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Position paper: A case to study the relationship between data visualization

readability and visualization literacy

ANNE-FLORE CABOUAT, TINGYING HE, FLORENT CABRIC, TOBIAS ISENBERG, and PETRA
ISENBERG, Université Paris-Saclay, CNRS, Inria, LISN, France

In this position paper we argue that improving visualization literacy evaluation tools is important for defining and understanding
the concept of readability in data visualizations. Only with reliable and relevant measures can we assess how a potential factor
affects a reader’s performance; accordingly, only with appropriate measuring instruments can we start to investigate the tight web of
interactions between individual characteristics, features of the visual design, and reading tasks requirements. As we slowly progress
in our understanding of how people process information from data visualization, and based on these improved tools and other

developments, we can further develop theoretical foundations in data visualization.
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1 THE READING CONUNDRUM

We—as researchers—sometimes use terms that, while they are seemingly intuitive in everyday language, lack formal
definitions within our field of expertise and thus make it difficult to clearly express findings or arguments. Read and
readability are examples of such words in the context of data visualization [10]. Although the notion of being able
to read is pervasive to the literature in graph comprehension (e. g., [23, 34]) and visualization usability studies (e. g.,
[28, 45, 51]), there is no formal definition of what constitutes reading a data visualization.

In this paper, we assume that the act of reading covers the range of cognitive processes that allow readers to retrieve
meaningful pieces of information from a visual representation of data. Readability, then, describes how easy and
effective this information retrieval is for a person. From models of graph comprehension [20, 22, 30, 44], we derive
that readability in data visualization is influenced by three interacting factors: the display, the reading task, and the
individual characteristics of the reader, as we show in Fig. 1. These interactions make readability a difficult construct to
observe and quantify in data visualization—which echoes well-known issues in measuring text readability [5, 6].

As readability includes personal factors, it is also closely connected to the concept of visualization literacy. Visualiza-
tion literacy, as an individual factor, encompasses the reader’s ability to decode a visual representation of data; it is thus

likely to have a significant impact on how readable individuals find a particular visualization for a given task.

!In Fig. 1, we mainly refer to low-level tasks as they were defined in Amar et al.’s taxonomy [3].
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E.g.: Visualization Literacy, critical thinking, domain
knowledge, interest for the topic, perceptual speed,
working memory capacity, spatial abilities,
emotional state, cultural practices, aesthetics...

READER’S
CHARACTERISTICS
VISUALIZATION’S . READING
CHARACTERISTICS ACTIVITIES
E.g.: Underlying dataset, visual design E.g.: Low-level task in the sense of Amar et
choices (visualization idiom, visual encodings, al. (2005) (e.q., retrieve value, find trend...),
conventions), interactive features, mapping of visual encodings to the referent
meta-information... and numerical values, basic inferences.

Fig. 1. A triadic reciprocal representation of components influencing reading task! performance in data visualization.
The authors created this figure and share it under the CC BY 4.0 @@ license.

We are currently working on a larger research project to understand and formalize the concept of readability. Here,
we posit that any attempt to assess readability should integrate measures of the readers’ visualization literacy—that is,
at least until we can derive from such measures a cognitive model of reading. Such a model should be comprehensive
enough to roughly predict readers’ performance, while accounting for the role of visualization literacy in reading
activities. In the following sections, we first lay out how we think readability and visualization literacy are conceptually
intertwined, in spite of our current lack of empirical proof to support such claims. We then focus on two possible pitfalls
that hinder the utility of current visualization literacy test scores when studying readability. Finally, we make the case
that bridging—not merging!—visualization literacy and visualization readability research would benefit both domains.

Note on the scope of this position paper: We acknowledge the broadly accepted definition of visualization literacy
as encompassing the ability to read, interpret, design and create data visualizations [4, 9]. While we see no reason why
our call to implement visualization literacy measures in empirical studies should not also apply to creation-oriented
work such as elicitation studies, here we mainly focus on the “read and interpret” components. This orientation aligns
with our interest in studying data visualization readability, and most usability studies relevant to our topic are conducted

on already developed visualization systems.

