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Abstract
Is it possible to consider a lattice Boltzmann scheme as an approximation of a partial dif-
ferential equation? For a nonhomogeneous advection problem in one spatial dimension, we
propose equivalent partial differential equations at various orders. We compare the lattice
Boltzmann results and a spectral approximation of the differential equations. No simple
correlation is obtained for a stationary problem. For an unsteady situation, we show that
the initialization scheme of the microscopic moments plays a crucial role.
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1) Introduction
The classical framework for the art of scientific computing starts from partial differential
equations. After discretization with some numerical method (finite differences, finite ele-
ments, etc.), numerical software is developed. Then an approximate solution of the original
partial differential equation is computed. A large number of high-quality books exist on this
subject. We refer to the works of Oden and Reddy [25], Ferziger and Perić [14], Lucquin
and Pironneau [23], among others.

With cellular automata and lattice Boltzmann schemes, this paradigm is reversed. The
computing algorithm is the starting point of the study. Then an asymptotic analysis is
conducted to derive the underlying continuous equations. The reader can consult, e.g., the
books of Rothman and Zaleski [28], Succi [30], Guo and Shu [16], or Krüger et al. [21].

In order to define a physical model from the algorithm, the classical approach is the Chapman-
Enskog method [5]. It has been revisited in [6, 27] to take into consideration the discrete
aspects of space and time with cellular automata and lattice Boltzmann schemes. We have
suggested using Taylor expansions to derive equivalent partial differential equations [7, 8].
We have also established that this Taylor expansion method is equivalent to the Chapman-
Enskog approach [10].

When an asymptotic partial differential equation is known, it is possible to fit some pa-
rameters of the scheme to obtain super convergence. This was done by d’Humières and
Ginzburg [20], and by our team in [1, 11, 12, 26]. We apply this type of idea in the present
contribution.

In this work, we adopt the paradigm of multirelaxation lattice Boltzmann schemes [18],
and we have a methodology [9, 10] to develop an asymptotic analysis. Thus an important
question is the comparison between the simulation with a lattice Boltzmann scheme and
reference solutions of the equivalent partial differential equations. In this contribution, the
work is done with an elementary D1Q3 one-dimensional lattice Boltzmann scheme and a
simple spectral approach to solve numerically with great precision the family of equivalent
partial differential equations at various orders.

The outline for this work is as follows. In Section 2, we study the reference model: the
advection equation in one spatial dimension with a given cosine velocity field. The method
of characteristics yields an analytic solution. In Section 3, we present our variant of the
D1Q3 lattice Boltzmann scheme, introduced initially by Broadwell [4] in the context of sim-
ple discrete-velocity gases. In the lattice Boltzmann framework, dynamics is captured with
particles and the relaxation process occurs in the space of moments [18]. They are divided
into two families: the conserved moments and the microscopic variables in the denomination
proposed by Gatignol [15]. Then we present the “ABCD” asymptotic analysis [9, 10]. From
the precise algebraic expression of a multirelaxation lattice Boltzmann scheme [18, 19], we
derive from a formal exponential expression a set of equivalent partial differential equations
up to fourth order accuracy. Here we adapt the underlying algebra first to the case of a non-
homogeneous linear partial differential equation, and second to the D1Q3 lattice Boltzmann
model. In Section 5, the Fourier series method is adapted to treat in a precise way the case
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of an cosine advective field. A long-time asymptotic analysis is presented in Section 6. We
present various numerical experiments with several values of the velocity field and refining
meshes. Then the unsteady evolution is presented in Section 7. A first result is relative to
a constant velocity and an initial sine wave. Then we take into account a cosine advection
velocity with a sinus or a constant initial condition. An interesting phenomenon of lack of
convergence is encountered. This motivates the next Section relative to the initialization
of microscopic moments. In the last Section, we present our numerical experiments with
a detailed asymptotic analysis. Various parameters are considered: the type of problem,
with constant or cosine advective velocity, the approximation order of the partial differential
equation, the number of mesh points and the initialization process.
This work is the result of conversations in Medford (MA, USA) in summer 2018, then in
Paris in spring 2019. Independent numerical experiments were done during the covid in
spring 2020, and complementary work in Beijing in summer 2023.

2) Advection with harmonic velocity in one space dimension
We introduce a reference length L > 0 and a reference scale velocity λ > 0. For a given
scalar U ∈ R and for 0 ≤ x ≤ L, we consider the regular periodic velocity field

(1) u(x) = λU cos(k x) , k =
2π

L
.

The linear inhomogeneous advection equation is the first-order partial differential equation

(2)
∂ρ

∂t
+ λ

∂

∂x

[
U cos(k x) ρ

]
= 0.

We introduce a periodic function [0, L] ∋ x 7−→ ρ0(x) ∈ R as an initial condition
(3) ρ(x, 0) = ρ0(x).

Moreover, we suppose periodic boundary conditions throughout this study.

Proposition 1. Method of characteristics
The differential equation associated with the method of characteristics for the partial differ-
ential equation (2) is written

(4)
dX

dt
= λu(X(t)) ≡ λU cos

(
k X(t)

)
.

With the initial condition X(0) = x0 with 0 ≤ x0 ≤ L, the solution is:

(5) cotg
πX

L
=

thπ t
T
+ cotgπ x0

L

1 + thπ t
T
cotgπ x0

L

with λU ≡ L
T
, thφ ≡ expφ− exp(−φ)

expφ+ exp(−φ)
and cotgφ ≡ 1

tanφ .

Proof of Proposition 1.
If t = 0, then cotgπX

L
= cotgπ x0

L
and π X−x0

L
is a multiple of π. Then the position X = x0

is well defined in the interval [0, L]. Moreover, we have the following calculus:

− 1

sin2 πX
L

π

L

dX

dt
=

π

T

(1− th2 π t
T
) (1− cotg2 π x0

L
)

(1 + thπ t
T
cotgπ x0

L
)2

= −π

T

1

sin2 πX
L

cos
2πX

L

Then dX
dt

= L
T
cos 2πX

L
and the differential equation (4) is satisfied. □
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Proposition 2. Algebraic solution of the inhomogeneous advection equation
Given x ∈ [0, L] and t > 0, the solution ρ(x, t) of the equation (2) satisfying the initial
condition (3) is given by the relation

ρ(x, t) cos
(2πx

L

)
= ρ0(x0) cos

(2πx0

L

)
where x0 satisfies

(6) cotg
π x0

L
=

cotgπ x
L

− thπ t
T

1− thπ t
T

cotgπ x0

L

.

Proof of Proposition 2.
We search the foot x0 of the characteristic t 7−→ X(t) (4) such that X(0) = x0 and
X(t) = x. First, we deduce from the partial differential equation (2) that the product
ρ(x, t) cos

(
2πx
L

)
remains constant. Second, from the relation (5), we deduce the relation (6)

for defining x0. □

0 +

Figure 1: D1Q3 lattice Boltzmann scheme

3) D1Q3 lattice Boltzmann scheme
The scale velocity λ > 0 is now equal to the ratio between the space step ∆x and the time
step ∆t:

λ =
∆x

∆t
.

From the particle distribution f ≡
(
f+, f0, f−

)t presented in Figure 1, we construct a single
conserved moment W denoted “density” in the following: ρ = f++f0+f−. We have also two
non-conserved microscopic moments Y =

(
J, e

)t with the “momentum” J = λ f+ − λ f−
and the “energy” e = λ2 (f+ − 2 f0 + f−). Then the family of moments m ≡ (W , Y ) is
linked to the particles f with the d’Humières [18] matrix M : m ≡ M f , with

M =

 1 1 1

λ 0 −λ

λ2 −2λ2 λ2

 .

For an inhomogeneous linear equilibrium Y eq = Φ(W ) = E(x)W , the equilibrium ma-
trix E(x) is a function of space. In the case of an advective field u(x) proposed in the
relation (1), we have

E(x) =

(
λU cos(k x)

λ2 α

)
with a coefficient α = −1 in our numerical experiments.
The relaxation Y 7−→ Y ∗ of the nonconserved moments Y is classical:{

J∗ = J + s (Jeq − J) = (1− s) J + s λU cos(k x) ρ

e∗ = e+ s′ (eeq − e) = (1− s′) e+ s′ λ2 α ρ
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and we have chosen s = 1.5, s′ = 1.2 in our reference numerical experiments. Observe that
the parameters U , α, s and s′ are without dimension. We set finally m∗ = (ρ , J∗ , e∗)t.
The collision step is defined according to f ∗ = M−1m∗, and the exact propagation of
particles along the characteristic directions λ , 0 , −λ of the D1Q3 scheme:

f+(x, t+∆t) = f ∗
+(x−∆x, t)

f0(x, t+∆t) = f ∗
0 (x, t)

f−(x, t+∆t) = f ∗
−(x+∆x, t)

is well known (see e.g. [18]). The solution of this lattice Boltzmann scheme can be ap-
proached by the first order equivalent partial differential equation

∂ρ

∂t
+ λ

∂

∂x

[
U cos(k x) ρ

]
= O(∆x).

