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Computer-assisted proofs of non-reachability for linear
finite-dimensional control systems

Ivan Hasenohr∗ Camille Pouchol† Yannick Privat‡§ Christophe Zhang¶

March 27, 2024

Abstract

It is customary to design a controlled system in such a way that, whatever the chosen control
satisfying the constraints, the system does not enter so-called unsafe regions. This work introduces
a general computer-assisted methodology to prove that a given linear finite-dimensional control
systems with compact constraints avoids a chosen unsafe set. Relying on support hyperplanes, we
devise a functional such that the property of interest is equivalent to finding a point at which the
functional is negative. Actually evaluating the functional first requires time-discretisation. We thus
provide explicit, fine discretisation estimates for various types of matrices underlying the controlled
problem. Second, computations lead to roundoff errors, which are dealt with by means of interval
arithmetic. The control of both error types then lead to rigorous, computer-assisted proofs of
non-reachability of the unsafe set. We illustrate the applicability and flexibility of our method in
different contexts featuring various control constraints, unsafe sets, types of matrices and problem
dimensions.

Keywords: linear control systems, controllability under constraints, computer-assisted proofs, interval
arithmetic

AMS classification: 49M29, 49M25, 65G30, 34H05.

1 Introduction

This article is dedicated to the rigorous estimation of the reachable set associated to a constrained
controlled linear system. More precisely, we are interested in guaranteeing that, at a given time T > 0,
the controlled system cannot enter a prescribed unsafe region, whatever the choice of control satisfying
the given constraints.

We consider the linear autonomous control system{
ẏ(t) = Ay(t) +Bu(t),

y(0) = y0,
(S)

where y0 ∈ Rn and A ∈ Rn×n, B ∈ Rn×m.
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Given y0 ∈ Rn, a closed convex set Yf ⊂ Rn, a time horizon T > 0 and a compact set U ⊂ Rm, we
investigate the (U-)constrained reachability problem, i.e., the problem of determining if there exists a
control u ∈ E such that the solution to (S) with control u satisfies y(T ) ∈ Yf , under the additional
constraint that u(t) ∈ U for a.e. t ∈ (0, T ). If such a control exists, we shall say that Yf is U-reachable
from y0 in time T .

Our aim is to develop a general, flexible and certifiable methodology, resting on numerical compu-
tations, to show that Yf is not U-reachable from y0 in time T . Ultimately, the interested user should
be able to provide all parameters A, B, T , y0, U and Yf and, whenever that is the case, be returned
the mathematically certified assertion that Yf is not U-reachable from y0 in time T .

1.1 State of the art

The notion of constraint-free controllability of autonomous linear systems dates back to Kalman’s
seminal works. Its generalisation to infinite-dimensional systems is more recent. For further details
on these concepts, we refer to the review books [21, 9]. Since the 70’s, but more specifically in recent
years, several works have investigated the addition of further constraints, satisfied whether by the
control itself, or by the controlled trajectory.

Some of these works are theoretical in nature, with a focus on unbounded contraints. Particular
interest has been given to the problems of exact controllability by positive controls for reasons of
physical relevance [5, 31, 11, 14, 26, 27, 22]. Attention was also paid to adding constraints on the
controlled trajectory [23, 24, 10]. Unbounded (sparsity) constraints have also been considered [34, 28].

In this article, we focus on the implementation of a method for numerically certifying that a set of
unsafe states is unreachable, for compact constraint sets. Our approach is specific to autonomous (time
invariant) linear systems. Regarding more general dynamical systems, closely related questions have
been addressed in the past: for instance, how to numerically approximate the reachable set at time T ,
or guarantee that computed trajectories will not meet a given set (called unsafe set)?

In finite dimension, several methods have been elaborated to provide approximations of the reachable
set (see for example the recent survey [1]): among others, let us mention the use of Hamilton-Jacobi
type equations [25, 8], the design of barrier functions for trajectories to avoid unsafe regions [29, 15],
and set propagation [1]. Let us roughly describe each of these approaches.

In [25, 8], a backwards reachable set is characterised as the zero sublevel set of the viscosity solution
of a Hamilton-Jacobi type partial differential equation, with important applications to the safety of
automated systems. This is formally related to our approach, as we also characterise non-reachability
by the existence of negative values for a certain numerical criterion. As we will see, in this paper the
convexity of the reachable set and the linearity of the system allow us to exploit this characterisation
to produce numerical certificates of non-reachability.

In [29, 15], the authors introduce the notion of barrier functions, appropriately defined from the
system dynamics to ensure that trajectories do not enter an unsafe zone. An important element of
these methods is that these certificates are valid for all positive times t > 0, a very strong property
which is not required in other methods. Moreover, the computation of barrier certificates for a given
systems remains a challenging problem, both theoretically and numerically.

Set propagation is a class of methods for computing a guaranteed overapproximation or underap-
proximation of the reachable set of continuous systems. Starting from the set of initial states, the idea
is to iteratively and adequately propagate a sequence of sets according to the system dynamics [12],
which are guaranteed to contain, or be contained in, the reachable set. Such an algorithm has been de-
veloped in [19, 18] for finite-dimensional compact convex constraints. An important hurdle is then the
so-called wrapping effect, that is, the accumulation of computational errors. The crux of set propagation
techniques is to circumvent this difficulty by using appropriate propagation formulae.

There exist other ways to over- or under-approximate reachable sets, which rely on geometric
properties. In the special case of ellipsoidal constraint sets, we refer to [16, 17]. More generally, for
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compact convex constraints, the reachable set can be approximated from the outside using support
functions [2].

While the above-mentioned works provide theoretical criteria for finite dimensions, the case of
infinite dimensions remains largely open.

1.2 Methodology: non-reachability criterion and certification issues

Support functions. Throughout, finite-dimensional spaces Rn, Rm will be endowed with the stan-
dard Euclidean inner products. If we have C ⊂ H with H a Hilbert space, σC will denote the support
function of C defined by

∀x ∈ C, σC(x) = sup
y∈C

⟨x, y⟩.

Non-reachability by separation. By means of separating hyperplanes, we will establish a necessary
and sufficient criterion for non-reachability, involving a suitably defined function J : Rn → R ∪ {+∞},
in the following form:

(∃pf ∈ Rn, J(pf ) < 0) ⇐⇒ Yf is not U-reachable from y0 in time T . (1)

The precise definition of J (together with Figure 1 to convey the corresponding intuition) will be given
in Section 1.2, and involves the support functions σU and σYf

, which we assume to be known explicitly.
The proof of (1) is the object of Proposition 2. In the case where pf ∈ Rn such that J(pf ) < 0 is

found, we will say that pf is a dual certificate (that Yf is not U-reachable from y0 in time T ).

Computer-assisted proof of non-reachability. In what follows, we will exploit this criterion by
producing vectors that satisfy it numerically. This raises questions pertaining to the error propagation
inherent to every numerical method. More precisely:

Certified approach for non-reachability.

• How can one evaluate the functional J , in order to exhibit an element pf ∈ Rn satisfying
property (1) numerically?

• How can one then certify the numerical result, which implies non-reachability? That
is, guarantee that it is not flawed by various numerical approximations?

In order to carry out these two steps, there will in turn be two main difficulties.

