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A note on Sarnak processes

Mariusz Lemańczyk, Michał D. Lemańczyk, Thierry de la Rue

March 27, 2024

Abstract

Basic properties of stationary processes called Sarnak processes are studied. As an application,

a combinatorial reformulation of Sarnak’s conjecture on Möbius orthogonality is provided.

1 Introduction

1.1 Notation and definitions

Throughout this paper (unless stressed otherwise) random variables are defined on the probability
space pΩ,F ,Pq. We consider double sided stochastic processes X “ pXiqiPZ P X , where Xi P X belong
to the common state space X and X stands for the state space of X. We assume that the common
state space |X | is finite (and X Ă XZ). For the convenience sake, for any sequence x “ pxiqiPZ and
m,n P Z such that m ď n, we will write

(1) xďn “ pxiqiďn , xăn “ pxiqiăn , xnm “ pxiqmďiďn

Moreover, we extend each function or operation acting on X to the sequences by applying it coordinate-
wise so that, e.g., for any sequences x “ pxiqiPZ and y “ pyiqiPZ, we have

(2) px,yq “ pxi, yiqiPZ , xy “ pxiyiqiPZ
the latter when x and y are complex-valued.

We denote by S : XZ Ñ XZ the left shift map acting on sequences x via Sx “ pxi`1qiPZ. We say
that a process X is stationary if X and SX share the same distribution ν (for short X „ SX „ ν).
Recall that with every stationary processes we can associate the corresponding dynamical system
pX , ν, Sq where X P X , X „ ν. Conversely, with every given dynamical system pX , ν, T q and a
function f : X Ñ Y, we can associate a stationary process (with Ω “ X ), Y “ pYiqiPZ, where
Yi :“ f ˝ T i P Y.

Remembering that X is finite, we denote by H pXq “ ´
ř

xPX P pX “ xq log P pX “ xq the Shan-

non entropy of X (note that in this paper we use base 2 version of logarithm). If additionally
an arbitrary random variable Y is given such that the regular conditional probability pX|Y exists,

H pX | Y q “ EYH
`
XpY q

˘
, stands for the conditional Shannon entropy (EY is the integration with

respect to Y ) and Xpyq „ pX|Y p¨|yq. For a given stationary process X , H pXq “ H pX0 | Xď´1q stands
for the process entropy. We say that process is deterministic (or of zero entropy) if H pXq “ 0.
Similarly, given a dynamical system pX , ν, T q and a finite (measurable) partition A “ pAiqi of X we
denote by H pν, T,Aq “ H pXAq the metric entropy corresponding to the partition A (here XA stands
for the process determined by fpxq “ i iff x P Ai). For the (topological and metric) entropy theory of
dynamical systems (and relations with the entropy of stationary processes), we refer the reader to [5],
[22].

The past tail σ-algebra (or remote past) of X is defined by

(3) ΠpXq :“
č

iě0

σpXď´iq.
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Remark 1.1: Pinsker σ-algebra

The past tail σ-algebra of X coincides with the the Pinsker σ-algebra of the corresponding
dynamical system. Recall that the Pinsker σ-algebra is the largest invariant σ-algebra such that
the corresponding factor of the dynamical system determined by ν „ X P X has zero entropy.
In fact, if for any measurable B we denote by AB the binary partition generated by B Ă X

then

(4) ΠpXq “ σ tB : H pν, S,ABq “ 0u ,

In connection with the celebrated Sarnak’s conjecture on Möbius orthogonality (see below), in [13],
the following notion of Sarnak process has been introduced.

Definition 1.2: Sarnak process

A stationary process X such that Xi P X Ă C, |X | ă 8, is called a Sarnak process if

E pX0|Xď´nq nÑ8ÝÝÝÑ 0 in L2. Equivalently, E pX0|ΠpXqq “ 0.

Remark 1.3: Basic properties of a Sarnak process

Sarnak processes are centered, that is EX0 “ 0. Moreover, every non-zero Sarnak process is,
by the very definition, of positive entropy but it need not be even ergodica (see Section 5). On
the other hand, we will show that the class of Sarnak processes is stable under multiplication
by deterministic processes.

aIn fact, the dynamical system given by X is ergodic if and only if so is its Pinsker factor.

2 Results

In this section we assume that every process X is stationary and Xi P X Ă C, where |X | ă 8.
Sometimes additionally we assume that X “ t´1, 1u. Note that in such a case, if EX0 “ 0 (in particular
this holds if X is Sarnak), then P pX0 “ ˘1q “ 1{2 and hence Xi’s are random signs. In this section we
present a bunch of results. The most important ones are formulated in Theorem 2.3 and Theorem 2.8.
The first one can be viewed as a number theoretic reformulation of Sarnak’s conjecture. The second
one is of slightly different flavor, namely, it shows that every deterministic process can be embedded as
the Pinsker factor in some Sarnak process. Before we present the theorems, let us recall the formulation
of Sarnak’s conjecture.

Given an arithmetic function u : N Ñ X , where X Ă C is finite, and whose mean

Mpuq :“ lim
nÑ8

1

n

ÿ

iďn

ui

exists and equals 0, we ask whether

(5) lim
nÑ8

1

n

ÿ

iďn

fpT ixqui “ 0

for each zero entropy topological dynamical system pX,T q, all f P CpXq and all x P X. The most
known instance of (5) is Sarnak’s conjecture [18] which predicts that (5) holds for u “ λ, where
λ “ pλnq stands for the Liouville function (λn “ 1 if n has an even number of primes divisors counted
with multiplicity, and -1 otherwise).
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Remark 2.1: Logarithmic Sarnak’s conjecture

The logarithmic version, originated by Tao [20], in which instead of Cesàro averages 1{nřiďn ai
we consider 1{ log nřiďn ai{i is equally interesting. In fact, Tao proved that the logarithmic
Sarnak’s conjecture is equivalent to the logarithmic Chowla conjecture.