2 VISUALIZATION LITERACY AND INDIVIDUAL DIFFERENCES

There is increasing evidence that individual characteristics might have been overlooked in seminal data visualization
perception studies. For example, Davis et al. [17] recently showed how limited previous assumptions were on canonical
2
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rankings of the effectiveness of visualization idioms—i. e., types of representations [38]. Indeed, only 22% of the 118
participants in their study performed according to Cleveland and McGill’s established ranking of accuracy [14]: BAR >
PIE > STACKED BARS > BUBBLE. Their results reinforce the growing agreement that there is no “one-size-fits-all” set
of rules for data visualization [40, 48]. In fact, the scope of individual factors that affect effectiveness of designs for a
given task appears extremely broad [36]: visualization literacy [7, 9, 35, 47] and meta-cognitive skills such as critical
thinking [27], of course; but also domain knowledge [46], prior beliefs [32, 54], manifold cognitive abilities (e. g., spatial
abilities [15, 41], working memory capacity [52], or verbal abilities [56]), personal semantic associations [1], personality
traits [2], aesthetic preferences [11, 29], and cultural practices [49] are all examples of good candidates. The complex
interplay of these factors, and their effects on perceptual, reading, and reasoning processes, remain largely unexplored.
As a result, we do not know, on a theoretical level, how visualization literacy affects readability. Reciprocally, we do not

know either how visualization readability might affect respondents’ answers in visualization literacy assessment tests.

3 VISUALIZATION LITERACY IN THE VISUALIZATION INFORMATION PROCESSING FRAMEWORK

Visualization researchers have undertaken efforts to theorize how people process information from data visualization.
There are calls to develop cognitive models [33, 42] that explain how people perceive, read, and interpret visual
representations of data, and how readers can leverage information retrieved from data visualizations for higher-level
tasks such as decision making, learning, or data analysis. To inform such models, we need to understand how factors of
the visual display, the individual reader, and the reading task, interact when people engage with a visualization [21].
Early theoretical work in visualization and education research domains pointed out components that we now relate
to visualization literacy: we can, for example, think of Pinker’s visualization schema [44] and Freedman and Shah’s
graphical knowledge [22]. Researchers outside of the data visualization and education communities also produced
empirical work that relates to effects of skills akin to visualization literacy, such as those found in the context of
health risk communication [24-26] and cognitive psychology [13]. In both domains, researchers refer to the ability
to read visual representations of data as graphicacy. While researchers in the health communication domain focused
on evaluating the effects of graphicacy on health risk information understanding and recall, cognitive psychologists
focused on formally establishing trend judgment as a perceptual building block of the ability to read scatterplots [13].
Therefore, we have solid reasons to expect an effect of visualization literacy on reading task performance in

visualization. Yet, we could not find supporting empirical evidence of such a relationship in the visualization literature.

4 VISUALIZATION LITERACY TEST SCORES AND READING PERFORMANCE: THE ELUSIVE LINK

Despite efforts of the research community to develop visualization literacy assessment tests [7, 27, 35], we found only
one study [37] that investigated the relationship between visualization literacy test scores and reading performance
beyond the testing context. This study by Mansoor et al. [37] partially replicated the comparison reading experiment
from Cleveland and McGill [14] in a crowd-sourced online study with 29 participants. Their goal was to assess how
participants’ scores on a Visualization Literacy Assessment Test (VLAT [35]) related to their performance in a value
comparison task on similar visualizations. Participants were given an abbreviated version of the VLAT (comprising the
BAR CHART, BUBBLE CHART, PIE CHART, LINE CHART, and TREEMAP VLAT visualizations) and 15 comparison task trials
for each of 3 visualization types (BAR CHARTS, PIE CHARTS, and TREEMAPS).

The authors found no relation between the participants’ average reading task accuracy and their score on the
abbreviated VLAT. Instead, the results showed a correlation between the variance in participant’s errors and the

abbreviated VLAT score. These findings suggest that people with higher visualization literacy might be more consistent
3
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in their reading of a data visualization—but not more accurate. Interestingly, the authors also indicate that they did not
find correlations between accuracy in reading performance or abbreviated VLAT score and self-reported visualization
experience, statistical experience or other demographics such as age and educational attainment.