(i) We will not have access to J but only to proxies obtained by discretisation, which we generically
denote Jd. Indeed, the definition of J involves an integral, and the solution to a linear ODE
involving A∗, hence amounts to computing the matrix exponentials t 7→ etA

∗ . When these are
not known explicitly, we will resort to simple time discretisation schemes (implicit Euler, etc) and
provide a bound on the error in terms of discretisation parameters. One key aspect of
our approach is that these bounds must be derived with explicit constants.

(ii) All computations will lead to round-off errors, which must be accounted for. To that end, we
will use a Matlab/Octave toolbox called INTLAB (INTerval LABoratory) [33]. This code, entirely
written in Matlab, is an interval arithmetic library. It provides tools for performing numerical
computations with arbitrary precision arithmetic.
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All in all, if for a given pf ∈ Rn one lets Ed(pf ) (for the discretisation errors) and Er(pf ) (for the
round-off errors), we will have

J(pf ) ∈ [Jd(pf )− Ed(pf )− Er(pf ), Jd(pf ) + Ed(pf ) + Er(pf )]. (2)

Hence, we will take advantage of the fact that if

Jd(pf ) + Ed(pf ) + Er(pf ) < 0,

then yf is not U-reachable from y0 in time T .
Here we stress that the notion of certification we are concerned with has to do with the numerical

part of our work. We prove a theoretical necessary and sufficient condition for non-reachability. For
a given system, we can determine whether it is satisfied numerically. Certifying this part then makes
this numerical result theoretically sound, thus producing a computer-assisted proof.

Connections to existing results.

• In this article, we focus on the non-reachability of a given unsafe set instead of approximating
the reachable set. This allows us to proceed by duality, and consider the solution to a single
backwards equation, thus circumventing the wrapping effect. However, in terms of the reachable
set, we only know that it is contained in a certified half-space.

• Computing several such half-spaces, one would then obtain an intersection of these half-spaces,
guaranteed to contain the reachable set, which is closely related to the methods presented in
[16, 19, 18]. However, this approach to computing a polyhedron is computationally heavy.

• Separation arguments already appear in reachability analysis [16, 17, 19, 18, 2]. An important
contribution we make is to recast it in terms of the sign of the function J , in such a way that
interval arithmetic can be applied to certify the end result, a feature which seldom appears in the
literature.

• A key aspect of our methodology is to return a dual certificate pf that certifies the corresponding
mathematical statement: consequently, any user having access to their own discretised version
of the functional J with corresponding error estimates, can verify the result upon using interval
arithmetic.

Extensions and perspectives. We make the assumption that the support functions σU and σYf

are known exactly. If it were not the case, our approach could be extended provided that one has a
procedure to numerically evaluate them, together with a way to control the corresponding error.

The approach we have developed can be adapted mutatis mutandis to non-autonomous linear sys-
tems of the form ẋ(t) = A(t)x(t) + B(t)u(t). The price to pay lies in the error formulae, in which the
exponential matrix etA is replaced by the resolvent associated with the function A(·). The resulting
formulae would then be slightly less accurate than those we obtained.

In the same vein, the reachability criterion can be extended without effort to Hilbert spaces. This is
why we expect our method to accommodate infinite-dimensional linear control systems, provided
that the space discretisation errors be also estimated. This will be the subject of further work, focusing
in particular on the heat equation.

Our work is concerned with non-reachability. The natural complementary question is that of reach-
ability: can one provide certified methods to show that a target yf (or more generally, a set Yf ) is
reachable? We intend to tackle this problem as well, using similar geometric ideas.

Finally, a more prospective research direction would be to generalise our approach to non-linear
controlled systems. It is likely that the methodology will have to be thoroughly modified.
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Outline of the article. In Section 2, we introduce the criterion J and specify the separation argument
which allows us to recast the non-reachability property. Section 3 is concerned with numerical methods
for calculating J , using several possible discrete versions. Their relevance is discussed depending on
the information at hand about A and its matrix exponential, and in each case, we provide fully explicit
error bounds. Finally, the whole Section 4 is devoted to numerical experiments. After specifying the
methodology leading to computer-assisted proofs of non-reachability, we apply it to three examples,
with variable dimensions and constraint sets. We present concrete statements, the proofs of which are
computer-assisted according to our methodology.

2 Non-reachability by separation

2.1 Main result

Consider the linear autonomous control system{
ẏ(t) = Ay(t) +Bu(t), t ∈ [0, T ],

y(0) = y0,
(S)

where y0 ∈ Rn and A ∈ Rn×n, B ∈ Rn×m, with u ∈ E := L2(0, T ;Rm). Recall that the control
constraint set U is assumed to be compact, and the unsafe set Yf to be closed and convex.

According to Duhamel’s formula, the solution to (S) at the final time T writes

y(T ) = eTAy0 + LTu, where LTu :=

∫ T

0
e(T−t)ABu(t) dt.

Letting L(H1, H2) stand for linear continuous operators between two Hilbert spaces H1 and H2, it is
standard that LT defines an operator in L(E,Rn). Its adjoint L∗

T ∈ L(Rn, E) is defined for pf ∈ Rn by
L∗
T pf (t) = B∗p(t), where p solves the backward adjoint equation.{

ṗ(t) +A∗p(t) = 0, t ∈ [0, T ]

p(T ) = pf ,
(3)

As already mentioned, the key point of our approach rests upon the assertion (1), where J denotes the
so-called dual functional defined by

∀pf ∈ Rn, J(pf ) =

∫ T

0
σU (L

∗
T pf (t)) dt+ σYf

(−pf ) + ⟨y0, eTA∗
pf ⟩. (4)

Remark 1. When U is convex, the functional J can be understood as a dual functional associated to
a primal problem, in the sense of Fenchel-Rockafellar. More details are provided in Appendix A. This
interpretation leads us to consider useful algorithms that perform a descent over J in order to find dual
certificates, as explained in Section 4.

The following result describes the crucial argument underpinning our method, which is illustrated
by Figure 1.

Proposition 2. There exists pf ∈ Rn such that J(pf ) < 0 if and only if Yf is not U-reachable from y0
in time T .

Proof. Let UT := {u ∈ E, t ∈ (0, T ), u(t) ∈ U for a.e. t ∈ (0, T )}. With this notation in place,
Yf is not U-reachable from y0 in time T if and only if (Yf − eTAy0) ∩ LTUT = ∅. Using the basic
relation σC−{y}(z) = σC(z)− ⟨y, z⟩, we have

σYf−eTAy0(−pf ) = σYf
(−pf ) + ⟨eTAy0, pf ⟩ = σYf

(−pf ) + ⟨y0, eTA∗
pf ⟩
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As a result, the function J defined in (4) rewrites

J(pf ) =

∫ T

0
σU (L

∗
T pf (t)) dt+ σYf−eTAy0(−pf ) = σUT

(L∗
T pf ) + σYf−eTAy0(−pf ),

where the interchange of integration and supremum is justified, see e.g. [32, Theorem 14.60].
Now assume that we have found pf such that J(pf ) < 0. Then

σUT
(L∗

T pf ) = sup
u∈UT

⟨u, L∗
T pf ⟩ = sup

u∈UT

⟨LTu, pf ⟩ < −σYf−eTAy0(−pf ) = inf
yf∈Yf

⟨yf − eTAy0, pf ⟩,

showing that one cannot find u ∈ UT and yf ∈ Yf such that LTu = yf − eTAy0 and hence that Yf is
not U-reachable from y0 in time T > 0.