Remark 2.2

Originally, Sarnak’s conjecture has been formulated for the Möbius function, u “ µ, but it is
known that Sarnak’s conjecture for λ and µ are equivalent, [6], [20].

2.1 Main results

Our first result links the notion of Sarnak process with the classical concept of weakly Bernoulli
processes (see e.g. [19]). Recall that a stationary process X „ ν is weakly Bernoulli if, given ε ą 0,
there is a gap g ě 0 such that for each n ě 1 and m ě 0,

E
X

´g
´g´m

›››P
´
Xn´1

0
P ¨

ˇ̌
ˇX´g

´g´m

¯
´ P

`
Xn´1

0
P ¨

˘›››
TV

ă ε,

where E
X

´g
´g´m

denotes the integration with respect to X
´g
´g´m and, for any complex measure µ defined

on a σ-algebra A,

(6) }µ}TV :“ sup
APA

|µpAq| ` |µpAcq|

stands for the total variation of measure µ. It turns out that in the special case of Xi P t´1, 1u, if we
do not require in the above condition uniformity in n then we recover the class of Sarnak processes.

Theorem 2.3: Total variation formulation of the Sarnak property

Let X be a stationary process taking values ˘1. Then X is Sarnak if and only if, given ε ą 0,
there is a gap g ě 0 such that for all m ě 0,

(7) E
X

´g
´g´m

›››P
´
X0 P ¨

ˇ̌
ˇX´g

´g´m

¯
´ P pX0 P ¨q

›››
TV

ă ε.

Let us give some intuition behind (7). Think about large gap g. Then (7) can be roughly be
interpreted as follows. Almost none of typical realizations of block in the far past X

´g
´g´m “ x

´g
´g´m

affects the probability of occurrence of given sign at a given non-negative coordinate. Note that Sarnak’s
conjecture is of similar flavour, namely, it roughly states that the Liouville function (counterpart of our
X) is uncorrelated with deterministic sequences (thus, in some sense, Liouville function behaves like
a random sign). Thus, there is no surprise that as a corollary of Theorem 2.3, we obtain the following
description of Sarnak’s conjecture.
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Corollary 2.4: Number-theoretic reformulation of Sarnak’s conjecture

Let u : N Ñ ˘1. Then u satisfies Sarnak’s conjecture (i.e. it satisfies (5)) if and only if for every

increasing sequence pnkqkPN P N
N such that 1{nk

ř
0ďnďnk´1

δSnu
kÑ8ñ κ and for each ε ą 0

there exists a gap g ě 1 such that for all m ě 0,

ÿ

qPt´1,1um

εgpqq ă ε,

where for any block q P t´1, 1um,

εgpqq :“ lim
kÑ8

1

nk

ˇ̌
ˇ|tn ` g P Apq, nkq : un “ 1u| ´ 1

2
|Apq, nkq|

ˇ̌
ˇ

and Apq, nq :“ ti ď n : ui`m´1

i “ qu is the set of appearances of the block q in un`m´1
n .

Remark 2.5: Magical constant 1{2 in the definition of εg

Note that the constant 1{2 appearing in the definition of εg corresponds to the fact that we
randomly choose a sign (ε-independently of the given remote past).

Remark 2.6: Logarithmic version

Logarithmic version of Corollary 2.4 holds as well. It suffices to replace all arithmetic weights
by their logarithmic counterparts.

One may wonder under what assumptions put on Y the following statement holds: if X is Sarnak
then so is XY . The following theorem states that this statement is valid if we consider the class of
zero entropy processes.

Theorem 2.7: Closure under multiplication by a deterministic process

Let pX ,Y q “ pXi, YiqiPZ be a stationary process. If X is Sarnak and Y is deterministic, then
XY is Sarnak.

The next fact states that each deterministic system can be realized as the Pinsker factor of some
Sarnak process. It shows as well that Sarnak processes X (even restricted to the case of X “ t´1, 1u)
are ubiquitous.

Theorem 2.8: Embedding of a deterministic process into a Sarnak one

For each aperiodic zero entropy dynamical system R there is a ˘1-valued Sarnak process X

such that the Pinsker factor of the dynamical system given by X is (measure-theoretically)
isomorphic to R.

While Sarnak’s processes need not be ergodic, see e.g. Example 4.3, in fact, we have the following
result.

Theorem 2.9

Let X be a stationary process. Then X is Sarnak if and only if the stationary processes in its
ergodic decomposition are a.a. Sarnak.
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Corollary 2.10

Let X be a Sarnak process. Then for a.a. realizations pXnpωqq of the process, the sequence
pXnpωqq is orthogonal to all topological dynamical systems of zero entropy.

3 Motivation

3.1 Chowla conjecture

Sarnak’s conjecture is motivated by the Chowla conjecture [3] from 1965 about vanishing of all auto-
correlations of λ:

(8) lim
nÑ8

1

n

ÿ

iďn

λnλn`r1 ¨ ¨ ¨λn`rk “ 0

for each choice of 1 ď r1 ă . . . ă rk.

Remark 3.1: Chowla conjecture implies Sarnak’s conjecture

The implication (8) ñ (5) (for u “ λ) has been shown by Sarnak. See also the post [21] for the
original proof by Sarnak and [1] for a dynamical proof of this implication.

It was noticed by Sarnak [18] that Chowla conjecture has a dynamical reformulation, indeed, (8) is
equivalent to the fact that λ is a generic point for the Bernoulli measure B p1{2, 1{2q on the full shift
t´1, 1uZ, see [1], [6].

