈F

∣∣∣∣ 1n
n∑
i=1

f(xi)
∗σi

∣∣∣∣
A

]
.

□

Lemma 4.6 Let z : Ω → X × Y be a random variable and let g ∈ G(F). Under the same notations and assumptions as
Lemma 4.5, for any δ ∈ (0, 1), with probability ≥ 1− δ, we have

tr

(
E[g(z)]− 1

n

n∑
i=1

g(xi, yi)

)
≤ 2R̂(trG(F), s, z) + 3

√
2Mp

√
log(2/δ)

n
.

Proof For a random variable S = (z1, . . . , zn) : Ω → (X × Y)n, let Φ(S) = supg∈G(F) tr(E[g(z)] − 1/n
∑n
i=1 g(zi)).

For i = 1, . . . , n, let Si = (z′1, . . . , z
′
n), where zj = z′j for j ̸= i and zi ̸= z′i. Then, we have

Φ(S)− Φ(Si) ≤ sup
g∈G(F)

tr

(
E[g(z)]− 1

n

n∑
j=1

g(zj)

)
− sup
g∈G(F)

tr

(
E[g(z)]− 1

n

n∑
j=1

g(z′j)

)

≤ 1

n
sup

g∈G(F)

tr

( n∑
j=1

g(zj)−
n∑
j=1

g(z′j)

)
=

1

n
sup

g∈G(F)

tr(g(zi)− g(z′i))

≤ p

n
sup

g∈G(F)

∥g(zi)− g(z′i)∥A ≤ 2
√
Mp

n
.

The final inequality is derived since

∥g(zi)∥A = ∥|f(xi)− yi|2A∥A = ∥| ⟨ϕ(xi), f⟩k − yi|2A∥A
≤

(
∥k(xi, xi)∥1/2∥f∥k + ∥yi∥A

)2 ≤ DB2 + 2
√
DBE + E2.

By McDiarmid’s inequality, for any δ ∈ (0, 1), with probability ≥ 1− δ/2, we have

Φ(S)− E[Φ(S)] ≤

√√√√1

2

n∑
i=1

(
2
√
Mp

n

)2

log
2

δ
=

√
2Mp

√
log 2

δ

n

Thus, for any g ∈ G(F), we have

tr

(
E[g(z)]− 1

n

n∑
i=1

g(zi)

)
≤ Φ(S) ≤ E[Φ(S)] +

√
2Mp

√
log 2

δ

n
.

For the remaining part, the proof is the same as that of Theorem 3.3 of Mohri et al. (2018). Since

Φ(S) = sup
g∈G(F)

(
E[tr(g(z))]− 1

n

n∑
i=1

tr(g(zi))

)
,

we replace g in the proof of Theorem 3.3 in Mohri et al. (2018) by z 7→ tr(g(z)) in our case and derive

tr

(
E[g(z)]− 1

n

n∑
i=1

g(xi, yi)

)
≤ 2E

[
sup
f∈F

1

n

n∑
i=1

si tr |f(xi)− yi|2A
]
+ 3

√
2Mp

√
log 2

δ

n

≤ 2R̂(trG(F), s, z) + 3
√
2Mp

√
log 2

δ

n
,
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which completes the proof. □

Proposition 4.7 For ai,j ∈ A1, the computational complexity for computing (G+ λI)−1y by direct methods for solving
linear systems of equations is O(np2 log p+ n3p).

Proof Since all the elements of G and y are in A1, we have

(G+ λI)−1y = (FΛ−1
G+λIF

∗)FΛyF
∗ = FΛ−1

G+λIΛyF
∗,

where F is the Cp×p-valued n × n diagonal matrix whose diagonal elements are all F . In addition, ΛG+λI is the A1-
valued n×n whose (i, j)-entry is Λk(xi,xj), and Λy is the vector in An

1 whose ith element is Λyi . If we use the fast Fourier
transformation, then the computational complexity of computing Fy for y ∈ Cp×p is O(p2 log p). Moreover, since the
computational complexity of multiplication ΛxΛy for x, y ∈ A1 isO(p), using Gaussian elimination and back substitution,
the computational complexity of computing Λ−1

G+λIΛy is O(n3p). As a result, the total computational complexity is
O(np2 log p+ n3p). □

Proposition 4.9 Let ai,j ∈ A2 whose number of nonzero elements is O(p log p). Then, the computational complexity for
1 iteration step of CG method is O(n2p2 log p).

Proof The computational complexity for computing 1 iteration step of CG method is equal to that of computing (G+λI)b
for b ∈ An

2 . For b ∈ A2, the computational complexity of computing k(xi, xj)b is O(p2 log p) since those of computing
ai,jb and xib are both O(p2 log p). (For xib, we use fast Fourier transformation.) Therefore, the computational complexity
of computing (G+ λI)b is O(n2p2 log p). □

Proposition 5.1 For a1, . . . , aL, b1, . . . , bL ∈ A1 and σ1, . . . , σL : A1 → A1 each of which has an expansion σj(x) =∑∞
l=1 αj,lx

l with αj,l ≥ 0, let k̂ : X × X → A1 be defined as

k̂(x, y) =σL(b
∗
LbL + σL−1(b

∗
L−1bL−1 + · · ·+ σ2(b

∗
2b2 + σ1(b

∗
1b1 + x∗a∗1a1y)a

∗
2a2) · · · × a∗L−1aL−1)a

∗
LaL). (3)

Then, k̂ is an A1-valued positive definite kernel.