Therefore, it is natural to compare the numerical solution of the D1Q3 lattice Boltzmann
scheme with the exact solution of the nonhomogeneous advection equation (2). We have
done this work in a first numerical experiment, and the results are displayed in Figure 2.

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

T=infinity, d1q3 computation
T=40, characteristic method
T=40, d1q3 computation
T=30, characteristic method
T=30, d1q3 computation
T=20, characteristic method
T=20, d1q3 computation
T=10, characteristic method
T=10, d1q3 computation
T=01, characteristic method
T=01, d1q3 computation
initial field: constant equal to 1

Figure 2: Evolution for an advective velocity (1) with U = 0.005 and N = 128 mesh points.
We observe that with the cosine advection velocity, the numerical solution has no symmetry.

During the first time steps (see the results for T = 01 and T = 10), the two results agree with
good precision. But we observe that the solution of the advection equation (2) is unsteady,
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whereas the lattice Boltzmann scheme rapidly converges towards a stationary solution. Then
the approximation of the D1Q3 scheme by the first-order partial differential equation is not
sufficient. We adapt a complementary analysis in the next section.

4) ABCD asymptotics in the isotropic linear case
In this section, we revisit the “Berlin algorithm” introduced in [2] for the linear analysis of
lattice Boltzmann schemes. First recall that we have two steps for one time iteration:
(i) nonlinear relaxation

m 7−→ m∗ ≡
(
W ∗

Y ∗

)
, W ∗ = W , Y ∗ = Y + S (Φ(W )− Y )

with a diagonal relaxation matrix S. For the D1Q3 scheme, we have S = diag(s , s′).
(ii) linear advection

m∗ 7−→ f(t+∆t) : f ∗ = M−1m∗ , fj(x, t+∆t) = f ∗
j (x− vj ∆t, t).

The momentum-velocity operator matrix Λ is defined from the diagonal advection operator∑
α v

α ∂α according to [9]

Λ ≡ M diag
( ∑

1≤α≤d

vα ∂α

)
M−1

with d the spatial dimension. This is nothing more than the advection operator in the basis
of moments. Following a remark proposed in [9], we have an exact exponential expression
of the lattice Boltzmann scheme

m(x, t+∆t) = exp(−∆tΛ) m∗(x, t).

We can expand this relation up to fourth order to obtain

m(x, t+∆t) =
[
I−∆tΛ +

∆t2

2
Λ2 − ∆t3

6
Λ3 +

∆t4

24
Λ4 +O(∆t5)

]
m∗(x, t).

The equivalent partial differential equations of the scheme are found from the asymptotic
expansion (see e.g. [10])

∂t = ∂t1 +∆t ∂t2 +∆t2 ∂t3 +∆t3 ∂t4 +O(∆t3).

Consider now the “ABCD” block decomposition (see [10]) of the momentum-velocity operator
that is obtained for the D1Q3 lattice Boltzmann scheme:

Λ ≡
(
A B

C D

)
=

 0 ∂x 0
2
3
λ2 ∂x 0 ∂x
0 λ2 ∂x 0

 .

Asymptotic analysis is carried out to second order. It uses only a small set of algebraic
expressions:

(7)



∂t1W + Γ1 = 0

∂t2W + Γ2 = 0

Γ1 = AW +B Φ(W )

Y = Φ(W ) + ∆t S−1Ψ1 +O(∆t2)

Ψ1 = dΦ(W ).Γ1 − (CW +DΦ(W ))

Σ ≡ S−1 − 1
2
I

Γ2 = B ΣΨ1.
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The application to the Navier Stokes equations can be found in [13]. For the fourth-order
analysis, these relations are enriched in the following way [9, 10]. We first extend the
asymptotic expansion for the microscopic moments
(8) Y = Φ(W ) + S−1

(
∆tΨ1(W ) + ∆t2Ψ2(W ) + ∆t3Ψ3(W )

)
+O(∆t4).

We observe that the operators Ψj are a priori nonlinear operators of order j. The partial
differential equation for the conserved moments takes the form

∂t1W + Γ1 = 0 , ∂t2W + Γ2 = 0 , ∂t3W + Γ3 = 0 , ∂t4W + Γ4 = 0 .

The differential operators at third order are obtained by nontrivial algebra [9, 10]:

(9)
{

Ψ2(W ) = ΣdΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DΣΨ1(W )

Γ3(W ) = B ΣΨ2(W ) + 1
12
B2Ψ1(W )− 1

6
B dΨ1(W ).Γ1(W )

and it is also the case for the fourth-order terms:

(10)



Ψ3(W ) = ΣdΨ1(W ).Γ2(W ) + dΦ(W ).Γ3(W )−DΣΨ2(W ) + ΣdΨ2(W ).Γ1(W )

+1
6
D dΨ1(W ).Γ1(W )− 1

12
D2Ψ1(W )− 1

12
d (dΨ1(W ).Γ1).Γ1(W )

Γ4(W ) = B ΣΨ3(W ) + 1
4
B2Ψ2(W ) + 1

6
BD2ΣΨ1(W )− 1

6
ABΨ2(W )

−1
6
B
(
d (dΦ.Γ1).Γ2(W )− 1

6
B d (dΦ.Γ2).Γ1(W )

)
−1

6
B Σd (dΨ1(W ).Γ1).Γ1(W ),

with (
A2 B2

C2 D2

)
≡

(
A B

C D

) (
A B

C D

)
=

(
A2 +B C AB +BD

C A+DC C B +D2

)
.

In one spatial dimension, the previous A, B, C, D differential operators take a simpler form:

(11) A ≡ A ∂x , B ≡ B ∂x , C ≡ C ∂x , D ≡ D ∂x.

In the previous context, we introduce a nonuniform equilibrium:
(12) Φ(W ) ≡ E(x)W .

Then we can define a new nonhomogeneous differential operator δ with
(13) δW ≡ ∂x

(
Φ(W )

)
= ∂x

(
E(x)W

)
.

We have δ = ∂E
∂x

I +E(x) ∂x. Then we observe that the commutator [∂x, δ] ≡ ∂x δ − δ ∂x is
not equal to zero: [∂x , δ]φ = ∂x ∂x(E(x)φ)− ∂x(E(x) ∂xφ) = ∂x

(
(∂xE)φ

)
.

Proposition 3. Differential operators for linear nonuniform advection
In the previous context of a linear nonhomogeneous scheme, the differential operators Γ1,
Ψ1, Γ2, Ψ2, Γ3, Ψ3 and Γ4, defined at the relations (7)(9)(10), take the form

Γj ≡ αj W , Ψj ≡ βj W

with the following algebraic relations

(14)



α1 = A ∂x +B δ

β1 = E α1 − (C ∂x +D δ)

α2 = B Σ ∂x β1

β2 = Σ β1 α1 + E α2 −DΣ ∂x β1

α3 = B Σ ∂x β2 +
1
12
B2 ∂

2
x β1 − 1

6
B ∂x β1 α1

β3 = Σ β1 α2 + E α3 −DΣ ∂x β2 + Σ β2 α1 +
1
6
D∂x β1 α1 − 1

12
β1 α

2
1 − 1

12
D2 ∂

2
x β1

α4 = B Σ ∂x β3 +
1
4
B2 ∂

2
x β2 +

1
6
BD2Σ ∂3

x β1 − 1
6
AB ∂2

x β2

−1
6
B δ α1 α2 − 1

6
B δ α2 α1 − 1

6
B Σ ∂x β1 α

2
1 .
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The proof of this proposition is a tedious algebraic calculation. It is presented in Annex A.

We consider in this contribution the case of the D1Q3 scheme with one conservation law with
a cosine velocity field u(x) ≡ λU cos(k x) introduced in (1). Then the differential operator
δ proposed in (13) takes the form

δφ = ∂x
(
E(x)φ

)
= ∂x

(
λU cos(k x)φ

λ2 αφ

)
= ∂x

(
uφ

λ2 αφ

)
.

With the notation

(15) ∂uφ ≡ U ∂x
(
cos(k x)φ

)
if the velocity field is cosinusoidal (c.f. (1)) and

∂uφ ≡ U ∂xφ

when the velocity field is constant, we have simply

(16) δ =

(
λ ∂u

λ2 α ∂x

)
.

We observe that the differential operators ∂x and ∂u do not commute:

[∂x , ∂u]φ = ∂x
(
− k U sin(k x) φ

)
.