3.2 Why Sarnak processes are interesting from the analytic number theory point

of view?

As we have seen the Chowla conjecture can be seen from both: number-theoretic (combinatorial) and
dynamical points of view, while Sarnak’s conjecture, by its nature, is a purely dynamical statement.
The natural question arises:

(9) Is there a number-theoretic reformulation of Sarnak’s conjecture?

This question has been partially answered in [13], where Veech’s conjecture has been proved. Namely,
it has been proved that Sarnak’s conjecture is equivalent to the fact that for each Furstenberg system
pXλ, κ, Sq of λ, the corresponding stationary process π “ pπnq is Sarnak (in the sense of Definition 1.2),
where πnpxq “ xn.

Remark 3.2: Dynamical approach (Furstenberg systems), see e.g. [7] and the surveys
[6], [14]

Let us only mention that in this approach through Furstenberg systems u is treated as a two-
sided sequence, for example via u´n :“ un and we consider the subshift Xu :“ tSku : k P Zu Ă
XZ. The set of shift invariant measures κ obtained as weak˚-limits of 1

nk

ř
iďnk

δSiu, k ě 1, is
denoted by V puq and each such measure makes the coordinate projection process π “ pπ0 ˝Snq
stationary.
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Remark 3.3: Mixing property approach, see [13]

In this approach the condition π0 K L2pΠpπqq is equivalent to a (“relative”) uniform mixing
property of the function π0 which finally yields a certain combinatorial (hardly satisfactory)
condition on u. Let us add that the idea is borrowed from the classical ergodic theory, namely,
we use the classical fact that so called Kolmogorov automorphisms are those satisfying the
uniform mixing property, see e.g. [4].

The main aim of this note is to consider the special case u P t´1, 1uZ. Sarnak processes resulting
from this situation satisfy π0 KK Πpπq which allows us to use some entropy techniques and to obtain
a rather clear combinatorial condition given in Corollary 2.4. Note finally that if in Corollary 2.4,
given a Furstenberg system κ P V puq, for some g ě 1 we have εgpqq “ 0 for all blocks q then for the
stationary process pπnq, we have π0 is independent from the σ-algebra generated by pXg,Xg`1, . . .q.
In particular, the Chowla conjecture holds if and only if ε1pqq “ 0 for all blocks q.

4 Examples of Sarnak processes

Firstly, let us make some remarks about properties of the class of Sarnak processes. It follows from
the very definition that for each Sarnak process X “ pXnq, we have EX0 “ 0. Moreover, it has
positive entropy, as otherwise X0 P L2pΠpXqq, whence X0 “ 0. By the Rokhlin-Sinai theorem, see e.g.
[22] Thm. 4.36, the spectral measure σX0

of a Sarnak process X, i.e. the (symmetric, Borel, positive)
measure determined by pσX0

pnq “ EXnX0, n P Z, has to be absolutely continuous. Therefore, if
the spectral measure of a stationary process is not absolutely continuous, the process is not Sarnak.
To see positive entropy processes whose spectral measure is partly singular notice that (contrary to
the multiplication, cf. Theorem 2.7), Sarnak processes are not stable under addition of deterministic
processes. Indeed, suppose that X is a Sarnak process, and let Y “ pYnq be a (finite-valued) centered,
stationary process with zero entropy such that the dynamical systems generated by these processes
are disjoint.1 Then, in view of [8], the process X ` Y “ pXn ` Ynq is generating for the Cartesian
product of the dynamical systems corresponding to X and Y , so it has positive entropy. On the other
hand, the process X ` Y is not Sarnak, as X0 ` Y0 is not orthogonal to Y0, so it is not orthogonal to
L2pΠpX ` Y qq. Moreover, the spectral measure of the process X ` Y is σX0

` σY0
. Varying Y , we

can now obtain a positive entropy non-Sarnak process whose spectral measure is partly singular, as
well as a process whose spectral measure is Lebesgue.

1For example, we can take for X a Kolmogorov process and for Y a finite valued process representing an irrational
rotation on the circle.
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Example 4.1: When factors of a Sarnak process are Sarnak?

Assume that X is a Sarnak process. One can ask which functions (depending on finitelya many
coordinates) of this process yield Sarnak processes? To get a partial answer to this question,
assume that f : Rk Ñ R is measurable and let Y “ pYnq with

Yn :“ fpXn,Xn`1, . . . ,Xn`k´1q, n P Z.

Note that
σpY´n, Y´n´1, . . .q Ă σpX´n`k´1,X´n`k´2, . . .q,

whence ΠpY q Ă ΠpXq. If the function f is linear then Y0 K L2pΠpXqq. Hence, under linearity,
Y is Sarnak. A similar argument shows that, for any k ě 1, the jumping process pXknqn is
Sarnak.

aIf we admit infinitely many coordinates then the Pinsker factor can be expressed as a function of a generating
process.

Remark 4.2

A large source of examples of Sarnak processes is given by the replacement of the orthogonality
requirement in Definition 1.2 with the independence condition: X0 KK ΠpXq. Note that each
˘1-valued Sarnak process satisfies this property. Take, for example, any case in which ΠpXq is
trivial, i.e. X is Kolmogorov. Then X is Sarnak as soon as it is centered.

Example 4.3: Non-ergodic Sarnak process

Take the Bernoulli process B p1{2, 1{2q on t´1, 1uZ and let u be any generic sequence for it. Let
v P t0, 1uN be any generic point for a zero entropy measure. Then, in view of Theorem 2.7, uv
generates a Sarnak process and since puvq2 “ v, clearly, the zero entropy system is a factor of
the system given by uv, and the zero entropy system need not be ergodic. In fact, as proved in
[15] (using [9]), once X is Kolmogorov, and Y is deterministic with Y “ t0, 1u, we can always
filter out the zero entropy system from the dynamical system given by XY .a

aAssuming the Chowla conjecture, the above applies to µ “ λ ¨µ2 as µ2 is generic for a zero entropy measure.
As Sarnak’s conjecture for µ and λ are equivalent, e.g. [6], the processes determined by λ are Sarnak iff the
processes determined by µ so are.