Conversely, suppose that Yf is not U-reachable from y0 in time T . Then, the set of reachable
states (from 0 in time T ), i.e., the set LTUT , is compact and convex since U is compact (see e.g. [20,
Section 2.2]). The set Yf − eTAy0 is closed and convex.

By assumption, these two sets do not intersect, hence we may strictly separate them: there exists
pf ∈ Rn \ {0} such that

σUT
(L∗

T pf ) = sup
w∈LTUT

⟨w, pf ⟩ < inf
yf∈Yf

⟨yf − eTAy0, pf ⟩ = −σYf−eTAy0(−pf )

which amounts to J(pf ) < 0.

Figure 1: Reachable set eTAy0 + LTUT , hyperplane associated to the dual certificate pf , and corre-
sponding scalar J(pf ) given by (6), for a singleton Yf = {yf}.

Remark 3. By positive 1-homogeneity of support functions, J is also positively 1-homogeneous, mean-
ing that J(λpf ) = λJ(pf ) for all λ ≥ 0, pf ∈ Rn. In particular, if there exists pf such that J(pf ) < 0,
then infpf∈Rn J(pf ) = −∞.

Remark 4. We could also consider proving that Yf is not U-reachable from a full set of initial states
Y0 ⊂ Rn in time T , in which case, defining

∀pf ∈ Rn, J(pf ) =

∫ T

0
σU (L

∗
T pf (t)) dt+ σYf

(−pf ) + σY0(e
TA∗

pf )

=

∫ T

0
σU (L

∗
T pf (t)) dt+ σYf−eTAY0

(−pf ),

the result of Proposition 2 holds as is under the assumption that the set Yf−eTAY0 is closed and convex:
this is the case for instance if Yf is closed and convex, and Y0 convex and compact.

6



Remark 5. The above proposition gives a necessary and sufficient condition for non-reachability. It is
worth pointing out that, without any assumptions on the sets U , Y0, Yf , the above criterion remains
a sufficient condition for non-reachability, as it yields a strict separating hyperplane between Yf and
eTAY0 + LTUT . In that case however, situations where these sets are disjoint but not separable by a
hyperplane (typically if Yf is not convex) are then undetectable by our approach.

Remark 6. As mentioned in the introduction, the above can be linked (at least formally) to the
Hamilton-Jacobi characterisation of some reachable sets [25, 8]. Indeed, formally, in optimal con-
trol problems, the value function is a solution of a Hamilton Jacobi type equation. Now, for our control
problem, the value function writes

S(yf ) =

{
0 if yf is reachable,
+∞ otherwise,

so we see that the non-reachable set is characterised as the strict zero superlevel set {y, S(y) > 0}
of S. Note that S is a very singular function, and its numerical computation is not tractable, whereas
a geometrical approach using support functions leads to a convex function on which a descent algorithm
is then implemented, which is much more amenable and prone to numerical certification.

2.2 Unsafe sets and minimal times

As already mentioned, we throughout assume that we know an explicit formula for both functions σU
and σYf

, which will be the case in the battery of examples we will provide. For instance, for U defined
by the most standard box constraints ℓi ≤ ui ≤ Li for i ∈ {1, . . . ,m}, one has with ℓ = (li), L = (Li)
the explicit formula

∀u ∈ Rm, σU (u) = Lu+ + ℓu−, (5)

where u+ = max(u, 0) and u− = min(u, 0) refer to the (componentwise) positive and negative parts of
u respectively, and multiplications are to be understood componentwise.

Let us now discuss expressions for the functional (4) for some specific, yet natural, choices of sets Yf .

Chosen unsafe sets Yf . Most of our examples in this article will be based, but not limited to, the
singleton case Yf = {yf}. Below we compute the corresponding functional, and explain how one then
infers results for a closed ball around yf , i.e., Yf = B(yf , ε), and even a full half-space associated to yf .

Section 4.3 features a more involved example where Yf is a cylinder in R4, for the Space rendezvous
problem.

Singleton. In the case Yf = {yf}, one computes σYf
(−pf ) = −⟨yf , pf ⟩, which leads to the functional

J(pf ) =

∫ T

0
σU (L

∗
T pf (t)) dt− ⟨yf , pf ⟩+ ⟨y0, eTA∗

pf ⟩. (6)

Ball. In the case of a ball Yf = B(yf , ε) (which recovers the above case with ε = 0), we find

σYf
(−pf ) = −⟨yf , pf ⟩+ ε∥pf∥,

hence we uncover the same functional up to the additional term ε∥pf∥.
In practice, this has the following implication: given yf , assume that we have found pf such that

J(pf ) < 0 with J given by (6). Then B(yf , ε) is not U-reachable from y0 in time T > 0 for any
ε < −J(

pf
∥pf∥). Hence, once a target yf is fixed, we will only care with the functional J given by (6). If

pf is found such that J(pf ) < 0, we will obtain a full ball around yf that is not U-reachable from y0 in
time T > 0.
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Half-space. Assume that yf ∈ Rn is fixed, and let Yf = {yf}. For the sake of this remark, when
considering the associated functional (6), we highlight the dependence of J with respect to the target yf ,
by writing J(pf ; yf ) instead of J(pf ).

Now assume that α := J(pf ; yf ) has been computed for a given pf ∈ Rn. For any ỹf ∈ Rn, we have
the relation.

J(pf ; ỹf ) = J(pf ; yf ) + ⟨yf − ỹf , pf ⟩.

Hence, Proposition 1 shows that, independently of the sign of α, any vector in the half-space

{ỹf ∈ Rn, ⟨ỹf − yf , pf ⟩ > α} ,

is not U-reachable from y0 in time T . In other words, the computation of J(pf ; yf ) for any pf imme-
diately provides a full half-space that is not U-reachable from y0 in time T .

Minimal times. It is interesting to notice that, still in the case where Yf = {yf} and assuming we
have either y0 = 0 or yf = 0, we can also derive a lower bound on the minimum reachability time. We
will exploit this result to provide minimum time estimates for various examples of controlled systems.

Proposition 7. Assume that U ∩Ker(B) ̸= ∅, and suppose either y0 = 0 or yf = 0.
If yf is not U-reachable from y0 in time T , then it is not reachable for any T̃ ≤ T either. Conse-

quently, denoting

T ⋆(y0, yf ,U) = inf{T > 0, yf is U-reachable from y0 in time T} ∈ [0 +∞],

we have T ⋆(y0, yf ,U) ≥ T .

Proof. This proposition is standard and its proof is elementary. Let us provide the main argument in
the case where y0 = 0 for the sake of completeness. Assume that yf is U-reachable from 0 in time T̃ by
a control ũ. Let T > T̃ . Let v ∈ U ∩KerB. Then, the control u defined by u(t) = v for t ∈ (0, T − T̃ )
and u(t) = ũ(t − T + T̃ ) steers the system from 0 to yf in time T and satisfies the constraint, hence
the conclusion. The end of the proof is straightforward.