Proposition 4. D1Q3 differential operators for linear nonuniform advection
The linear differential operators explicited in (14) admit the following expressions in terms
of the operators ∂x and ∂u. We have for the two first orders

(17) α1 = λ ∂u , β1 = λ2

(
u
λ
∂u − α+2

3
∂x

λ (α− 1) ∂u

)

(18)


α2 = λ2 σ

(
∂2
u − α+2

3
∂2
x

)
β2 = λ3

(
2σ u

λ
∂2
u −

(
α+2
3

σ + α−1
3

σ′) ∂x ∂u − α+2
3

σ u
λ
∂2
x

λ (α− 1)
(
(σ + σ′) ∂2

u − α+2
3

σ ∂2
x

) )
,

with the Hénon coefficients [17] σ and σ′ defined according to

σ =
1

s
− 1

2
, σ′ =

1

s′
− 1

2
.

At third order, the formulae are more complicated. We have

(19) α3 = λ3
[(

2σ2− 1

6

)
∂3
u+

(α + 2

3

(1
6
−σ2

)
+

α− 1

3

( 1

12
−σ σ′)) ∂2

x ∂u−
α + 2

3
σ2 ∂u ∂

2
x

]
and

β3 ≡
(
λ4 β3J

λ5 β3e

)
,

with

(20)



β3J = α+2
9

[
− (1− α)σ σ′ + (

(
α + 2)σ2 + 1

4

)]
∂3
x

+U
[
− 2 α+2

3
σ2 + 1−α

3
σ σ′ + 1+α

12

]
∂2
x ∂u − 2U α+2

3
σ2 ∂u ∂

2
x

+
[
− 2 α+2

3
σ2 + 1−α

3
(2σ σ′ + σ′2 − 1

4
)
]
∂x ∂

2
u +

(
5σ2 − 1

4

)
U ∂3

u

β3e =
1−α
3

[
(α + 2)σ2 + (1 + 2α)σ σ′ − 1+α

4

]
∂2
x ∂u + (1− α) α+2

3
σ (σ + σ′) ∂u ∂

2
x

−(1− α)
(
2σ2 + 2σ σ′ + σ′2 − 1

4

)
∂3
u.

8
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At fourth order, we have

(21)


α4 = λ4

[
α+2
9

(
(α + 2)σ3 − (1− α)σ2 σ′ − α

4
σ
)
∂4
x

+
[
− 2 α+2

3
σ3 + 1−α

3
(2σ2 σ′ + σ σ′2 − 1

4
σ′) + 1+2α

9
σ
]
∂2
x ∂

2
u

+
[
− 2 α+2

3
σ3 + 1−α

3
σ2 σ′ + 7+5α

36
σ
]
∂u ∂

2
x ∂u

+α+2
3

σ
(
− 2σ + 1

6

)
∂2
u ∂

2
x + σ

(
5σ2 − 3

4

)
∂4
u

]
.

The proof of Proposition 4 is detailed in Annex B.

When the velocity field has a constant value u(x) ≡ λU , super-convergence can be obtained
with an appropriate choice of relaxation coefficients, called “magic” in [20]. Because magic is
not science, we prefer the denomination of “quartic parameters” [12] to acheive fourth-order
accuracy, or “cubic parameter” in the present case to obtain a third-order precision.

When the advection velocity field has a constant value, we have ∂u ≡ U ∂x and the coeffi-
cient α3 initially given according to (19) takes now the value

(22) α3 =
λ3 U

12

[
− 2 (1− 12σ2)U2 + 4 (1− α)σ σ′ + 1 + α− 8 (2 + α)σ2

]
∂3
x .

Then for a fixed set of values for U , α and σ, the cubic parameter σ′
c is defined by forcing

to zero the value of α3 in the relation (22):

(23) σ′
c =

2 (1− 12σ2)U2 + 8 (2 + α)σ2 − (1 + α)

4 (1− α)σ
.

In the following, we first experiment with the D1Q3 lattice Boltzmann scheme with constant
velocity, possibly with cubic parameters. Then we consider a cosine advection velocity. We
detail in the next section the Fourier methodology developed to solve the various equivalent
partial differential equations with very good precision.

5) Interlaced Fourier series
We compare the numerical simulation done with the D1Q3 lattice Boltzmann scheme with
the solution of the equivalent partial differential equations up to fourth-order accuracy. This
hierarchy of equations can be written

(24)
∂ρ

∂t
+

ℓ∑
j=1

∆tj−1 αj ρ = 0.

They are of order ℓ for 1 ≤ ℓ ≤ 4. We recall that we have the following structure
∆t0 α1 = λ ∂u
∆t1 α2 = −µ ∂2

x + µu ∂
2
u

∆t2 α3 = ξu ∂
3
u + ξxu ∂

2
x ∂u + ξux ∂u ∂

2
x

∆t3 α4 = ζu4 ∂
4
u + ζxxuu ∂

2
x ∂

2
u + ζuxxu ∂u ∂

2
x ∂u + ζuuxx ∂

2
u ∂

2
x + ζx4 ∂

4
x.

9
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The coefficients µ, µu, ξu, ξxu, ξux, ζu4, ζxxuu, ζuxxu, ζuuxx and ζx4 are easy to explicate
from the relations (17)(18)(19)(21):

µ = α+2
3

λ2 σ , µu = λ2 σ ,

ξu = λ3
(
2σ2 − 1

6

)
, ξxu = λ3

(
α+2
3

(
1
6
− σ2

)
+ α−1

3

(
1
12

− σ σ′)) , ξux = −λ3 α+2
3

σ2

ζu4 = λ4 σ
(
5σ2 − 3

4

)
, ζxxuu = λ4

[
− 2 α+2

3
σ3 + 1−α

3
(2σ2 σ′ + σ σ′2 − 1

4
σ′) + 1+2α

9
σ
]

ζuxxu = λ4
[
− 2 α+2

3
σ3 + 1−α

3
σ2 σ′ + 7+5α

36
σ
]
, ζuuxx = λ4 α+2

3
σ
(
− 2σ + 1

6

)
ζx4 = λ4

[
α+2
9

(
(α + 2)σ3 − (1− α)σ2 σ′ − α

4
σ
)]
.

We use a spectral method to capture an approximation of a partial differential equation of
the family (24). In the case of an advective field given in (1), we introduce the two discrete
spaces Si and Sp defined as follows. The space of odd sine and even cosine is called Si:

Si ∋ ρ =
∑
j≥0

a2j+1 sin
(
(2j + 1) k x

)
+
∑
j≥0

a2j+2 cos
(
(2j + 2) k x

)
and the space of even sinus and odd cosinus is denoted by Sp:

Sp ∋ ρ =
∑
j≥0

b2j+1 cos
(
(2j + 1) k x

)
+
∑
j≥0

b2j+2 sin
(
(2j + 2) k x

)
.

The derivation operator breaks down into two parts:{
∂ip
x : Si −→ Sp

∂pi
x : Sp −→ Si .

Relatively to the basis
(
sin k x, cos 2 k x, sin 3 k x, cos 4 k x, · · ·

)
of Si and to the basis(

cos k x, sin 2 k x, cos 3 k x, sin 4 k x, · · ·
)

of Sp, the operators ∂ip
x and ∂pi

x admit the fol-
lowing matrices {

∆ip
x = diag

(
k, −2 k, 3 k, −4 k, · · ·

)
∆pi

x = diag
(
− k, 2 k, −3 k, 4 k, · · ·

)
= −∆ip

x .

The second order operator ∂2
x = ∂pi

x ◦ ∂
ip
x operates inside the space Si and is represented by

the matrix
∆pi

x ∆ip
x = −diag

(
k2, 4 k2, 9 k2, 16 k2, · · ·

)
.

We introduce also the operator mu of mutiplication by u ≡ U cos(k x). It operates from Si

and takes its values in Sp. Then ∂u = ∂x ◦mu operates inside the space Si. More precisely,
we have, without forgetting the constant component a0:

mu ρ = U cos(k x)
[
a0 +

∑
j≥0 a2j+1 sin

(
(2j + 1) k x

)
+
∑

j≥0 a2j+2 cos
(
(2j + 2) k x

)]
=

(
a0 +

1
2
a2
)
U cos

(
k x

)
+ U

2

∑
j≥0

(
a2j+1 + a2j+3

)
sin

(
(2j + 2) k x

)
+U

2

∑
j≥1

(
a2j + a2j+2

)
cos

(
(2j + 1) k x

)
.

The matrix

Mu ≡ U

2


0 1 0 0

1 0 1 0

0 1 0
. . .

0 0
. . . . . .


is a natural implementation of the operator mu of multiplication by the velocity u for
ρ ∈ Si. Then the differential operator ∂u ≡ ∂x mu in the space Si after truncation is
represented by the matrix ∆pi

x Mu.

