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Abstract
In this contribution, we address the numerical solutions of high-order asymptotic equivalent
partial differential equations with the results of a lattice Boltzmann scheme for an inhomo-
geneous advection problem in one spatial dimension. We first derive a family of equivalent
partial differential equations at various orders, and we compare the lattice Boltzmann exper-
imental results with a spectral approximation of the differential equations. For an unsteady
situation, we show that the initialization scheme at a sufficiently high order of the micro-
scopic moments plays a crucial role to observe an asymptotic error consistent with the order
of approximation. For a stationary long-time limit, we observe that the measured asymp-
totic error converges with a reduced order of precision compared to the one suggested by
asymptotic analysis.
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1) Introduction
The classical framework for numerical simulation starts from partial differential equations.
After discretization with some numerical method (finite differences, finite elements, etc.),
numerical software is developed. Then an approximate solution of the original partial dif-
ferential equation is computed. A large number of high-quality books exist on this subject.
We refer to the works of Oden and Reddy [40], Ferziger and Perić [24], Lucquin and Piron-
neau [38], among others.

With cellular automata and lattice Boltzmann schemes, this paradigm is reversed. The
computing algorithm is the starting point of the study. Then an asymptotic analysis is
conducted to derive the underlying continuous equations. The reader can consult, e.g., the
books of Rothman and Zaleski [43], Succi [46], Guo and Shu [27], or Krüger et al. [34].

Our approach is to derive a physical model from the algorithm. In this work, we adopt the
paradigm of multirelaxation lattice Boltzmann schemes [31]. Other variants are possible and
there are rational ways to proceed from a partial differential equation system with suitable
structure to a kinetic formulation, and hence to a lattice Boltzmann scheme by further
discretisation in space and time, e.g. by integration along characteristics (He and Luo [28],
He et al. [30], Dellar [15]). The classical approach for approaching the continuous Boltzmann
equation is the Chapman-Enskog method [12]. It has been revisited in Chen and Doolen
[13] and Qian and Zhou [42] to take into consideration the discrete aspects of space and time
with cellular automata and lattice Boltzmann schemes.

One important remark has to do with the choice of scaling. In this contribution, we suppose
acoustic scaling: the ratio between the spatial step and the time step is fixed. Then it is
possible to derive asymptotic partial differential equations in terms of a purely numerical
parameter, e.g. the spatial step to fix the ideas. Taylor expansions allow us to derive equiv-
alent partial differential equations [16, 17]. Dubois et al. have established that this Taylor
expansion method is equivalent to the Chapman-Enskog approach [19]. This asymptotic
expansion is obtained by formal arguments and can be compared to the truncation error of
a finite difference scheme. Observe that the relaxation coefficients are supposed fixed when
we adopt the acoustic scaling hypothesis.

When an asymptotic partial differential equation is known, it is possible to fit some pa-
rameters of the scheme to obtain super convergence. This was done by d’Humières and
Ginzburg [33], Augier et al. [2], Dubois and Lallemand [20, 21] and Otomo et al. [41]. In
the present contribution, we fix the relaxation coefficients and consider the spatial step as
tending to zero.

An asymptotic expansion is not identical to a convergence result. With the acoustic scaling
at second order to fix ideas, the diffusivity is proportional to the spatial step and vanishes
as the spatial step tends to zero. Moreover, the truncation error is a priori not identical to
the mathematical error. Some ad hoc stability and consistency are necessary to establish
convergence, as classically established by Lax and Richtmyer in [36]. After the pioneering
work of Dellacherie [14], Boghosian et al. have established in [8, 9] that the lattice Boltzmann
method does not converge for a simple heat equation. The acoustic scaling necessitates
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modification of the relaxation coefficients to maintain fixed diffusivity. In consequence, the
hypothesis of fixed relaxation coefficients is no longer valid, and the target partial differential
equation is not valid for very small spatial steps. Nevertheless, the asymptotic expansion
with acoustic scaling is correct. It is simply defining a partial differential equation that
mimics the lattice Boltzmann scheme at a specific order of accuracy when the relaxation
coefficients are fixed and the spatial step tends to zero.
Our methodology to develop an asymptotic analysis is based on the ABCD method of anal-
ysis [18] enforced by the equivaence with the Chapman-Enskog expansion [19]. It allows a
fourth-order analysis in a wide class of nonlinear lattice Boltzmann schemes. Thus an im-
portant question is the comparison between the simulation with a lattice Boltzmann scheme
and reference solutions of the equivalent partial differential equations. The objective of this
contribution is to addres the numerical solution of high-order equivalent asymptotic par-
tial differential equations with a lattice Boltzmann scheme. We work with an elementary
D1Q3 one-dimensional lattice Boltzmann scheme with a prescribed sinusoidal velocity. We
treat the reference asymptotic partial differential equations with an approach reminiscent
of early kinematic dynamo simulations from the 1980s using pure spectral methods to solve
the magnetic induction equation in “ABC” flow (e.g. Galloway and Frisch [25]). With this
spectral approach we can numerically solve with great precision the family of equivalent
partial differential equations at various orders.
As a classical tool of analysis, we use the one-point spectral analysis developed in Lallemand
and Luo [35] (see also Simonis et al. [45]). We use also Arnoldi iterations [1] for the
determination of global modes for an entire mesh, as Verberg and Ladd [47] to compute
steady solutions of linear lattice Boltzmann schemes for Stokes flow using a Krylov-space
method of Leriche et al. [37] for the determination of Stokes eigenmodes in a cubic domain.
For many simulations, the initialisation of the lattice Boltzmann state is taken to be an
equilibrium. This simple approach has been enriched by first-order initialization initially
suggested to our knowledge by Mei et al. [39]. Within the framework of Bellotti et al. [4],
a lattice Boltzmann scheme is revisited as a multistep method for the conserved variables.
The equivalent partial differential equations have been established at second-order accuracy
with this framework under acoustic scaling [5]. Last but not least, the contribution of Mei
et al. [39] at first-order accuracy has been revisited by Bellotti [6].
The outline for this work is as follows. In Section 2, we study the reference model: the
advection equation in one spatial dimension with a given cosine velocity field. The method of
characteristics yields an analytic solution. In Section 3, we present our variant of the D1Q3
lattice Boltzmann scheme, introduced initially by Broadwell [11] in the context of simple
discrete-velocity gases. In the lattice Boltzmann framework, dynamics is captured with
particles and the relaxation process occurs in the space of moments [31]. They are divided
into two families: the conserved moments and the microscopic variables in the denomination
proposed by Gatignol [26].
Then, in Section 4 we present the “ABCD” asymptotic analysis [18, 19]. From the precise
algebraic expression of a multirelaxation lattice Boltzmann scheme [31, 32], we derive from
a formal exponential expression a set of equivalent partial differential equations up to fourth
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order accuracy. Here we adapt the underlying algebra first to the case of an inhomogeneous
advection problem in one spatial dimension, and we derive a family of equivalent partial
differential equations at various orders.
In Section 5, the Fourier series method is adapted to treat in a precise way the case of a
cosine advective field. Then the unsteady evolution is presented in Section 6. A first result
is relative to a constant velocity and an initial sinusoidal wave. Then we take into account a
cosine advection velocity with a sinusoidal or a constant initial condition. We compare the
lattice Boltzmann results and a spectral approximation of the differential equations. An in-
teresting phenomenon of lack of convergence is encountered. This motivates the next Section
relative to the initialization of microscopic moments. In Section 8, we present our numerical
experiments with a detailed asymptotic analysis. Various parameters are considered: the
type of problem, with constant or cosine advective velocity, the approximation order of the
partial differential equation, the number of mesh points and the initialization process. In
Section 9, we study the long-time asymptotics. We observe that the measured asymptotic
error is still converging.
This work is the result of conversations in Medford (MA, USA) during summer 2018, and
then in Paris in spring 2019. Independent numerical experiments were done during COVID
in spring 2020, and complementary work in Beijing in summer 2023.

2) Advection with harmonic velocity in one space dimension
We introduce a reference length L > 0, a final time T and a reference scale velocity λ > 0.
For a given scalar U ∈ R and for 0 ≤ x ≤ L, we consider the regular periodic velocity field

(1) u(x) = λU cos(k x) , k =
2π

L
.

The linear inhomogeneous advection equation is the first-order partial differential equation

(2)
∂ρ

∂t
+ λ

∂

∂x

[
U cos(k x) ρ

]
= 0.

We introduce a periodic function [0, L] ∋ x 7−→ ρ0(x) ∈ R as an initial condition

(3) ρ(x, 0) = ρ0(x).

Moreover, we suppose periodic boundary conditions throughout this study.

Proposition 1. Method of characteristics
The differential equation associated with the method of characteristics for the partial differ-
ential equation (2) is written

(4)
dX

dt
= λu(X(t)) ≡ λU cos

(
k X(t)

)
.