3 Discretisation and error estimates

This section gathers several discretisations and corresponding error estimates for the dual functional (4).
Error estimates are given using standard Hermitian norms (over Cn, Cm), always denoted by ∥ · ∥. The
same notation ∥ · ∥ will be used for the corresponding operator norms, that of matrices in Cn×n, Cm×n

or Cn×m.
As discussed in the introduction, we make the reasonable assumption that we have access to an

explicit formula for σU (and σYf
). Also recall that U is compact, and M denotes a positive constant

such that ∥v∥ ≤ M for all v ∈ U .

3.1 Partial discretisation for a known adjoint exponential

In order to evaluate the dual functional (4) at a given point pf , one is led to compute a time-integral,
and to solve the backward equation (3). Given that σU will generally not be better behaved than
Lipschitz, we will stick with time-discretisation schemes that are of order 1, whether for computing
integrals or for integrating ODEs.

Even when one has access to an explicit solution for the backward equation (3), the integral will
seldom be computable (or at the cost of cumbersome computations). This is why we first consider the
case of discretising the integral but not the backward equation (3).
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We let Nt ∈ N∗, ∆t = T/Nt, and for k ∈ {0, . . . , Nt}, tk = k∆t. For a fixed pf ∈ Rn, we let t 7→ p(t)
be the solution of (3), i.e., p(t) = e(T−t)A∗

pf , and consider Jd,1, the first discretised version of J given
by

Jd,1(pf ) = ∆t

Nt∑
k=1

σU (B
∗p(tk)) + σYf

(−pf ) + ⟨y0, p(0)⟩. (7)

Proposition 8. For a given pf ∈ Rn, there holds

|J(pf )− Jd,1(pf )| ≤
1

2
∆t MT∥B∥

(
sup

t∈[0,T ]
∥etA∗∥

)
∥A∗pf∥.

Proof. Recall that σU is M -Lipschitz continuous. Therefore, we have for all s, t ∈ [0, T ]

|σU (L∗
T pf (s))− σU (L

∗
T pf (t))| ≤ M∥B∗p(s)−B∗p(t)∥ ≤ M∥B∥∥p(t)− p(s)∥.

We may now bound

|σU (L∗
T pf (s))− σU (L

∗
T pf (t))| ≤ M∥B∥ sup

t∈[0,T ]
∥A∗p(t)∥∥t− s∥.

We have proved that t 7→ σU (L
∗
T pf (t)) is Lipschitz continuous. Recalling the standard estimate∣∣∣∣∣
∫ T

0
f(t) dt−∆t

Nt∑
k=1

f(tk)

∣∣∣∣∣ ≤ 1

2
LT ∆t

for a L-Lipschitz function f : [0, T ] → R, we end up with∣∣∣∣∣
∫ T

0
σU (B

∗p(t)) dt−∆t

Nt∑
k=1

σU (B
∗p(tk))

∣∣∣∣∣ ≤ 1

2
∆tMT∥B∥ sup

t∈[0,T ]
∥A∗p(t)∥,

and the announced estimate readily follows, using the definition of p(t):

sup
t∈[0,T ]

∥A∗p(t)∥ = sup
t∈[0,T ]

∥A∗e(T−t)A∗
pf∥ = sup

t∈[0,T ]
∥A∗etA

∗
pf∥

= sup
t∈[0,T ]

∥etA∗
A∗pf∥ ≤ sup

t∈[0,T ]
∥etA∗∥∥A∗pf∥.

Jordan-Chevalley decomposition. Even if one knows the matrix exponentials t 7→ etA
∗ (or equiv-

alently the matrix exponentials t 7→ etA), it remains to provide an upper bound for supt∈[0,T ] ∥etA
∗∥ =

supt∈[0,T ] ∥etA∥ for the bound of Proposition 8 to be of any use.
Assume that we have access to the Jordan-Chevalley decomposition of A in the following sense: we

have A = D + N where D is diagonalisable, N is nilpotent with index ℓ, the two matrices D and N
commute. Then, of course, etA is obtained by

∀t ∈ R, etA = etD
ℓ−1∑
k=0

Nk

k!
tk = etDQℓ(tN), (8)

where Qℓ is the polynomial x 7→
∑ℓ−1

k=0
xk

k! . Assume further that we have access to the transition matrix
P that diagonalises D, i.e., diag(Λ) = P−1DP where Λ = (λ1, . . . , λn) ∈ Cn is the vector of eigenvalues
of A.

9



Then, we have
etA = PetΛP−1Qℓ(tN),

which leads to the estimate
sup

t∈[0,T ]
∥etA∥ ≤ κ(P )eµTQℓ(∥N∥T ),

where µ := max({Re(λi), i ∈ {0, . . . , n}} is the spectral abscissa of A, and κ(P ) = ∥P∥∥P−1∥ stands
for the condition number of the transition matrix P .

From these estimates, we derive the error formula below, in the case where the Jordan-Chevalley
decomposition is known.

Corollary 9. Let us assume that the Jordan-Chevalley decomposition of A leads to the expression (8).
Then for a given pf ∈ Rn, there holds

|J(pf )− Jd,1(pf )| ≤
1

2
∆t MT∥B∥∥A∗pf∥κ(P )eµTQℓ(∥N∥T ).

3.2 Full discretisation

Now we come to the case where the adjoint exponential t 7→ etA
∗ is not known, so that one needs to

discretise the backward equation (3) as well. Assume that some discretisation scheme has been used,
that produces pk ∈ Rn, for k ∈ {0, . . . , Nt}.

In the next subsection, we will specialise to the Euler implicit scheme for the class of negative
semi-definite matrices.

The full discretised version of J then reads

Jd,2(pf ) = ∆t

Nt∑
k=1

σU (B
∗pk) + σYf

(−pf ) + ⟨y0, p0⟩. (9)

Proposition 10. For a given pf ∈ Rn and vectors pk ∈ Rn, k ∈ {0, . . . , Nt}, there holds

|J(pf )− Jd,2(pf )| ≤ ∆t M∥B∥

(
1

2
T∥A∗pf∥ sup

t∈[0,T ]
∥etA∗∥+

Nt∑
k=1

∥p(tk)− pk∥

)
+ ∥y0∥∥p(0)− p0∥.

The proof is straightforward and left to the reader, since all we have to do is provide an estimate
for |Jd,1(pf )− Jd,2(pf )| and combine it with the estimate given in Proposition 8.

We now discuss the application of the simplest possible scheme (again, recall that we are somewhat
limited to schemes of order 1 since we are discretising the integral of a mere Lipschitz function), that
is the Euler explicit scheme:{

pNt = pf

pk = (Id + ∆tA∗)pk+1 ∀k ∈ {0, . . . , Nt − 1}.
(10)

Note that the Euler implicit scheme could be used and would lead to similar results. It is then
standard (see e.g. [30, Section 11.3.2]) that

∀k ∈ {0, . . . , Nt}, ∥p(tk)− pk∥ ≤ 1

2
∆t (T − tk)

(
sup

t∈[tk,T ]
∥p′′(t)∥

)
e∥A∥T ,

which, given that p′′(t) = e(T−t)A∗
(A∗)2pf , leads to the estimate

∀k ∈ {0, . . . , Nt}, ∥p(tk)− pk∥ ≤ 1

2
∆t (T − tk)

(
sup

t∈[tk,T ]
∥etA∗∥

)
e∥A∥T ∥(A∗)2pf∥

10



≤ 1

2
∆t (T − tk)e

2∥A∥T ∥(A∗)2pf∥ (11)

We acknowledge that constants appearing in the above might slightly be improved.
All in all, we thus find following the global estimate.