Proof Let l : X × X → A1 be an A1-valued positive definite kernel and σ : A1 → A1 be a map that has an expansion
σ(x) =

∑∞
j=1 αjx

j with αj ≥ 0. Then, σ ◦ l is also an A1-valued positive definite kernel. Indeed, for d1, . . . , dn ∈ A1

and x1, . . . , xn ∈ X , we have

n∑
i,j=1

d∗i σ(l(xi, xj))dj =

n∑
i,j=1

∞∑
s=1

αsd
∗
i l(xi, xj)

sdj ≥A1
0.

Since (x, y) 7→ b∗1b1+x
∗a∗1a1y is an A1-valued positive definite kernel, (x, y) 7→ σ1(b

∗
1b1+x

∗a∗1a1y) is also an A1-valued
positive definite kernel. Moreover, since σ1(b∗1b1 + x∗a∗1a1y) and a2 are in A1, (x, y) 7→ b∗2b2 + σ1(b

∗
1b1 + x∗a∗1a1y)a2a

∗
2

is also an A1-valued positive definite kernel. We iteratively apply the above result and obtain the positive definiteness of
k̂. □

Proposition 5.2 The A1-valued positive definite kernel k̂ defined as Eq. (3) is composed of the sum of A1-valued polyno-
mial kernels.

Proof Since (x, y) 7→ b∗1b1+x
∗a∗1a1y is an A1-valued polynomial kernel and σ : A1 → A1 is a map that has an expansion

σ(x) =
∑∞
j=1 αjx

j , k̂ is composed of the sum of A1-valued polynomial kernels. □
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Proposition 5.4 Define k̂ : X × X → A1 as

k̂(x, y) =

∫
R

∫
Rm

cx(ω, η)
∗cy(ω, η) dλβ(ω)dλσ(η), (6)

where dλβ(ω) = βe−
β2ω2

2 dω for β > 0 and

cx(ω, η) = circ
(
|x(z1)|e

√
−1ω·z1e

√
−1η·x̃(z1), · · · , |x(zp)|e

√
−1ω·zpe

√
−1η·x̃(zp)

)
,

for x ∈ X , ω ∈ Rm, and η ∈ R. Then, k̂ is an A1-valued positive definite kernel, and for any l = 1, . . . , p, k̃ is written as

k̃(x, y) =
1

p

p∑
i,j=1

k̂(x, y)i,j =

p∑
j=1

k̂(x, y)l,j ,

where k̂(x, y)i,j is the (i, j)-entry of k̂(x, y).

Proof The positive definiteness of k̂ is trivial. As for the relationship between k̃ and k̂, we have

k̂(x, y)i,j =

∫
R

∫
Rm

p∑
l=1

|x(zp−i+2+l)|e−
√
−1ω·zp−i+2+le−

√
−1η·x̃(zp−i+2+l)

× |y(zp−j+2+l)|e
√
−1ω·zp−j+2+le

√
−1η·ỹ(zp−j+2+l)dλβ(ω)dλσ(η)

=

p∑
l=1

|x(zp−i+2+l)| |y(zp−j+2+l)|e−
1

2σ2 |x̃(zp−i+2+l)−ỹ(zp−j+2+l)|2e
− 1

2β2 ∥zp−i+2+l−zp−j+2+l∥2

.

Thus, we have
p∑
i=1

k̂(x, y)i,j =

p∑
i,l=1

|x(zl+j−i)| |y(zl)|e
− 1

2β2 |x̃(zl+j−i)−ỹ(zl)|2e−
1

2σ2 ∥zl+j−i−zl∥2

= k̃(x, y).

□

Proposition 5.9 The A2-valued map k defined as Eq. (8) is an A2-valued positive definite kernel.

Proof For n ∈ N, c1, . . . , cn ∈ A2, and x1, . . . , xn ∈ Ad
1, we have

n∑
i,j=1

c∗i k(xi, xj)cj

=

∫
R

∫
Rm

n∑
i=1

∑
z∈Ω

c∗i a
∗
1xi(z)a

∗
2b(z, ω)

∗a∗3x̃i(z, η)
∗a∗4

n∑
j=1

∑
z′∈Ω

a4x̃j(z
′, η)a3b(z

′, ω)a2xj(z
′)a1cj dλβ(ω)dλσ(η),

which is positive semi-definite. □

C Regarding excess risk

We discuss the excess risk (Marteau-Ferey et al., 2019b,a) of our supervised problem. In this section, we focus on the case
A = Cp×p. In this case, we can also regard An as a Hilbert space equipped with the Hilbert–Schmidt inner product. Thus,
taking the trace of our problem (2), we get

tr min
c∈An

( n∑
i=1

ℓ̃zi(c) + λc∗Gc

)
= min

c∈An
tr

( n∑
i=1

ℓ̃zi(c) + λc∗Gc

)
= min

c∈An

( n∑
i=1

tr(ℓ̃zi(c)) + λ tr(c∗Gc)

)
,

where zi = (xi, yi), ℓ̃zi(c) = |Φ(xi)∗c − yi|2A, and Φ(xi)
∗ = [k(xi, x1), . . . , k(xi, xn)]. The first equality is derived by

Lemma B.2. Therefore, by setting ℓ = tr ℓ̃, our problem is reduced to the problem discussed in Section 2 by Marteau-Ferey
et al. (2019b). Therefore, their results enable us to obtain an excess risk bound.
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