For our purpose of studying the effect of visualization literacy on readability, we see at least two potential pitfalls in
current visualization literacy measurement tools that require attention: the aggregate nature of the scores they yield

and the lack of readability variety in the visualization situations they propose. We discuss these matters below.
4.1 The problem of visualization literacy aggregate scores

Table 1. Examples of existing general-purpose Visualization Literacy assessment tools yielding an aggregate ability score

Tool Types of visualizations Tasks Number of items? in a test

8 tasks: retrieve value, find extremum,

12 idioms: line chart, bar chart, stacked bar chart, 100% stacked determine range, characterize 5
VLAT [35] bar chart, pie chart, histogram, scatterplot, bubble chart, area chart,  distribution, find anomalies, find clusters, e
. (up to 7 per visualization)
stacked area chart, choropleth map, and treemap find correlations/trends, and make
comparisons
12
Mini-VLAT [43] 12 idioms (all idioms from VLAT, with slightly different designs) 8 tasks (all tasks from VLAT)

(1 per visualization)

9 idioms: line chart, bar chart, stacked bar chart, 100% stacked bar
chart, pie chart, scatterplot, area chart, stacked area chart, and

h leth 6 tasks: retrieve value, find extremum, 30
CALVI [27 iloro'ple dma;? he icki led taint find correlations/trends, make (1 per visualization)
(27] “Lmisleaders: cherry pleing, concealed uncertainty, comparisons, make predictions, and (15 normal items and 15 trick items

inappropriate aggregation, inappropriate scale range, arbitrary use aggregate values to pick from of a 45-items bank)
of non-linear scales, unconventioanl scale directions, misleading
annotations, mising data, missin normalization, and overplotting

A-VLAT and A-VLAT: 12 original visualizations A-VLAT: 8 original tasks ::‘C]IA?,—I\;‘IZZS

A-CALVI [16] A-CALVI: 11 original misleaders A-CALVI: no specification for tasks .

(11 trick items and 4 normal items)

Literacy considered broadly is a complex construct, and literacy assessments are usually multi-dimensional [31, 50].
For instance, the 2022 OECD PISA’s mathematical literacy assessment [39] scores differently on four categories of

» » <«

mathematical skills, namely: “change and relationships”, “space and shape”, “quantity”, “uncertainty”, and “data”” Similarly,

as shown in Table 1, visualization literacy test items?

encompass a variety of different tasks and visualization idioms—
i.e., types of visual representations [38]. Consequently, it is likely that visualization literacy is a multi-dimensional
construct [35]. To our knowledge, unfortunately, most of existing general-purpose visualization literacy tests result in
one aggregate score: a single value output which encapsulates and hides levels in possible sub-skills and knowledge
components of visualization literacy.

Aggregate scores from current visualization literacy assessment tools make it difficult to explore how visualization
literacy relates to data visualization readability, because they hide the presumable diversity of sub-skills that form
visualization literacy. Some sub-components of visualization literacy might be task-dependent: as an example, Firat et
al. [19] identified 7 categories of possible difficulties for readers in a literacy test that focused on PARALLEL COORDINATE
Prots (PCPs, an example of which is shown in Fig. 2). Out of the 7 groups of potential difficulties, 2 are directly named
after tasks: identifying correlations, and path tracing—a low-level task in graphs which consists of visually following a
line. The authors then characterize their PCP literacy test’s items according to these categories. They observe that any
item generally belongs to 2-3 of these categories, which they identify as cognitive processes. We find that their groups
incorporate visualization literacy components together with (unrelated) readability components:

%In this work, we refer to a test item as a combination of one question and one specific visualization.
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e We can consider elements such as “understanding of multivariate data attributes” or “statistical terminology (i. .,
correlation)” as required knowledge for the individual, and thus part of visualization literacy.

o Similarly, we can recognize elements describing abilities relevant to reading a plot and that a person can learn as
skills belonging to visualization literacy. The “use of parallel axes” or the “path tracing” tasks are examples.

e However, elements like “overplotting” or “placement of axes” are characteristics of the display, and thus not
directly part of visualization literacy. There is no evidence that a cognitive skill exists to read overplotted data
points or lines—it is more likely a problem to solve through visualization system design, e. g., via interactive
features.