Proposition 11. For a given pf ∈ Rn and vectors pk ∈ Rn, k ∈ {0, . . . , Nt} defined according to the
Euler explicit scheme (10), there holds

|J(pf )− Jd,2(pf )| ≤
1

2
∆t T

[
M∥B∥

(
e∥A∥T ∥A∗pf∥+

1

2
Te2∥A∥T ∥(A∗)2pf∥

)
+ ∥y0∥e2∥A∥T ∥(A∗)2pf∥

]
.

Proof. The only step that requires some details is the estimate for the sum of the errors ∥p(tk)− pk∥,
which is obtained by writing

Nt∑
k=1

∥p(tk)− pk∥ ≤ 1

2
∆t e2∥A∥T ∥(A∗)2pf∥

Nt∑
k=1

(T − tk) =
1

2
∆t e2∥A∥T ∥(A∗)2pf∥

T

Nt

Nt∑
k=1

(Nt − k).

The sum
∑Nt

k=1(Nt − k) equals (Nt−1)Nt

2 , hence

Nt∑
k=1

∥p(tk)− pk∥ =
1

4
∆t e2∥A∥T ∥(A∗)2pf∥T (Nt − 1) ≤ 1

4
T 2e2∥A∥T ∥(A∗)2pf∥.

This estimate has one major drawback: it diverges exponentially fast as a function of T , making
the investigation of non U-reachability challenging, even for moderate times T > 0, especially if the
matrix norm ∥A∥ is large.

3.3 Full discretisation for a symmetric negative semidefinite matrix

The purpose of this subsection is to exhibit a class of matrices, that of symmetric negative semidefinite
matrices, for which refined estimates without exponentially diverging errors (as a function of time T )
can be derived.

Even though such matrices are diagonalisable, computing their exponential can become intractable
for large sizes, so that one needs to resort to discretisation for the backward equation (3). The implicit
Euler scheme below is well suited to that situation:{

pNt = pf

(Id−∆tA∗)pk = pk+1 ∀k ∈ {0, . . . , Nt − 1}.
(12)

It always makes sense provided ∆t is small enough, and in the case where the matrix A is a negative
semidefinite symmetric matrix, the Euler implicit scheme is well-defined whatever the value of ∆t > 0.

Assume we are given a symmetric positive semidefinite matrix C, diagonalised in the form C =
PDP−1, with D diagonal and P a orthogonal transition matrix, we may define φ(C) for any function
φ : [0,+∞) → R by φ(C) = Pφ(D)P−1 with componentwise application of φ on the diagonal. This
definition obviously agrees with the usual matrix exponential and rational fractions whose poles avoid
[0,+∞)1 Using that κ(P ) = 1, one has for all such functions

∥φ(C)∥ = ∥φ(D)∥ ≤ sup
x≥0

|φ(x)|,

1There are of course much more general definitions for functions of matrices [13], but in the present setting this
definition will suffice.
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Proposition 12. Assume that A is a negative semidefinite symmetric matrix, and let pf ∈ Rn. Then
the error between the solution of the backward ODE (3) and its implicit Euler discretisation (12) satisfies

∀k ∈ {0, . . . , Nt}, ∥p(tk)− pk∥ ≤ 1

2
∆t ∥A∗pf∥.

Proof. By definition, for all k ∈ {0, . . . , Nt}, we have

p(tk)− pk =
[
e(T−tk)A

∗ − (Id−∆tA∗)−(Nt−k)
]
pf .

Hence me may write
p(tk)− pk = −∆t φNt−k(−∆tA∗)A∗pf ,

where for k ∈ N∗, the function φk is defined for x > 0 by

φk(x) =
e−kx − (1 + x)−k

x
,

extended by continuity at x = 0 by φk(0) = 0.
Estimating, we find

∥p(tk)− pk∥ ≤ ∆t ∥φNt−k(−∆tA∗)∥ ∥A∗pf∥ ≤ ∆t sup
x≥0

|φNt−k(x)|∥A∗pf∥

Let us conclude by proving that supx≥0 |φk(x)| ≤ 1
2 for all k ≥ 1. First, a routine study shows that

the function x 7→ e−x(1 + x)− 1 + 1
2x

2 is nonnegative for all x ≥ 0, so that

|φ1(x)| =
1

x

[
1

1 + x
− e−x

]
≤ 1

2
x, (13)

which combined with the basic estimate |φ1(x)| ≤ 1
x

1
1+x for x > 0 yields |φ1(x)| ≤ 1

2 by considering
the two cases x ≤ 1 and x > 1. Now for k ≥ 2, and x > 0, we write

|φk(x)| =
1

x

[
1

1 + x

] k−1∑
j=0

e−jx
( 1

1 + x

)k−j−1
= |φ1(x)|

k−1∑
j=0

e−jx
( 1

1 + x

)k−j−1
≤ |φ1(x)|

k

(1 + x)k−1
.

thanks to the bound e−x ≤ 1
1+x . Let us focus on the case k = 2. If x ≤ 1, we have |φ2(x)| ≤ 1

2x
2

1+x ≤ 1
2 ,

and for x > 1, |φ2(x)| ≤ 1
x(1+x)

2
1+x ≤ 1

2 , hence the result for k = 2.
Now for any k ≥ 3, using the estimate (13), we obtain the inequality

|φk(x)| ≤
kx

2(1 + x)k−1

The right-hand side is maximised at 1
k−2 , hence

|φk(x)| ≤
k

2(k − 2)

(k − 2

k − 1

)k−1
=

1

2

k(k − 2)

(k − 1)2

(k − 2

k − 1

)k−3
≤ 1

2
.

This entails the following compact estimate for the dual functional.

Proposition 13. Assume that A is a symmetric negative semidefinite matrix. For a given pf ∈ Rn

and vectors pk ∈ Rn, k ∈ {0, . . . , Nt} defined according to the Euler implicit scheme (12), there holds

|J(pf )− Jd,2(pf )| ≤ ∆t ∥A∗pf∥
(
TM∥B∥+ 1

2
∥y0∥

)
. (14)
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Proof. We simply build upon the general estimate of Proposition 10. First, we have the bound ∥etA∗∥ ≤
1 for all t ≥ 0, and the previous estimate (12) for the Euler implicit scheme shows that

Nt∑
k=1

∥p(tk)− pk∥ ≤ 1

2
∆t∥A∗pf∥Nt =

1

2
T∥A∗pf∥.

Remark 14. We note that similar estimates, not exponentially diverging with T , could also be derived
for the broader class of dissipative matrices (i.e., matrices A satisfying ⟨Ax, x⟩ ≤ 0 for all x ∈ Rn).

4 Numerical approach and examples

In this section, we will illustrate the potential of the approach described in the previous section to study
the (non)-reachability of certain targets, in a variety of examples. We present three main example
families, respectively related to:

• the control of a streetcar that we wish to control in order to reach a final state in minimum time.
This is a well-known toy problem in optimal control theory. We use it to validate our results since
the reachable set and minimal times (from (0, 0)T ) have known explicit formulae;

• the spatial rendezvous problem. We want to use a control to reach a given target, corresponding
to a space station, for instance the ISS, in a referential centered in the initial position of the
spacecraft. We use a dynamic space mechanics model and provide certified lower-bounds on the
minimal time needed to reach the target. We then develop a method to prove that a motionless
obstable - e.g. an asteroid - cannot be collided with within a predetermined time interval.

