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Abstract

In this paper, the efficiency of a multiscale strategy based on a domain decomposition method (DDM) for model-order
reduction of time-dependent frictional contact problems is presented. The proposed strategy relies on the LArge Time
INcrement (LATIN) nonlinear solver combined with model reduction based on the Proper Generalized Decomposition
(PGD). The LATIN presents a robust treatment of contact conditions, sharing similarities with augmented Lagrangian
approaches, and naturally leads to a mixed DDM. In addition, the global space-time formulation of the method allows
PGD-based model reduction to be used during computations, creating and enriching on-the-fly reduced bases per
substructure to better track sliding fronts and propagative phenomena. The introduction of a multiscale strategy in the
LATIN framework is consistent with the physics of contact problems, in which phenomena with different wavelengths
interact: local solutions at contact interfaces presents high gradient effects with a short wavelength compared to the
characteristic length of the structure. By taking advantage of this, the coarse scale problem of the strategy enables
to capture efficiently the behavior of the problem at the structural level, focusing then on capturing the local contact
variations at the contact interfaces. The most important features of the approach are shown comprehensively on
a simple one-dimensional frictional contact problem. Then, its robustness and effectiveness are tested on a two-
dimensional multibody frictional contact problem with more complex loadings. Guidelines are also given for choosing
the parameters of the strategy, in particular those driving the construction of the reduced basis.

Keywords: frictional contact, model-order reduction, domain decomposition, multiscale strategy, LATIN method,
PGD.

1. Introduction

The use of high-fidelity numerical solvers in an industrial setting remains limited to this day because of their
considerable computational cost, in particular for highly nonlinear finite element analyses of large-scale structures
with a large amount of degrees of freedom as well as a large number of time steps. Among them, the simulation of
architectured materials with multiple frictional contact interactions subjected to large displacements is probably one
of the most challenging problems in structural mechanics [1} [2].

Frictional contact problems are characterized by strong nonlinearities and non-smooth behaviors at the contact
interfaces, with several large contact zones which can lead to numerical issues. The classical treatment of frictional
contact conditions with usual finite element methods resorts to techniques originating from constrained optimization
methods. Among others, one can cite Lagrange multipliers, penalization, or augmented Lagrangian methods. For a
wider overview on the topic, one can refer to [3| 4]. However, all these methods may require prohibitive computa-
tional costs, especially in an industrial context with time-dependent loadings and parametric studies. Acceleration or
parallelization methods are therefore a necessity to address this issue. Acceleration strategies are commonly based on
multigrid methods [3} 16} [7]], and enable to accelerate the convergence of the problem by cheaply computing correc-
tions on a coarse discretization. Domain decomposition methods (DDM) with or without overlapping subdomains,
the latter being the most used nowadays, have also been developed for the parallelization of large-scale problems.
Among them, one can cite primal methods, where the unknowns are the interface displacements, dual methods, which
instead privilege interface forces, and mixed methods, where both interface displacements and forces are considered
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as unknowns. For an overview on non-overlapping primal and dual methods, one can refer to [§]. The Finite Element
Tearing and Interconnecting (FETI) dual method [9} [10, [11]] is the most widespread approach, where compatibility
between neighboring subdomains is ensured by Lagrange multipliers, corresponding to interface forces. Numerical
scalability of the method is obtained with the introduction of rigid body modes as a “coarse scale problem” [[12]. The
coarse scale problem provides a multiscale aspect to DDM methods: a coarse information is spread on the whole struc-
ture allowing non-neighboring subdomains to interact, and thus to speed-up the convergence. Numerically scalable
FETI-based DDM techniques for frictional contact problems have been presented in [13] with active set method, and
in [[14} [15] for an augmented Lagrangian approach. Other approaches refer to FETI-DP [16} [17] or T-FETI methods
[18]]. Mixed DDM strategies also include those based on the LArge Time INcrement (LATIN) nonlinear solver [19].
The mixed nature of the method enables one to deal with different interfaces characterized by different constitutive
behaviors with a single resolution method. When the LATIN-based mixed DDM is not equipped with a coarse scale
problem, we refer to it as a monoscale DDM [19, 20, 21]]. A multiscale version of the LATIN-based mixed DDM,
in which a coarse scale problem is introduced, was firstly described in [22] for heterogeneous structures, and for
quasistatic contact problems in [23].