With the initial condition X(0) = x0 with 0 ≤ x0 ≤ L, the solution is:

(5) cotg
πX

L
=

thπ t
T
+ cotgπ x0

L

1 + thπ t
T
cotgπ x0

L

with λU ≡ L
T
, thφ ≡ expφ− exp(−φ)

expφ+ exp(−φ)
and cotgφ ≡ 1

tanφ .
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Proof of Proposition 1.
If t = 0, then cotgπX

L
= cotgπ x0

L
and π X−x0

L
is a multiple of π. Then the position X = x0

is well defined in the interval [0, L]. Moreover, we have the following calculation:

− 1

sin2 πX
L

π

L

dX

dt
=

π

T

(1− th2 π t
T
) (1− cotg2 π x0

L
)

(1 + thπ t
T
cotgπ x0

L
)2

= −π

T

1

sin2 πX
L

cos
2πX

L

Then dX
dt

= L
T
cos 2πX

L
and the differential equation (4) is satisfied. □

Proposition 2. Algebraic solution of the inhomogeneous advection equation
Given x ∈ [0, L] and t > 0, the solution ρ(x, t) of the equation (2) satisfying the initial
condition (3) is given by the relation

ρ(x, t) cos
(2πx

L

)
= ρ0(x0) cos

(2πx0

L

)
where x0 satisfies

(6) cotg
π x0

L
=

cotgπ x
L

− thπ t
T

1− thπ t
T

cotgπ x0

L

.

Proof of Proposition 2.
We search for the foot x0 of the characteristic t 7−→ X(t) (4) such that X(0) = x0 and
X(t) = x. The characteristic passing through point x at time t then satisfies the two
relations X(0) = x0 and X(t) = x. First, we deduce from the partial differential equation
(2) that the product ρ(x, t) cos

(
2πx
L

)
remains constant. Second, from the relation (5), we

deduce the relation (6) for defining x0. □

0 +

Figure 1: D1Q3 lattice Boltzmann scheme

3) D1Q3 lattice Boltzmann scheme
The scale velocity λ > 0 is now equal to the ratio between the spatial step ∆x and the
time step ∆t:

λ =
∆x

∆t
.

From the particle distribution f ≡
(
f+, f0, f−

)t presented in Figure 1, we construct a single
conserved moment W denoted “density” in the following: ρ = f++f0+f−. We have also two
non-conserved microscopic moments Y =

(
J, e

)t with the “momentum” J = λ f+ − λ f−
and the “energy” e = λ2 (f+ − 2 f0 + f−). Then the family of moments m ≡ (W , Y ) is
linked to the particles f with the d’Humières [31] matrix M : m ≡ M f , with

M =

 1 1 1

λ 0 −λ

λ2 −2λ2 λ2

 .

5



Bruce M. Boghosian, François Dubois and Pierre Lallemand

For an inhomogeneous linear equilibrium Y eq = Φ(W ) = E(x)W , the equilibrium ma-
trix E(x) is a function of space. In the case of an advective field u(x) proposed in the
relation (1), we have

E(x) =

(
λU cos(k x)

λ2 α

)

with a coefficient α = −1 in our numerical experiments.

The relaxation Y 7−→ Y ∗ of the nonconserved moments Y is classical:

{
J∗ = J + s (Jeq − J) = (1− s) J + s λU cos(k x) ρ

e∗ = e+ s′ (eeq − e) = (1− s′) e+ s′ λ2 α ρ

and we have chosen s = 1.5, s′ = 1.2 in our reference numerical experiments. Observe that
the parameters U , α, s and s′ are without dimension. We set finally m∗ = (ρ , J∗ , e∗)t.

The collision step is defined according to f ∗ = M−1m∗, and the exact propagation of
particles along the characteristic directions λ , 0 , −λ of the D1Q3 scheme:


f+(x, t+∆t) = f ∗

+(x−∆x, t)

f0(x, t+∆t) = f ∗
0 (x, t)

f−(x, t+∆t) = f ∗
−(x+∆x, t)

is well known (see e.g. [31]). The solution of this lattice Boltzmann scheme can be ap-
proached by the first order equivalent partial differential equation

∂ρ

∂t
+ λ

∂

∂x

[
U cos(k x) ρ

]
= O(∆x).

Therefore, it is natural to compare the numerical solution of the D1Q3 lattice Boltzmann
scheme with the exact solution of the inhomogeneous advection equation (2). We have done
this work in a first numerical experiment, and the results are displayed in Figure 2.

During the first time steps (see the results for T = 01 and T = 10), the two results agree with
good precision. But we observe that the solution of the advection equation (2) is unsteady,
whereas the lattice Boltzmann scheme rapidly converges towards a stationary solution. Then
the approximation of the D1Q3 scheme by the first-order partial differential equation is not
sufficient. We adapt a complementary analysis in the next section.
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0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

T=infinity, d1q3 computation
T=40, characteristic method
T=40, d1q3 computation
T=30, characteristic method
T=30, d1q3 computation
T=20, characteristic method
T=20, d1q3 computation
T=10, characteristic method
T=10, d1q3 computation
T=01, characteristic method
T=01, d1q3 computation
initial field: constant equal to 1

Figure 2: Evolution for an advective velocity (1) with U = 0.005 and N = 128 mesh points.
We observe that with the cosine advection velocity, the numerical solution has no symmetry.
As time progresses, we observe that the characteristic method becomes less and less precise.

4) ABCD asymptotics in the isotropic linear case
In this section, we revisit the “Berlin algorithm” introduced in [3] for the linear analysis of
lattice Boltzmann schemes. First recall that one time step is comprised of two stages:
(i) nonlinear relaxation

m 7−→ m∗ ≡
(
W ∗

Y ∗

)
, W ∗ = W , Y ∗ = Y + S (Φ(W )− Y )

with a diagonal relaxation matrix S. Observe that with our definition, the relaxation ma-
trix S only concerns the nonconserved microscopic moments. In consequence, for the D1Q3
scheme, we have S = diag(s , s′).
(ii) linear advection

m∗ 7−→ f(t+∆t) : f ∗ = M−1m∗ , fj(x, t+∆t) = f ∗
j (x− vj ∆t, t).

The operator of advection of moments Λ is defined from the diagonal advection operator∑
α v

α ∂α according to [18]
Λ ≡ M diag

( ∑
1≤α≤d

vα ∂α

)
M−1
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with d the spatial dimension. This is nothing more than the advection operator in the basis
of moments. Following a remark proposed in [18], we have an exact exponential expression
of the lattice Boltzmann scheme

m(x, t+∆t) = exp(−∆tΛ) m∗(x, t).

We can expand this relation up to fourth order to obtain

m(x, t+∆t) =
[
I−∆tΛ +

∆t2

2
Λ2 − ∆t3

6
Λ3 +

∆t4

24
Λ4 +O(∆t5)

]
m∗(x, t).

The equivalent partial differential equations of the scheme are found from the asymptotic
expansion (see e.g. [19])

∂t = ∂t1 +∆t ∂t2 +∆t2 ∂t3 +∆t3 ∂t4 +O(∆t3).

Consider now the “ABCD” block decomposition (see [19]) of the momentum-velocity operator
that is obtained for the D1Q3 lattice Boltzmann scheme:

Λ ≡
(
A B

C D

)
=

 0 ∂x 0
2
3
λ2 ∂x 0 ∂x
0 λ2 ∂x 0

 .

Asymptotic analysis is carried out to second order. It uses only a small set of mathematical
expressions:

(7)



∂t1W + Γ1 = 0

∂t2W + Γ2 = 0

Γ1 = AW +B Φ(W )

Y = Φ(W ) + ∆t S−1Ψ1 +O(∆t2)

Ψ1 = dΦ(W ).Γ1 − (CW +DΦ(W ))

Σ ≡ S−1 − 1
2
I

Γ2 = B ΣΨ1.

The application to the Navier Stokes equations can be found in [23]. For the fourth-order
analysis, these relations are enriched in the following way [18, 19]. We first extend the
asymptotic expansion for the microscopic moments
(8) Y = Φ(W ) + S−1

(
∆tΨ1(W ) + ∆t2Ψ2(W ) + ∆t3Ψ3(W )

)
+O(∆t4).

We observe that the operators Ψj are a priori nonlinear operators of order j. The partial
differential equation for the conserved moments takes the form

∂t1W + Γ1 = 0 , ∂t2W + Γ2 = 0 , ∂t3W + Γ3 = 0 , ∂t4W + Γ4 = 0 .

The differential operators at third order are obtained by nontrivial algebra [18, 19]:

(9)
{

Ψ2(W ) = ΣdΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DΣΨ1(W )

Γ3(W ) = B ΣΨ2(W ) + 1
12
B2Ψ1(W )− 1

6
B dΨ1(W ).Γ1(W )

and it is also the case for the fourth-order terms:

(10)



Ψ3(W ) = ΣdΨ1(W ).Γ2(W ) + dΦ(W ).Γ3(W )−DΣΨ2(W ) + ΣdΨ2(W ).Γ1(W )

+1
6
D dΨ1(W ).Γ1(W )− 1

12
D2Ψ1(W )− 1

12
d (dΨ1(W ).Γ1).Γ1(W )

Γ4(W ) = B ΣΨ3(W ) + 1
4
B2Ψ2(W ) + 1

6
BD2ΣΨ1(W )− 1

6
ABΨ2(W )

−1
6
B
(
d (dΦ.Γ1).Γ2(W )− 1

6
B d (dΦ.Γ2).Γ1(W )

)
−1

6
B Σd (dΨ1(W ).Γ1).Γ1(W ),
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with (
A2 B2

C2 D2

)
≡

(
A B

C D

) (
A B

C D

)
=

(
A2 +B C AB +BD

C A+DC C B +D2

)
.