• a more academic case, in which negative semi-definite Jacobi matrices A (of possibly large di-
mension) are randomly generated.

Most cases feature a set of the form Yf = {yf}, hence the function of interest is (6). As explained
in Subsection 2, the use of the corresponding functional also allows us to certify that balls around yf
or even half-spaces cannot be reached. The types of constraint sets U also vary across examples.

4.1 Numerical approach and methodology

In order to numerically verify the non U-reachability of a given target yf from y0 in time T , one must
proceed through the following three steps:

1. First, one must compute a discretisation Jd of the functional J , for example Jd,1 or Jd,2, with the
associated bounds on discretisation errors

2. Then, one must minimise said discretisation in order to find an element pf such that Jd(pf ) < 0.

3. Finally, one must compute e(pf ) such that Jd(pf ) − e(pf ) ≤ J(pf ) ≤ Jd(pf ) + e(pf ). This
is typically done using the INTLAB toolbox [33], which, using interval arithmetic, takes into
account the rounding errors and added discretisation errors. This leads to the verification that
indeed, J(pf ) ≤ Jd(pf ) + e(pf ) < 0. If that is not the case, either yf is reachable, or a finer
discretisation or minimisation is required to prove its non-reachability.

Since INTLAB allows for most of usual computation techniques, the second and third steps could
be joined. However, interval arithmetic is computationally expensive, hence we first minimise the
discretised functional Jd to find p such that Jd(pf ) < −η, where η is the typical size of errors e(pf ) (on
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the ball ∥pf∥ = 1), and then verify that pf is indeed a certificate of non U-reachability for yf . Since this
stopping condition will never be satisfied if the target set Yf is in fact U-reachable, one might consider
adding another condition based on how small an improvement is made from one step to another. As
the functional Jd may not have a minimiser (see Remark 3 ), we use the stopping condition∣∣∣∣ pk+1

∥pk+1∥
− pk

∥pk∥

∣∣∣∣ ≤ δ,

where δ is chosen to be small.
Minimising Jd can be tackled by means of many optimisation techniques. For the following ex-

amples, we take advantage of the dual nature (see Appendix A) of the problem with the choice of
functions (23), assuming U is convex. This allows us to use the Chambolle-Pock primal-dual algorithm
[6]. It has the drawback of requiring a closed-form expression of two proximal operators associated
with the functionals F ∗ and G, as defined in Appendix A. In general, if σU and σYf

have closed-form
formulae, so do those proximal operators.

4.2 The streetcar

Control problem. The following example is completely standard in optimal control theory. It can
be found for example in [20, Chapter 1] and is concerned with the optimal control of the acceleration
of a streetcar on a straight axis, in order to reach a stop station at zero speed.

We will use this example to both illustrate and to validate our approach, since the reachable set
and minimal times are known explicitly, see Appendix B.

We consider a streetcar moving on a graduated rectilinear axis. The initial position-velocity pair of
the streetcar is assume to be (0, 0)T , we call respectively x(t) and y(t) the position and velocity of the
streetcar at time t. The objective is to steer the system from (0, 0)T to yf ∈ R2 in minimal time. The
control system reads {

ẏ1(t) = y2(t), t > 0

ẏ2(t) = u(t),
(15)

which corresponds to the matrices

A =

(
0 1
0 0

)
, B =

(
0
1

)
. (16)

For a fixed M > 0, the chosen constraint is given by

U = {u ∈ R, |u| ≤ M}.

Resolution method. First, we compute the support function

∀u ∈ R, σU (u) = M |u|,

which is a particular case of (5).
Here, we use the functional Jd,1 and the estimate given by Corollary 9. Given how simple σU and

the controlled system are, we acknowledge that one could actually compute the functional J itself and
only have to deal with round-off errors. We do not pursue this approach since we aim at analysing how
prominent the discretisation errors may be.

The Jordan-Chevalley decomposition of A is straightforward in this case, since the matrix A is itself
nilpotent, of index ℓ = 2. In this case, we hence have µ = 0, κ(P ) = 1, ℓ = 2, Q2(x) = 1 + x, leading
to the estimate

|J(pf )− Jd,1(pf )| ≤
1

2
∆t MT∥B∥∥A∗pf∥Q2(∥A∥T ).
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Results. To highlight the dependence of J with respect to the target yf , we will temporarily rename
J(pf ) to J(pf ; yf ). We give examples of targets yf ∈ R2 that are certified to not be U-reachable below,
in the form of a computer-assisted theorem.

Theorem 15. The following targets are not U-reachable from (0, 0) in time T = 1, with M = 1

y1 = (0.1, 0.6)T , y2 = (0.5, 1.1)T , y3 = (0.3, 0)T .

Indeed, the dual certificates

p1 = (−0.77, 0.64)T , p2 = (0.29, 0.96)T , p3 = (0.85,−0.53)T .

provide the intervals

J(p1; y1) ∈ [−0.0305,−0.0291] J(p2; y2) ∈ [−0.0964,−0.0959], J(p3; y3) ∈ [−0.0282,−0.0268].

The targets and dual certificates are plotted in Figure 2, along with the theoretically known reach-
able set.

Figure 2: Non-U reachability of various targets from (0, 0)T at time T = 1 for M = 1, together with the
support hyperplane associated to their respective dual certificates, for the streetcar control problem.

Using the formula provided in Appendix B, the minimal times to reach y1, y2 and y3 are computed
to be slightly above 1.1656, 1.7480 and 1.0954, which means they are indeed not reachable.

4.3 Space rendezvous

Control problem. We here consider the 2-dimensional linearised Hill-Clohessy-Wiltshire equations,
as defined in [7]. These equations model the motion of a follower spacecraft in the neighbourhood of a
reference spacecraft (at position (0, 0, 0, 0)).{

ẏ(t) = Ay(t) +Bu(t) ∀t ∈ [0, T ]

y(0) = y0 ∈ R4,
(17)

where

A =


0 0 1 0
0 0 0 1
3 0 0 2
0 0 −2 0

 , B =


0 0
0 0
1 0
0 1

 . (18)
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Note that y1, y2 are positions and y3 = ẏ1, y4 = ẏ3 are the corresponding speeds.
We consider the following constraint set for fixed M2 > 0, M∞ > 0:

U = {u ∈ R2, ∥u∥2 ≤ M2, ∥u∥∞ ≤ M∞}, (19)

hence we may take M = min(M2,
√
2M∞).

Let us compute the support function σU in the case where M∞ ≤ M2 ≤
√
2M∞, that we will

consider hereafter. As illustrated in Figure 3, the constraint set is the intersection of a disk and a
square. Observe that the boundary of U is the union of flat and circular parts, whose coordinates (x, y)
of intersection points form the set

P =

{(
±M∞,±

√
M2

2 −M2
∞

)}⋃{(
±
√
M2

2 −M2
∞,±M∞

)}
.