Another, and possibly complementary, way to decrease computational cost consists in adopting reduced-order
models (ROM) techniques by seeking the solution of the given problem in a reduced-order basis (ROB), whose
dimension is much smaller than the size of the original high-dimensional model [24] 25]. ROM methods can be
distinguished by the way in which the ROB is constructed. A first family of techniques, named a posteriori methods,
involves a training phase, called offline phase, where the full-order problem is solved for some particular time instants
or parameter values, generating the so-called snapshots. Snapshots are then used to create a ROB on which to project
the full-order equations and obtain a reduced-order model. The most classical way to obtain a ROB from a given set of
snapshots is the Proper Orthogonal Decomposition (POD) [26]. The strong point of the method relies in the fact that
the number of relevant POD modes is generally much lower than the scale of the full-order problem. Nevertheless,
the quality of the ROM is strongly affected by the representativeness of the ROB, especially for highly nonlinear
problems. Another approach to obtain a ROB is represented by the Reduced Basis (RB) method, which improves the
procedure for the selection of the appropriate snapshots by an efficient error indicator allowing a certified error quality
[24} 27]]. A second family of ROM techniques consists in seeking the solution of the targeted problem in the span of
a consistent ROB progressively built by a dedicated algorithm during the solving stage. This represents the a priori
model reduction methods, where no offline training phase is required. To this family belongs the Proper Generalized
Decomposition (PGD) [25} 28]).

For contact problems, most of pertinent model reduction techniques rest on a posteriori methods, mainly for
frictionless parametric problems with a small number of contact interfaces. They cover POD projection-based methods
for displacements and contact forces [29], adopting a non-negative matrix factorization for the construction of a
positive ROB for the contact forces, and coupled with a greedy algorithm and a robust error indicator with respect
to parameter variations. RB methods have also been applied to parametric frictionless contact problems [30], in a
generic nonlinear setting where large displacements are assumed. The non-negativity of the contact forces is achieved
through a cone-projected greedy algorithm, and the nonlinear constraints are tackled with the Empirical Interpolation
Method hyperreduction technique [31]. Enrichment techniques with POD modes for parametric problems have been
succesfully used for the simulation of fretting fatigue in [32]]. The bottleneck of the a posteriori methods relies in
the computation of snapshots [33}|34]]. For large-scale problems, this training step can be very costly. Moreover, for
problems involving a huge variety of loading conditions and nonlinear phenomena, especially due to frictional contact
interactions, a predetermined ROB may not be able to easily and efficiently capture non-regular and propagating
multiscale phenomena that occur at contact interfaces: sliding, sticking and separation zones being difficult to follow.
For this reason, an a priori approach based on the PGD coupled with the LATIN nonlinear solver [19] may represent
a more efficient way to tackle frictional contact problems through a reduced-order model that allows the ROB to be
enriched during computations to account for the evolution of frictional contact conditions.

Nevertheless, for specific problems where high accuracy of contact quantities is required, reduced models alone
may not guarantee sufficient accuracy while ensuring at the same time a significant decrease in computational cost.
As highlighted in [35] 136, [37], frictional contact problems present a multiscale content, with global modes on the
structural level and localized modes bringing corrections at the contact interface level. This suggests the idea that
proposing a model reduction method with a multiscale approach may be truly beneficial for problems of this type.
To the authors’ knowledge, one of the few approaches to achieve such a combination is the multiscale LATIN-based

2



mixed DDM. Indeed, the LATIN method makes it possible to handle frictional contact problems, apply PGD-based
model reduction and introduce multiscale aspects in a robust, flexible and efficient framework. However, mention
should also be made of [36], where the authors make use of the LATIN method at the microscale and a multigrid
scheme on a macroscale with precomputed global SVD modes.

Applied to different contexts (viscoelasticity, homogenization...) in [38} 39 40} 41} 42]], the multiscale LATIN-
based mixed DDM with PGD makes it possible to take into account also frictional contact interactions. However, in
these previous works, rather short frictional cracks had a more or less limiting effect on the global scale, surrounded
by other material nonlinearities. Moreover, it was highlighted, in the case of the application of the strategy without
PGD to the delamination of composite structures [43],144]] or fatigue crack propagation [45]], the difficulty of taking into
account the potential long-wave effects of a debonding cohesive interface or a long crack propagation in the multiscale
LATIN-based DDM, without a suitable coarse scale problem. In fact, it has never been highlighted how and to what
extent a multiscale approach, in particular one based on domain decomposition, may be helpful in efficiently solving
frictional contact problems with a model reduction approach, and this will be the purpose of the article.