In one spatial dimension, the previous A, B, C, D differential operators factorize into algebraic
expressions multiplying x-derivatives:
(11) A ≡ A ∂x , B ≡ B ∂x , C ≡ C ∂x , D ≡ D ∂x.

In this context of one spatial dimension, we introduce an inhomogeneous equilibrium:
(12) Φ(W ) ≡ E(x)W .

Then we can define a new inhomogeneous differential operator δ with
(13) δW ≡ ∂x

(
Φ(W )

)
= ∂x

(
E(x)W

)
.

We have δ = ∂E
∂x

I +E(x) ∂x. Then we observe that the commutator [∂x, δ] ≡ ∂x δ − δ ∂x is
not equal to zero: [∂x , δ]φ = ∂x ∂x(E(x)φ)− ∂x(E(x) ∂xφ) = ∂x

(
(∂xE)φ

)
.

Proposition 3. Differential operators for linear nonuniform advection
In the previous context of a linear inhomogeneous scheme, the differential operators Γ1, Ψ1,
Γ2, Ψ2, Γ3, Ψ3 and Γ4, defined at the relations (7)(9)(10), take the form

Γj ≡ αj W , Ψj ≡ βj W

with the following algebraic relations

(14)



α1 = A ∂x +B δ

β1 = E α1 − (C ∂x +D δ)

α2 = B Σ ∂x β1

β2 = Σ β1 α1 + E α2 −DΣ ∂x β1

α3 = B Σ ∂x β2 +
1
12
B2 ∂

2
x β1 − 1

6
B ∂x β1 α1

β3 = Σ β1 α2 + E α3 −DΣ ∂x β2 + Σ β2 α1 +
1
6
D∂x β1 α1 − 1

12
β1 α

2
1 − 1

12
D2 ∂

2
x β1

α4 = B Σ ∂x β3 +
1
4
B2 ∂

2
x β2 +

1
6
BD2Σ ∂3

x β1 − 1
6
AB ∂2

x β2

−1
6
B δ α1 α2 − 1

6
B δ α2 α1 − 1

6
B Σ ∂x β1 α

2
1 .

The proof of this proposition is a tedious algebraic calculation. It is presented in Annex A.

We consider in this contribution the case of the D1Q3 scheme with one conservation law with
a cosine velocity field u(x) ≡ λU cos(k x) introduced in (1). Then the differential operator
δ proposed in (13) takes the form

δφ = ∂x
(
E(x)φ

)
= ∂x

(
λU cos(k x)φ

λ2 αφ

)
= ∂x

(
uφ

λ2 αφ

)
.

With the notation
(15) ∂uφ ≡ U ∂x

(
cos(k x)φ

)
if the velocity field is a cosine (c.f. (1)) and

∂uφ ≡ U ∂xφ

when the velocity field is constant, we have simply

(16) δ =

(
λ ∂u

λ2 α ∂x

)
.

9
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We observe that the differential operators ∂x and ∂u do not commute:

[∂x , ∂u]φ = ∂x
(
− k U sin(k x) φ

)
.

Proposition 4. D1Q3 differential operators for linear nonuniform advection
The linear differential operators explicited in (14) admit the following expressions in terms
of the operators ∂x and ∂u. We have for the two first orders

(17) α1 = λ ∂u , β1 = λ2

(
u
λ
∂u − α+2

3
∂x

λ (α− 1) ∂u

)

(18)


α2 = λ2 σ

(
∂2
u − α+2

3
∂2
x

)
β2 = λ3

(
2σ u

λ
∂2
u −

(
α+2
3

σ + α−1
3

σ′) ∂x ∂u − α+2
3

σ u
λ
∂2
x

λ (α− 1)
(
(σ + σ′) ∂2

u − α+2
3

σ ∂2
x

) )
,

with the Hénon coefficients [29] σ and σ′ defined according to

σ =
1

s
− 1

2
, σ′ =

1

s′
− 1

2
.

At third order, the formulae are more complicated. We have

(19) α3 = λ3
[(

2σ2− 1

6

)
∂3
u+

(α + 2

3

(1
6
−σ2

)
+

α− 1

3

( 1

12
−σ σ′)) ∂2

x ∂u−
α + 2

3
σ2 ∂u ∂

2
x

]
and

β3 ≡
(
λ4 β3J

λ5 β3e

)
,

with

(20)



β3J = α+2
9

[
− (1− α)σ σ′ + (

(
α + 2)σ2 + 1

4

)]
∂3
x

+U
[
− 2 α+2

3
σ2 + 1−α

3
σ σ′ + 1+α

12

]
∂2
x ∂u − 2U α+2

3
σ2 ∂u ∂

2
x

+
[
− 2 α+2

3
σ2 + 1−α

3
(2σ σ′ + σ′2 − 1

4
)
]
∂x ∂

2
u +

(
5σ2 − 1

4

)
U ∂3

u

β3e =
1−α
3

[
(α + 2)σ2 + (1 + 2α)σ σ′ − 1+α

4

]
∂2
x ∂u + (1− α) α+2

3
σ (σ + σ′) ∂u ∂

2
x

−(1− α)
(
2σ2 + 2σ σ′ + σ′2 − 1

4

)
∂3
u.

At fourth order, we have

(21)


α4 = λ4

[
α+2
9

(
(α + 2)σ3 − (1− α)σ2 σ′ − α

4
σ
)
∂4
x

+
[
− 2 α+2

3
σ3 + 1−α

3
(2σ2 σ′ + σ σ′2 − 1

4
σ′) + 1+2α

9
σ
]
∂2
x ∂

2
u

+
[
− 2 α+2

3
σ3 + 1−α

3
σ2 σ′ + 7+5α

36
σ
]
∂u ∂

2
x ∂u

+α+2
3

σ
(
− 2σ + 1

6

)
∂2
u ∂

2
x + σ

(
5σ2 − 3

4

)
∂4
u

]
.

The proof of Proposition 4 is detailed in Annex B.

When the velocity field has a constant value u(x) ≡ λU , super-convergence can be obtained
with an appropriate choice of relaxation coefficients, called “magic” in [33]. Because magic is
not science, we prefer the denomination of “quartic parameters” [21] to achieve fourth-order
accuracy, or “cubic parameter” in the present case to obtain a third-order precision.
When the advection velocity field has a constant value, we have ∂u ≡ U ∂x and the coeffi-
cient α3 initially given according to (19) takes now the value

(22) α3 =
λ3 U

12

[
− 2 (1− 12σ2)U2 + 4 (1− α)σ σ′ + 1 + α− 8 (2 + α)σ2

]
∂3
x .

10
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Then for a fixed set of values for U , α and σ, the cubic parameter σ′
c is defined by forcing

to zero the value of α3 in the relation (22):

(23) σ′
c =

2 (1− 12σ2)U2 + 8 (2 + α)σ2 − (1 + α)

4 (1− α)σ
.

In the following, we first experiment with the D1Q3 lattice Boltzmann scheme with constant
velocity, possibly with cubic parameters. Then we consider a cosine advection velocity. We
detail in the next section the Fourier methodology developed to solve the various equivalent
partial differential equations with very good precision.

5) Interlaced Fourier series
We compare the numerical simulation done with the D1Q3 lattice Boltzmann scheme with
the solution of the equivalent partial differential equations up to fourth-order accuracy. This
hierarchy of equations can be written

(24)
∂ρ

∂t
+

ℓ∑
j=1

∆tj−1 αj ρ = 0.

They are of order ℓ for 1 ≤ ℓ ≤ 4. We recall that we have the following structure
∆t0 α1 = λ ∂u
∆t1 α2 = −µ ∂2

x + µu ∂
2
u

∆t2 α3 = ξu ∂
3
u + ξxu ∂

2
x ∂u + ξux ∂u ∂

2
x

∆t3 α4 = ζu4 ∂
4
u + ζxxuu ∂

2
x ∂

2
u + ζuxxu ∂u ∂

2
x ∂u + ζuuxx ∂

2
u ∂

2
x + ζx4 ∂

4
x.

The coefficients µ, µu, ξu, ξxu, ξux, ζu4, ζxxuu, ζuxxu, ζuuxx and ζx4 are easy to explicate
from the relations (17)(18)(19)(21):

µ = α+2
3

λ2 σ , µu = λ2 σ ,

ξu = λ3
(
2σ2 − 1

6

)
, ξxu = λ3

(
α+2
3

(
1
6
− σ2

)
+ α−1

3

(
1
12

− σ σ′)) , ξux = −λ3 α+2
3

σ2

ζu4 = λ4 σ
(
5σ2 − 3

4

)
, ζxxuu = λ4

[
− 2 α+2

3
σ3 + 1−α

3
(2σ2 σ′ + σ σ′2 − 1

4
σ′) + 1+2α

9
σ
]

ζuxxu = λ4
[
− 2 α+2

3
σ3 + 1−α

3
σ2 σ′ + 7+5α

36
σ
]
, ζuuxx = λ4 α+2

3
σ
(
− 2σ + 1

6

)
ζx4 = λ4

[
α+2
9

(
(α + 2)σ3 − (1− α)σ2 σ′ − α

4
σ
)]
.