10
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We have used two discretizations with 30 to 60 Fourier modes. After these algebraic oper-
ations, the partial differential equation (24) can be seen as an infinite system of ordinary
differential equations

(25)
∂ρ

∂t
+ Aρ = 0

with an operator A given at fourth order by the relation

(26)


A = λ ∂x mu − µ ∂2

x + µu ∂xmu ∂xmu

+
(
ξu ∂xmu ∂xmu ∂xmu + ξxu ∂

3
x mu + ξux ∂x mu ∂

2
x

)
+
(
ζu4 ∂xmu ∂xmu ∂xmu ∂x mu + ζxxuu ∂

3
x mu ∂x mu + ζuxxu ∂xmu ∂

3
x mu

+ζuuxx ∂xmu ∂xmu ∂
2
x + ζx4 ∂

4
x

)
.

We observe that the matrix A is constant. Then after discretization with N modes, it
becomes a constant matrix AN . The system (25) is replaced by a system of a finite number
of ordinary differential equations

(27)
∂ρ

∂t
+ AN ρ = 0 .

Due to the fact that the matrix AN is fixed, the solution of (27) is approached in this
contribution by a Taylor expansion at order 5 from the initial condition ρ0:

ρ(t) = exp(−t A) ρ0 ≃
[
I− t A+

t2

2
A2 − t3

6
A3 +

t4

24
A4 − t5

120
A5

]
ρ0 .

In an initial series of numerical experiments, we have put in evidence approximations of the
stationary solution of a lattice Boltzmann scheme forced with a cosine velocity field.

6) Long-time asymptotic study with a cosine advection field
We have done numerical experiments with three advective velocities given by the relation (1)
with U = 0.0005, U = 0.005 and U = 0.05. For each of these parameters, we have used four
meshes with 64, 128, 256 et 512 points. We have made various choices for the approximation
of the D1Q3 stationary field.
We first observe that the analytical expression of the stationary solution for the equation

∂tρ+ ∂x
(
λU cos(k x) ρ

)
− µ ∂2

xρ = 0

with the integral condition

(28)
∫ L

0

ρ(x) dx = 1.

can be explicated as

(29) ρ(x) = K exp
(λU
k µ

sin(k x)
)
.

The normalization constant K in relation (29) is chosen such that the condition (28) is
satisfied.

11
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We compare the numerical solution obtained with the D1Q3 scheme with the numerical
solution of Fourier series truncated with 30 active modes. We introduce an operator A

obtained at various orders from the relation (26) typically and

A∞ =
1

∂x
A.

Then A∞ ρ = constant and this constant is zero by periodicity of all the fonctions of the
problem. Then A∞ ρ = 0 with an operator A∞ given at various orders by

A1
∞ = λmu − µ ∂x

at order 1,
A2

∞ = A1
∞ + µumu ∂xmu

at order 2 and
A3

∞ = A2
∞ + ξumu ∂xmu ∂x mu + ξxu ∂

2
x mu + ξux mu ∂

2
x

at order 3 and finally,{
A4

∞ = A3
∞ + ζu4mu ∂x mu ∂x mu ∂x mu + ζxxuu ∂

2
x mu ∂x mu + ζuxxumu ∂

3
x mu

+ζuuxxmu ∂xmu ∂
2
x + ζx4 ∂

3
x

at order 4.
For U = 0.0005, the numerical results are presented in Figures 3a to 3d and the quantitative
residuals in Table 1.

0.0 0.2 0.4 0.6 0.8 1.00.90

0.95

1.00

1.05

1.10
d1q3, U=0.0005, 64 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+1], scaling 500
difference d1q3 - Fourier series, order 3 [+1], scaling 1000
difference d1q3 - Fourier series, order 4 [+1], scaling 200 000
initial field

Figure 3a: Stationary field, U = 0.0005, 64 mesh points. Parameters of the D1Q3 scheme:
α = −1, s = 1.5, s′ = 1.2. The symbol “[+1]” in the legend indicates that the value “+1”
has been added to the data in order to display all curves in the same area of the graph. This
convention is used in other graphs.
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0.0 0.2 0.4 0.6 0.8 1.0

0.9

1.0

1.1

1.2 d1q3, U=0.0005, 128 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+1], scaling 2000
difference d1q3 - Fourier series, order 3 [+1], scaling 2000
difference d1q3 - Fourier series, order 4 [+1], scaling 2 000 000
initial field

Figure 3b: Stationary field, U = 0.0005, 128 meshes.

0.0 0.2 0.4 0.6 0.8 1.0

0.8

1.0

1.2

1.4
d1q3, U=0.0005, 256 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+1], scaling 10 000
difference d1q3 - Fourier series, order 3 [+1], scaling 10 000
difference d1q3 - Fourier series, order 4 [+1], scaling 100 000 000
initial field

Figure 3c: Stationary field, U = 0.0005, 256 meshes.
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0.0 0.2 0.4 0.6 0.8 1.0

0.6

1.0

1.4

1.8
d1q3, U=0.0005, 512 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+1], scaling 20 000
difference d1q3 - Fourier series, order 3 [+1], scaling 20 000
difference d1q3 - Fourier series, order 4 [+1], scaling 1 000 000 000
initial field

Figure 3d: Stationary field, U = 0.0005, 512 meshes.

mesh points \ equation order 1 2 3 4
64 8.182 10−5 8.167 10−5 5.455 10−5 6.935 10−8

128 4.495 10−5 4.483 10−5 2.997 10−5 1.113 10−8

256 2.616 10−5 2.611 10−5 1.744 10−5 2.067 10−9

512 1.601 10−5 1.610 10−5 1.068 10−5 4.836 10−10

Table 1: Differences between the lattice Boltzmann D1Q3 scheme and various equivalent
equations for a stationary experiment with U = 0.0005

We observe that increasing precision improves the quality of the approximation between the
lattice Boltzmann scheme and the computation with Fourier series. We observe that the
discrete time needed to reach good precision can be very large. This is consistent with the
relaxation diffusion time τ = λ

µ∆x k2
measured with our scaling. For example, with 512

mesh points, we have used more than 3,400,000 time steps to reach the numerical result
presented in Table 3. We observe also that the convergence order for the formal fourth-order
approximation (fourth column of Table 1) is only 2.39.
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0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0
d1q3, U=0.005, 64 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+1], scaling 500
difference d1q3 - Fourier series, order 3 [+1], scaling 1000
difference d1q3 - Fourier series, order 4 [+1], scaling 200 000
initial field

Figure 4a: Stationary field, U = 0.005, 64 mesh points.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

1.0

2.0

3.0
d1q3, U=0.005, 128 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+1], scaling 1000
difference d1q3 - Fourier series, order 3 [+1], scaling 1000
difference d1q3 - Fourier series, order 4 [+1], scaling 1 000 000
initial field

Figure 4b: Stationary field, U = 0.005, 128 mesh points.
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0.0 0.2 0.4 0.6 0.8 1.0

0.0

1.0

2.0

3.0

4.0

d1q3, U=0.005, 256 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+1], scaling 2000
difference d1q3 - Fourier series, order 3 [+1], scaling 2000
difference d1q3 - Fourier series, order 4 [+1], scaling 5 000 000
initial field

Figure 4c: Stationary field, U = 0.005, 256 mesh points.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0

4.0

6.0

d1q3, U=0.005, 512 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+2], scaling 5000
difference d1q3 - Fourier series, order 3 [+2], scaling 5000
difference d1q3 - Fourier series, order 4 [+2], scaling 10 000 000
initial field

Figure 4d: Stationary field, U = 0.005, 512 mesh points.
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For U = 0.005, we present the numerical results in Figures 4a to 4d and the quantitative
residuals in Table 2. We again use 30 Fourier modes. The convergence process when the mesh
is refined is slow. We have, for example, for the fourth-order partial differential equation
(fourth column in Table 2), that a least-square fitting gives a convergence order of 1.58.

mesh points \ equation order 1 2 3 4
64 1.350 10−3 1.378 10−3 9.083 10−4 2.886 10−6

128 8.538 10−4 8.845 10−4 5.692 10−4 8.780 10−7

256 6.183 10−4 6.437 10−4 4.122 10−4 3.066 10−7

512 4.578 10−4 4.750 10−4 3.052 10−4 1.052 10−7

Table 2: Differences between the lattice Boltzmann D1Q3 scheme and various equivalent
equations for a stationary experiment with U = 0.005

When U = 0.05, we have encountered a numerical difficulty. With 30 Fourier modes, the
results are correct for 64 and 128 mesh points. But with 256 and 512 mesh points, oscillations
appear in the numerical results. This is the sign of a under-resolved simulation. We have
changed the number of Fourier modes and used 60 modes for 256 and 512 mesh points. We
tested the representation of the solution of the D1Q3 scheme with a Fourier series. We have
observed a residual in ℓ∞ norm of 1.79 10−14 and 6.06 10−11. This precision is sufficient for
our simulations. The results are presented in Figures 5a to 5d and in Table 3.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

2.0

4.0

6.0

d1q3, U=0.05, 64 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+1], scaling 50
difference d1q3 - Fourier series, order 3 [+1], scaling 100
difference d1q3 - Fourier series, order 4 [+1], scaling 2000
initial field

Figure 5a: Stationary field, U = 0.05, 64 mesh points, 30 Fourier modes.
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0.0 0.2 0.4 0.6 0.8 1.0
-2.0

0.0

2.0

4.0

6.0

8.0

10.0
d1q3, U=0.05, 128 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series, order 2 [+1], scaling 100
difference d1q3 - Fourier series, order 3 [+1], scaling 100
difference d1q3 - Fourier series, order 4 [+1], scaling 10 000
initial field

Figure 5b: Stationary field, U = 0.05, 128 mesh points, 30 Fourier modes.