Example 4.4: Sarnak process with non-trivial Pinsker σ-algebra

We will show that there are ˘1-valued Sarnak processes with non-trivial remote past.
Consider the space t0, 1u with B p1{2q measure and T i “ 1 ´ i, and the full shift S on t´1, 1uZ
considered with the Bernoulli measure B p1{2, 1{2q. Let rT be the corresponding skew product
(considered with the product measure)

rT pi,xq :“ p1 ´ i, Sixq.

Clearly, rT has T as factor, so its Pinsker algebra is non-trivial. Let Y0pi,xq :“ x0. We claim
that the process pYnq, with Yn :“ Y0 ˝ rT n, is Sarnak.
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Remark 4.5

Note that T produces sequences of alternating 0’s and 1’s. In the preceding example, we have
I „ Bp1{2q KK B „ Bp1{2, 1{2q. If Z is given by Zi “ Bti{2u, then Y is given by Yi “ Zi`I for
every i P Z.

Proof of the statement from Example 4.4. We need three facts:

Y0 K L2pσpIqq(10)

pYnq generates the full σ-algebra(11)

ΠprT q “ the first coordinate σ-algebra.(12)

While (10) is obvious, to establish (11) note that the consecutive values of the process at p0, xq are:

Y0p0, xq “ x0, Y1p0, xq “ x0, Y2p0, xq “ x1, Y3p0, xq “ x1, Y4p0, xq “ x2, Y5p0, xq “ x2, . . . ,

so it is clear that the process separates points and therefore (11) holds. Finally, note that rT 2 is the
Cartesian product of two factors: of the fist coordinate σ-algebra (on which that action is the identity)
and of the second coordinate σ-algebra on which it acts as the shift S (indeed, rT pt0, 1uˆtxuq “ t0, 1uˆ
tSxu). The latter is just the Bernoulli B p1{2, 1{2q, and since the Pinsker σ-algebra of the product is
the product of Pinsker σ-algebras, we see that ΠprT 2q=first coordinate σ-algebra. To conclude, i.e. to
obtain (12), it is enough to notice that the Pinsker σ-algebras of non-zero powers of an automorphism
are all equal.

Remark 4.6: Combinatorial intuition for the above example

Suppose that u satisfies (5). Set v via

v2n “ v2n`1 :“ un for all n P Z.

Then v also satisfies (5), as T 2 has also zero entropy,

1

N

ÿ

nďN

fpT nxqvn “ 1

N

ÿ

mďN{2

umpfpT 2mxq ` fpT 2m`1xqq ` op1q Ñ 0 when N Ñ 8.

It follows that the Furstenberg systems of v yield Sarnak processes. However, if we consider the
subshift Xv :“ tSnv : n P Zu then for each y P Xv either
(a) y2n “ y2n`1 for all n P Z holds or
(b) y2n “ y2n´1 for all n P Z is satisfied.
Note that if a point y satisfies (a) and (b) simultaneously, then y is a fixed point. Notice
that no Furstenberg system of v gives positive measure to the set of fixed points.a Then if
A Ă Xv denote the set of point satisfying (a) and B stands for the set of points satisfying (b),
then A X B “ H, B “ SA, whence -1 is an eigenvalue of the dynamical system given by any
Furstenberg system of v, whence the remote past cannot be trivial.

aThis is a property of all Sarnak processes not taking the value zero. Indeed, let F be the set of fixed points
of the process X (it is a finite set naturally identified with a subset of X q. Of course this set belongs to ΠpXq,
moreover, each subset of F is ΠpXq-measurable. It follows that the function X0 ¨1F is ΠpXq-measurable. Hence
EpX0 ¨ pX0 ¨ 1Fq q “ 0. On the other hand, this integral equals

ş
F

|X0|2 ą 0, a contradiction.

5 Proofs

The organization is as follows. Each section containing a proof of one of our results is preceded by a
section which provides some necessary background.
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5.1 Background for Theorem 2.3

In this part all random variables take only finitely many values. For any random variable X, we
denote by pX its distribution. The main goal of this section is to prove the following fact.

Lemma 5.1: Pinsker two-sided inequality in finite state case

Fix random variables X,Y . Define 1{β :“ supx,y
pX,Y px,yq
pXpxqpY pyq . Then

(13)
2
?
β

log e
rHpXq ´ HpX|Y qs ď E

››pX|Y p¨|Y q ´ pX
››
TV

ď
a

2 rHpXq ´ HpX|Y qs.

Note that, as a direct result, we immediately obtain the following fact.

Corollary 5.2: Pinsker inequality for random sign

Fix random variables X,Y such that X is a symmetric random sign. Then

(14)

?
2

log e
r1 ´ HpX|Y qs ď E

››pX|Y p¨|Y q ´ pX
››
TV

ď
a

2 r1 ´ HpX|Y qs.

Proof. If X is a random symmetric sign (i.e. X takes values ˘1 with equal probability) then pX ” 1{2
and thus HpXq “ log 2 “ 1 and

(15) 1{β “ 2 sup
x,y

pX|Y px|yq ď 2.

The idea of the proof Lemma 5.1 is to use the Pinsker and reversed Pinsker inequalities. In order
to do so, we need reformulate quantities appearing in (14) in terms of KL-divergnece and get rid of
the integral E. To this end, recall that given two probability distributions p and q on a finite space X ,

(16) D pp || qq “
ÿ

xPX

ppxq log ppxq
qpxq

stands the KL-divergence between distributions pX and pY with the convention that 0{0 “ 0. Now,
one easily checks that

(17) D ppX,Y || pX b pY q “ H pXq ´ H pX | Y q

The last ingredient needed for the proof is the following one.