We use a spectral method to capture an approximation of a partial differential equation of
the family (24). In the case of an advective field given in (1), we introduce the two discrete
spaces Si and Sp defined as follows. The space of odd sine and even cosine is called Si:

Si ∋ ρ =
∑
j≥0

a2j+1 sin
(
(2j + 1) k x

)
+
∑
j≥0

a2j+2 cos
(
(2j + 2) k x

)
and the space of even sine and odd cosine is denoted by Sp:

Sp ∋ ρ =
∑
j≥0

b2j+1 cos
(
(2j + 1) k x

)
+
∑
j≥0

b2j+2 sin
(
(2j + 2) k x

)
.

The derivation operator breaks down into two parts:{
∂ip
x : Si −→ Sp

∂pi
x : Sp −→ Si .

11
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Relatively to the basis
(
sin k x, cos 2 k x, sin 3 k x, cos 4 k x, · · ·

)
of Si and to the basis(

cos k x, sin 2 k x, cos 3 k x, sin 4 k x, · · ·
)

of Sp, the operators ∂ip
x and ∂pi

x can be repre-
sented by the following matrices{

∆ip
x = diag

(
k, −2 k, 3 k, −4 k, · · ·

)
∆pi

x = diag
(
− k, 2 k, −3 k, 4 k, · · ·

)
= −∆ip

x .

The second order operator ∂2
x = ∂pi

x ◦ ∂
ip
x operates inside the space Si and is represented by

the matrix
∆pi

x ∆ip
x = −diag

(
k2, 4 k2, 9 k2, 16 k2, · · ·

)
.

We introduce also the operator mu of mutiplication by u ≡ U cos(k x). It operates from Si

and takes its values in Sp. Then ∂u = ∂x ◦mu operates inside the space Si. More precisely,
we have, without forgetting the constant component a0:

mu ρ = U cos(k x)
[
a0 +

∑
j≥0 a2j+1 sin

(
(2j + 1) k x

)
+
∑

j≥0 a2j+2 cos
(
(2j + 2) k x

)]
=

(
a0 +

1
2
a2
)
U cos

(
k x

)
+ U

2

∑
j≥0

(
a2j+1 + a2j+3

)
sin

(
(2j + 2) k x

)
+U

2

∑
j≥1

(
a2j + a2j+2

)
cos

(
(2j + 1) k x

)
.

The matrix

Mu ≡ U

2


0 1 0 0

1 0 1 0

0 1 0
. . .

0 0
. . . . . .


is a natural implementation of the operator mu of multiplication by the velocity u for
ρ ∈ Si. Then the differential operator ∂u ≡ ∂x mu in the space Si after truncation is
represented by the matrix ∆pi

x Mu.

We have used two discretizations with 30 or 60 Fourier modes. Observe that when U = 0.05,
the results are correct with 30 Fourier modes for 64 and 128 mesh points. But with 256 and
512 mesh points, oscillations appear in the numerical results. This is the sign of a under-
resolved simulation. We have changed the number of Fourier modes and used 60 modes
for 256 and 512 mesh points. We tested the representation of the solution of the D1Q3
scheme with a Fourier series. We have observed a residual in ℓ∞ norm of 1.79× 10−14 and
6.06× 10−11. This precision is sufficient for our simulations.

After these algebraic operations, the partial differential equation (24) can be seen as an
infinite system of ordinary differential equations

(25)
∂ρ

∂t
+ Aρ = 0

with an operator A given at fourth order by the relation

(26)


A = λ ∂x mu − µ ∂2

x + µu ∂xmu ∂xmu

+
(
ξu ∂xmu ∂xmu ∂xmu + ξxu ∂

3
x mu + ξux ∂x mu ∂

2
x

)
+
(
ζu4 ∂xmu ∂xmu ∂xmu ∂x mu + ζxxuu ∂

3
x mu ∂x mu + ζuxxu ∂xmu ∂

3
x mu

+ζuuxx ∂xmu ∂xmu ∂
2
x + ζx4 ∂

4
x

)
.

12
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We observe that the matrix A is constant. Then after discretization with N modes, it
becomes a constant matrix ÃN . The system (25) is replaced by a system of a finite number
of ordinary differential equations

(27)
∂ρ

∂t
+ ÃN ρ = 0 .

Due to the fact that the matrix ÃN is fixed, the solution of (27) is approached in this
contribution for small values of time (t is replaced by the time step ∆t for the numerical
integration) by a Taylor expansion at order 5 from the initial condition ρ0, an expansion
consistent with a spatial precision of order at most 4:

ρ(t) = exp(−t ÃN) ρ0 ≃
[
I− t ÃN +

t2

2
Ã2

N − t3

6
Ã3

N +
t4

24
Ã4

N − t5

120
Ã5

N

]
ρ0 .

In an initial series of numerical experiments, we have put in evidence approximations of the
stationary solution of a lattice Boltzmann scheme forced with a cosine velocity field.

6) Unsteady evolution
We now compare the D1Q3 lattice Boltzmann scheme up to time T = 1 with the Fourier
approximations of the various equivalent partial differential equations at various orders

∂ρ

∂t
+ Aj ρ = 0 , 1 ≤ j ≤ 4.

Observe that Aj is a continuous partial differential operator whereas ÃN in the previous
section is a discretization with N degrees of freedom. We use a different notation to avoid
ambiguity between the order of approximation and the order of discretization. We have at
order 1:

A1 = λ ∂x mu ,

at order 2:
A2 = A1 − µ ∂2

x + µu ∂xmu ∂xmu ,

at order 3:
A3 = A2 +

(
ξu ∂x mu ∂x mu ∂x mu + ξxu ∂

3
x mu + ξux ∂xmu ∂

2
x

)
,

and at order 4:{
A4 = A3 +

(
ζu4 ∂x mu ∂xmu ∂xmu ∂xmu + ζxxuu ∂

3
x mu ∂xmu

+ζuxxu ∂x mu ∂
3
x mu + ζuuxx ∂xmu ∂xmu ∂

2
x + ζx4 ∂

4
x

)
.

We have chosen the following parameters

U = 0.005 , α = −1 , σ = 0.01 [s = 1.960784313725] , s′ = 1.2

with σ ≡ 1
s
− 1

2
. The detailed results are presented in a preliminary edition of this work [10].
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initial field: sinusoid

Figure 3: Unsteady evolution, constant advection field [U = 0.05], 64 mesh points, sinusoidal
initial condition.
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Figure 4: Unsteady evolution, sinusoidal advection field [U = 0.05], 64 mesh points, sinu-
soidal initial condition.

In Figure 3, we consider a constant velocity field with a sinusoidal initial condition. In
Figure 4, a cosine velocity field with a sinusoidal initial condition is studied. These figures
show that the approximation of the lattice Boltzmann scheme with the equivalent partial
differential equations is globally correct. Then we refine the mesh up to N = 1024 points.
The results are presented in Figure 5. They are not completely satisfactory.
In order to overcome the moderate speed of convergence for an unsteady evolution, we focus
in the next section on the way the lattice Boltzmann scheme is initialized.

7) Initialization of microscopic moments
In the previous section, we have taken the non-conserved moments at time t = 0 equal to
the value at equilibrium:
(28) Y0(t = 0) = Φ(ρ0).
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64 128 256 512 1024

-8

-10

-12

-14

-16

-18

order=1, empirical order = 1.10
order=2, empirical order = 1.99
order=3, empirical order = 1.99
order=4, empirical order = 1.99

Figure 5: Errors measured with the maximum norm between the D1Q3 lattice Boltzmann
scheme and various equivalent partial differential equations. Unsteady experiment with con-
stant velocity field U = 0.05, finite-time evolution with final time T = 1, and initialization
with a sinusoidal wave. The x-axis represents the number of mesh points with a logarithmic
scale and the y-axis is graduated with the base-2 logarithm of the error. The microscopic
moments are initialized with the equilibrium values.

We recall the asymptotic expansion of nonconserved moments for a lattice Boltzmann scheme
through the general expression (8):

Y = Φ(W ) + S−1
(
∆tΨ1(W ) + ∆t2Ψ2(W )

)
+O(∆t3).

For the advective D1Q3 scheme with a cosine advection field,

Y =

(
j

e

)
, Φ(ρ) =

(
λU cos(k x) ρ

λ2 α ρ

)
, Ψ1 = β1 ρ , β1 = λ2

(
u ∂u − α+2

3
∂x

λ (α− 1) ∂u

)
and

Ψ2 = β2 ρ , β2 = λ3

(
2σ u

λ
∂2
u −

(
α+2
3

σ + α−1
3

σ′) ∂x ∂u − α+2
3

σ u
λ
∂2
x

λ (α− 1)
(
(σ + σ′) ∂2

u − α+2
3

σ ∂2
x

) )
.