0.0 0.2 0.4 0.6 0.8 1.0

0.0

3.0

6.0

9.0

12.0

15.0 d1q3, U=0.05, 256 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series with  more terms, order 2 [+3], scaling 200
difference d1q3 - Fourier series with  more terms, order 3 [+3], scaling 200
difference d1q3 - Fourier series with  more terms, order 4 [+3], scaling 50 000
initial field

Figure 5c: Stationary field, U = 0.05, 256 mesh points, 60 Fourier modes.
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0.0 0.2 0.4 0.6 0.8 1.0

-5.0

0.0

5.0

10.0

15.0

20.0
d1q3, U=0.05, 512 meshes
analytical solution with two terms in the equivalent equation
Fourier series at second order
difference d1q3 - Fourier series with  more terms, order 2 [+3], scaling 500
difference d1q3 - Fourier series with  more terms, order 3 [+3], scaling 500
difference d1q3 - Fourier series with  more terms, order 4 [+3], scaling 1000
initial field

Figure 5d: Stationary field, U = 0.05, 512 mesh points, 60 Fourier modes.

mesh points \ equation order 1 2 3 4
64 3.883 10−2 4.042 10−2 2.590 10−2 6.585 10−4

128 2.856 10−2 2.967 10−2 1.904 10−2 2.439 10−4

256 2.057 10−2 2.136 10−2 1.372 10−2 8.820 10−5

512 1.468 10−2 1.523 10−2 9.790 10−3 3.153 10−5

Table 3: Differences between the lattice Boltzmann D1Q3 scheme and various equivalent
equations for a stationary experiment with U = 0.05

Once again, the order of convergence is not directly correlated with the order of the approx-
imate partial differential equation. For example, the numerical order of convergence for the
fourth-order partial differential equation is only 1.46.

We have also put in evidence some intrinsic properties of the D1Q3 lattice Boltzmann scheme
with the first stationary mode. One step of the algorithm on a grid with N mesh points
can be written

f(t+∆t) = AD1Q3 f(t)

with AD1Q3 the global iteration matrix of order 3N ×3N of this linear scheme. The matrix
AD1Q3 contains all information relative to collision and advection for all the vertices. With
an Arnoldi algorithm (see e.g. [22]), we extract the first eigenmode of the matrix AD1Q3.
This eigenvalue γ is numerically real in our case and we introduce a scaled parameter Γ
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defined as follows. From the operator α2 in (18), we first introduce the discrete equivalent
viscosity κ = λ∆x σ α+2

3
. Then for a simulation with a wave number k, we set

(30) Γ =
γ

κ k2
.

This is the scaled first eigenvalue of the iteration matrix AD1Q3. Then from the corresponding
eigenvector fγ, we extract the conserved moment

ργ =

j=3∑
j=1

fγ, j.

It is a function defined at all mesh points. We have represented in Figures 6-a to 6-d the
corresponding modes for U = 0, 0.0005, 0.005 and 0.05. There is no simple correlation with
the stationary results in Figures 3, 4 and 5 except for U = 0.05. In this case (Figure 6-d) the
non-zero values of the mode concentrate in the left part of the interval [0, L] as evidenced
by the scale chosen for Figure 6-d.

The very interesting observation concerns the evolution of the eigenvalue Γ as function
of velocity and number of mesh points (N = 64, 128, 356, 512) presented in Figure (7).
A spectacular growth occurs for the largest velocity. In practice, the lattice Boltzmann
scheme is much more viscous than proposed by the natural scaling κ k2. This gives a first
explanation of the large number of time steps (more than 3 million) necessary to reach
convergence for the largest mesh in this case. We have also observed that for large values of
the velocity U , we find values for Γ roughly proportional to U N .

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2
N=064   Gamma=1.00053560
N=128   Gamma=1.00013382
N=256   Gamma=1.00003341
N=512   Gamma=1.00000831

Figure 6-a: First eigenmode of the stationary D1Q3 discrete dynamics, U = 0.
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0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2

N=064   Gamma=1.00193081
N=128   Gamma=1.00572981
N=256   Gamma=1.02241778
N=512   Gamma=1.08930892

Figure 6-b: First eigenmode of the stationary D1Q3 discrete dynamics, U = 0.0005.

0.0 0.2 0.4 0.6 0.8 1.0
-0.2

-0.1

0.0

0.1

0.2 N=064   Gamma=1.13928618
N=128   Gamma=1.54649116
N=256   Gamma=3.00825658
N=512   Gamma=6.75648764

Figure 6-c: First eigenmode of the stationary D1Q3 discrete dynamics, U = 0.005.
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0.0 0.1 0.2 0.3 0.4 0.5

-0.2

0.0

0.2

0.4

0.6
N=064   Gamma=8.62260312
N=128   Gamma=17.81972445
N=256   Gamma=36.16622885
N=512   Gamma=72.84095421

Figure 6-d: First eigenmode of the stationary D1Q3 discrete dynamics, U = 0.05.

0 0.0002 0.0005 0.001 0.002 0.005 0.01 0.02 0.04 0.05
1

20

40

60

N=512
N=256
N=128
N=64

Figure 7: First eigenvalue Γ defined in (30) for the stationary D1Q3 discrete dynamics as
a function of velocity and number of mesh points. Observe that the x-scale is neither linear
nor logarithmic to clearly highlight the numerical values.

22



Numerical approximations of a lattice Boltzmann scheme

As a partial conclusion for the stationary case, the analytic formula (29) obtained with the
advective terms and only the uniform dissipation gives a very correct approximation of the
stationary asymptotic solution obtained with the D1Q3 lattice Boltzmann scheme. It is just
necessary to compute precisely the constant K in order to satisfy the integral condition (28).
With higher-order Fourier series, the convergence is better. This experiment validates for
nonuniform operators the formal expansion developed in the previous sections. Nevertheless,
the speed of convergence towards the stationary state is not directly correlated with the order
of the underlying partial differential equation.

7) Unsteady evolution
We now compare the D1Q3 lattice Boltzmann scheme up to time T = 1 with the Fourier
approximations of the various equivalent partial differential equations at various orders

∂ρ

∂t
+ Aj ρ = 0 , 1 ≤ j ≤ 4.

We have at order 1:
A1 = λ ∂x mu ,

at order 2:
A2 = A1 − µ ∂2

x + µu ∂xmu ∂xmu ,

at order 3:
A3 = A2 +

(
ξu ∂x mu ∂x mu ∂x mu + ξxu ∂

3
x mu + ξux ∂xmu ∂

2
x

)
,

and at order 4:{
A4 = A3 +

(
ζu4 ∂x mu ∂xmu ∂xmu ∂xmu + ζxxuu ∂

3
x mu ∂xmu

+ζuxxu ∂x mu ∂
3
x mu + ζuuxx ∂xmu ∂xmu ∂

2
x + ζx4 ∂

4
x

)
.

We have chosen the following parameters

U = 0.005 , α = −1 , σ = 0.01 [s = 1.960784313725] , s′ = 1.2

with σ ≡ 1
s
− 1

2
. The results are presented in a triple series of two figures for N = 64 and

N = 128 mesh points respectively. In Figures 8a and 8b, we consider a constant velocity
field with a sinusoidal initial condition. In Figures 9a and 9b, a cosine velocity field with
a sinusoidal initial condition is studied. Finally the Figures 10a and 10b present the case
of a cosine advection field with a constant initial field (ρ0 ≡ 1). These figures show that
the approximation of the lattice Boltzmann scheme with the equivalent partial differential
equations is globally correct. Then we refine the mesh up to N = 1024 points. The results
are presented in Figure 11. They are not completely satisfactory.
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0.0 0.2 0.4 0.6 0.8 1.0
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1.0 D1Q3 simulation
characteristic method
Fourier series
shape of the error
initial field

Figure 8a: Unsteady evolution, constant advection field [U = 0.05], 64 mesh points, sinu-
soidal initial condition.
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Figure 8b: Unsteady evolution, constant advection field [U = 0.05], 128 mesh points, sinu-
soidal initial condition.
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Fourier series
shape of the error
initial field

Figure 9a: Unsteady evolution, sinusoidal advection field [U = 0.05], 64 mesh points, sinu-
soidal initial condition.