In this paper, we follow the findings presented in [35] in the context of the monoscale LATIN-PGD strategy
without DDM for frictional contact problems, where the authors suggest the adoption of a multiscale approach, and
propose a low-cost downsizing algorithm to control the quality and size of the PGD basis. Here, the goal is to
illustrate why the LATIN method combined with PGD and a multiscale mixed DDM approach is robust to tackle
model reduction for frictional contact problems, where multiple and large frictional contact interfaces are present, and
what are the benefits to combine DDM and a coarse scale with PGD. This will first be illustrated on a one-dimensional
frictional contact problem where the contact interface is large and a large sliding front is present. Some strengths and
points of improvement of the LATIN-based multiscale mixed DDM method for the model-order reduction of frictional
contact problems will be comprehensively presented. Subsequently, a more complex 2D example with more contact
interfaces and more complex loads will be proposed to test the potentialities of the approach. The DDM approach
allows to create reduced bases per substructure to better track sliding fronts and propagative phenomena, and the
multiscale aspect leads to a significant gain in convergence in the early stages, taking advantage of the multiscale
nature of the phenomenon itself. PGD is naturally introduced in the LATIN and allows for on-the-fly enrichment of
the ROB where and when required to better follow the evolving frictional phenomena. For highly irregular problems
such as frictional contact problems, controlling the quality and size of progressively built PGD basis along the LATIN
iterations is crucial for the efficiency of the method. Here, we also go on to investigate the necessity and the benefits
of the downsizing algorithm proposed in [35] when adapted to the multiscale and DDM contexts.

The paper is organized as follows. First of all, in Section 2] prior to going into the details of the strategy, a simple
but representative one-dimensional frictional problem and its reference solution obtained with the LATIN method are
presented, which will later serve as basis for an explication of the features of the method. Thereafter, the LATIN
method, in its monoscale DDM version, is introduced in Section [3] and is then applied to the test problem. The
strengths of the method are highlighted, as well as some specific points related to frictional contact problems that
require further improvements. The introduction of PGD in the LATIN scheme is detailed in Sectiond] and applied to
the test problem, with focus on properly controlling the PGD basis size and quality along the iterations. The multiscale
strategy is detailed in Section |3} as well as the introduction of PGD in the multiscale case. It is then applied to the
simple one-dimensional test problem as well as to a more complex two-dimensional multibody frictional contact
problem in Section [6] Conclusions and perspectives are finally given in Section[7]

2. Preliminary results on a simple 1D problem

Before going into the details of the multiscale LATIN-based DDM strategy for model-order reduction, in this
section is investigated the reducibility of the displacements and frictional forces of a one-dimensional benchmark
problem. The problem consists of a clamped elastic bar subjected to a time-dependent traction loading F,(f) on the
free boundary. The bar is in contact with a frictional interface along its entire length by means of a normal pressure
p(1) acting on it (Figure[Ta)). In practice, it is assumed that the bar is always in contact with the frictional surface due
to the pressure p considered to be constant.

Concerning the traction loading acting on the bar, two different loadcases are considered (represented in Fig-
ure [Tb). Both of them start with a preloading stage where the value of 1000 N is reached. The loadcase 1 consists
in fully unloading the bar after the preloading, while the loadcase 2 consists in performing some small-amplitude
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Figure 1: 1D benchmark problem.

oscillations around this preloaded state. The first loadcase should put us in a more critical condition, since one has
to deal with a larger propagation of sliding front which is more challenging to represent with ROM techniques. The
parameters adopted for the problem are shown in Table[I] The problem, after a finite element discretization in space
and time, has been solved with the LATIN method (of which the details will be given in the next section). A converged
solution (high number of iterations) was taken as a reference solution and analyzed in the following.