For initialization at order 0, the relation (28) is simply applied. The initialization suggested
by Mei, Luo, Lallemand and d’Humières [39] at order 1 is:

(29) Y1(t = 0) = Φ(ρ0) + ∆t S−1 β1 ρ0.

In the following, we also consider a second-order initialization:

(30) Y2(t = 0) = Φ(ρ0) + S−1
(
∆t β1 ρ0 +∆t2 β2 ρ0

)
.

We remark that this framework can certainly be revisited with the new version of lattice
Boltzmann schemes through multistep finite difference schemes, as proposed by Bellotti,
Graille and Massot [4]. The results of our simulations are presented in the next section.

8) Unsteady fields for a constant or variable advective velocity
We first study the uniform advection case. Then we specify the case of cubic parameters.
Then we look to nonuniform cosine advection. In all cases, the choice of the initialization

15
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scheme has a great influence on the final precision. Observe also that only one mode is
needed for the Fourier approximation when the advecting velocity is constant.

mesh points \ equation order 1 2 3 4
initialization order 0 0 0 0

64 2.798 10−3 7.606 10−4 7.604 10−4 7.596 10−4

128 1.218 10−3 1.983 10−4 1.983 10−4 1.982 10−4

256 5.598 10−4 4.979 10−5 4.979 10−5 4.978 10−5

512 2.675 10−4 1.245 10−5 1.245 10−5 1.245 10−5

1024 1.307 10−4 3.113 10−6 3.112 10−6 3.112 10−6

convergence order 1.10 1.99 1.99 1.99

Table 1: Errors measured with the maximum norm between the D1Q3 lattice Boltzmann
scheme [with parameters α = −1, σ ≡ 1

s
− 1

2
= 0.01, s′ = 1.2] and various equivalent partial

differential equations for an unsteady experiment: constant velocity field U = 0.05, finite
time evolution with final time T = 1, and initialization with a sinusoidal wave. The error
remains second-order accurate even if we use the third-order or the fourth-order equivalent
equation for the approximation of the lattice Boltzmann scheme. Figure 5 is an other
representation of these results.

With the first-order initialization (29), the results are presented in Figure 6 and Table 2.
They become consistent for the three first levels of approximation, but there is no convergence
at fourth-order accuracy.

With the second-order initialization (30), the results are displayed in Figure 7 and Table 3.
The experimental order of approximation is now coherent up to fourth order. In Table 4,
economical initialization orders are used to present an optimal convergence accuracy.

mesh points \ equation order 1 2 3 4
initialization order 1 1 1 1

64 2.039 10−3 7.967 10−6 2.911 10−6 2.652 10−6

128 1.020 10−3 1.648 10−6 3.544 10−7 3.290 10−7

256 5.101 10−4 3.697 10−7 4.305 10−8 4.049 10−8

512 2.551 10−4 8.730 10−8 5.296 10−9 5.018 10−9

1024 1.275 10−4 2.120 10−8 6.569 10−10 6.247 10−10

convergence order 1.00 2.13 3.03 3.01

Table 2: Same numerical experiment as the one described in Table 1, except that the initial-
ization has been changed to the first-order approximation (29). The precision is improved
for second order and we obtain the third order correctly, but the fourth-order approximation
is only converging up to third order.
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64 128 256 512 1024
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order=2, empirical order = 2.13
order=3, empirical order = 3.03
order=4, empirical order = 3.01

Figure 6: Same experiment as the one described in Figure 5 with the initialization of the
microscopic moments at first order following (29).

mesh points \ equation order 1 2 3 4
initialization order 2 2 2 2

64 2.039 10−3 5.607 10−6 1.397 10−6 6.191 10−7

128 1.020 10−3 1.332 10−6 1.382 10−7 3.997 10−8

256 5.101 10−4 3.299 10−7 1.485 10−8 2.506 10−9

512 2.551 10−4 8.233 10−8 1.703 10−9 1.567 10−10

1024 1.275 10−4 2.057 10−8 2.034 10−10 9.798 10−12

convergence order 1.00 2.02 3.18 3.99

Table 3: Same numerical experiment as the one described in Table 1, except that the ini-
tialization has been changed to the second-order approximation (30). The precision order is
now consistent with the approximation order.

mesh points \ equation order 1 2 3 4
initialization order 0 0 1 2

64 2.798 10−3 7.606 10−4 2.911 10−6 6.191 10−7

128 1.218 10−3 1.983 10−4 3.544 10−7 3.997 10−8

256 5.598 10−4 4.979 10−5 4.305 10−8 2.506 10−9

512 2.675 10−4 1.245 10−5 5.296 10−9 1.567 10−10

1024 1.307 10−4 3.113 10−6 6.569 10−10 9.798 10−12

convergence order 1.10 1.99 3.03 3.99

Table 4: Optimal initialization orders for the numerical experiment described in Table 1. The
precision order is now consistent with the approximation order without any extra calculation
for the initialization at the lowest orders.
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64 128 256 512 1024
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order=1, empirical order = 1.00
order=2, empirical order = 2.02
order=3, empirical order = 3.18
order=4, empirical order = 3.99

Figure 7: Same experiment as the one described in Figure 5, with the initialization of the
microscopic moments at second order following (30).

In a second series of experiments with a constant velocity field, we use cubic parameters:

U = 0.05 , α = −1 , σ = 0.01 ,

as previously. The second relaxation coefficient s′ such that the relation (23) is satisfied:

(31) σ′ = 0.072425 , s′ = 1.7469537493994847

with σ′ ≡ 1
s′
− 1

2
. The initial condition is still a sine wave and we need only one term in the

Fourier series.

In Table 5, the initialization for the second-order approximation is only of order zero and
the cubic convergence property is not obtained. On the other hand, when the initialization
for the second-order partial differential equation is first order accurate (see Table 6), the
second-order and third-order approximations are identical.

mesh points \ equation order 1 2 3 4
initialization order 0 0 1 2

64 2.826 10−3 7.882 10−4 2.181 10−6 6.455 10−7

128 1.219 10−3 1.988 10−4 2.332 10−7 4.063 10−8

256 5.598 10−4 4.980 10−5 2.665 10−8 2.544 10−9

512 2.675 10−4 1.245 10−5 3.174 10−9 1.590 10−10

1024 1.307 10−4 3.113 10−6 3.869 10−10 9.951 10−12

convergence order 1.11 2.00 3.11 4.00

Table 5: Errors measured with the maximum norm between the D1Q3 lattice Boltzmann
scheme with cubic parameter (31) for α = −1, σ ≡ 1

s
− 1

2
= 0.01. Even if the relaxation

parameters have been fitted in order to obtain third-order accuracy with the second-order
equivalent partial differential equation, the error remains second-order accurate in this case.

18



Numerical approximations of a lattice Boltzmann scheme

mesh points \ equation order 1 2 3 4
initialization order 0 1 1 2

64 2.826 10−3 2.181 10−6 2.181 10−6 6.455 10−7

128 1.219 10−3 2.332 10−7 2.332 10−7 4.063 10−8

256 5.598 10−4 2.665 10−8 2.665 10−8 2.544 10−9

512 2.675 10−4 3.174 10−9 3.174 10−9 1.590 10−10

1024 1.307 10−4 3.869 10−10 3.869 10−10 9.951 10−12

convergence order 1.11 3.11 3.11 4.00

Table 6: Same numerical experiment as the one described in Table 5, except that the ini-
tialization scheme is first-order accurate when comparing with the second-order equivalent
partial differential equation. The third-order terms of the partial differential equation are
identically null in this case due to the choice of a set of cubic parameters, and the order of
accuracy jumps to third order.

When the velocity is no longer constant but given by the relation (1), the modes are coupled
as detailed in Section 5. We have used 30 active modes in the Fourier series. In Tables 7
to 9, we experiment with the three types of initialization, (28), (29) and (30). The results
are qualitatively identical to the previous experiments with a uniform vector field. When
the initialization is done with the equilibrium (28), the lattice Boltzmann scheme can be
compared with equivalent partial differential equations only at second order, as detailed
in Table 7. For the first order (29), third-order accuracy can be obtained. Nevertheles,
the fourth-order differential model is only third-order accurate (Table 8). With a second-
order initialization (30), the asymptotic partial differential equation of a given degree is
an approximation of the lattice Boltzmann scheme with the same degree, as presented in
Table 9.

mesh points \ equation order 1 2 3 4
initialization order 0 0 0 0

64 5.625 10−3 1.172 10−3 1.120 10−3 1.088 10−3

128 2.534 10−3 2.952 10−4 2.819 10−4 2.778 10−4

256 1.195 10−3 7.327 10−5 6.992 10−5 6.940 10−5

512 5.793 10−4 1.823 10−5 1.739 10−5 1.733 10−5

1024 2.851 10−4 4.547 10−6 4.337 10−6 4.329 10−6

convergence order 1.07 2.00 2.00 2.00

Table 7: Same numerical experiment as the one described in Table 1; the uniform vector
field is replaced by a cosine velocity (1) with U0 = 0.05. As in the previous experiment,
the error remains second-order accurate even if we use the third-order or the fourth-order
equivalent equation for the approximation of the lattice Boltzmann scheme.
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mesh points \ equation order 1 2 3 4
initialization order 1 1 1 1

