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Abstract

We study the PSPACE-complete k-Canadian Traveller Problem, where a weighted graph G =
(V,E, ω) with a source s ∈ V and a target t ∈ V are given. This problem also has a hidden input
E∗ ⊊ E of cardinality at most k representing blocked edges. The objective is to travel from s to
t with the minimum distance. At the beginning of the walk, the blockages E∗ are unknown: the
traveller discovers that an edge is blocked when visiting one of its endpoints. Online algorithms,
also called strategies, have been proposed for this problem and assessed with the competitive ratio,
i.e., the ratio between the distance actually traversed by the traveller divided by the distance we
would have traversed knowing the blockages in advance.

Even though the optimal competitive ratio is 2k + 1 even on unit-weighted planar graphs of
treewidth 2, we design a polynomial-time strategy achieving competitive ratio 9 on unit-weighted
outerplanar graphs. This value 9 also stands as a lower bound for this family of graphs as we
prove that, for any ε > 0, no strategy can achieve a competitive ratio 9− ε. Finally, we show that
it is not possible to achieve a constant competitive ratio (independent of G and k) on weighted
outerplanar graphs.

1 Introduction

The k-Canadian Traveller Problem (k-CTP) was introduced by Papadimitriou and Yannakakis [21].
It models the travel through a graph where some obstacles may appear suddenly. Given an undi-
rected weighted graph G = (V,E, ω) and two of its vertices s, t ∈ V , a traveller walks from s to t on
graph G in the shortest way despite the existence of blocked edges E∗ ⊊ E (also called blockages).
The traveller does not know which edges are blocked when he begins his journey. He discovers that
an edge e = (u, v) is blocked, i.e., belongs to E∗, when he visits one of its endpoints u or v. The
parameter k is an upper bound on the number of blocked edges: |E∗| ≤ k. The k-CTP is known to
be PSPACE-complete [4, 21]. Variants of the k-CTP have been studied: where edges are blocked
with a certain probability [1, 4, 9, 16], with multiple travellers [7, 22], where we can pay to sense
remote edges [16], or where we seek the shortest tour [18, 19]. This problem has applications in
robot routing for various types of logistics [1, 2, 5, 14, 20].

The graph G = (V,E, ω) has edge weights given by the function ω : E → Q+. Our objective
is to make the traveller reach the target t with a minimum cost (also called distance), which is
the sum of the weights of the traversed edges. A pair (G,E∗) is called a road map. All the road
maps considered are feasible: there exists an (s, t)-path in G \ E∗, the graph G deprived of the
blocked edges E∗. In other words, there always is a way to reach target t from source s despite
the blockages.

∗This work was supported by the International Research Center ”Innovation Transportation and Production Systems”
of the I-SITE CAP 20-25 and by the ANR project GRALMECO (ANR-21-CE48-0004).
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A solution to the k-CTP is an online algorithm, called a strategy, which guides the traveller
through his walk on the graph. Its quality can be assessed with competitive analysis [10]. Roughly
speaking, the competitive ratio is the quotient between the distance actually traversed by the
traveller and the distance he would have traversed, knowing which edges are blocked before be-
ginning his walk. Westphal [24] proved that no deterministic strategy achieves a competitive ratio
better than 2k + 1 on all road maps satisfying |E∗| ≤ k. Said differently, for any deterministic
strategy A, there is at least one k-CTP road map for which the competitive ratio of A is at least
2k + 1. Two strategies proposed in the literature reach this optimal ratio: reposition [24] and
comparison [25]. The reposition strategy consists in trying to traverse the shortest (s, t)-path
(exploration phase) of G deprived of the blockages revealed: if a blocked edge is found on this
path and thus prevents us from reaching t, we update the set of blockages discovered, go back
to s (backtracking phase) and restart the process until reaching t. The comparison strategy
is a trade-off between the greedy strategy (trying to take the shortest path between the current
position and the target t) and reposition.

Randomized strategies, i.e., strategies in which choices of directions depend on a random draw,
have also been studied. Westphal [24] proved that there is no randomized strategy achieving a
ratio lower than k + 1. Bender et al. [6] studied graphs composed only of vertex-disjoint (s, t)-
paths and proposed a polynomial-time strategy of ratio k + 1. A slight revision of this strategy
is reported in [23]. Demaine et al. proposed a pseudo-polynomial-time randomized strategy on

general graphs which achieves a competitive ratio (1 +
√
2
2
)k +O(1) [13].

In this article, we focus only on deterministic strategies. Our objective is to be able to dis-
tinguish between graph classes on which the k-CTP has competitive ratio 2k + 1 (the optimal
ratio for general graphs) and the ones for which this bound can be improved. This direction of
research has already been explored in [8]: there is a polynomial-time strategy which achieves ratio√
2k +O(1) on graphs with bounded-size maximum (s, t)-cuts. We pursue this study by focusing

on a well-known family of graphs: outerplanar graphs. In [8], an outcome dedicated to a superclass

of weighted outerplanar graphs implies that there is a strategy with ratio 2
3
4 k +O(1) on them.

Observe however that slightly larger families of graphs have 2k + 1 as their optimal ratio. By
adapting the instance proposed by Westphal [24] and only using weight 1, it was shown [11] that
the ratio 2k+1 cannot be outperformed on unit-weighted graphs consisting only of disjoint (s, t)-
paths. These graphs are planar and of treewidth 2. With small effort, we can transform them
into an equivalent tree-like structure and state that ratio 2k + 1 is also optimal for unit-weighted
planar graphs with maximum degree 3. In the remainder of this article, we put in evidence a very
large gap between unit-weighted outerplanar and planar graphs, as we show that there exists a
strategy with ratio 9, i.e., independent from k, on unit-weighted outerplanar graphs.

Our results and outline. After some preliminaries (Section 2), we describe in Section 3 a
polynomial-time strategy achieving a competitive ratio 9 on instances where the input graph is a
unit-weighted outerplanar graph:

Theorem 1. There is a strategy with competitive ratio 9 for unit-weighted outerplanar graphs.

In the input outerplanar graph, vertices s and t lie on the outerface. The latter can be seen
(provided the graph is 2-connected) as a cycle embedded in the plane, allowing to explore two
sides when we travel from s to t. The strategy exploits the existence of these two sides: it consists
in a so-called exponential balancing. More precisely, we explore some distance D on one side, then
we explore 2D on the other side, then we come back to the original side with budget 4D, then
8D on the second side, and so on. Moreover, the strategy handles the chords linking both sides
and maintains an invariant ensuring that the travelled distance is upper-bounded by 9 times the
optimal distance towards the farthest vertices visited. At the end of the execution, this provides
us with a competitive ratio at most 9.

Observe that this outcome on unit-weighted outerplanar graphs can be directly extended to
equal-weight outerplanar graphs, as such a modification has no impact on the competitive ratio.
More generally, if we focus on weighted outerplanar graphs where the quotient between the max-
imum weight and the minimum one is bounded by some constant stretch S, we have a ratio 9S
with the proposed strategy.

We then prove in Section 4 that, on unit-weighted outerplanar graphs, the competitive ratio
stated in Theorem 1 is optimal:
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Theorem 2. For any ε > 0, no deterministic strategy can achieve a competitive ratio 9− ε on all
road maps (G,E∗), where G is a unit-weighted outerplanar graph.

This lower bound comes from studying a specific pathological outerplanar graph, the so-called
shell graph. We encode every deterministic strategy on this graph as a sequence of explored
distances on each side. The existence of a deterministic strategy with ratio 9 − ε, with ε > 0, is
translated into a system of linear equalities which has to be satisfied. We prove that this system
has no solution using Farkas’ lemma [15], a well-known tool in the area of linear programming.