Proposition 5.3: Mean conditional variation norm equals to joint total variation

For any random variables X,Y ,

(18) E
››pX|Y p¨|Y q ´ pX

››
TV

“ }pX,Y ´ pX b pY }
TV

Proof. By the very definitions,

E
››pX|Y p¨|Y q ´ pX

››
TV

“ EpY

››pX|Y p¨|Y q ´ pX
››
TV

“
ÿ

yPY

pY pyq
ÿ

xPX

|pX|Y px|yq ´ pXpxq|

“
ÿ

x,y

|pX,Y px, yq ´ pXpxqpY pyq| “ }pX,Y ´ pX b pY }
TV

.
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Proof of Lemma 5.1. The upper bound is obtained using the Pinsker inequality. Indeed, by Proposi-
tion 5.3,
(19)

E
››pX|Y p¨|Y q ´ pX

››
TV

“ }pX,Y ´ pX b pY }TV ď
a

2DppX,Y ||pX b pY q “
a

2 rHpXq ´ HpX|Y qs.
On the other hand, using the reverse Pinsker inequality, see e.g. [23] Theorem 7, we obtain

E
››pX|Y p¨|Y q ´ pX

››
TV

ě 2
?
β

log e
DppX,Y ||pX b pY q “ 2

?
β

log e
rHpXq ´ HpX|Y qs ,

where 1{β :“ supx,y
pX,Y px,yq
pXpxqpY pyq .

Let us now make a remark on the monotonicity of the three terms which appear in (14). It is well
known that given two probability distributions on the same state space X ,

(20) }p ´ q}TV “ inf
X„p, Y „q

P pX ‰ Y q

Thus, intuitively, }p ´ q}TV tells us what is the best (that is, closest to diagonal) coupling of p and q.
This fact immediately yields monotonicity property of the total variation norm.

Proposition 5.4: Monotonicity property of the total variation norm

Let X,Y,Z P X be some random variables. Then

(21) }pX,Y,Z ´ pX b pY,Z}
TV

ě }pX,Y ´ pX b pY }
TV

.

Proof. Take the realization of (20) with p “ pX,Y,Z and q “ pX b pY,Z to obtain random vari-
ables pX,Y,Zq „ pX,Y,Z and pX 1, Y 1, Z 1q „ pX b pY,Z such that P pX ‰ X 1, Y ‰ Y 1, Z ‰ Z 1q “
}pX,Y,Z ´ pX b pY,Z}

TV
. Clearly,

(22) P
`
X ‰ X 1, Y ‰ Y 1, Z ‰ Z 1

˘
ď P

`
X ‰ X 1, Y ‰ Y 1

˘

and thus, once more using (20),

}pX,Y ´ pX b pY }
TV

ď P
`
X ‰ X 1, Y ‰ Y 1

˘
ď P

`
X ‰ X 1, Y ‰ Y 1, Z ‰ Z 1

˘
“ }pX,Y,Z ´ pX b pY,Z}

TV
.

Remark 5.5: Monotonicity of terms in (14)

Since the Shannon entropy is monotonic, we have

(23) H pXq ´ H pX | Y q ď H pXq ´ H pX | Y,Zq

Combining this observation with the previous remark, we see that both terms in (14)
E
››pX|Y p¨|Y q ´ pX

››
TV

and 1 ´ HpX|Y q posses monotonicity property: if Y is a vector random
variable in (14) then dropping of any of its coordinates forces all terms in (14) to decrease.

Last but not least let us present the well known fact which says that in case of a random variable
attaining only two values and being L2 perpendicular to some σ-algebra is equivalent to being inde-
pendent of that algebra. Note that this observation can be used for Sarnak processes X taking at most
two values, namely, in such a case X0 KK ΠpXq.

Proposition 5.6

Let X be a two valued random variable and G be some sub-σ-algebra such that E pX|Gq “ EX.
Then X KK G.

10



Proof. Clearly, our assumption is equivalent to: EX1G “ EXE1G for any G P G. In other words,
CovpX,1Gq “ 0. Now, it is enough to recall standard fact that if two random variables taking only
two values are uncorrelated then they are independent. Applying this fact, we get that for any G P G,
X KK 1G. Hence X KK G.

Remark 5.7: When uncorrelated random variables are independent

In the above proof we used the fact that if X P X and Y P Y are uncorrelated and |X | “ |Y| “ 2

then they are independent. Here we provide a sketch of a proof. Firstly, without loss of generality
we can assume that X “ Y “ t0, 1u. To see this consider

(24) X 1 “ X ´ x0

x1 ´ x0
, Y 1 “ Y ´ y0

y1 ´ y0
,

where X “ tx0, x1u and Y “ ty0, y1u. For binary random variables, the assumption is equivalent
to

(25) P pX “ 1, Y “ 1q “ P pX “ 1qP pY “ 1q .

It remains to use the fact that if events A and B are independent then so are Ac and B.

5.2 Proof of Theorem 2.3

Firstly, since X0 is perpendicular to ΠpXq and X0 takes only two values, by Proposition 5.6, we in fact

have X0 KK ΠpXq. In particular, Sarnak property is equivalent to the H pX0 | Xď´gq gÑ8ÝÝÝÑ H pX0q “ 1.
By the monotonicity property of conditional entropy this is equivalent to the statement that for every
ε ą 0 there is a gap g ě 1 such that for all m P N

(26) 1 ´ H

´
X0 | X´g

´g´m

¯
ď ε.