Parameters of the 1D problem

Young modulus, E 210 GPa
bar cross section, S 3.14 mm?
bar length, L 1m
number of DOFs, N, 50
number of time steps, N; 100

time interval, [0, T'] [0,1 s]
friction coeflicient, f 0.3
pressure load, p 5000 N/m

Table 1: Used parameters for the benchmark problem of Figure

In Figure 2| and [3) are shown, respectively, some time snapshots of the reference solution of the problem for the
displacements and frictional contact forces distributions for the loadcase 1. The different gray scales highlight the
different sticking-sliding conditions occurring during preloading and unloading in different areas: always sticking
conditions in white, sliding-sticking transition in light gray and always sliding in dark gray. The sliding front propa-
gates as the traction force increases, from r = 0 s to = 0.5 s during the preloading stage. A portion of the bar, the
one closer to the clamped end (x/L = 0), remains always in sticking conditions. During the unloading part, another
sliding front propagates from the free end of the bar, until the traction force becomes zero. At the end, because of the
presence of friction, the bar does not get back to its original undeformed position but remains in a sticking deformed
state. In the sticking zone, near the clamped end, the frictional forces are zero, whereas in the sliding zone, during
loading, they are equal in absolute value to the Coulomb friction threshold fp = 1500 N. In the unloading phase, a
new sliding front propagates located in the zone where the friction forces change sign.

After obtaining the reference solution for displacements and frictional forces, an a posteriori Singular Value De-
composition (SVD) [46] analysis can be performed to exemplify the reducibility of the space-time solution. A few
SVD space modes for frictional forces are given in Figure [ First modes depict a generally global scale of the
solution. One can see that the space modes clearly separate the sticking zone from the ones where sliding occurs.
Subsequent space modes still emphasize this distinction as also bring localized corrections to the sliding zones.
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Figure 4: SVD space modes 1, 3 and 7 of the frictional contact forces.

In Figure |§| is shown the SVD relative approximation error [|A — A,||r/||Allr between the original field and a
truncated SVD of order p for displacements and frictional forces for the two considered loadcases in Figure[Tb] The
snapshot matrix ANV which represents respectively the displacements or the frictional forces, collects the quantities
of interest along the N, spatial positions and N, time steps, with A, which represents the SVD approximation of A
with p modes, and || e ||z stands for the Frobenius norm. In both cases, displacements present a better reducibility
compared to frictional contact forces. Frictional contact forces, due to their highly non-smooth nature, present a very
low reducibility, in agreement with similar results in [35, 37]. For the first loadcase (Figure @, the reducibility
for frictional forces is quite critical. Being a propagation problem with a large sliding front, frictional forces need a
large basis to reach a good accuracy (below 107*). For the second loadcase the reducibility of the problem strongly
improves, especially for frictional forces, as in fact the small-amplitude oscillations cause small variations in contact
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Figure 5: SVD of the contact quantites of the 1D problem in Figurefor the two different loadcases.

Propagation problems are known for their low reducibility, and capturing their behavior with a ROB is challenging,
even for ROBs enriched on-the-fly as in PGD [28| 47]. For particular applications where one deals with loads such
like the second loadcase, or problems where the contact interface is small relatively to the overall structure of the
problem, and/or a few contact interfaces are present, this can help to start with a good potential reducibility. However,
in more complex and general cases like architectured materials [1]], the peculiarities pertaining to contact problems
can be taken into account to improve the efficiency of a model reduction approach. As seen in the above example,
when wide contact interfaces are present, different areas subjected to different sticking and sliding conditions can be
encountered. This suggests the separation of these different areas a priori and the application of the model reduction
strategy separately, ideally in each part, through a DDM approach. Therefore, the different potential reducibility of
the different areas is exploited and the computational time can further be improved thanks to the parallelization given
by the DDM. Another aspect to consider is the presence of multiscale aspects in the solution of contact problems. As
highlighted in [35], global modes on a structural level and localized modes on the contact interfaces are present and
the introduction of multiscale aspects may effectively improve the handling of similar problems.

In the following, we will put ourselves in the case of the first loadcase, considered as more critical, and we will
analyze how the proposed approach behaves in the case of a problem with low reducibility.

3. LATIN-based monoscale DDM for frictional contact problems

Incremental methods for solving a nonlinear problem (e.g., Newton-Raphson, quasi-Newton, modified Newton
methods) consist in making converge the problem at a given time step ¢;, knowing the converged solution from the
previous time step ¢;_i, up to the final time 7. On the contrary, in non-incremental methods, all time steps are swept
at each iteration and each non-incremental iteration ends on a space-time approximation of the solution. The LATIN
method, introduced in [19], is a general strategy for dealing with nonlinear evolution problems and belongs to the
family of non-incremental solvers.