Our last contribution in this article is presented in Section 5. We show that no constant com-
petitive ratio can be achieved on the more general family of graphs, where the graph is outerplanar
but weights can be selected arbitrarily.

Theorem 3. There is no constant C, independent from G and k, such that a deterministic strategy
achieves competitive ratio C on all road maps (G,E∗) where G is a weighted outerplanar graph.

The proof consists in showing that there is no strategy achieving a certain constant ratio
C on a trivial weighted outerplanar graph. Then, we extend it inductively: assume there is a
outerplanar graph G on which we cannot achieve some ratio C, we are able to use G to build
a bigger outerplanar graph on which ratio C + 1 cannot be achieved. We end this article with
concluding remarks and directions for future research (Section 6).

We summarize in Table 1 below the state-of-the-art of the competitive analysis of deterministic
strategies for the k-CTP, giving for each family of graphs an upper bound of competitiveness (i.e.,
a strategy with such ratio exists) and a lower bound (i.e., no strategy can achieve a smaller ratio).
Our contributions are framed.

Family of graphs upper bound lower bound

unit-weighted planar of treewidth 2 2k + 1 [24] 2k + 1 [11, 24]

bounded maximum edge (s, t)-cuts
√
2k +O(1) [8] ?

outerplanar 2
3
4 k +O(1) [8] not constant

unit-weighted outerplanar 9 9

Table 1: How deterministic strategies perform for the k-CTP on specific families of graphs.

2 Definitions and first observations

2.1 Graph preliminaries

We work on undirected connected weighted graphs G = (V,E, ω), where ω : E → Q+. A graph
is called equal-weighted if the value of ω(e) is the same for every edge e ∈ E. A special case of
equal-weighted graphs are unit-weighted graphs, where ω(e) = 1 for every edge e.

A subgraph G′ of G is a graph G′ = (V ′, E′, ω′), where V ′ ⊆ V , E′ ⊆ E ∩ (V ′ × V ′), and
ω′ = ω|E′ . For any U ⊆ V , we denote by E [U ] the set of edges of G with two endpoints in U . We
denote by G [U ] the subgraph of G induced by U : G [U ] =

(
U,E [U ] , ω|E[U ]

)
. We denote by G \U

the graph deprived of vertices in U : G \U = G [V \ U ]. Similarly, for any set of edges E′ ⊆ E, the
graph G deprived of E′ is denoted by G \ E′ =

(
V,E \ E′, ω|E\E′

)
.

A simple path P is a sequence of pairwise different vertices v1·v2 · · · vi·vi+1 · · · vℓ, with departure
v1 and arrival vℓ, where vivi+1 ∈ E for i ∈ {1, . . . , ℓ − 1}. A simple path between vertices u and
v is called a (u, v)-path. In a (u, v)-walk , however, vertices can be repeated. We abuse notations:
v1 ∈ P and v1v2 ∈ P mean that vertex v1 and edge v1v2 are on path P , respectively.

An (s, t)-separator X ⊊ V \{s, t} in graphG is a set of vertices such that s and t are disconnected
(i.e., there is no path between them) in graph G\X. We denote by RG(s,X) (resp. RG(t,X)) the
source component (resp. target component) of separator X, which is a set made up of the vertices
of X together with all vertices reachable from s (resp. t) in G \X. When there is no ambiguity
on the graph treated, we might use the simpler notations R(s,X) and R(t,X).
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2.2 Problem definition and competitive analysis

Let G = (V,E, ω) be a graph and E∗ represents a set of blocked edges. We define below the
concept of road maps which are the instances of the k-CTP problem.

Definition 4 (Road maps). A pair (G,E∗) is a road map if s and t are connected in G \ E∗.

In other words, there must be an (s, t)-path in the graph G deprived of the blocked edges E∗.
We can now formally introduce the k-Canadian Traveller Problem.

Definition 5 (k-CTP).
Input: A graph G = (V,E, ω), two vertices s, t ∈ V , and a set E∗ of blocked edges which are

unknown and such that |E∗| = k and (G,E∗) is a road map.
Objective: Traverse graph G from s to t with minimum distance.

A partial solution is a walk v0 · · · vℓ where v0 = s, the vi are non-necessarily distinct vertices
of G, and vivi+1 ∈ E \ E∗. A solution for the k-CTP is a partial solution where vℓ = t.

The set of blocked edges E∗ is a hidden input at the beginning of the walk. We say an edge is
revealed when one of its endpoints has already been visited. A discovered blocked edge is a revealed
edge which is blocked. At any moment of the walk, we usually denote by E′

∗ the set of discovered
blocked edges, in other words the set of blocked edges for which we visited at least one endpoint.
Naturally, E′

∗ ⊆ E∗ and, at the beginning of the walk, we can assume that E′
∗ is empty since the

presence of blockages incident with s amounts to consider the graph without these edges. At any
moment, we are in fact working on graph G \ E′

∗ as discovered blocked edges can be withdrawn
from the input graph G.

We say a path is blocked if we are sure that it contains a blocked edge, i.e., one of its edges was
discovered blocked. Similarly, we say a path is open if we are sure that it does not contain any
blocked edge: either all of its edges were revealed open, or it is apparently open and |E′

∗| = k, or
by connectivity considerations since s and t must stay connected in road maps. As an example: if
at some moment of the walk, G \E′

∗ is narrowed to a simple (s, t)-path, we know that this path is
open even if its edges have not all been revealed, due to the (s, t)-connectivity of G \ E∗ in road
maps. Finally, we say a path is apparently open if no blocked edge has been discovered on it for
now. However, it may contain a blocked edge which has not been discovered yet.

For any subset of blocked edges F ⊆ E∗ and two vertices x, y, let dF (x, y) be the cost of the
shortest (x, y)-path in graph G \ F . If F = E′

∗ refers to the set of blocked edges revealed by the
traveller since the beginning of its walk, then dF (x, y) is the cost of the shortest apparently open
(x, y)-path in G. If needed, we may add the considered graph into this notation, for example
dF (G, x, y).

Definition 6 (Optimal offline path and cost). We denote by Popt some optimal offline path of
road map (G,E∗): it is one of the shortest (s, t)-paths in the graph G \ E∗. Its cost, the optimal
offline cost, is given by dopt = dE∗ (s, t). Concretely, this is the distance the traveller would have
traversed if he had known the blockages in advance.

The competitive ratio is defined in [10]. We denote by dTrA (G,E∗) the distance traversed by
the traveller guided by a strategy A on graph G from source s to target t with blocked edges E∗.

Definition 7 (Competitive ratio). The competitive ratio cA(G,E∗) of A over a road map (G,E∗)
is defined as the ratio between dTr

A (G,E∗) and the optimal offline cost dopt. For k ∈ N, the
competitive ratio cA of a strategy A for the k-CTP is the maximum over all road maps with at
most k blocked edges. Formally:

cA(G,E∗) =
dTr
A (G,E∗)

dopt
cA = max

road map (G,E∗)
|E∗|≤k

cA (G,E∗)

An intermediary indicator cA(G) is the competitive ratio of strategy A over a graph G, assessing
all road maps containing this input graph G.

Given a monotone family of graphs F , we say that a strategy A admits a competitive ratio
c(k) for the family F if it is an upper bound for all values cA (G,E∗) over all k-CTP road maps
(G,E∗) such that G ∈ F . Conversely, we say that some ratio c(k) cannot be achieved for family
F for every strategy A, there is a graph G ∈ F such that cA(G) > c(k).
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Figure 1: Graph W4, as defined in [24]

Observe that, if strategy A admits some competitive ratio c on some road map (G,E∗) where
G is unit-weighted, then it also achieves ratio c on the same graph G with equal weights different
from 1. Indeed, multiplying unit weights with an arbitrary positive value has the same influence
on both the traversed distance of our walk and the offline optimal path. Hence, unit-weighted and
equal-weighted graphs can be considered equivalent under competitive analysis.