Indeed, if (26) holds then taking m Ñ 8 yields the result. Conversely, for every ε there is g P N such

that 1 ´ H pX0 | Xď´gq ď ε. However, for any m ě 0, 1 ´ H pX0 | Xď´gq ě 1 ´ H

´
X0 | X´g

´g´m

¯
.

Now, an application of Corollary 5.2 with X “ X0 and Y “ X
´g
´m´g yields,

(27)

?
2

log e

”
1 ´ HpX0|X´g

´m´gq
ı

ď E|p
X0|X´g

´m´g
p¨|X´g

´m´gq ´ pX0
| ď

c
2
”
1 ´ HpX0|X´g

´m´gq
ı

and the result follows.

Remark 5.8: Rate of convergence

Note that, thanks to the (27), if we know the rate of convergence for 1 ´ HpX0|X´g
´m´gq then

(27) controls the rate for the term E|p
X0|X´g

´m´g
p¨|X´g

´m´gq ´ pX0
|.

Proof of Corollary 2.4. Let X „ κ, Since 1{nk

ř
0ďnďnk´1

δSnu
kÑ8ñ κ,

(28) lim
kÑ8

1

nk
|Apq, nkq| “ lim

kÑ8

1

nk

nk´1ÿ

i“0

1Siu starts with q “ κpqq.

Similarly,
(29)

1

nk

|tn ` g P Apq, nkq | un “ 1u| “ 1

nk

nk´1ÿ

i“0

1Siup0q“11Si`gu starts with q Ñ P
`
X0 “ 1,Xg`m

g “ q
˘
.

11



Combining (28) and (29),

εgpqq “
ˇ̌
ˇ̌1
2
P
`
Xg`m

g “ q
˘

´ P
`
X0 “ 1,Xg`m

g “ q
˘ˇ̌ˇ̌

and the result follows from Theorem 2.3.

Remark 5.9

In the above proof we have used the symmetric version of Theorem 2.3 with the past replaced by
the future, which is valid as well because in the finite case the past tail σ-field of process equals
to the future tail σ-field one. In particular, the Sarnak property can be stated equivalently with
reversed roles of the past and the future.

5.3 Background for Theorem 2.7

Remark 5.10: Relatively independent coupling above a σ-field

Later on we use the following construction. Given a probability space pZ,D, κq and a sub-σ-
algebra E Ă D, the formula

λpD1 ˆ D2q :“
ż
EpD1|EqEpD2|Eq dκ

determines a coupling on the space pZ1 ˆ Z2,D1 b D2q (pZj ,Djq “ pZ,Dq for j “ 1, 2). A
characteristic property of this coupling is that if we have two measurable functions f, g : Z Ñ R

then the following conditions are equivalent:

(i) fpz1q “ gpz2q for λ-a.e. pz1, z2q P Z1 ˆ Z2,

(ii) f
κ“ g, and f is E-measurable.

In the following theorem a similar type of joining is used, for more information we refer the
reader to [10], Examples 6.3 and Theorem 6.8.

To prove Theorem 2.7, let us recall the classical theorem (see e.g. [17], the result is a consequence of
the basic lemma on non-disjointness proved in [11] and [16]) about joinings with deterministic systems.

Theorem 5.1. Let pY, C, ν, Sq be a dynamical system and pZ,D, κ,Rq has entropy zero. Assume that

ρ P JpS,Rq is a joining of ν and κ. Then

(30)

ż

Y ˆZ

fpyqgpzq dρpy, zq “
ż

pY {ΠpSqqˆZ

Epf |ΠpSqqpxqgpzq dρ|pY {ΠpSqqˆZpx, zq,

i.e. each such joining has to be the relatively independent extension of its restriction to pY {ΠpSqq ˆZ.

5.4 Proof of Theorem 2.7

By assumption, the dynamical system
`
XZ ˆ YZ, ρ, S

˘
associated to the stationary process pX ,Y q is

a joining of the dynamical systems pXZ, ν, Sq and pYZ, κ, Sq given by X and Y , respectively. Let us
fix F P L2pΠpρqq. Note that ρ induces a joining of pXZ, ν, Sq with the zero-entropy system ppXZ ˆ
YZq{Πpρq, ρ|Πpρq, S ˆ Sq. Therefore, by (30), and using the assumption that X is Sarnak, we get

ż
X0pxqF px,yq dρpx,yq “

ż
E
`
X0|Πpνq

˘
pxqF px,yq dρpx,yq “ 0.

12



Since Y0 P L2pΠpρqq, we also have

ż
X0pxq

´
Y0pyqF px,yq

¯
dρpx,yq “ 0,

which shows that X0 b Y0 K L2pΠpρqq.

5.5 Background for Theorem 2.8

In order to prove Theorem 2.8, we will need the result from [9] and [15] which was already employed
in Example 4.3, and whose proof (we provide it for the sake of completeness) in case of t0, 1u-valued
processes is a short compilation of the arguments from the aforementioned papers.

Lemma 5.11: Retrieval of a deterministic process from its product with a K-process

Let pX,Y q be a stationary process such that both X and Y are binary, X ‰ 0 is Kolmogorov
and Y is deterministic (note that this implies X KK Y ). Then Y is measurable with respect to
σpXY q.

Proof. Consider two copies pX 1,Y 1q and pX2,Y 2q of pX,Y q, which are relatively independent over
XY . Then, X 1

nY
1
n “ X2

nY
2
n for all n P Z. Multiply both sides of this equality by 1Y 1

n“01Y 2
n “1 to obtain

0 “ X2
n1Y 1

n“01Y 2
n “1. Since pY ,Y 1q is deterministic and X2 is Kolmogorov, it follows that these two

processes are disjoint. In particular, X2
n KK 1Y 1

n“01Y 2
n “1. Hence 0 “ P pY 1

n “ 0, Y 2
n “ 1qEX2

n which
implies that (recall X ‰ 0) 0 “ P pY 1

n “ 0, Y 2
n “ 1q. By symmetry it follows that Y 1

n “ Y 2
n . Thus,

Y 1 “ Y 2 which concludes the proof.