We opened this section by emphasizing how detailed scores for visualization literacy components would participate in
explaining visualization readability; in the same way, a better understanding of visualization readability is needed to

support researchers in categorizing visualization literacy test items.

SYVVV VR 'l'/'/'/'/)'\}\/"/'" \ AP

-200,000-
Temp

Date [ Latitude Longitude Velocity — Density

Fig. 2. An example of a Parallel Coordinate Plot image used in P-Lite, as shown by Firat et al. [19].
Image used under the CC BY 4.0 @@ license.

The multi-dimensional nature of visualization literacy might also relate to the type of visualization. For instance,
being able to infer the original value of a mark on a logarithmic scale can be a part of visualization literacy for some
idioms, such as a DOT PLOT or a SCATTER PLOT that may sometimes use logarithm scales. Conversely, the inability to
deduce a value from a position on a logarithm scale would not impede a reader in other visualization contexts (e. g.,
being able to estimate the value of a population encoded as circle areas in a BUBBLE CHART).

If a test only yields an aggregate visualization literacy score for respondents, this score does not inform us about
which visualization literacy sub-skills or knowledge components are involved for specific reading tasks and visualization
types. Being able to observe correlation patterns between measured sub-skill levels in readers could inform a framework
of visualization information processing. Moreover, if we combine such a correlation analysis with data from eye-tracking
devices we can start to shed light on how sub-skills may rely on common perceptual or visual processes.

Identifying the multiple dimensions and underlying skills and knowledge components of visualization literacy is
crucial to better understand the cognitive processes at stake in reading data visualizations. Therefore, we renew Lee et
al’s [35] call for multi-dimensional factor analysis of visualization literacy test results, and encourage researchers to

pursue this direction. We add that frameworks providing typologies of visualization literacy skills and knowledge such
5
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as Borner et al.’s [8] can provide a starting point to conduct Confirmatory Factor Analysis on test results, or to specify

prior distributions in Bayesian models in both test development and test results analysis.

4.2 The lack of readability variance in visualization literacy assessment tests

Another barrier to the use of existing visualization literacy tests in empirical studies on visualization readability is
the relatively low variance of visualization readability itself in the tests. This poses a problem as visualization literacy
scores measured from questions on simple datasets with very clear designs do not tell us how “resilient” a person might
be to low-readability situations.

Expanding from the pioneering work of Boy et al. [7], Lee et al. [35] aimed to develop “a comprehensive visualization
literacy assessment test containing various data visualizations, covering inclusive data visualization tasks, and following
the whole procedure of test development.” To that end, they used a set of 12 different idioms (as we show in Fig. 3). If
we examine the visualizations through the lens of readability factors, however, we notice that these represent relatively
simple datasets and use clean visual encodings, both characteristics which maximize the display’s clarity and therefore
increase the ease with which readers can extract information from the visualizations (= our current definition of
readability). This observation may shed some light on the lack of results that Mansoor et al. reported [37] when they
attempted to link partial VLAT scores to performance in a comparison task beyond the test’s context (as we describe
with more details in the beginning of Section 4).

The high visual clarity of the VLAT visualizations is certainly in line with the authors’ goal to provide an assessment
test for novice visualization readers. Meanwhile, as Wang et al. noted in their work on the comprehension of scatterplots
[53], VLAT items do not fully reflect the reality of what makes a data visualization easy or difficult to read. A similar
observation led Ge et al. [27] to develop the CALVI test, which assesses respondents’ ability to apply critical reasoning

while reading visualizations. The authors created a pool of realistic and diverse test items. They applied 11 misleaders (e. g.,

Average Intemnet Speeds in Asia Election Exit Poll of California State by Education Hgf_sl Costs of Room Service Taxi Passenger Ratings