0.0 0.2 0.4 0.6 0.8 1.0
-1.0

-0.5

0

0.5

1.0

D1Q3 simulation
characteristic method
Fourier series
shape of the error
initial field

Figure 9b: Unsteady evolution, sinusoidal advection field [U = 0.05], 128 mesh points,
sinusoidal initial condition.
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Figure 10a: Unsteady evolution, sinusoidal advection field [U = 0.05], 64 mesh points,
constant initial condition.
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Figure 10b: Unsteady evolution, sinusoidal advection field [U = 0.05], 128 mesh points,
constant initial condition.
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64 128 256 512 1024

-8

-10

-12

-14

-16

-18

equation order=1, precision order = 1.10
equation order=2, precision order = 1.99
equation order=3, precision order = 1.99
equation order=4, precision order = 1.99

Figure 11: Errors measured with the maximum norm between the D1Q3 lattice Boltzmann
scheme [with parameters α = −1, σ ≡ 1

s
− 1

2
= 0.01, s′ = 1.2] and various equivalent partial

differential equations for an unsteady experiment with constant velocity field U = 0.05,
finite-time evolution with final time T = 1, and initialization with a sine wave. The x-axis
represents the number of mesh points with a logarithmic scale and the y-axis is graduated
with the base-2 logarithm of the error. The microscopic moments were initialized with the
equilibrium values.

In order to overcome the moderate speed of convergence for an unsteady evolution, we focus
in the next section on the way the lattice Boltzmann scheme is initialized.

8) Initialization of microscopic moments
In the previous section, we have taken the non-conserved moments at time t = 0 equal to
the value at equilibrium:

(31) Y0(t = 0) = Φ(ρ0).

We recall the asymptotic expansion of nonconserved moments for a lattice Boltzmann scheme
through the general expression (8):

Y = Φ(W ) + S−1
(
∆tΨ1(W ) + ∆t2Ψ2(W )

)
+O(∆t3).

For the advective D1Q3 scheme with a cosine advection field,

Y =

(
j

e

)
, Φ(ρ) =

(
λU cos(k x) ρ

λ2 α ρ

)
, Ψ1 = β1 ρ , β1 = λ2

(
u ∂u − α+2

3
∂x

λ (α− 1) ∂u

)
and

Ψ2 = β2 ρ , β2 = λ3

(
2σ u

λ
∂2
u −

(
α+2
3

σ + α−1
3

σ′) ∂x ∂u − α+2
3

σ u
λ
∂2
x

λ (α− 1)
(
(σ + σ′) ∂2

u − α+2
3

σ ∂2
x

) )
.
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For initialization at order 0, the relation (31) is simply applied. The initialization suggested
by Mei, Luo, Lallemand and d’Humières [24] at order 1 is:

(32) Y1(t = 0) = Φ(ρ0) + ∆t S−1 β1 ρ0.

In the following, we also consider a second-order initialization:

(33) Y2(t = 0) = Φ(ρ0) + S−1
(
∆t β1 ρ0 +∆t2 β2 ρ0

)
.

We remark that this framework can certainly be revisited with the new version of lattice
Boltzmann schemes through multistep finite difference schemes, as proposed by Bellotti,
Graille and Massot [3]. The results of our simulations are presented in the next section.

9) Unsteady fields for a constant or variable advective velocity
We first study the uniform advection case. Then we specify the case of cubic parameters.
Then we look to nonuniform cosine advection. In all cases, the choice of the initialization
scheme has a great influence on the final precision. Observe also that only one mode is
needed for the Fourier approximation when the velocity advection is constant.

mesh points \ equation order 1 2 3 4
initialization order 0 0 0 0

64 2.798 10−3 7.606 10−4 7.604 10−4 7.596 10−4

128 1.218 10−3 1.983 10−4 1.983 10−4 1.982 10−4

256 5.598 10−4 4.979 10−5 4.979 10−5 4.978 10−5

512 2.675 10−4 1.245 10−5 1.245 10−5 1.245 10−5

1024 1.307 10−4 3.113 10−6 3.112 10−6 3.112 10−6

convergence order 1.10 1.99 1.99 1.99

Table 4: Errors measured with the maximum norm between the D1Q3 lattice Boltzmann
scheme [with parameters α = −1, σ ≡ 1

s
− 1

2
= 0.01, s′ = 1.2] and various equivalent partial

differential equations for an unsteady experiment: constant velocity field U = 0.05, finite
time evolution with final time T = 1, and initialization with a sinus wave. The error remains
second-order accurate even if we use the third-order or the fourth-order equivalent equation
for the approximation of the lattice Boltzmann scheme. Figure 11 is an other representation
of these results.

With the first-order initialization (32), the results are presented in Figure 12 and Table 5.
They become consistent for the three first levels of approximation, but there is no convergence
at fourth-order accuracy.
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64 128 256 512 1024

-10

-15

-20

-25

-30

equation order=1, precision order = 1.00
equation order=2, precision order = 2.13
equation order=3, precision order = 3.03
equation order=4, precision order = 3.01

Figure 12: Same experiment as the one described in Figure 11 with the initialization of the
microscopic moments at first order following (32).

mesh points \ equation order 1 2 3 4
initialization order 1 1 1 1

64 2.039 10−3 7.967 10−6 2.911 10−6 2.652 10−6

128 1.020 10−3 1.648 10−6 3.544 10−7 3.290 10−7

256 5.101 10−4 3.697 10−7 4.305 10−8 4.049 10−8

512 2.551 10−4 8.730 10−8 5.296 10−9 5.018 10−9

1024 1.275 10−4 2.120 10−8 6.569 10−10 6.247 10−10

convergence order 1.00 2.13 3.03 3.01

Table 5: Same numerical experiment as the one described in Table 4, except that the initial-
ization has been changed to the first-order approximation (32). The precision is improved
for second order and we obtain the third order correctly, but the fourth-order approximation
is only converging up to third order.

With the second-order initialization (33), the results are displayed in Figure 13 and Table 6.
The experimental order of approximation is now coherent up to fourth order. In Table 7,
economical initialization orders are used to present an optimal convergence accuracy.
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64 128 256 512 1024

-10

-15

-20

-25

-30

-35

equation order=1, precision order = 1.00
equation order=2, precision order = 2.02
equation order=3, precision order = 3.18
equation order=4, precision order = 3.99

Figure 13: Same experiment as the one described in Figure 11, with the initialization of the
microscopic moments at second order following (33).

mesh points \ equation order 1 2 3 4
initialization order 2 2 2 2

64 2.039 10−3 5.607 10−6 1.397 10−6 6.191 10−7

128 1.020 10−3 1.332 10−6 1.382 10−7 3.997 10−8

256 5.101 10−4 3.299 10−7 1.485 10−8 2.506 10−9

512 2.551 10−4 8.233 10−8 1.703 10−9 1.567 10−10

1024 1.275 10−4 2.057 10−8 2.034 10−10 9.798 10−12

convergence order 1.00 2.02 3.18 3.99

Table 6: Same numerical experiment as the one described in Table 4, except that the ini-
tialization has been changed to the second-order approximation (33). The precision order is
now consistent with the approximation order.

mesh points \ equation order 1 2 3 4
initialization order 0 0 1 2

64 2.798 10−3 7.606 10−4 2.911 10−6 6.191 10−7

128 1.218 10−3 1.983 10−4 3.544 10−7 3.997 10−8

256 5.598 10−4 4.979 10−5 4.305 10−8 2.506 10−9

512 2.675 10−4 1.245 10−5 5.296 10−9 1.567 10−10

1024 1.307 10−4 3.113 10−6 6.569 10−10 9.798 10−12

convergence order 1.10 1.99 3.03 3.99

Table 7: Optimal initialization orders for the numerical experiment described in Table 4. The
precision order is now consistent with the approximation order without any extra calculus
for the initialization at the lowest orders.
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In a second series of experiments with a constant velocity field, we use cubic parameters:

U = 0.05 , α = −1 , σ = 0.01 ,

as previously. The second relaxation coefficient s′ such that the relation (23) is satisfied:

σ′ = 0.072425 , s′ = 1.7469537493994847

with σ′ ≡ 1
s′
− 1

2
. The initial condition is still a sine wave and we need only one term in the

Fourier series.
In Table 8, the initialization for the second-order approximation is only of order zero and
the cubic convergence property is not obtained. On the other hand, when the initialization
for the second-order partial differential equation is first order accurate (see Table 9), the
second-order and third-order approximations are identical.