Let us write ∂U = F ∪ C, where F (resp. C) denotes the union of all flat (resp. circular) parts of the
boundary.

Let us fix x ∈ R2. We distinguish between two cases:

• if (O;x) ∩ ∂U ⊂ C, meaning that ∥x∥∞
M∞

≤ ∥x∥2
M2

, then M2
x

∥x∥2 ∈ U and using the Cauchy-Schwarz
inequality, we get

σU (x) ≤ sup
y∈U

∥x∥2∥y∥2 =
〈
x,M2

x

∥x∥2

〉
= M2∥x∥2.

We thus infer that σU (x) = M2∥x∥2.

• Otherwise, σU (x) reads as the maximum of a linear (convex) function on a union of flat parts.
We easily infer that σU (x) = ⟨px, x⟩, where px denotes any point of the set argminp∈P ∥p− x∥2.

Figure 3: Construction of the support function for the rendezvous problem. One has in particular
σU (xi) = ⟨xi, x̄i⟩, i = 1, 2.

Resolution method. The Jordan-Chevalley decomposition of A is given by A = D +N with

D = P


0 0 0 0
0 0 0 0
0 0 −i 0
0 0 0 i

P−1, N = P


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

P−1, P =


0 −2

3 −1 −1
1 0 2i −2i
0 0 i −i
0 1 2 2

 .
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Here, we also use the functional Jd,1 and the estimate given by Corollary 9. Using the corresponding
notations, we have µ = 0, and the index of the nilpotent matrix N is ℓ = 2. Thus the corresponding
estimate reads

|J(pf )− Jd,1(pf )| ≤
1

2
∆t MT∥B∥∥A∗pf∥κ(P )Q2(∥N∥T ),

with Q2(x) = 1 + x.

Results. Given a target yf ∈ R4, we can derive a lower-bound on the minimal time needed to steer
the system from y0 = (0, 0, 0, 0)T to yf . Proposition 7 ensures that we may indeed estimate the
corresponding minimal time from below, using our approach. To compute this lower bound, we apply a
bisection algorithm over the set of positive real numbers, starting from a predefined interval [tinf, tsup],
and expanding it by multiplying its length by 2 until we cannot prove the non-reachability in time
tsup, and we can prove it in time tinf. Then, the standard bisection method applies until the interval is
reduced to the desired length.

First, we consider the time-minimal control problem of steering the system from y0 = (0, 0, 0, 0)T

to some other position at 0 speed, i.e., yf = (y1, y2, 0, 0)
T for various values of (y1, y2) ∈ R2. Since the

control problem is linear and the constraints centrally symmetric (i.e., U = −U), if yf is reachable in
time T > 0, so is −yf . This translates into the identity J(pf ; yf ) = J(−pf ;−yf ), allowing us to focus
our computations on the right half-plane.

Using the bounds M2 = 1.15 and M∞ = 1, we obtain the certified lower bounds on the minimal-
time shown on Figure 4(a). For conciseness, we do not provide the corresponding dual certificates. For
comparison purposes, the minimum times computed using the Python package Gekko [4] are presented
in Figure 4(b). Note that Gekko does not control discretisation bounds nor roundoff errors, hence the
corresponding estimates are by no means certified.

Computation times. As is common, our certified method comes at the price of increased computa-
tion times: each step of the bisection algorithm is rather fast (about 30 seconds), but depending on
parameters and how good the initial guess is, the number of iterations of the bisection algorithm may
go from 3-4 to 10-15 iterations, whereas Gekko’s method computes one approximation of the minimal
time in about 10 seconds.

Assuming that Gekko produces reliable estimates, the accuracy of our method seems to decrease
the further the target yf is from y0, going from about 1.8% to 37%. This can be explained as follows:
our computations were made with a fixed number of time steps, namely Nt = 20, 000; hence the higher
the theoretical minimal time is, the harder it is to establish a tight lower-bound. Increasing Nt allows
for a more precise approximation: for example, for yf = (0.5, 0.5, 0, 0)T , with Nt = 400, 000, the dual
certificate pf = (0.874, 0.0914,−0.3008, 0.3704)T proves the bound tmin ≥ 3.4, which is about 3.7%
away from Gekko’s approximation.

On the other hand, Gekko seems to produce what might be artefacts (points (0.1,−0.4)T and
(0.2,−0.5)T ), while our computed certified lower bounds remain smooth.

More complex unsafe set Yf . Now we look at the case where ones wants to avoid a given spherical
object in space, motionless in the considered referential, regardless of the speed. In other words, for a
fixed choice of (z1, z2) ∈ R2, and ε > 0, we consider

Yf =
{
(y1, y2, y3, y4) ∈ R4, ∥(y1 − z1, y2 − z2)∥R2 ≤ ε

}
, (20)

In that case, letting z := (z1, z2, 0, 0), the support function of Yf can be computed to be

σYf
: x 7−→ ⟨z, x⟩+ ε∥z∥2 + δ{x∈R4, x3=x4=0}.

We prove below a certified result for one such example.
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Figure 4: Estimates of the minimal time for reachability of various targets at speed 0 for the spacecraft
rendezvous control problem. Certified lower bounds (left panel (a)) versus minimal times outputted by
Gekko Optimization Suite [4] (right panel (b)).

Theorem 16. Take z1 = z2 = 0.5, ε = 0.1, M2 = 1.15, M∞ = 1 and T = 1. Then Yf is not
U-reachable from (0, 0, 0, 0)T in time T . Indeed, we find

J(pf ) ∈ [−0.1146,−0.0717], with pf = (0.62, 0.78, 0, 0)T .

4.4 Negative semi-definite Jacobi matrices

Control problem. In this section, we report on results for some randomly generated Jacobi matrices,
with varying state dimensions n. That is, we consider matrices of the form

A =



a1 c1 0 . . . 0

c1 a2 c2
. . .

...

0 c2 a3
. . . 0

...
. . . . . . . . . cn−1

0 . . . 0 cn−1 an


. (21)

with a = (a1, . . . , an) ∈ Rn, c = (c1, . . . , cn−1) ∈ Rn−1.
These matrices are real symmetric, and up to our knowledge, no closed-form expressions are known

for their eigenvalues and eigenfunctions, except in the specific case where the ci’s are all equal. Hence,
for large values of n, diagonalising A becomes intractable. Even if it were accessible, it would be prone
to numerical errors and we are not aware of any software that does produce such a diagonalisation
within interval arithmetic.

We generate such a matrix in the following way: let K > 0 and L > 0. We draw the ci’s uniformly
in [−K,K]. Then, we draw the ai’s uniformly in (−2K − L,−2K]. Thanks to the Gershgorin circle
theorem, the resulting matrix is negative semi-definite.

Remark 17. For the Jacobi matrices under consideration, the necessary and sufficient condition in
Gershgorin circle theorem writes:

a1 ≤ −|c1|, an ≤ −|cn−1|
ai ≤ −|ci−1| − |ci|, ∀i ∈ {2, . . . , n− 1}.