64 4.561 10−3 1.087 10−4 5.628 10−5 2.446 10−5

128 2.259 10−3 1.982 10−5 6.495 10−6 2.427 10−6

256 1.126 10−3 4.124 10−6 7.747 10−7 2.622 10−7

512 5.620 10−4 9.336 10−7 9.441 10−8 3.018 10−8

1024 2.808 10−4 2.216 10−7 1.165 10−8 3.610 10−9

convergence order 1.01 2.23 3.06 3.18

Table 8: Same numerical experiment as the one described in Table 7. The initialization is now
given by the first-order approximation (29). The precision is improved for the second-order
partial differential equation and we obtain the third-order correctly. But the fourth-order
approximation is converging only up to third order.

mesh points \ equation order 1 2 3 4
initialization order 2 2 2 2

64 4.548 10−3 9.505 10−5 4.264 10−5 1.082 10−5

128 2.257 10−3 1.807 10−5 4.742 10−6 6.741 10−7

256 1.125 10−3 3.904 10−6 5.540 10−7 4.162 10−8

512 5.620 10−4 9.060 10−7 6.678 10−8 2.544 10−9

1024 2.808 10−4 2.182 10−7 8.191 10−9 1.522 10−10

convergence order 1.00 2.19 3.08 4.03

Table 9: Same numerical experiment as the one described in Table 7. The initialization is
now given by the second order approximation (30). The precision order is now consistent
with the approximation order.

Optimal initialization orders for the numerical experiment with sinusoidal velocity can be
made precise as follows:

partial differential equation order = 1 or 2 : initialization at order 0
partial differential equation order = 3 : initialization at order 1
partial differential equation order = 4 : initialization at order 2.

The precision order is now consistent with the approximation order without any extra cal-
culation for the initialization at the lowest orders.

If the initial condition is no longer a sinusoidal wave but a constant state, the results pre-
sented in Tables 7 to 9 are essentially unchanged. We present in Table 10 the analogue of
Table 5 for this case.
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mesh points \ equation order 1 2 3 4
initialization order 0 0 1 2

64 6.050 10−4 3.597 10−5 1.224 10−5 1.306 10−6

128 2.932 10−4 7.528 10−6 1.475 10−6 8.102 10−8

256 1.447 10−4 1.699 10−6 1.800 10−7 5.034 10−9

512 7.194 10−5 4.024 10−7 2.221 10−8 3.130 10−10

1024 3.587 10−5 9.784 10−8 2.758 10−9 1.943 10−11

convergence order 1.02 2.13 3.03 4.01

Table 10: Optimal initialization orders for the numerical experiment with sinusoidal velocity
described in Table 7. The initial condition is changed from a sinusoidal function to a constant
state. Each asymptotic partial differential equation presents a precision order consistent with
its approximation order.

We tried also to apply a cubic choice of coefficients for the non homogeneous case. We have
not observed any spectacular improved precision. There is no inconsistency because the
cubic parameters have been explicated with the hypothesis of a constant velocity field.

9) Long-time asymptotic study
It is always difficult to reconcile an expansion of a regular solution when the solution is steady.
For instance, in steady forced Poiseuille flow the body force must balance the viscous stress.
However, the body force typically appears at leading order, while the viscous stress arises
at first order relative to the spatial step. Then whithin the acoustic scaling framework,
we obtain different stationary solutions for different meshes as the number of mesh points
increases. We refer, e.g., to the contribution [22] for Poiseuille flow with anti-bounce-back
boundary conditions.

In this section, we first present the numerical analysis of the spectral properties of the D1Q3
scheme. Then we derive a simple numerical method to achieve a stationary solution at
second order. Finally the spectral approach developed in the previous sections is adapted to
this stationary case. We report the results of the numerical simulations. We conclude with
a preliminary analysis of our analytical and numerical results.

We put in evidence some intrinsic properties of the D1Q3 lattice Boltzmann scheme with
the first unstationary mode. One step of the algorithm on a grid with N mesh points can
be written

(32) f(t+∆t) = AD1Q3 f(t)

with AD1Q3 the global iteration matrix of order 3N ×3N of this linear scheme. The matrix
AD1Q3 contains all information relative to collision and advection for all the vertices. With
an Arnoldi algorithm (see e.g. [35]), we extract the first eigenmode of the matrix AD1Q3.
This eigenvalue γ is numerically real in our case and we introduce a scaled parameter Γ

defined as follows. From the operator α2 in (18), we first introduce the discrete equivalent
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diffusivity κ = λ∆x σ α+2
3

. Then for a simulation with a wave number k, we set

(33) Γ = − γ

κ k2

and the minus sign is introduced for positive numbers. With this definition of Γ, the diffusion
equation leads to a numerical value of Γ equal some integer. This is the scaled first eigenvalue
of the iteration matrix AD1Q3. Then from the corresponding eigenvector fγ, we extract the
conserved moment

(34) ργ =

j=3∑
j=1

fγ, j.

It is a function defined at all mesh points. We have represented in Figures 8 to 11 the
corresponding modes for U = 0, 0.0005, 0.005 and 0.05.

The very interesting observation concerns the evolution of the eigenvalue Γ as function of
velocity and number of mesh points (N = 64, 128, 356, 512) presented in Figure 12. A
spectacular growth occurs for the largest velocity. In practice, the lattice Boltzmann scheme
is much more viscous than proposed by the natural scaling κ k2. We have also observed
that for large values of the velocity U , we find values for Γ roughly proportional to U N .

We have done numerical experiments with three advective velocities given by the relation (1)
with U = 0.0005, U = 0.005 and U = 0.05. For each of these parameters, we have used
four discretizations with 64, 128, 256 and 512 mesh points. We have made various choices
for the approximation of the D1Q3 stationary field.

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2 N=064
N=128
N=256
N=512

Figure 8: First eigenmode of the stationary D1Q3 discrete dynamics, U = 0. We have
Γ64 = 1.00053560, Γ128 = 1.00013382, Γ256 = 1.00003341 and Γ512 = 1.00000831. The
difference between Γ and its integer part is due to rounding errors.
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0.0 0.2 0.4 0.6 0.8 1.0

-0.1

0.0

0.1

N=064
N=128
N=256
N=512

Figure 9: First eigenmode of the stationary D1Q3 discrete dynamics, U = 0.0005. We have
Γ64 = 1.00193081, Γ128 = 1.00572981, Γ256 = 1.02241778 and Γ512 = 1.08930892.

0.0 0.2 0.4 0.6 0.8 1.0

-0.1

0.0

0.1

N=064
N=128
N=256
N=512

Figure 10: First eigenmode of the stationary D1Q3 discrete dynamics, U = 0.005. We have
Γ64 = 1.13928618, Γ128 = 1.54649116, Γ256 = 3.00825658 and Γ512 = 6.75648764.

0.0 0.1 0.2 0.3 0.4 0.5

-0.2

0.0

0.2

0.4
N=064
N=128
N=256
N=512

Figure 11: First eigenmode of the stationary D1Q3 discrete dynamics, U = 0.05. We have
Γ64 = 8.62260312, Γ128 = 17.81972445, Γ256 = 36.16622885 and Γ512 = 72.84095421.
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1
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N=512
N=256
N=128
N=64

Figure 12: First eigenvalue Γ defined in (33) for the stationary D1Q3 discrete dynamics as
a function of velocity and number of mesh points. Observe that the x-scale is neither linear
nor logarithmic to clearly highlight the numerical values.

When we study the equivalent partial differential equation of the lattice Boltzmann scheme,
we remark that the equation

∂tρ+ ∂x
(
λU cos(k x) ρ

)
− µ ∂2

xρ = 0

is a simple approximation at second-order accuracy. Moreover, we observe that the analytical
expression of the stationary solution for the equation with the integral condition

(35)
∫ L

0

ρ(x) dx = 1.

can be made explicit as

(36) ρ(x) = K exp
(λU
k µ

sin(k x)
)
.

The normalization constant K in relation (36) is chosen such that the condition (35) is
satisfied.
We then compare the numerical solution obtained with the D1Q3 scheme with the numerical
solution of Fourier series truncated with 30 active modes. We introduce an operator A

obtained at various orders from the relation (26) typically and

A∞ =
1

∂x
A.