Remark 5.12: Random variables concentrated on the graph of a function

The following simple observation allows one to generalize Lemma 5.11 to the case in which X

is not necessarily Kolmogorov. Suppose that pY,Zq „ pX, fpXqq for some random variables
X,Y,Z and some measurable function f . Then Z “ fpY q. Indeed, we have pZ,Y pZ ‰ fpY qq “
pX,fpXqpfpXq ‰ fpXqq “ 0 and the result follows.

Lemma 5.13: Modify and retrieve

Let pX,Y q be a stationary process such that both X ‰ 0, Y are binary and Y is deterministic.
Suppose additionally that we can find a Kolmogorov binary process X 1 KK Y such that X 1Y „
XY conditionally on Y “ y. Then Y is measurable with respect to σpXY q.

Proof. By Lemma 5.11 we know that there is a function such that Y “ fpX 1Y q. Moreover, pXY ,Y q „
pX 1Y ,Y q “ pX 1Y , fpX 1Y qq. It remains to use Remark 5.12 with X “ X 1Y , Y “ XY and Z “ Y .

Let us present now a simple observation needed in the proof of the lemma below.

Proposition 5.14: Example of a factor of a Bernoulli which is Bernoulli

Suppose that X is a Bernoulli Bp1{2, 1{2q process with two point state space X . Then Y given
by

(31) Yi “ 1Xi‰Xi`1

is Bernoulli Bp1{2, 1{2q as well.

13



Proof. Since Y is binary it is enough to check if

(32) P
`
Y n´1

0
“ 1

˘
“

n´1ź

i“0

P pYi “ 1q “ 2´n.

By the very definition,

(33) P
`
Y n´1

0
“ 1

˘
“ P p@0ďiďn´1 Xi ‰ Xi`1q .

But there are only two alternating sequences (on Yn`1) of length n ` 1. The result follows.

Lemma 5.15: Skew process X 1

Let X KK Y be stationary processes such that X is i.i.d., Xi P X “ ta, bu (a, b P C, a ‰ b)
and the binary process Y is deterministic. Let K “ pKnqnPZ be the non-decreasing sequence
of random times defined by K0 :“ 0, and for n ě 1, Kn :“

řn´1

i“0
Yi and K´n :“ ´

řn
i“1

Y´i (so
that Kn`1 “ Kn ` Yn for all n). We assume that we have almost surely

lim
nÑ8

K´n “ ´8 and lim
nÑ8

Kn “ 8.

We define the process X 1 via X 1
i “ XKi

. Then pX 1,Y q is stationary, and

(34) ΠpX 1,Y q “ ΠpX 1q “ σpY q.

Remark 5.16: Why the name skew process?

Clearly, by the very definition, we can look at X 1 as a version of X skewed by Y . Moreover,
X 1 arises as a coordinate in a skew product of dynamical systems (see (40) below, which also
justifies that pX 1,Y q is stationary).

Remark 5.17: X 1 is Sarnak

The above lemma is a recipe for producing Sarnak processes: indeed the centered skew process
X 1 ´ EX0 is Sarnak. To see this, note that X 1

0
“ X0, and

(35) E
`
X 1

0

ˇ̌
ΠpX 1q

˘ (34)“ E pX0|ΠpY qq XKKY“ EX0.

Proof of Lemma 5.15. Firstly, we show ΠpX 1,Y q “ σpY q. Clearly, ΠpX 1,Y q Ą ΠpY q “ σpY q. Hence
it remains to show that ΠpX 1,Y q Ă σpY q. Intuitively this is clear because ΠpXq is trivial so as it
comes to some remote past of pX 1,Y q, the past of X 1 brings no additional information to the past of
Y . Formally, take some random variable F measurable with respect to ΠpX 1,Y q. By the definition
of the tail σ-algebra, for every n P N, there exists a measurable function fn such that

(36) F “ fnpX 1
ď´n, Yď´nq.

Consider this equation conditionally on Y “ y. Then, by the very definition of X 1, there exists fn,y
(naturally defined via bijection correspondence fn,Y pXďK´n

q “ fnpX 1
ď´n, Yď´nq) such that

(37) F “ fn,ypXďk´n
q,

where k is the value of K under Y “ y. However, k´n
nÑ8ÝÝÝÑ ´8. Since X KK Y and (37) holds

for any n, we conclude that conditionally on Y “ y, F P ΠpXq. However, ΠpXq is trivial and hence
conditionally on Y “ y, F is a constant. Therefore, (unconditionally) F is σpY q-measurable.
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Now, we take care of ΠpX 1q “ σpY q. By the previous step, ΠpX 1q Ă ΠpX 1,Y q “ σpY q. It remains
to show that ΠpX 1q Ą σpY q. To this end, define a process C which checks when X 1 changes, that is,

(38) Cn :“ 1X1
n´1

‰X1
n
.

Note that, if we could recover the process Y from C, then it would be the end of the proof. Indeed,
in such a case, C is a function of X 1 and thus Y “ fpX 1q. To achieve this, using the fact that Cn “ 1

iff Yn “ 1 and XKn´1 ‰ XKn , we can express Cn as

(39) Cn “ Yn1XKn´1‰XKn
.