We remind the state of the art on the competitive ratio of deterministic strategies for k-CTP.
We present here some known worst-case road maps, i.e., road maps on which the competitive ratio
2k +O(1) cannot be beaten. Westphal [24] identified, for any integer k, a relatively trivial family
of graphs for which any deterministic strategy achieves at least ratio 2k+1 (an example is shown
on Figure 1). This family contains the graphs Wk made up of k+1 disjoint (s, t)-paths, i.e., they
only pairwise intersect in s and t. Each path has two edges sui and uit, with ω(sui) = 1 and
ω(uit) = ε ≪ 1.

As the k+1 disjoint (s, t)-paths are indistinguishable, any deterministic strategy has no choice
but to arbitrarily select the first path traversed. In this situation, there exists a configuration
of k blocked edges such that the only open path is the last one visited. In this case, the total
distance traversed is 2k+1+ ε while dopt = 1+ ε. Making ε tend to 0 produces the bound 2k+1.
Conversely, there are two strategies in the literature achieving competitive ratio 2k+1 on general
graphs: reposition [24] and comparison [25].

Observe that the monotone family induced by graphs Wk (i.e. the closure of (Wk)k≥1 by taking
subgraphs) is included into series-parallel graphs. As a consequence, a competitive ratio smaller
than 2k + 1 cannot be achieved on planar graphs of treewidth 2. Moreover, one can subdivide
each edge of weight 1 in Wk plenty of times and put weight ε everywhere, without modifying
the analysis. Hence, the lower bound 2k + 1 is naturally generalized to equal-weighted (and thus
unit-weighted) series-parallel graphs. In summary, the optimal competitive ratio for unit-weighted
planar graphs of treewidth 2 is also 2k+1. Our objective in the remainder is to prove that the lower
bound 2k + 1 can be strongly outperformed on unit-weighted outerplanar graphs, a well-known
sub-family of planar graphs of treewidth 2.

2.3 Articulation points

An articulation point of a connected graph G is a vertex such that G \ {v} is not connected.
For the k-CTP, if, at some moment of the walk, the current discovered graph G \ E′

∗ contains
an articulation point, then either the induced biconnected component can be withdrawn or the
problem can be decomposed independently into several biconnected components of G \ E′

∗. In
particular, this allows for a preliminary decomposition and simplification of a graph, before even
exploring, depending on whether a given articulation point is an (s, t)-separator or not, as shown
on Figure 2. More formally:

Lemma 8. Let F be a monotone family of graphs, and assume that we have a strategy A achieving
competitive ratio C on graphs of F that do not contain any articulation point. Then, there exists
a strategy A′ achieving the same competitive ratio C on all graphs of F .

Proof. The strategy A′ goes as follows: let (G,E∗) be a road map with G ∈ F . If G does not
contain any articulation point, apply strategy A. Otherwise, let z be an articulation point of G. If
{z} is not an (s, t)-separator, then, recursively apply strategy A′ on RG(s, {z})∪{z}, which is both
the source and the target component, to reach t from s. Otherwise (so {z} is an (s, t)-separator),
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Figure 2: Decomposing the graph into components with no articulation points and removing the useless
components (the vertices in a dashed rectangle are the same in the original graph).

recursively apply strategy A′ on the source component RG(s, {z}) ∪ {z} to reach z from s, then
recursively apply strategy A′ on the target component RG(s, {z}) ∪ {z} to reach t from z.

We prove by induction on the number p of articulation points that A′ terminates and achieves
competitive ratio C. The base case p = 0 holds by property of A. For the inductive step,
we distinguish two cases. If {z} is not an (s, t)-separator, the walk we obtain is of length at
most Cdopt, which gives competitive ratio C. Otherwise, the length of the whole walk at most
CdE∗(s, z) + CdE∗(z, t). Since z is an (s, t)-separator, z ∈ Popt and we have dopt = dE∗(s, z) +
dE∗(z, t), which concludes the proof.

2.4 Outerplanar graphs

An outerplanar graph is a graph that can be drawn in the plane in such a way that all vertices are
on the outer face. In other words, there exists a planar embedding of the graph where all vertices
are placed on the exterior boundary. Outerplanar graphs can also be characterized by a set of
forbidden minors: a graph is outerplanar if and only if it does not contain a subdivision of K4 or
K2,3 as a minor [12].

An outerplanar graph is 2-connected if and only if the outer face forms a cycle. Given an
embedding of a 2-connected outerplanar graph G = (V,E) and two vertices s and t, let s · p1 ·
p2 · · · ph · t · q1 · q2 · · · qℓ · s be the closed walk along the outer face of G and let S1 = {p1, p2, . . . , ph}
and S2 = {q1, q2, . . . , qℓ} with V = {s, t} ∪ S1 ∪ S2. We can deform slightly the embedding so
that s and t are aligned along the horizontal axis; since the outer face forms a cycle, we will refer
to the set S1 (resp. S2) as the upper (resp. lower) side of G. A chord xy of the cycle formed
by the outer face is said to be (s, t)-vertical (resp. (s, t)-horizontal) if x and y belong to different
sides (resp. to the same side), see Figure 3. When x = s and/or y = t, the chord is considered
as (s, t)-horizontal and not (s, t)-vertical. In the rest of the paper, if the context is clear, we will
simply refer to these types of chords as vertical chords and horizontal chords.

Each vertical chord uv forms an (s, t)-separator {u, v} as, by planarity, every (s, t)-path has to
go through at least one of u or v. Hence, each vertical chord naturally induces both a source and
a target component. Considering a set of vertical chords, we say that the rightmost one is the one
with the minimal inclusion-wise target component. Due to planarity, the rightmost vertical chord
is unique for any such set.
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p1
p2

p3 ph−1
ph

q1q2q3q4

qℓqℓ−1 qℓ−2

Figure 3: An outerplanar graph with s and t axis aligned, the pi’s vertices as the upper side S1 and
the qi’s vertices as the lower side S2. Edges p2qℓ, p2qℓ−1, p3qℓ−2, and ph−1q4 are vertical chords and
edges q1q3, q1q4 are horizontal chords; ph−1q4 is the rightmost vertical chord.

3 Competitive ratio 9 for unit-weighted outerplanar
graphs

We propose a polynomial-time strategy called ExpBalancing dedicated to unit-weighted outer-
planar graphs. We show that it achieves competitive ratio 9 for this family of graphs, which we
will later prove is optimal (see Theorem 2).

3.1 Presentation of the strategy

First, note that Lemma 8 allows us to work on outerplanar graphs without articulation points. The
input is a unit-weighted 2-connected outerplanar graph G and two vertices s and t. We provide a
detailed description of the strategy ExpBalancing that we follow to explore the graph G.

1. Reaching t. If, at any point in our exploration, we reach t, then we exit the algorithm and
return the processed walk.

2. Horizontal chords treatment. If, at any point in our exploration, we visit a vertex u ∈ Si,
i ∈ {1, 2}, incident with an open horizontal chord uv revealed for the first time, then we can
remove all the vertices on side Si that lie between u and v on the outer face. Said differently,
we get rid of the vertices which are surrounded by the chord uv. If several horizontal chords
incident with u are open, then one can only apply this rule to the one which surrounds
all others. This procedure comes from the observation that, due to both unit weights and
planarity, the open horizontal chord uv with the rightmost v is necessarily the shortest way
to go from u to t on side Si and thus visiting the vertices surrounded by it will be extra
costly.