mesh points \ equation order 1 2 3 4
initialization order 0 0 1 2

64 2.826 10−3 7.882 10−4 2.181 10−6 6.455 10−7

128 1.219 10−3 1.988 10−4 2.332 10−7 4.063 10−8

256 5.598 10−4 4.980 10−5 2.665 10−8 2.544 10−9

512 2.675 10−4 1.245 10−5 3.174 10−9 1.590 10−10

1024 1.307 10−4 3.113 10−6 3.869 10−10 9.951 10−12

convergence order 1.11 2.00 3.11 4.00

Table 8: Errors measured with the maximum norm between the D1Q3 lattice Boltzmann
scheme with cubic parameters α = −1, σ ≡ 1

s
− 1

2
= 0.01 (s = 1.96078), σ′ = 0.072425

(s′ = 1.74695) for the unsteady experiment described in the caption of Table 4. Even if
the relaxation parameters have been fitted in order to obtain third-order accuracy with the
second-order equivalent partial differential equation, the error remains second-order accurate
in this case.

mesh points \ equation order 1 2 3 4
initialization order 0 1 1 2

64 2.826 10−3 2.181 10−6 2.181 10−6 6.455 10−7

128 1.219 10−3 2.332 10−7 2.332 10−7 4.063 10−8

256 5.598 10−4 2.665 10−8 2.665 10−8 2.544 10−9

512 2.675 10−4 3.174 10−9 3.174 10−9 1.590 10−10

1024 1.307 10−4 3.869 10−10 3.869 10−10 9.951 10−12

convergence order 1.11 3.11 3.11 4.00

Table 9: Same numerical experiment as the one described in Table 8, except that the ini-
tialization scheme is first-order accurate when comparing with the second-order equivalent
partial differential equation. The third-order terms of the partial differential equation are
identically null in this case due to the choice of a set of cubic parameters, and the order of
accuracy jumps to third order.
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When the velocity is no longer constant but given by the relation (1), the modes are coupled
as detailed in Section 5. We have used 30 active modes in the Fourier series. In Tables 10
to 12, we experiment with the three types of initialization, (31), (32) and (33). The results
are qualitatively identical to the previous experiments with a uniform vector field. When
the initialization is done with the equilibrium (31), the lattice Boltzmann scheme can be
compared with equivalent partial differential equations only at second order, as detailed
in Table 10. For the first order (32), third-order accuracy can be obtained. Nevertheles,
the fourth-order differential model is only third-order accurate (Table 11). With a second-
order initialization (33), the asymptotic partial differential equation of a given degree is
an approximation of the lattice Boltzmann scheme with the same degree, as presented in
Table 12.

mesh points \ equation order 1 2 3 4
initialization order 0 0 0 0

64 5.625 10−3 1.172 10−3 1.120 10−3 1.088 10−3

128 2.534 10−3 2.952 10−4 2.819 10−4 2.778 10−4

256 1.195 10−3 7.327 10−5 6.992 10−5 6.940 10−5

512 5.793 10−4 1.823 10−5 1.739 10−5 1.733 10−5

1024 2.851 10−4 4.547 10−6 4.337 10−6 4.329 10−6

convergence order 1.07 2.00 2.00 2.00

Table 10: Same numerical experiment as the one described in Table 4; the uniform vector
field is replaced by a cosine velocity (1). As in the previous experiment, the error remains
second-order accurate even if we use the third-order or the fourth-order equivalent equation
for the approximation of the lattice Boltzmann scheme.

mesh points \ equation order 1 2 3 4
initialization order 1 1 1 1

64 4.561 10−3 1.087 10−4 5.628 10−5 2.446 10−5

128 2.259 10−3 1.982 10−5 6.495 10−6 2.427 10−6

256 1.126 10−3 4.124 10−6 7.747 10−7 2.622 10−7

512 5.620 10−4 9.336 10−7 9.441 10−8 3.018 10−8

1024 2.808 10−4 2.216 10−7 1.165 10−8 3.610 10−9

convergence order 1.01 2.23 3.06 3.18

Table 11: Same numerical experiment as the one described in Table 10. The initialization is
now given by the first-order approximation (32). The precision is improved for the second-
order partial differential equation and we obtain the third-order correctly. But the fourth-
order approximation is converging only up to third order.
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mesh points \ equation order 1 2 3 4
initialization order 2 2 2 2

64 4.548 10−3 9.505 10−5 4.264 10−5 1.082 10−5

128 2.257 10−3 1.807 10−5 4.742 10−6 6.741 10−7

256 1.125 10−3 3.904 10−6 5.540 10−7 4.162 10−8

512 5.620 10−4 9.060 10−7 6.678 10−8 2.544 10−9

1024 2.808 10−4 2.182 10−7 8.191 10−9 1.522 10−10

convergence order 1.00 2.19 3.08 4.03

Table 12: Same numerical experiment as the one described in Table 10. The initialization
is now given by the second order approximation (33). The precision order is now consistent
with the approximation order.

Optimal initialization orders for the numerical experiment with sinusoidal velocity can be
made precise as follows:

partial differential equation order = 1 or 2 : initialization at order 0
partial differential equation order = 3 : initialization at order 1
partial differential equation order = 4 : initialization at order 2.

The precision order is now consistent with the approximation order without any extra cal-
culus for the initialization at the lowest orders.

If the initial condition is no longer a sinus wave but a constant state, the results presented
in Tables 10 to 12 are essentially unchanged. We present in Table 13 the analogue of Table 8
for this case.

mesh points \ equation order 1 2 3 4
initialization order 0 0 1 2

64 6.050 10−4 3.597 10−5 1.224 10−5 1.306 10−6

128 2.932 10−4 7.528 10−6 1.475 10−6 8.102 10−8

256 1.447 10−4 1.699 10−6 1.800 10−7 5.034 10−9

512 7.194 10−5 4.024 10−7 2.221 10−8 3.130 10−10

1024 3.587 10−5 9.784 10−8 2.758 10−9 1.943 10−11

convergence order 1.02 2.13 3.03 4.01

Table 13: Optimal initialization orders for the numerical experiment with sinusoidal velocity
described in Table 10. The initial condition is changed from a sinusoidal function to a con-
stant state, as shown in Figures 10a and 10b. Each asymptotic partial differential equation
presents a precision order consistent with its approximation order.

We tried also to apply a cubic choice of coefficients for the non homogeneous case. We have
not observed any spectacular improved precision. There is no inconsistency because the
cubic parameters have been explicated with the hypothesis of a constant velocity field.
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10) Conclusion
In this contribution, we have extended the ABCD asymptotic analysis developed in [9]
and [10] to a nonhomogeneous linear problem. It has been necessary to develop a small
library of Fourier series to approximate with high accuracy the equivalent partial differential
equations at orders 1 to 4. The differential operators have been explicated with the help of
formal calculation and, in particular, the Sagemath [29] library.
For a stationary problem after a long time evolution, we have not observed a complete
consistency between the lattice Boltzmann scheme and the four differential models. The
models are asymptotically correct but the order of accuracy is not the one suggested by the
order of the partial differential equation. A first explanation is the fact that the asymptotic
model is derived for space-time evolution and not for purely stationary problems. This
question could be specifically studied in a future work.
The main result concerns a finite-time evolution. We have put in evidence the importance of
a correct initialization order to force the Boltzmann scheme to simulate a partial differential
equation at high order. This question could be naturally revisited within the framework
introduced by Bellotti et al. in [3].
It would be useful to consider in the future a two-dimensional situation to get information
about anisotropic defects of lattice Boltzmann schemes.
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Annex A. Proof of Proposition 3
We first recall the general result presented in [9] and [10]. We have

(34)



Γ1(W ) = AW +B Φ(W )

Ψ1(W ) = dΦ(W ).Γ1(W )−
(
CW +DΦ(W )

)
Γ2(W ) = B ΣΨ1(W )

Ψ2(W ) = ΣdΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DΣΨ1(W )

Γ3(W ) = B ΣΨ2(W ) + 1
12
B2Ψ1(W )− 1

6
B dΨ1(W ).Γ1(W )

Ψ3(W ) = ΣdΨ1(W ).Γ2(W ) + dΦ(W ).Γ3(W )−DΣΨ2(W ) + ΣdΨ2(W ).Γ1(W )

+1
6
D dΨ1(W ).Γ1(W )− 1

12
D2Ψ1(W )− 1

12
d
(
dΨ1(W ).Γ1(W )

)
.Γ1(W )

Γ4(W ) = B ΣΨ3(W ) + 1
4
B2Ψ2(W ) + 1

6
BD2ΣΨ1(W )− 1

6
ABΨ2(W )

−1
6
B d (dΦ.Γ1).Γ2(W )− 1

6
B d (dΦ.Γ2).Γ1(W )

−1
6
B Σd (dΨ1(W ).Γ1).Γ1(W ).