We claim that, conditionally on Y “ y, the process C is distributed as BY where Bp1{2, 1{2q „ B K
K Y . For this, for a fixed n P N, and fixed y,w P t0, 1uZ, we compare P

`
Cn

´n “ wn
´n |Y “ y

˘
and

P
`
pBY qn´n “ wn

´n |Y “ y
˘
. Clearly, both vanish if there exists j P t´n, . . . , nu such that yj “ 0 but

wj “ 1. Otherwise, let

tj1 ă j2 ă . . . ă jℓu :“
 
j P t´n, . . . , nu : yj “ 1

(
.

Since we assume now that wn
´n ď yn´n, we have

P
`
pBY qn´n “ wn

´n |Y “ y
˘

“ P pBji “ wji for all i P t1 . . . , ℓuq “ 1

2ℓ
.

On the other hand, denoting again by k the value of K under Y “ y, since kj1 ă kj2 ă . . . ă kjℓ , by
Proposition 5.14 we also have

P
`
Cn

´n “ wn
´n |Y “ y

˘
“ P

´
1Xkji

´1‰Xkji

“ wji for all i P t1 . . . , ℓu
¯

“ 1

2ℓ
.

This completes the proof of the claim, and then it is enough to apply Lemma 5.13 to conclude.

5.6 Proof of Theorem 2.8

By a non-ergodic version of Jewett-Krieger theorem (see [2], Theorem 1.2), each aperiodic, zero entropy
system can be realized as a binary deterministic process. Thus, in view of Remark 5.17, to finish the
proof, it is enough to construct an appropriate processes from Lemma 5.15. To do so consider the
full shift S on t´1, 1uZ with the Bernoulli measure ν :“ B p1{2, 1{2q and some aperiodic zero-entropy
system pt0, 1uZ, µ, Sq. On the product space t´1, 1uZˆt0, 1uZ, let T be the corresponding skew product
(considered with the product measure ν b µ):

(40) T px,yq :“ pSy0x, Syq.

Let Yn, n P Z, (respectively Xk, k P Z) denote the projection on the n-coordinate on t0, 1uZ
(respectively, on the k-coordinate on t´1, 1uZ). Then, we construct the stationary process X 1 by
setting X 1

n :“ X0 ˝ T
n
. Note that for all n P Z we can write X 1

n “ XKn , where K is Y -measurable,
and recursively defined by

• K0 :“ 0,

• For each n ě 1, Kn :“ Kn´1 ` Yn,

• For each n ď ´1, Kn :“ Kn`1 ´ Yn`1.

It remains to note that, by aperiodicity of the system we started from, we have µpyn “ 0 for all nq “ 0.
Therefore, for almost every ergodic component λ of the system pt0, 1uZ, µ, Sq, we have λpy0 “ 1q ą 0,

and then by the pointwise ergodic theorem we get that Kn
nÑ˘8ÝÝÝÝÑ ˘8 almost surely.
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5.7 Background for the proof of Theorem 2.9

The following result has been proved in [12]:

Proposition 5.18

Let R be an automorphism of pZ,D, κq. Let κ “
ş
Γ
κγ dQpγq be the ergodic decomposition of

κ. Then there exists an R-invariant σ-algebra C Ă D such that Πpκq “ C κ-a.e. and for Q-a.a.
γ P Γ, we have Πpκγq “ C κγ-a.e. Moreover, for each f P L1pκq, there exists a C-measurable g

such that Eκpf |Cq “ g κ-a.e. and, for Q-a.a. γ P Γ, we have Eκγ pf |Cq “ g κγ-a.e.

Assume now that X Ă C is finite and let µ be an S-invariant measure on XZ. Then the coordinate
projection process pπnq “ ppπnq, µq is stationary (and has distribution µ). Assume that µ “

ş
Γ
µγ dQpγq

is the ergodic decomposition of µ.

Lemma 5.19

The stationary process ppπnq, µq is Sarnak if and only if the stationary processes ppπnq, µγq are
Sarnak for Q-a.e. γ P Γ.

Proof. ñ We use Proposition 5.18 for pXZ, µ, Sq and f “ π0. We have

0 “ }Eµpπ0|Πpµqq}2L2 “ }Eµpπ0|Cq}2L2 “
ż
Eµpπ0|Cqπ0 dµ “

ż
gπ0 dµ “

ż

Γ

´ż
gπ0 dµγ

¯
dQpγq “

ż

Γ

´ż
Eµγ pgπ0|Cq dµγ

¯
dQpγq “

ż

Γ

gEµγ pπ0|Cq dµγ

¯
dQpγq “

ż

Γ

´ż
|Eµγ pπ0|Cq|2 dµγ

¯
dQpγq,

whence, for Q-a.e. γ, we have
0 “ Eµγ pπ0|Cq “ Eµγ pπ0|Πpµγqq,

so our claim follows.
ð The same by reading in the reversed order.2

5.8 Proofs of Theorem 2.9 and of Corollary 2.10

Theorem 2.9 follows directly from Lemma 5.19.
Proof of Corollary 2.10 Assume first that X (with distribution µ) is ergodic. Then almost every
realization pXnpωqq of the process is generic for the measure µ. But since X is Sarnak, X0 K Πpµq, so
the Veech condition is satisfied for the (unique) Furstenberg system of u “ pXnpωqq, and therefore by
[13], u is orthogonal to all deterministic sequences. If X is not ergodic then, by Theorem 2.9, we pass
to ergodic components to which we apply the above argument.

2Or using only the first property of C: for each h P L8pCq,
ż
Eµpπ0|Cqh dµ “

ż
π0h dµ “

ż

Γ

p

ż
π0h dµγq dQpγq “

ż

Γ

p

ż
Eµγ

pπ0|CqhdµγqdQpγq “ 0

since Eµγ
pπ0|Cq “ 0. Since h was arbitrary, Eµpπ0|Cq “ Eµpπ0|Πpµqq “ 0.
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