3. Exponential balancing. The core exponential balancing principle of the strategy consists
in alternately exploring sides within a given budget that doubles each time we switch sides.
The budget is initialized to 1. Hence, we walk first on side S1 with budget 1, second on side
S2 with budget 2, then on side S1 with budget 4, and so on. We say each budget corresponds
to an attempt. During each attempt, we traverse a path starting from the source s and stay
exclusively on a side Si. As evoked in the previous step, at each newly visited vertex, we use
an open horizontal chord from our position which brings us as close as possible to t on our
side. Either a horizontal chord is open and we use the one which surrounds all other open
chords, or if no such chord is open, we pursue our walk on the outer face.

This balancing process can be described on an automaton depicted in Figure 4 which will
be particularly useful in the analysis of this strategy. Here, we assume that we neither are
completely blocked on one side nor reveal an open vertical chord. We will handle these cases
in Steps 4-6.

We start our walk on s (state E1) and make an attempt on an arbitrary side (say S1) with
budget 1 (state E2). During our first attempt on side S2 with budget 2, we cross a first edge
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and reach state A. Then, we cross a second edge if we are not blocked, but this part of the
journey corresponds to the transition between states A and B. The automaton works as
follows:

• In state A, we have explored D vertices on each side (hence D = 1 when we first arrive
in state A). Call x and y the last explored vertices on each side, assume we are on x.
The current budget is 2D and we pursue our attempt on the side of x.

• We then explore at most D more vertices on the side of x. We reach state B.

• We then go back to y through s, reaching state C.

• We explore at most D more vertices on the side of y. We go back to state A with an
updated value of D that is doubled, update x and y, and the sides were switched.

s t

E1

s t

E2

s t
D

D

x

y

A

s t
D

D

D

x x′

y

B

s t
D

D

D

x x′

y

C

update: D ← 2D

Figure 4: Representation of the exponential balancing divided into three different states. The circled
vertex is the one we are currently exploring.

4. Bypassing a blocked side. If, during some attempt on side Si, we are completely blocked
(there is no open (s, t)-path on G[Si] \ E′

∗) before reaching the budget, hence exploring αD
(α < 1) instead of D (see Figures 5a and 5b), then we backtrack to s and pursue the balancing
on the other side Sj (j ∈ {1, 2}, j ̸= i). However, we forget any budget consideration: we
travel until we either reach t or visit the endpoint u of some open vertical chord uv. In case
there are several open vertical chords incident with u revealed at the same time, we consider
the rightmost one. At this moment, we update the current graph G \ E′

∗ by keeping only
the target component of separator {u, v} and considering u as a new source. Concretely,
we concatenate the current walk computed before arriving at u with a recursive call of
ExpBalancing on input (G[RG(t, {u, v})], u, t).

5. Handling open vertical chords between states A and B. If, during some attempt on
side Si, especially in the transition between states A and B, we reveal an open vertical chord
uv, u ∈ Si, after having explored distance αD (parameter α is rational, 0 < α ≤ 1, but αD
is an integer), then we go to the other side Sj , j ̸= i, through uv and explore side Sj from v
towards s until we:

• either “see” a vertex y already visited after distance βD (we fix βD ≤ αD − 1, so
0 ≤ β < α),

8
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Figure 5: Four situations potentially met with ExpBalancing on some unit-weighted outerplanar
graph.

• or explore distance αD − 1 and do not see any already visited vertex,

• or are completely blocked on Sj before we reach distance αD − 1.

By “see”, we mean that we can reach - or not - a neighbor of y which reveals the status of
the edge between them: in this way, we actually know the distance to reach y from v even if
we did not visit it. Figure 5c describes this rule with an example.

If we see, after distance βD = αD− 1, an already visited vertex (denoted by y in Figure 5c)
at distance αD from v, then, we continue the exponential balancing: we go back to vertex
v and thus to state A in the automaton, update the budget value D which now becomes
D + αD, and switch sides.

Otherwise, we update G by keeping only the target component of separator {u, v}. The
current graph becomes G′ = G[R(t, {u, v})]. If we saw an already visited vertex y ∈ Sj

by exploring distance βD < αD − 1, then the new source becomes s′ = v. Otherwise, the
new source is s′ = u. We concatenate the current walk with the walk returned by applying
ExpBalancing on input (G′, s′, t).

6. Handling open vertical chords between states C and A. If, during the transition
between states C and A (when some attempt is launched on the side of y and the traversed
distance on the other side is larger, see Figure 4), an open vertical chord uv is revealed
(see Figure 5d), then we keep only the target component of {u, v} and restate u as the new
source. More formally, we concatenate the current walk with the walk returned by applying
ExpBalancing on input (G′, u, t), where G′ = G[RG(t, {u, v})].

Steps 4-6 can be summarized in this way: when we reveal an open vertical chord uv such that
dE∗(s, v) = dE∗(s, u) + 1, we launch a recursive call on the target component of separator {u, v}
with source u and target t. Indeed, an optimal offline path must pass through separator {u, v}
and, as dE∗(s, v) = dE∗(s, u) + 1, we can say there is one optimal offline path Popt such that
u ∈ Popt. For this reason, it makes sense to select u as our new source. Furthermore, there is now
no interest in visiting vertices different from {u, v} which belong to their source component.

Examples of executions of ExpBalancing are given in Figures 6 and 7.

3.2 Competitive analysis

We show now that the strategy ExpBalancing presented above has a competitive ratio 9 on
unit-weighted outerplanar graphs. We prove this statement by minimal counterexample. In this
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Figure 6: Application of ExpBalancing on the first graph of the decomposition of Figure 2. At each
step, the circled vertex is the one we are currently exploring, and we know the status of the bold edges:
black is open, red is blocked.

subsection, let G denote the smallest (by number of vertices, then number of edges) unit-weighted
outerplanar graph on which ExpBalancing does not achieve competitive ratio 9. We will see
that the existence of such graph G necessarily implies a contradiction.

We begin with a first observation dealing with the recursive call on some vertical chord of G.

Lemma 9. Assume that we are executing ExpBalancing on graph G. Assume also that, at some
moment of the execution, a recursive call is launched after revealing the vertical chord uv with new
source u. Let T be the distance traversed before the recursive call. Then, either T > 9dE∗ (s, u) or
dE∗ (s, v) < dE∗ (s, u) + 1.

Proof. If dE∗ (s, v) ≥ dE∗ (s, u) + 1, following the rules established in Steps 4-6, we will launch
a recursive call on the target component of {u, v} with new source u. Hence, we will have
dTrexp (G,E∗) = T+T ′, where T ′ ≤ 9dE∗ (u, t) by minimality of G and exp abbreviates ExpBalanc-
ing. By way of contradiction, suppose that T ≤ 9dE∗ (s, u). The optimal offline path Popt neces-
sarily goes through the separator {u, v} in graph G and, since dE∗ (s, v) = dE∗ (s, u)+1, u belongs
to some optimal offline path. Consequently, T + T ′ ≤ 9(dE∗ (s, u) + dE∗ (u, t)) = 9dE∗ (s, t).

In fact, ExpBalancing should launch at least one recursive call when applied to G, otherwise
we obtain a contradiction:

Lemma 10. During the execution of ExpBalancing, let T be the distance travelled at a given
point before the first recursive call (if any). Then, T ≤ 9dopt. Moreover, if we are in state A, let
x and y be the last two vertices explored on each side during the exponential balancing. Then: (i)
dE∗ (s, x) = D, (ii) dE∗ (s, y) = D and (iii) T ≤ 5D.