Then A∞ ρ = constant and this constant is zero by periodicity of all the functions of the
problem. Then A∞ ρ = 0 with an operator A∞ given at various orders by

A1
∞ = λmu − µ ∂x

at order 1,
A2

∞ = A1
∞ + µmu ∂x mu

at order 2 and
A3

∞ = A2
∞ + ξu mu ∂x mu ∂x mu + ξxu ∂

2
x mu + ξux mu ∂

2
x

at order 3 and finally,{
A4

∞ = A3
∞ + ζu4mu ∂x mu ∂x mu ∂x mu + ζxxuu ∂

2
x mu ∂x mu + ζuxxumu ∂

3
x mu

+ζuuxxmu ∂xmu ∂
2
x + ζx4 ∂

3
x
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at order 4.
For U = 0.0005, The parameters of the D1Q3 scheme are identical to those chosen for
unstationary simulations [α = −1, s = 1.5, s′ = 1.2] and we again use 30 Fourier modes.
the quantitative results are presented in Table 11. With s′ = 1.5 the convergence results
are very similar to the ones of Table 11.

mesh points \ equation order 1 2 3 4
64 8.182 10−5 8.167 10−5 5.455 10−5 6.935 10−8

128 4.495 10−5 4.483 10−5 2.997 10−5 1.113 10−8

256 2.616 10−5 2.611 10−5 1.744 10−5 2.067 10−9

512 1.601 10−5 1.610 10−5 1.068 10−5 4.836 10−10

convergence order 0.78 0.78 0.78 2.39

Table 11: Differences between the lattice Boltzmann D1Q3 scheme and various equivalent
equations for a stationary experiment with U = 0.0005.

mesh points \ equation order 1 2 3 4
64 1.362 10−3 1.378 10−3 9.083 10−4 2.886 10−6

128 8.538 10−4 8.845 10−4 5.692 10−4 8.780 10−7

256 6.183 10−4 6.437 10−4 4.122 10−4 3.066 10−7

512 4.578 10−4 4.750 10−4 3.052 10−4 1.052 10−7

convergence order 0.52 0.51 0.52 1.58

Table 12: Differences between the lattice Boltzmann D1Q3 scheme and various equivalent
equations for a stationary experiment with U = 0.005.

mesh points \ equation order 1 2 3 4
64 3.883 10−2 4.042 10−2 2.590 10−2 6.585 10−4

128 2.856 10−2 2.967 10−2 1.904 10−2 2.439 10−4

256 2.057 10−2 2.136 10−2 1.372 10−2 8.820 10−5

512 1.468 10−2 1.523 10−2 9.790 10−3 3.153 10−5

convergence order 0.47 0.47 0.47 1.46

Table 13: Differences between the lattice Boltzmann D1Q3 scheme and various equivalent
equations for a stationary experiment with U = 0.05.

We observe that increasing the order of accuracy increases the quality of the approximation
between the lattice Boltzmann scheme and the computation with Fourier series. We ob-
serve that it takes very many timesteps before the solution approaches its large-time limit
to sufficient accuracy. This is consistent with the relaxation diffusion time τ = λ

µ∆x k2

measured with our scaling. For example, with 512 mesh points, we have used more than
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3,400,000 time steps to reach the numerical result presented in Table 13. This difficulty in
reaching the stationary state is directly correlated with the high value of the eigenvalue (72.8)
in this case. We observe also that the stationary solution given by the asymptotic expansion
is globally correct with errors between 10−5 and 10−10. The convergence order is, however,
slower than expected with the order of the partial differential equation. Nevertheless, the
convergence order for the formal fourth-order approximation (fourth column of Table 11)
is 2.39.
For U = 0.005, we present the numerical results in Figures 13 and 14 and the quantitative
residuals in Table 12. The parameters of the D1Q3 scheme are identical to those chosen for
the other simulations. The convergence process when the mesh is refined is slow. We have,
for example, for the fourth-order partial differential equation (fourth column in Table 12),
that a least-square fitting gives a convergence order of 1.58.

0.0 0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

2.0 d1q3, U=0.005, 64 meshes
analytical solution for deux terms
Fourier series at second order
initial field: constant state

Figure 13: Stationary field for a sinusoidal advection field with U = 0.005 and 64 mesh
points. The analytic formula (36) obtained with the advective terms and only the uniform
dissipation gives a very correct approximation of the stationary asymptotic solution obtained
with the D1Q3 lattice Boltzmann scheme. It is just necessary to compute precisely the
constant K in order to satisfy the integral condition (35).

0.0 0.2 0.4 0.6 0.8 1.0

0.8

0.6

0.4

0.2

0.0

0.2

0.4

Fourier series at order 2, scaling 500
Fourier series at order 3, scaling 1000
Fourier series at order 4, scaling 200 000

Figure 14: Stationary field, U = 0.005, 64 mesh points. Errors obtained for various levels
of approxiation.
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When U = 0.05, we use 30 Fourier modes for 64 and 128 mesh points and 60 modes with 256
and 512 mesh points. The results are presented in Table 13. As advection speed increases,
convergence also becomes increasingly difficult. Nevertheless, the speed of convergence to-
wards the stationary state is not directly correlated with the order of the underlying partial
differential equation. For example, the numerical order of convergence for the fourth-order
partial differential equation is only 1.46.
We have no complete explanation for the low orders of convergence reported in Tables 11
to 13. Observe that the complete discrete dynamics (32) is diverging, as reported in Fig-
ure 12, whereas the conserved moment defined as usual by (34) is converging towards some
given function as the number of iterations tends to infinity. Nevertheless, in studies of the
finite difference method, it is well known (see e.g. [36]) that the truncation error θ∆t is not
identical to the error ε∆t. We have in general for a global time T = N∆t composed of N

iterations,
ε∆t ≤ C(T ) θ∆t.

When the global integration time T is fixed (see Sections 6 to 8), we have a classical stability
problem and the error and the truncation errors have the same order of convergence. This
kind of analysis can probably be extended for the high-order asymptotic expansion studied
in this contribution.
When simulation time tends towards infinity, the discrete dynamical system (32) can diverge
exponentially as shown in Figure 12. In particular, some eigenmodes of the pure stationary
lattice Boltzmann scheme correspond to an unstable dynamics. Nevertheless, the conserved
quantity defined in (34) is converging towards a constant state. The choice of this moment
plays the role of a filter inside a diverging process. As a result, the error analysis is difficult in
the stationary case. We can reasonably assume that the error ε∆t and the truncation error
θ∆t behave as ε∆t ≃ C(T ) θ∆t. Moreover, the coefficient C(T ) is in general tending towards
infinity as T tends to infinity. This kind of discrete stability violating the continuous stability
criterion has been reported in the analysis of spectral methods (see e.g. [7]). Then the
convergence accuracy is the result of the confrontation of a diverging stability coefficient and
a converging truncation error. These remarks are not completely satisfactory. Nevertheless
they offer the beginnings of an explanation for the curious convergence of stationary fields
compared to the convergence results for a finite-time evolution.

10) Conclusion
In this contribution, we have extended the ABCD asymptotic analysis developed in [18]
and [19] to a inhomogeneous linear problem. It has been necessary to develop a library of
Fourier series to approximate with high accuracy the equivalent partial differential equations
at orders 1 to 4. The differential operators have been explicated with the help of formal
calculation and, in particular, the Sagemath [44] library.
We have proven by numerical experiment that the asymptotic equivalent partial differential
equations constitute a good approximation of the D1Q3 lattice Boltzmann scheme. A major
surprise in our study concerns the finite-time evolution. We have put in evidence the impor-
tance of a correct initialization order to force the Boltzmann scheme to simulate a partial
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differential equation at high-order and obtain a convergence order consistent with the formal
approximation order.
For a stationary problem after a long time evolution, we put in evidence that pure stationary
modes of the lattice Boltzmann scheme can be unstable with a sinusoidal advective velocity.
Nevertheless, the asymptotic expansion conducts to more and more precise approximations
as the size of the mesh tends to zero. The models suggested by the partial differential
equations are asymptotically correct but the order of accuracy is not the one suggested by
the order of the partial differential equation. We leave this question to be addressed in a
future work.
It would be also useful to consider a two-dimensional situation to get information about
anisotropic defects of lattice Boltzmann schemes.
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Annex A. Proof of Proposition 3
We first recall the general result presented in [18] and [19]. We have

(37)



Γ1(W ) = AW +B Φ(W )

Ψ1(W ) = dΦ(W ).Γ1(W )−
(
CW +DΦ(W )

)
Γ2(W ) = B ΣΨ1(W )

Ψ2(W ) = ΣdΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DΣΨ1(W )

Γ3(W ) = B ΣΨ2(W ) + 1
12
B2Ψ1(W )− 1

6
B dΨ1(W ).Γ1(W )

Ψ3(W ) = ΣdΨ1(W ).Γ2(W ) + dΦ(W ).Γ3(W )−DΣΨ2(W ) + ΣdΨ2(W ).Γ1(W )

+1
6
D dΨ1(W ).Γ1(W )− 1

12
D2Ψ1(W )− 1

12
d
(
dΨ1(W ).Γ1(W )

)
.Γ1(W )

Γ4(W ) = B ΣΨ3(W ) + 1
4
B2Ψ2(W ) + 1

6
BD2ΣΨ1(W )− 1

6
ABΨ2(W )

−1
6
B d (dΦ.Γ1).Γ2(W )− 1

6
B d (dΦ.Γ2).Γ1(W )

−1
6
B Σd (dΨ1(W ).Γ1).Γ1(W ).

With the one-dimensional relations (11), we have in particular

B Φ = B ∂xΦ = B ∂x(E(x)W ) = B δW.