Bar chart 1007% stacked bar chart Stacked bar chart Histogram
Monthly Oil Price History in 2015 Average Coffee Bean Price from 2013 to 2014 Popular Girls' Names in the UK Global Smartphone Market Share (%)

y SR

\\\ o
Line chart Area line Stacked Area Line Pie chart
Height vs. Weight of 85 Males Metro Systems of the World Unemployment Rates for States in 2015 The Number of Unique Visitors for Websites in 2010
. e ‘
- .
B - o_ 0. o.. I
. e ™
" e . 2
[ e I o T
Scatterplot Bubblechart Choropleth map Treemap

Fig. 3. The 12 data visualizations that compose the VLAT [35], as found on the ReVISit [18] project repository.
The ReVISit software is distributed under the BSD 3-Clause License.
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inappropriate aggregation, missing data, different manipulations of scales, or overplotting) to create trick items—questions
that require the reader to think critically about the visualization in order to provide a correct answer.

As we are still progressing in our definition of readability, it is unclear for now which of CALVI’s misleaders
directly relate to the ease of reading, and which depend solely on the lack of something we might want to call “faithful
interpretability” of designs. For example, let us consider the practice of concealing uncertainty, which consists of plotting
uncertain data without visually encoding a measure of uncertainty. This is a case of design-induced misguidance for
which the outcome relates less to the ease of reading and more to the falseness of a reader’s sense of confidence in their
interpretation of the visualization. A truncated axis, in contrast, is a form of scale manipulation that directly affects the

ease with which a reader can perform a bar comparison task (in the sense of Cleveland and McGill [14]; Fig. 4).

Health Expenditure per capita
70K

65K
60K
55K
50K

45K

Health Exp/Capita

Country A Country B Country C

Fig. 4. A bar chart with a truncated y-axis makes it difficult to rely solely on reading for answering the question:
“Is it true that the average health expenditure per capita in country A is more than twice the amount in country B?”
The authors created this figure and share it under the CC BY 4.0 @@ license.

In fact, to obtain a correct answer, such manipulation of the y-axis might force the reader to perform two visual
readings of values, and then to perform a calculation of the values’ proportional relationship—not a visualization
reading task anymore. The visualization would technically not be readable for this task; but readers with high enough
visualization literacy could leverage their knowledge to reason that direct reading of the answer is impossible, and
adapt their strategy accordingly for answering the question. In many ways, the CALVI items provide us with a precious
resource in studying and reflecting on readability.

Other factors of readability, such as variations in data complexity or readers’ domain knowledge, remain unexplored
in existing general-purpose visualization literacy assessment tests. An example of an open question is: “Can a reader’s
visualization literacy affect the amount and quality of insights they can derive from a visualization in the absence of
domain knowledge?” In such a situation, what is the place of readability?

Meanwhile, we still lack standardized tools to evaluate readability in visualizations. Researchers aiming to develop
readability evaluation tools should strive to apply the principled approach demonstrated in the visualization literacy
test development research, including its most recent advances such as the use of Bayesian models [17, 27].
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5 CONCLUSION

In this paper, we make the case that visualization literacy and visualization readability research have overlapping topics
of interest but different focus. Visualization literacy research aims to investigate the knowledge and skills that people
require in order to effectively understand, use and create data visualizations. Meanwhile, readability research is targeted
at explaining how different characteristics of readers, tasks and data display contribute in making a specific visualization
easy or hard to read. We do not argue that one stream of research should be merged into the other, but rather that
the development or refinement of evaluation tools in one domain can support the community’s efforts to develop and
improve evaluation tools in the other. Explorations of the dimensions and sub-skills of visualization literacy will help
define and explain readability in data visualization. Reciprocally, a deeper understanding of readability would help
expand the scope of situations in which visualization literacy is assessed, and support researchers in their exploration
of sub-components of visualization literacy. Therefore, communication and iterations between our respective fields
should prove fruitful in the future. Finally, we emphasize that empirical findings from both streams of research are key
to inform a more comprehensive framework of how people process information in data visualization. Such a framework
should then be taught as part of visualization design curricula, and be included in models for recommender [55] and

linter [12] systems.
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