Proof. Assume that we applied ExpBalancing on G until a certain point and that no recursive
call was launched so far. We first focus on the second part of the invariant we want to show :

In state A, (i) dE∗ (s, x) = D, (ii) dE∗ (s, y) = D and (iii) T ≤ 5D.

Items (i) and (ii) are true, since no shortcut between s and either x or y can exist: any open
horizontal chord is used, and an open vertical chord opening up a shortcut lead to a recursive call
(Steps 5 and 6).
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Item (iii) is trivially true when we kick-start the exponential balancing: when entering A from
E2, we have T = 3 and dE∗ (s, x) = dE∗ (s, y) = 1. Assume that it is true for a given D ≥ 1, and
let T0 be the value of T at this point. When we reach state B, we have T = T0 +D ≤ 6D. When
we reach state C, we have T = T0 +D+3D ≤ 9D. In brief, from state A to C, we have dopt ≥ D
as distance D was explored on both sides without reaching t. The largest ratio of T by D on these
phases is 9 at state C, where we have T ≤ 9dopt.

During the transition from C to A, if D + αD denotes the traversed distance on current side
at any moment (see Figure 4), then dopt ≥ D + αD and T = 9D + αD. The ratio T

dopt
admits

a decreasing upper bound, from 9 in state C to 5 in A. Indeed, when we are back to state
A, we have T = T0 + D + 3D + D, but the value of D is updated. Let D′ = 2D. We have
T = T0 + 5D ≤ 5D + 5D = 5D′, and so item (iii) remains true during the core loop.

We also have to check that it is true when we met an open vertical chord uv between states A
and B which satisfies dE∗(s, v) = dE∗(s, u) (case βD = αD − 1 in Step 5). In this case, the new
value of D is D′ = D + αD and we have T ≤ 5D + αD + 1 + 2αD ≤ 5(D + αD) = 5D′ (since
αD ≥ 1), so item (iii) remains true.

In summary, assuming that no recursive call is used on G leads to the conclusion that the
competitive ratio of ExpBalancing on G is at most 9, a contradiction.

We are now ready to prove the major contribution of this article.

Theorem 1. There is a strategy with competitive ratio 9 for unit-weighted outerplanar graphs.

Proof. From Lemma 10, we know that ExpBalancing will, during some attempt, launch a re-
cursive call on G (otherwise, it has competitive ratio 9, a contradiction). Lemma 9 also has an
important consequence: if we launch a recursive call on the open vertical chord uv with new source
u and can guarantee that both dE∗ (s, v) = dE∗ (s, u) + 1 and T ≤ 9dE∗ (s, u), then, we have a
contradiction. According to the description of ExpBalancing, a recursive call is launched when
we are sure that dE∗ (s, v) = dE∗ (s, u) + 1: this concerns Step 4, Step 5 when βD < αD − 1 and
Step 6.

Assume first that we are blocked on one side between states A and B in Step 4 (see Figure 5a).
We know that dE∗ (s, v) = dE∗ (s, u)+1 because u is an articulation point of G\E′

∗ and dE∗ (s, u) =
D + dE∗ (y, u). Let T be the distance traversed before the recursive call, then using the invariant
in state A we have:

T ≤ (5D + αD) + (αD + 2D) + dE∗ (y, u)
≤ (7 + 2α)D + dE∗ (y, u)
≤ 9(D + dE∗ (y, u)) (α ≤ 1)
≤ 9dE∗ (s, u)

which, by Lemma 9, leads to a contradiction.
Assume now that we are blocked on one side between states C and A in Step 4 (see Figure 5b).

Let x′ be the last vertex reached at the end of state A, we know that dE∗ (s, v) = dE∗ (s, u) + 1
because u is an articulation point of G\E′

∗ and dE∗ (s, u) = 2D + dE∗ (x
′, u), and we have:

T ≤ (9D + αD) + (αD + 3D) + dE∗ (x
′, u)

≤ (12 + 2α)D + dE∗ (x
′, u)

≤ 9(2D + dE∗ (x
′, u)) (α ≤ 1)

≤ 9dE∗ (s, u)

which, by Lemma 9, leads to a contradiction.
Assume now that we reveal an open vertical chord uv between states A and B in Step 5 (see

Figure 5c). Recall that dE∗ (s, u) ≤ D + αD, and we explore up to distance αD − 1 towards y.
There are two possibilities: either we see y by exploring distance βD (with βD < αD − 1), or we
do not see y even if we explore distance αD − 1.

If we see y, then, we know that dE∗ (s, u) = dE∗ (s, v) + 1 since going to u through x will yield
distance D + αD while going through y and v will yield distance at most D + βD + 2, and we
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know that βD < αD − 1 and βD ≥ 0. So, dE∗ (s, v) = D + βD + 1 and we have:

T ≤ (5D + αD) + (1 + 2(βD + 1))
≤ (5 + α+ 2β)D + 3
≤ 9(D + βD + 1) (β < α ≤ 1)
≤ 9dE∗ (s, v)

which, by Lemma 9 leads to a contradiction (the roles of u and v are reversed here, since v is the
new source).

If we do not reach y, either by blocked edges or because we have explored distance αD − 1
without reaching it, then, we know that dE∗ (s, v) = dE∗ (s, u) + 1, so we have:

T ≤ (5D + αD) + (1 + 2(αD − 1) + 1)
≤ (5 + 3α)D
≤ 9(D + αD) (α ≤ 1)
≤ 9dE∗ (s, u)

which, by Lemma 9, leads to a contradiction.
Finally, assume that we reveal an open vertical chord uv between states C and A after having

explored αD vertices in Step 6 (see Figure 5d). Since uv was not revealed before, this implies that
the shortest path from s to v goes through u, and so dE∗ (s, v) = dE∗ (s, u) + 1, so we have:

T ≤ 9D + αD
≤ 9(D + αD) (α ≤ 1)
≤ 9dE∗ (s, u)

which, by Lemma 9, leads to a contradiction.

Hence, all the possible cases lead to contradictions, and so such G cannot exist. ExpBalancing
thus achieves competitive ratio 9 on unit-weighted outerplanar graphs.

Strategy ExpBalancing can thus naturally be applied on outerplanar graphs where the stretch
of weights is bounded.

Corollary 11. There is a strategy with competitive ratio 9S on outerplanar graphs of stretch S.

Proof. Apply strategy ExpBalancing as if the graph was unit-weighted. Let α be the minimum
weight of the input graph and Wopt be the number of edges of the optimal offline path. The total
distance traversed is upper-bounded by 9SαWopt while dopt ≥ αWopt.

4 Lower bound 9 for unit-weighted outerplanar graphs

In this section we prove that the competitive ratio achieved with the ExpBalancing strategy
presented above is optimal on unit-weighted outerplanar graphs.

Theorem 2. For any ε > 0, no deterministic strategy can achieve a competitive ratio 9− ε on all
road maps (G,E∗), where G is a unit-weighted outerplanar graph.

The proof follows this plan: we introduce an infinite family of outerplanar graphs and show
that any potential strategy on these can be encoded as a sequence of positive integers. Then for
any given ε > 0 we find a large enough graph of this family such that there is no strategy reaching
ratio 9 − ε on it. This non-existence is obtained by using Farkas’ lemma on a set of inequalities
which would all be satisfied if a strategy with ratio 9− ε existed.