(22)

One could hence draw the ci’s and then draw each ai in (−|ci−1| − |ci| − L′,−|ci−1| − |ci| − 1]. This
would allow for a broader class of Jacobi matrices, but would require additional interval arithmetic in
order to guarantee condition (22).
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We consider a single control u, thus m = 1. The corresponding matrix B ∈ Rn×1 is B = (1, . . . , 1)T .
For a fixed M > 0, the constraint set is given by

U = {u ∈ R, |u| ≤ M},

for which we have σU (u) = M |u|. The target yf is chosen randomly, with i.i.d entries uniformly in
[0, 1], then renormalised such that ∥yf∥ = 0.1.

Resolution method. Under the assumption (22), all eigenvalues of A are nonpositive according to
the Gershgorin circle theorem.

As a result, we are dealing with negative semi-definite matrices, enabling us to use estimates coming
from Proposition 13 upon using the Euler implicit scheme to approximate the matrix exponential.

Results. In the following example, we shall take M = 1, T = 1, Nt = 1,000 and y0 = 0.
For each chosen dimension n, we generate 10 experiments with a target yf and a random matrix A

drawn as explained previously (with K = 2, L = 0.1), running our descent algorithm to try and prove
the non-reachability of yf from y0. The following table shows the resulting means, for the midpoint
and size of the obtained intervals J(pf ), where pf is the last iterate of the descent algorithm.

n mean of the midpoints mean of the radii
2 -0.7096 0.1166
5 -0.6233 0.1425
10 -0.5662 0.1929
20 -0.6696 0.2900
50 -0.6752 0.4739
100 -0.5873 0.6564

As can be seen, although the midpoints of intervals are rather constant, the error term steadily
increases, which leads to more difficult proofs of non-reachability.

This can be circumvented by increasing the number of time steps Nt, which leads to a reduction of
the error term at the expense of increased computation time.
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number ANR-20-CE40-0009. We warmly thank Fondation des Treilles, where part of this work has
been conducted.
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A Convex analytic interpretation

Here, we make the additional assumption that the constraint set U is not only compact, but also convex.
For all the following definitions and results, we refer e.g. to [3].

We let H be a Hilbert space. We recall that a function f : H → R ∪ {+∞} is said to be proper if
it is not identically equal to +∞.

Definition-Proposition 18. We define

Γ0(H) = {f : H → R ∪ {+∞}, f convex, lower semi-continuous and proper} .

We denote by f∗ : H → R ∪ {+∞} the convex conjugate of f ∈ Γ0(H)

f∗ : y 7→ sup
x∈H

⟨x, y⟩ − f(x).

Furthermore, f∗ belongs to Γ0(H).
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Definition 19. For C ⊂ H a nonempty closed convex subset, we denote by δC : H → R ∪ {+∞} the
convex indicator function of C

δC : x 7→

{
0 if x ∈ C

+∞ if x /∈ C.

We have δC ∈ Γ0(H).

By definition, note that δ∗C = σC .

Theorem 20 (Weak and strong duality). Let E,X be two Hilbert spaces, K ∈ L(E,X), F ∈ Γ0(E),
and G ∈ Γ0(X). Then we have the following so-called weak duality

inf
x∈E

F (x) +G(Kx) ≥ − inf
y∈X

F ∗(K∗y) +G∗(−y).

If in addition there exists pf ∈ X such that F ∗ is continuous at L∗
T pf , then strong duality holds,

i.e.,
inf
x∈E

F (x) +G(Kx) = − inf
y∈X

F ∗(K∗y) +G∗(−y).

Fenchel-Rockafellar interpretation of our approach. Since the compact constraint set U is
assumed to be convex, so is the set

UT = {u ∈ E, t ∈ (0, T ), u(t) ∈ U for a.e. t ∈ (0, T )}.

An alternative approach to the one leading to Proposition 2 is then to remark that Yf is U-reachable
from y0 in time T if and only if

∃u ∈ E, δUT
(u) + δYf−eTAy0(LTu) = 0,

in other words if and only if
inf
u∈E

δUT
(u) + δYf−eTAy0(LTu) = 0.

Note that the above functional takes at most two values, 0 and +∞. Denoting

F := δUT
, G := δYf−eTAy0 , (23)

we have F ∈ Γ0(E), G ∈ Γ0(Rn) and we find that

F ∗(L∗
T pf ) +G∗(−pf ) = σUT

(L∗
T pf )− σYf−eTAy0(−pf ) = J(pf ).

Furthermore, it is easily seen that F ∗ is continuous at 0 = L∗
T 0. Thus we can apply Proposition 20 to

obtain the strong duality

inf
u∈E

δUT
(u) + δYf−eTAy0(LTu) = − inf

pf∈Rn
J(pf ).

In particular, we see that if there exists pf such that J(pf ) < 0, then infpf∈Rn J(pf ) < 0 (in which
case this infimum even equals −∞), hence the infimum on the left-hand side equals +∞, and Yf is not
U-reachable from y0 in time T . Conversely, if Yf is not U-reachable from y0 in time T , the left-hand
side equals +∞, which leads to infpf∈Rn J(pf ) = −∞, so that there exists pf ∈ Rn satisfying J(pf ) < 0.
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B Minimal time for the streetcar example

Proposition 21. Let (xf , yf ) ∈ R2. The minimal time to steer System (15) from (0, 0) to (xf , yf )
reads

T =
−syf + 2

√
1
2y

2
f + sMxf

M
, with s = sign f(xf , yf ),

using the convention sign(0) = 0, where f : R2 → R is given by

f(x, y) = x− 1

2M
y2 sign(y).

Proof. Let T be the optimal time steering System (15) from (0, 0) to (xf , yf ). According to [20,
Chapter 1], it is well-known that optimal controls are bang-bang equal a.e. to M or −M , with at most
one switch, on the so-called switching locus defined by the implicit equation f(x, y) = 0.

More precisely, if s < 0, then the optimal control u = M1(0,t0) − M1(t0,T ), where t0 ≥ 0 is the
switching time, in other words the first time such that f(x(t), y(t)) = 0. Conversely, if s > 0, then
u = −M1(0,t0) +M1(t0,T ). Easy but lengthy computations yield

• If f(xf , yf ) = 0, then for every t ∈ [0, T ], one has

y(t) = y0 −Mt sign(yf ) and x(t) = xf − yf t−
1

2
Mt2 sign(yf ).

• Conversely, if f(xf , yf ) ̸= 0, then for every t ∈ [0, T ], one has

y(t) = (−yf − sMt)1(0,t0) + (yf + sM(t− 2t0))1(t0,T )

x(t) =
(
xf − yf t− 1

2sMt2
)
1(0,t0) +

(
xf − yf t+ sM(12 t

2 − 2t0t+ t20)
)
1(t0,T ).

To conclude, it is important to notice that if s ̸= 0, then sign(y(t0)) = s, which can be easily seen by
distinguishing between several cases, depending on the sign of yf and s.

To conclude, it remains to compute the switching time t0. We claim that if f(x0, y0) ̸= 0, then

t0 =
1

M

(
−s yf +

√
1

2
y2f + sMxf

)
.

Indeed, t0 is characterised by the equation f(x(t0), y(t0)) = 0, which rewrites as the second order
polynomial equation in the variable t0:

0 =

(
xf − s

1

2M
y2f

)
− yf (1 + s2)t0 − sMt20.

Furthermore, the discriminant of this polynomial is positive. It follows that y(T ) = −yf +sM(T −2t0)
and therefore, T = s

M yf + 2t0. The expected conclusion follows.
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