Then Γ1 = A∂xW + B δW = α1W with α1 = A ∂x + B δ and the first relation of the
family (14) is proven. We have as previously DΦ = D ∂x(E(x)W ) = D δW and
Ψ1(W ) = dΦ(W ).Γ1(W )−

(
CW +DΦ(W )

)
= E α1W − (C ∂xW +D δW )

=
[
E α1 − (C ∂x +D δ)

]
W ≡ β1W .
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Then the second relation in (14) relative to β1 is established.
From the fact that the matrix Σ is constant, we have now
Γ2(W ) = B ΣΨ1(W ) = B ∂x Σ β1W = B Σ ∂x β1W ≡ α2W

and the relation in (14) relative to α2 is proven.
When we differentiate the vector field Ψ1(W ), we have dΨ1(W ).ξ = β1 ξ and
dΨ1(W ).Γ1(W ) = β1 α1W . Then
Ψ2(W ) = ΣdΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DΣΨ1(W )

= Σ β1 α1W + E α2W −D δxΣ β1W =
(
Σ β1 α1 + E α2 −DΣ ∂x β1

)
W ≡ β2W

and the relation relation to β2 in (14) is proven. We have also
B2 = (AB +BD) = A ∂x B ∂x +B ∂x D ∂x =

(
A B +B D

)
∂2
x = B2 ∂

2
x.

In consequence,
Γ3(W ) = B ΣΨ2(W ) + 1

12
B2Ψ1(W )− 1

6
B dΨ1(W ).Γ1(W )

= B Σ ∂x β2W + 1
12
B2 ∂

2
x β1W − 1

6
B ∂x β1 α1W

=
(
B Σ ∂x β2 +

1
12
B2 ∂

2
x β1 − 1

6
B ∂x β1 α1

)
W ≡ α3W

and the expression of the operator α3 in (14) is established. From the relation (37), we have
d
(
dΨ1(W ).Γ1(W )

)
.ξ = d

(
β1 α1W

)
. ξ and

d
(
dΨ1(W ).Γ1(W )

)
.Γ1(W ) = β1 α1 α1W = β1 α

2
1 W . Then

Ψ3(W ) = ΣdΨ1(W ).Γ2(W ) + dΦ(W ).Γ3(W )−DΣΨ2(W ) + ΣdΨ2(W ).Γ1(W )

+1
6
D dΨ1(W ).Γ1(W )− 1

12
D2Ψ1(W )− 1

12
d
(
dΨ1(W ).Γ1(W )

)
.Γ1(W )

= Σ β1 α2W + E α3W −D∂x Σ β2W + Σ β2 α1W

+1
6
D∂x β1 α1W − 1

12
D2 ∂

2
x β1W − 1

12
β1 α

2
1 W

=
(
Σ β1 α2 + E α3 −D∂x Σ β2 + Σ β2 α1 +

1
6
D∂x β1 α1 − 1

12
D2 ∂

2
x β1 − 1

12
β1 α

2
1

)
W

and the relation (14) concerning β3 is established.
We observe now that
B d (dΦ.Γ2). ξ = B ∂x d(E α2W ). ξ = B δ α2 ξ and B d (dΦ.Γ2).Γ1(W ) = B δ α2 α1W .
We have finally
Γ4(W ) = B ΣΨ3(W ) + 1

4
B2Ψ2(W ) + 1

6
BD2ΣΨ1(W )− 1

6
ABΨ2(W )

−1
6
B d (dΦ.Γ1).Γ2(W )− 1

6
B d (dΦ.Γ2).Γ1(W )− 1

6
B Σd (dΨ1(W ).Γ1).Γ1(W )

= B Σ ∂x β3W + 1
4
B2 ∂

2
x β2W + 1

6
BD2Σ ∂3

x β1W − 1
6
AB ∂2

x β2W

−1
6
B δ α1 α2W − 1

6
B δ α2 α1W − 1

6
B Σ ∂x β1 α

2
1 W

=
[
B Σ ∂x β3 +

1
4
B2 ∂

2
x β2 +

1
6
BD2Σ ∂3

x β1 − 1
6
AB ∂2

x β2 − 1
6
B δ α1 α2

−1
6
B δ α2 α1 − 1

6
B Σ ∂x β1 α

2
1

]
W ≡ α4W

and the last relation of (14) giving the operator α4 is explicated. □
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Annex B. Proof of Proposition 4
We start from the relations (14) that we write again which we rewrite for clarity of reading:

α1 = A ∂x +B δ

β1 = E α1 − (C ∂x +D δ)

α2 = B Σ ∂x β1

β2 = Σ β1 α1 + E α2 −DΣ ∂x β1

α3 = B Σ ∂x β2 +
1
12
B2 ∂

2
x β1 − 1

6
B ∂x β1 α1

β3 = Σ β1 α2 + E α3 −DΣ ∂x β2 + Σ β2 α1 +
1
6
D∂x β1 α1 − 1

12
β1 α

2
1 − 1

12
D2 ∂

2
x β1

α4 = B Σ ∂x β3 +
1
4
B2 ∂

2
x β2 +

1
6
BD2Σ ∂3

x β1 − 1
6
AB ∂2

x β2

−1
6
B δ α1 α2 − 1

6
B δ α2 α1 − 1

6
B Σ ∂x β1 α

2
1 .

With the D1Q3 lattice Boltzmann scheme, we have

δ =

(
λ ∂u

λ2 α ∂x

)
, E(x) =

(
λU cos(k x)

λ2 α

)
, Σ =

(
σ 0

0 σ′

)
and

A = 0 , B =
(
1 , 0

)
, C =

(
2λ2

3

0

)
, D =

(
0 1

3

λ2 0

)
.

Then we obtain α1 = δ = λ ∂u,

β1 =

(
u

λ2 α

)
λ ∂u −

(
2λ2

3

0

)
∂x −

(
0 1

3

λ2 0

)(
λ ∂u

λ2 α ∂x

)
=

(
λu ∂u − 2

3
λ2 ∂x − λ2

3
α ∂x

λ3 α ∂u − λ3 ∂u

)
=

(
λu ∂u − 1

3
λ2 (α + 2) ∂x

)
λ3 (α− 1) ∂u

)
and the relation (17) is proven. We have for second order accuracy B Σ =

(
σ, 0

)
. Then

α2 = σ ∂x
[
λu ∂u − λ2

3
(α + 2) ∂x

)]
= λ2 σ

(
∂2
u − α+2

3
∂2
x

)
.

For the microscopic variables, we have

β2 =

(
σ 0

0 σ′

)
λ2

(
λu ∂u − 2

3
λ2 ∂x − λ2

3
α ∂x

λ3 α ∂u − λ3 ∂u

)
λ ∂u +

(
u

λ2 α

)
λ2 σ

(
∂2
u − α+2

3
∂2
x

)
−λ

(
0 σ′

3

λ2 σ 0

) (
u ∂u − 1

3
λ2 (α + 2) ∂x

λ2 (α− 1) ∂u

)
.

For the first component,
β1
2 = σ

(
λu ∂u − α+2

3
λ2 ∂x

)
λ ∂u + λ2 uσ

(
∂2
u − α+2

3
∂2
x

)
− λ3 σ′

3
∂x (α− 1) ∂u

= 2λ2 σ u ∂2
u − α+2

3
λ3 ∂x ∂u − λ2 α+2

3
u ∂2

x − λ3 (α− 1) σ′

3
∂x ∂u

= λ3
[
2σ u

λ
∂2
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and for the second component
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.

Then the relations (18) are established. At third order, we have from (14),
α3 = B Σ ∂x β2 +

1
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B2 ∂

2
x β1 − 1

6
B ∂x β1 α1
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and the relation (19) is proven. We have now
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and we can precise these seven terms:
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Then the first component of β3 is given by the relation
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and the second is given by
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The relation (20) is proven. Finally,
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After some lines of algebra,
1
λ4 α4 =

[(
α+2
3

)2
σ3 + (α− 1) α+2

9
σ2 σ′ − α+2

36
ασ

]
∂4
x

31



Bruce M. Boghosian, François Dubois and Pierre Lallemand

+
[
− 2 α+2

3
σ3 + 2 1−α

3
σ2 σ′ + 1−α

3
σ σ′2 + 1+2α

9
σ + α−1

12
σ′] ∂2

x ∂
2
u

+
[
− 2 α+2

3
σ3+ 1−α

3
σ2 σ′+ 7+5α

36
σ
]
∂u ∂

2
x ∂u + α+2

3
σ
(
− 2σ+ 1

6

)
∂2
u ∂

2
x +σ

(
5σ2− 3

4

)
∂4
u

=
[
α+2
9

(
(α + 2)σ3 − (1− α)σ2 σ′ − α

4
σ
)
∂4
x

+
[
− 2 α+2

3
σ3 + 1−α

3
(2σ2 σ′ + σ σ′2 − 1

4
σ′) + 1+2α

9
σ
]
∂2
x ∂

2
u

+
[
− 2 α+2

3
σ3+ 1−α

3
σ2 σ′+ 7+5α

36
σ
]
∂u ∂

2
x ∂u + α+2

3
σ
(
− 2σ+ 1

6

)
∂2
u ∂

2
x +σ

(
5σ2− 3

4

)
∂4
u

and the relation (21) is established. This completes the proof. □
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