The shell graph on 2n vertices, denoted by Shn, is the graph obtained from a cycle on 2n
vertices {v0, v1, . . . , v2n−1} with all possible chords incident with vertex vn, except v0vn. In our
setting, we shall consider v0 as the source s and vn as the target t (see Figure 8). It is clearly
outerplanar. All weights are naturally fixed to 1. It is 2-connected, so it contains an upper side S1

and a lower side S2. We will focus on specific road maps (Shn, E∗) where E∗ is made up only of
edges incident with t. Said differently, the traveller cannot be blocked on the outer face on some
edge vivi+1. We will see that even in this tight configuration, ratio 9− ε cannot be achieved.
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Given some positive integer n, let An be an optimal strategy for graph Shn, i.e., a strategy
which minimizes the competitive ratio obtained on road maps (Shn, E∗). A first observation is
that, following An, when the traveller stands on some vertex vi, he should always traverse a chord
vit if it is open (the ratio can only increase if the traveller decides to explore the graph a bit longer).
Furthermore, when traversing an already visited section of a side, An should do it directly, with
a simple walk, and avoid multiple crossings of the same edge. Also note that if the traveller,
following An, starts switching sides by coming back to s, he should not change his mind and go
back to exploring his side, since doing so would incur a cost for no additional information (no edge
can be revealed this way). Finally, if the traveller has already explored ℓ vertices on a side, when
he goes back to exploring this same side, he should always traverse at least ℓ+1 vertices (so reveal
the edges incident with at least one more vertex) before switching again. Doing otherwise would
incur a cost for no additional information.

Thus strategy An can be described as a sequence of integers (xi)i≥1 where xi represents the
budget distance we afford ourselves after coming back to s and switching side. Concretely, first,
the traveller selects one side arbitrarily (say S1) and traverses a distance of x1 on the outer face.
If an open chord is revealed during his walk, he reaches t. Otherwise, after being forced to stay on
the outer face, he has no choice but backtrack towards s and traverse the other side S2 for some
distance x2. Generally, value xi denotes the distance budget we allow ourselves to traverse for
the ith attempt, (on upper side S1 for odd i and bottom side S2 for even i) before coming back
to s if no horizontal chord to t was found. The strategy ends whenever an open edge incident
with t is found and traversed. Observe that all values xi are at least 1. Furthermore, by the last
observation of the previous paragraph, we always have xi+2 > xi.

Assume the traveller reaches target t on attempt j+1. Let Si be the last side visited, i ∈ {1, 2}.
Compatible with such travel hypothesis, we consider the road map (Shn, E∗) with the following
blocked edges in E∗.

• all chords ut where u is on Si and is at distance at most xj−1 from s,

• all chords ut where u is not on Si.

In this way, we force the traveller to reach t via the vertex which was placed just after the last
one he visited during attempt j − 1. We have dopt = xj−1 + 2 and the total traversed distance
from the beginning of the walk is 2(

∑j
i=1 xi) + xj−1 + 2.

Assume that An achieves a ratio strictly less than 9 on the road map (Shn, E∗). Then, there
must be a strictly positive ε such that (we set x0 = 0):

∀j ≥ 1,

2
j∑

i=1

xi + xj−1 + 2

xj−1 + 2
≤ 9− 2ε.

These inequalities can be rewritten as:

∀j ≥ 1,

 j∑
i=0,i ̸=j−1

xi

− (3− ε)xj−1 ≤ 8− 2ε.

They form a system of linear inequalities with a lower triangular matrix. All entries equal 1
on the diagonal and lower, except for elements on the subdiagonal (lower diagonal) which all
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equal −(3− ε). Our system is Mj,ε ·xj ≤ bj,ε with bj,ε = (8− 2ε) ·1, where xj is the vector made
of first j values of sequence (xi)i≥1 and matrix Mj,ε is the following j × j matrix:

Mj,ε =


1 0 0 · · · 0

−(3− ε) 1 0 · · · 0
1 −(3− ε) 1 · · · 0
...

...
. . .

. . .
...

1 1 1 −(3− ε) 1


When no ambiguity is present, we shall omit subscripts and write M , b and x. Farkas’ lemma

(hereafter recalled) deals with the existence (or not) of nonnegative solutions for a system of linear
inequalities. Since all values xi’s of vector x are at least 1, we may shift our vector by 1 and still
be nonnegative. In other words, there should exist a nonnegative vector x′ = x − 1 such that
M · (x′ + 1) ≤ b. After rewriting, we get Mx′ ≤ b′ where b′ is the vector b −M · 1. Note that
M ·1 has the following coordinates: (1,−2+ε,−1+ε, ε, 1+ε, 2+ε, 3+ε, . . .). Thus the coordinate
b′i of vector b

′ is negative for any i ≥ 12.

b′ = b−M · 1 =



7− 2ε
10− 3ε
9− 3ε
8− 3ε

...
12− j − 3ε


We are now ready to establish a relationship between a system of linear inequalities and the

competitiveness of strategies An.

Proposition 12. Assume there exists a positive integer j and some real ε > 0 such that the system
Mj,ε · x′ ≤ b′

j,ε, x
′ ≥ 0 has no solution. Then, there exists an integer nj,ε such that strategy An

has ratio at least 9− 2ε.

Proof. From observations above, if all strategies An have ratio at most 9−2ε for some ε > 0, then,
for any positive integer j, the system Mj,ε · x′ ≤ b′

j,ε, x
′ ≥ 0 has necessarily a solution. Using the

contraposition for any ε > 0 gives the proof.

Proposition 12 implies that our lower bound of competitiveness for unit-weighted outerplanar
graphs can be proved by showing that some system of linear inequalities has no solution. We now
recall the statement of Farkas’ lemma in our context:

Lemma 13 (Farkas [15], see [17, Prop 6.4.3]). Exactly one of the following holds: either the system
M · x′ ≤ b′ has a solution with x′ ≥ 0, or the system MT · y ≥ 0T has a nonnegative solution y
with b′T · y < 0.

We now find a nonnegative vector y of size j such that MT
j,ε ·y ≥ 0 and b′T

j,ε ·y < 0, which will
allow us to obtain a contradiction.

Proposition 14. For any ε > 0, there exists a positive integer j and a nonnegative vector y of
size j such that MT

j,ε · y ≥ 0 and b′T
j,ε · y < 0.

Proof. For a given ε > 0, we fix an integer j depending on ε. The choice of value j will be made
clear hereafter. For now, consider that j is only greater than 12. Our construction of y consists
in identifying a solution MT · y very close to vector 0 and then verifying whether b′T · y < 0.

Let us consider the equation MT · y = 0, where the coordinates of y are y1, . . . yj . For any
1 ≤ i ≤ j − 1, we have:

yi − (3− ε)yi+1 + yi+2 + yi+3 + ...+ yj = 0.

By subtracting two consecutive such equations, we get that, for any 1 ≤ i ≤ j − 3:

yi = (4− ε)yi+1 − (4− ε)yi+2.
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Reversing the indices, we recognize a linear recurrence relation of depth 2: un+2 = (4− ε)un+1 −
(4− ε)un. The characteristic equation is λ2 − (4− ε)λ+ (4− ε) = 0 with roots:

λ1,2 =
(4− ε)±

√
−ε(4− ε)

2
.

Observe that if ε = 0, then the characteristic equation has a single root and the sequence is
exponentially increasing. For ε > 0, however, both roots are complex numbers.