With the one-dimensional relations (11), we have in particular

B Φ = B ∂xΦ = B ∂x(E(x)W ) = B δW.
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Then Γ1 = A∂xW + B δW = α1W with α1 = A ∂x + B δ and the first relation of the
family (14) is proven. We have as previously DΦ = D ∂x(E(x)W ) = D δW and
Ψ1(W ) = dΦ(W ).Γ1(W )−

(
CW +DΦ(W )

)
= E α1W − (C ∂xW +D δW )

=
[
E α1 − (C ∂x +D δ)

]
W ≡ β1W .

Then the second relation in (14) relative to β1 is established.
From the fact that the matrix Σ is constant, we have now
Γ2(W ) = B ΣΨ1(W ) = B ∂x Σ β1W = B Σ ∂x β1W ≡ α2W

and the relation in (14) relative to α2 is proven.
When we differentiate the vector field Ψ1(W ), we have dΨ1(W ).ξ = β1 ξ and
dΨ1(W ).Γ1(W ) = β1 α1W . Then
Ψ2(W ) = ΣdΨ1(W ).Γ1(W ) + dΦ(W ).Γ2(W )−DΣΨ1(W )

= Σ β1 α1W + E α2W −D δxΣ β1W =
(
Σ β1 α1 + E α2 −DΣ ∂x β1

)
W ≡ β2W

and the relation relation to β2 in (14) is proven. We have also
B2 = (AB +BD) = A ∂x B ∂x +B ∂x D ∂x =

(
A B +B D

)
∂2
x = B2 ∂

2
x.

In consequence,
Γ3(W ) = B ΣΨ2(W ) + 1

12
B2Ψ1(W )− 1

6
B dΨ1(W ).Γ1(W )

= B Σ ∂x β2W + 1
12
B2 ∂

2
x β1W − 1

6
B ∂x β1 α1W

=
(
B Σ ∂x β2 +

1
12
B2 ∂

2
x β1 − 1

6
B ∂x β1 α1

)
W ≡ α3W

and the expression of the operator α3 in (14) is established. From the relation (34), we have
d
(
dΨ1(W ).Γ1(W )

)
.ξ = d

(
β1 α1W

)
. ξ and

d
(
dΨ1(W ).Γ1(W )

)
.Γ1(W ) = β1 α1 α1W = β1 α

2
1 W . Then

Ψ3(W ) = ΣdΨ1(W ).Γ2(W ) + dΦ(W ).Γ3(W )−DΣΨ2(W ) + ΣdΨ2(W ).Γ1(W )

+1
6
D dΨ1(W ).Γ1(W )− 1

12
D2Ψ1(W )− 1

12
d
(
dΨ1(W ).Γ1(W )

)
.Γ1(W )

= Σ β1 α2W + E α3W −D∂x Σ β2W + Σ β2 α1W

+1
6
D∂x β1 α1W − 1

12
D2 ∂

2
x β1W − 1

12
β1 α

2
1 W

=
(
Σ β1 α2 + E α3 −D∂x Σ β2 + Σ β2 α1 +

1
6
D∂x β1 α1 − 1

12
D2 ∂

2
x β1 − 1

12
β1 α

2
1

)
W

and the relation (14) concerning β3 is established.
We observe now that
B d (dΦ.Γ2). ξ = B ∂x d(E α2W ). ξ = B δ α2 ξ and B d (dΦ.Γ2).Γ1(W ) = B δ α2 α1W .
We have finally
Γ4(W ) = B ΣΨ3(W ) + 1

4
B2Ψ2(W ) + 1

6
BD2ΣΨ1(W )− 1

6
ABΨ2(W )

−1
6
B d (dΦ.Γ1).Γ2(W )− 1

6
B d (dΦ.Γ2).Γ1(W )− 1

6
B Σd (dΨ1(W ).Γ1).Γ1(W )

= B Σ ∂x β3W + 1
4
B2 ∂

2
x β2W + 1

6
BD2Σ ∂3

x β1W − 1
6
AB ∂2

x β2W

−1
6
B δ α1 α2W − 1

6
B δ α2 α1W − 1

6
B Σ ∂x β1 α

2
1 W

=
[
B Σ ∂x β3 +

1
4
B2 ∂

2
x β2 +

1
6
BD2Σ ∂3

x β1 − 1
6
AB ∂2

x β2 − 1
6
B δ α1 α2

−1
6
B δ α2 α1 − 1

6
B Σ ∂x β1 α

2
1

]
W ≡ α4W
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and the last relation of (14) giving the operator α4 is explicated. □

Annex B. Proof of Proposition 4
We start from the relations (14) that we write again which we rewrite for clarity of reading:

α1 = A ∂x +B δ

β1 = E α1 − (C ∂x +D δ)

α2 = B Σ ∂x β1

β2 = Σ β1 α1 + E α2 −DΣ ∂x β1

α3 = B Σ ∂x β2 +
1
12
B2 ∂

2
x β1 − 1

6
B ∂x β1 α1

β3 = Σ β1 α2 + E α3 −DΣ ∂x β2 + Σ β2 α1 +
1
6
D∂x β1 α1 − 1

12
β1 α

2
1 − 1

12
D2 ∂

2
x β1

α4 = B Σ ∂x β3 +
1
4
B2 ∂

2
x β2 +

1
6
BD2Σ ∂3

x β1 − 1
6
AB ∂2

x β2

−1
6
B δ α1 α2 − 1

6
B δ α2 α1 − 1

6
B Σ ∂x β1 α

2
1 .

With the D1Q3 lattice Boltzmann scheme, we have

δ =

(
λ ∂u

λ2 α ∂x

)
, E(x) =

(
λU cos(k x)

λ2 α

)
, Σ =

(
σ 0

0 σ′

)
and

A = 0 , B =
(
1 , 0

)
, C =

(
2λ2

3

0

)
, D =

(
0 1

3

λ2 0

)
.

Then we obtain α1 = δ = λ ∂u,

β1 =

(
u

λ2 α

)
λ ∂u −

(
2λ2

3

0

)
∂x −

(
0 1

3

λ2 0

)(
λ ∂u

λ2 α ∂x

)
=

(
λu ∂u − 2

3
λ2 ∂x − λ2

3
α ∂x

λ3 α ∂u − λ3 ∂u

)
=

(
λu ∂u − 1

3
λ2 (α + 2) ∂x

)
λ3 (α− 1) ∂u

)
and the relation (17) is proven. We have for second order accuracy B Σ =

(
σ, 0

)
. Then

α2 = σ ∂x
[
λu ∂u − λ2

3
(α + 2) ∂x

)]
= λ2 σ

(
∂2
u − α+2

3
∂2
x

)
.

For the microscopic variables, we have

β2 =

(
σ 0

0 σ′

)
λ2

(
λu ∂u − 2

3
λ2 ∂x − λ2

3
α ∂x

λ3 α ∂u − λ3 ∂u

)
λ ∂u +

(
u

λ2 α

)
λ2 σ

(
∂2
u − α+2

3
∂2
x

)
−λ

(
0 σ′

3

λ2 σ 0

) (
u ∂u − 1

3
λ2 (α + 2) ∂x

λ2 (α− 1) ∂u

)
.

For the first component,
β1
2 = σ

(
λu ∂u − α+2

3
λ2 ∂x

)
λ ∂u + λ2 uσ

(
∂2
u − α+2

3
∂2
x

)
− λ3 σ′

3
∂x (α− 1) ∂u

= 2λ2 σ u ∂2
u − α+2

3
λ3 ∂x ∂u − λ2 α+2

3
u ∂2

x − λ3 (α− 1) σ′

3
∂x ∂u

= λ3
[
2σ u

λ
∂2
u −

(
α+2
3

σ − α−1
3

σ′) ∂x ∂u − α+2
3

σ u
λ
∂2
x

]
and for the second component
β2
2 = λ2 σ′ (λ (α− 1) ∂u

)
λ ∂u + λ4 ασ

(
∂2
u − α+2

3
∂2
x

)
− λ4 σ

(
u
λ
∂u − α+2

3
∂x
)

= λ4
[
(α− 1)σ′ ∂2

u + ασ
(
∂2
u − α+2

3
∂2
x

)
− σ

(
∂2
u − α+2

3
∂2
x

)]
= λ4 (α− 1)

(
(σ + σ′) ∂2

u − α+2
3

σ ∂2
x

)
.
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Then the relations (18) are established. At third order, we have from (14),
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1
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2
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1
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1
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and the relation (19) is proven. We have now
β3 = Σ β1 α2 + E α3 −DΣ ∂x β2 + Σ β2 α1 +
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and we can precise these seven terms:
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Then the first component of β3 is given by the relation
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and the second is given by
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The relation (20) is proven. Finally,
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After some lines of algebra,
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and the relation (21) is established. This completes the proof. □
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