Since there are two roots, we could rewrite it as un = (
√
4− ε)n(c1 cos(αn)+c2 sin(αn)), where

α = atan
(√

ε
4−ε

)
. Note that when ε tends to zero, the period of oscillation tends to infinity. The

coordinates of the vector y will follow, starting from the bottom, the scheme of this sequence un.
We fix as an initial condition yj = 1. Consequently, yj−1 = 3 − ε and the following terms follow
the scheme of the sequence. With these initial conditions, we obtain:

yj−p =
2(
√
4− ε)p−1

√
ε

cos(αp− β). y =


y1
...

yj−2

yj−1

yj

 =


uj−1

...
u3

u2

u0

 =


uj−1

...
(3− ε)2 − 1

3− ε
1

 (1)

where β = atan

(
2−ε√
ε(4−ε)

)
. In this way, MT · y is the vector made of zeros except the last

coordinate being equal to 1.
Equation (1) shows us that we start from positive values (yj , yj−1, . . .) and then alternate

between positive and negative with an increasing amplitude. For any small ε > 0, we select j
such that terms u0, . . . , uj−12 are positive and the last eleven terms uj−11, . . . , uj−1 are negative.
This choice of j is possible since, for sufficiently small ε, the “angular speed” α and the “shift”
β are negligible compared to π

2
. Hence, let j be the integer such that α(j − 11) − β ≤ π

2
, while

α(j − 10) − β > π
2
. On vector y, it means that the 11 first terms y1, . . . , y11 are negative while

all others are positive. Observe that the more ε decreases towards 0, the largest the period of
sequence (ui) is and hence the largest this integer j is.

Values y1, . . . , y11, which are the negative values of y, are replaced by 0: we obtain a new vector
y′. In this way, value b′T ·y is negative: first values y′

1, . . . , y
′
11 are zeros, second values y′

12, . . . , y
′
j

are positive while b′12, . . . , b
′
j are negative. Moreover, obviously, y′ ≥ 0. Let us check that even

with this modification on 11 entries, we still have MT · y′ ≥ 0, allowing us to use Farkas’ lemma.
Suppose by way of contradiction that some coordinate of MT · y′ is negative: say y′

i − (3 −
ε)y′

i+1 + y′
i+2 + . . .+ y′

j < 0. As all y′
i are nonnegative, then necessarily y′

i+1 is positive and thus
y′
i+1 = yi+1. Either y′

i > 0, so y′
i = yi and the linear sum is nonnegative from the definition of

sequence (ui)i≥1, a contradiction; or y′
i = 0 but then again the previous equation is positive since

yi − (3 − ε)y′
i+1 + y′

i+2 + . . . + y′
j = 0 and we shifted it positively by replacing yi by y′

i which is
greater. In brief, vector y′ verifies MT · y′ ≥ 0.

As a conclusion, we identified a nonnegative vector y′ satisfying the requirements of the propo-
sition.

So now, by Farkas’s lemma, we prove that the initial system of Proposition 12 of inequalities
does not have any solution.

Proof of Theorem 2. Simply fix ε′ = 2ε > 0. From Lemma 13 and Proposition 14, we know that
there exists an integer j such that there is no nonnegative solution x′ of system Mj,ε · x′ ≤ b′

j,ε.
From Proposition 12, there is no deterministic strategy achieving ratio 9−ε′ on every road map of
the family of graphs Shn, and hence on the super-family of unit-weighted outerplanar graphs.

5 The case of arbitrarily weighted outerplanar graphs

Given our results on the unit-weighted case (and which could generalized to fixed stretch natu-
rally), a natural question is whether we can design a deterministic strategy achieving a constant
competitive ratio for the more general family of arbitrarily weighted outerplanar graphs. In this
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section, we prove that this is impossible since, for any constant C ≥ 1, there exists a weighted
outerplanar graph on which the competitive ratio obtained is greater than C.

Let us introduce a sub-family of outerplanar graphs that will be useful here.

Definition 15. An outerplanar graph G containing s and t is said to be (s, t)-unbalanced if either
it is a single st edge or one of its sides contains all vertices V of the graph.

In other words, an (s, t)-unbalanced outerplanar graph is such that s and t are neighbors on
the outerface. While one side contains all vertices (say w.l.o.g. the lower side), the upper one only
contains s and t and simply consists in a single edge st. Such graph thus does not admit vertical
chords. We show in the remainder that, in fact, constant competitive ratio cannot be obtained
even on weighted (s, t)-balanced outerplanar graphs.

We begin with the definition of a graph transformation T which takes as input: a weighted
(s, t)-unbalanced outerplanar graph H = (V,E, ω), three positive rational values α, C, and η, and
an integer N . The construction of the output graph T (H,α,C, η,N) works as follows:

• Create two vertices s and t with an edge st of weight C. This edge will stand as the upper
side of the graph.

• Add N copies of the graph αH, where αH = (Vα, Eα, ωα) is a graph such that Vα = V , Eα =
E and ωα(e) = αω(e) for every edge e ∈ E. These copies are denoted by αH(1), . . . , αH(N)

and the source/target pair of each αH(j) is denoted by (sj , tj).

• Connect in series all copies αH(1), . . . , αH(N) from s to t in order to form the lower side of
the graph, using their source/target as input/output vertices. In brief, merge s with s1, ti
with si+1 for i ∈ {1, . . . , N − 1}, and tN with t.

• Add all edges tjt for 1 ≤ j ≤ N − 1 with weight η.

Figure 9 illustrates the graph T (H,α,C, η,N) obtained. Observe that it is an (s, t)-unbalanced
outerplanar graph because the lower side of each αH contains all its own vertices. Therefore, all
vertices of T (H,α,C, η,N) lie on its lower side. We also set t0 = s.

C

αH (1)

αH (2) . . .
αH

(N
)

η

η

η

s = s1 tN = t

t1 = s2
t2 = s3

tN−1 = sN

Figure 9: The graph T (H,α,C, η,N) with its outerplanar embedding.

For the remainder, we define a trivial arithmetic sequence generating all positive half-integers:
for any integer i ≥ 0, let Ci = 1

2
+ i. For any value Ci, we are able to construct a collection of

road maps for which ratio Ci cannot be achieved by any deterministic strategy.

Proposition 16. For any nonnegative integer i, there exists a family Ri of road maps which
satisfies the following properties:

• all the road maps of Ri are defined on the same weighted (s, t)-unbalanced outerplanar graph,

• no deterministic strategy can achieve ratio Ci on family Ri.

Proof. We proceed by induction on i.

Base case. Let H0 be the weighted graph with a single edge st of weight 1. By Definition 15, H0

is (s, t)-unbalanced. Moreover, we necessarily have E∗ = ∅ since s and t cannot be disconnected by
blockages (Definition 4). Thus, R0 contains the single road map (H0, ∅). Obviously, by definition,
the competitive ratio of any strategy on any road map cannot be less than 1. So, naturally, no
deterministic strategy can achieve ratio C0 = 1

2
on (H0, ∅).
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Induction step. We suppose that the statement holds for some integer i ≥ 0. Let Hi be the
(s, t)-unbalanced outerplanar graph on which the road maps of Ri are defined. We will construct
the graph Hi+1 by applying transformation T on graph Hi. Let α and η be two positive rationals
and N a positive integer: we define G = T (Hi, α, Ci, η,N). We will see, after some competitive
analysis on G, which values of α, η, and N can be selected in such a way that ratio Ci+1 cannot be
performed on such graph. Eventually, we will fix Hi+1 = G with the relevant values for parameters
α, η, and N . Together with G, we consider sets of blocked edges E∗ which contain certain edges
tjt but also some edges lying inside the copies αH

(j)
i of G. However, st will never belong to E∗.

Let Lmin be the cost of the shortest (s, t)-path in Hi: Lmin = d∅(Hi, s, t). Also, let Lmax be
the cost of the longest simple (s, t)-path in Hi: Lmax = max

E∗
(dE∗(Hi, s, t)).

Intuitively, when fixing Hi+1 = G at the end of our analysis, parameters α and η will be
selected small enough to satisfy several criteria. Similarly, N will be selected large enough. We
already impose certain conditions on these three parameters.

• α and η are small enough so that the cost of the longest simple (s, t)-path of Hi is negligible
compared to Ci: we impose

αLmax + η < Ci(Ci + 1). (2)

• N is large enough so that the shortest (s, t)-path by passing through all H
(j)
i copies is very

large compared to Ci+1: we impose:

NαLmin > Ci + 1 = Ci+1. (3)

Let A be a deterministic strategy dedicated to graph G. The behaviour of a traveller guided
by strategy A on G is rather limited: either he directly traverses the st edge of weight Ci, or he
explores the lower side. With this second option, either he reaches t directly via the lower side,
or he decides at some step to come back to s in order to traverse the open st edge. Let q be
the maximum index 0 ≤ q ≤ N such that the vertex tq was visited by the traveller during his
exploration of the lower side. If some edge tjt, 1 ≤ j ≤ q was open, the traveller would have chosen
to traverse it. For this reason, we assume {t1t, t2t, . . . , tqt} ⊆ E∗ in the remainder.

We fixed N large enough so that having tq = t would imply that the traversed distance is
arbitrarily large compared to the open edge st of weight Ci. Indeed, from the induction hypothesis,
the distance traversed on graph Hi is at least Ci times the optimal offline cost. This statement
can be generalized to a series of graph Hi, from Lemma 8. For this reason, the traversed distance
is at least CiNαLmin > CiCi+1. Hence, having q = N cannot give competitive ratio at most Ci+1.
So, we assume q < N .

Let D be the optimal distance from s to tq without using t (and thus only traversing αH
(1)
i ,

. . ., αH
(q)
i ). Formally, D = dE∗(G \ {t}, s, tq). The total distance traversed during the walk of the

traveller (denoted by dTrA ) on G satisfies: dTrA > CiD +D + Ci. The term CiD is a lower bound
for the travel from s to tq, the term D is a lower bound for the return trip towards s, and Ci is
the cost of edge st. We now provide a competitive analysis and distinguish three cases.

Case A. If D + αLmin + η ≥ Ci. The optimal offline cost of the road map (G,E∗) is Ci. Indeed,
as tq is the last target vertex tj visited on the lower side, we know that tqt is blocked and, at best,
the shortest (s, t)-path passing through the lower side has cost at least D + αLmin + η. Hence, in
this case, the competitive ratio of A over this road map satisfies:

cA(Hi+1, E∗) >
CiD +D + Ci

Ci
≥ 1 +

(
1 +

1

Ci

)
D ≥ 1 +

(
1 +

1

Ci

)
(Ci − αLmin − η)

We impose restrictions on α and η such that the following conditions holds:(
1 +

1

Ci

)
(Ci − αLmin − η) > Ci (4)

Case B. Else, if D + αLmax + η ≤ Ci, then dopt < D + αLmax + η. Indeed, observe that
the traveller did not reach tq+1, so the edge tq+1t could be open without influencing the initial
decision of the traveller to come back. If q = 0 and D = 0, the competitive ratio is Ci divided
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by dE∗(αH
(1)
i , s, t) + η. This ratio is larger than Ci

αLmax+η
, and according to condition (2), it is

greater than Ci+1. So, let us assume D > 0. In this case, the competitive ratio of A satisfies:

cA(Hi+1, E∗) >
CiD +D + Ci

D + αLmax + η
≥ 1 + (Ci + 1)

D

D + αLmax + η

We impose restrictions on α and η such that the following conditions holds:

(Ci + 1)
D

D + αLmax + η
> Ci (5)

Case C. Else, D+αLmin + η < Ci < D+αLmax + η. The optimal offline cost is for sure at most
Ci as st is open, and the competitive ratio satisfies:

cA(Hi+1, E∗) >
CiD +D + Ci

Ci
≥ 1 +

(
1 +

1

Ci

)
D > 1 +

(
1 +

1

Ci

)
(Ci − αLmax − η)

We impose restrictions on α and η such that the following conditions holds:(
1 +

1

Ci

)
(Ci − αLmax − η) > Ci (6)

We can select small enough rationals α and η such that conditions (2), (4), (5) and (6) are all
satisfied, and in turn a large enough integer N such that condition (3) also holds. After doing so,
we construct the graph Hi+1 = T (Hi, α, Ci, η,N) which is clearly (s, t)-unbalanced outerplanar
and define the family Ri+1 as the road maps given by (Hi+1, E∗) for all sets of blocked edges E∗
verifying {t1t, . . . , tqt} ⊆ E∗ and st ̸∈ E∗. The competitive analysis that we conducted proves that
strategy A does not have competitive ratio Ci + 1 = Ci+1 on Ri+1, and thus that the induction
hypothesis holds.

Hence, no deterministic strategy can achieve constant competitive ratio on weighted outerpla-
nar graphs since integer i can take arbitrarily large values:

Theorem 3. There is no constant C, independent from G and k, such that a deterministic strategy
achieves competitive ratio C on all road maps (G,E∗) where G is a weighted outerplanar graph.

Proof. Assume by contradiction that there is a constant C such that a strategy A achieves com-
petitive ratio C on all such road maps. Let i = ⌈C⌉. By Proposition 16, there is a family of road
maps Ri defined on outerplanar graphs such that A cannot achieve competitive ratio Ci = ⌈C⌉+ 1

2

(and thus C) on Ri, a contradiction.

6 Perspectives

The main contribution of this article is the highlighting of a non-trivial unit-weighted family
of graphs for which there exists a deterministic strategy, called ExpBalancing, with constant
competitive ratio. This family is the well-known class of outerplanar graphs. We also proved
that the ratio 9 obtained with strategy ExpBalancing is optimal. From this statement, several
questions rise:

• Is there a non-trivial sub-family of unit-weighted outerplanar graphs for which the optimal
ratio of deterministic strategies is strictly between 1 and 9? For now, the only sub-family
for which some optimal bounds are known are the trivial classes of trees (with ratio 1) and
cycles (with ratio 3, which can be extended to cacti by Lemma 8). It would be interesting
to further investigate the gap between those classes and outerplanar graphs.

• Is there a super-family of unit-weighted outerplanar graphs which admit constant competitive
ratio? In fact, the gap is quite tight, given that planar graphs of treewidth 2 admit an optimal
ratio 2k+1. Future research could focus on the natural extension of p-outerplanar graphs [3],
on which all vertices can be deleted by successively removing at most p outerfaces.
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• Are there other families of graphs, not necessarily related to outerplanar, where the competi-
tive ratio is unbounded for arbitrary weights, but for which the unit-weighted version admits
constant competitive ratio?

For the general weighted case, we established that no constant competitive ratio can be obtained
with deterministic strategies on arbitrarily weighted outerplanar graphs. A natural question is the
dependence on k we can achieve for this family of graphs. Indeed, we know from [8] that there

is some strategy with ratio linear in k: ρk + O(1) with ρ = 2
3
4 . Is it possible to achieve a ratio

O(kr), with r < 1, on weighted outerplanar graphs?
We also wonder whether there exists a polynomial-time deterministic strategy with constant

competitive ratio on some non-trivial family of graphs. A good candidate would be the family of
graphs with bounded-sized minimal edge (s, t)-cuts. We already know that a ratio

√
2k + O(1)

can be achieved on this family [8]. Moreover, observe that the construction T used to reject the
existence of constant competitive ratio for outerplanar graphs, produces graphs with edge (s, t)-
cuts of unbounded size. It seems at first sight that such a criterion is necessary if we want to make
deterministic strategies fail on outerplanar graphs. All in all, we conjecture that there exists a
polynomial-time deterministic strategy achieving constant competitive ratio on graphs with edge
(s, t)-cuts of bounded size.
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