The main idea of the LATIN is to separate the difficulties of a given problem. For many classes of problems
this consists in avoiding the simultaneity of the global character of the problem and its local nonlinear behavior,
which leads to a partitioning of the underlying equations into two manifolds: one pertaining to the local and possibly
nonlinear equations, while the other one is related to the linear and possibly global equations. The search for the
solution is based on a two search alternating direction algorithm, which shares similarities with ADMM (Alternating
Direction Methods of Multipliers) methods [48], 49, |50]]. At each iteration, a solution on the whole space and time
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domain of the problem is alternately built in each of the two manifolds. A LATIN iterate being defined over the entire
space-time domain, unlike an incremental method where only the solution at the previous step is generally required,
inherently raises questions about the storage of computed quantities. The use of an adapted representation of the
iterate in reduced or compact form, such as a representation in separate space and time variables [235]], is therefore a
necessity in terms of the method’s efficiency. However, this constraint inherent to this particular nonlinear solver can
also be seen as an advantage for model-order reduction by PGD as shown in the following.

When applied to contact problems, the LATIN method separates the internal equations belonging to the substruc-
tures from the contact conditions that occur at the contact interfaces. For this reason, it naturally leads to a mixed
DDM where interface variables are constituted by the interface displacements (primal unknowns) and contact forces
(dual unknowns). In addition, the two-search direction alternate algorithm of the LATIN shares similar features with
augmented Lagrangian formulations combined with Uzawa-like algorithms [51}152]], which makes it a strongly robust
strategy for dealing with contact problems, ensuring an exact satisfaction of contact conditions at convergence. Two
types of formulations for the primal unknowns can be adopted: the formulation in velocity and the formulation in
displacement. The velocity formulation is usually adopted in the context of material nonlinearities, where constitu-
tive relations are expressed in a rate formulation (see [41} 53]]), while the displacement formulation is usually more
adopted in the context of linear elastic behaviour of the substructures [32, 135,154, as in the case discussed herein.

3.1. The reference problem: partitioning into substructures and interfaces

We consider, assuming small perturbations and isothermal quasi-static state, the equilibrium of a linear elastic
structure occupying the space domain £ on the time interval [0, 7] being studied. The structure being subjected to
body forces Id and imposed loads F', on a part 6,2 of the boundary, as in Figure[6, On the complementary part §;£,
displacements U , are prescribed. Internal or external frictional contact interfaces are present and designated with I'.

8,0

Figure 6: Reference structure problem being considered.

The basic idea of a mixed DDM strategy consists in describing the structure as an assembly of simple compo-
nents: substructures and interfaces [19] (Figure , where each substructure has its own variables and equations.
A substructure Qp, with E € E (E being the set of substructures), is subjected to the action of its environment Vg
(i.e., the set of neighboring substructures of Q) defined by a force field ', and a displacement field W . acting on its
boundary Qg. The displacement and the Cauchy stress fields within a substructure Q are denoted with u, and o,
and they belong respectively to spaces ’ng)’ﬂ and S?‘T] defined on Q. An interface I g between two substructures

Qp and Qp transfers both the displacement and the force fields W, W, and F, F, restricted to I'gg (Figure ,
which belong respectively to spaces fwg);;' and F, é%’,T] defined on I'gg. The previous spaces, extended to the set
of neighboring interfaces of Q, result in spaces ‘Wg)’r] and 7, éo’”. We denote with EEEO’T] = wg),r] X (WEEO’T] and
FR7 = SO #1071 a5 well as ST = BT x FIT1 A space CIIT! with superscript [0, 7] designates the space of
functions defined on [0, 7] which take values in [J. Therefore, one can define the admissibility of a solution within a
substructure.

Definition 1 (E-admissibility). For a substructure Qg, sg = (uy, W,, 0, Fp) € SES’T] is said to be E-admissible, that

. [O’TI ep . . .
iISSg € SE,ad , if it verifies:

— the kinematic admissibility: (uz, W,) € X1} | u, € UL such that uglag, = Wy,
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Figure 7: Decomposition of a structure.

. C 0.1 ¥ 0,7
— the static admissibility: (o, Fj) € ng,ad] | Yu*, W) e Eg,ad],

f o &u)dQdr = f foourdQde + f F,-WdSdr,
Qpx[0,T] Qpx[0,T] —d 0Q2px[0,T]

— the constitutive relation: g = K : &(u;), with K being the Hookean tensor and & the small strain tensor.

An interface I'gp- between two substructures Qp and Qg is driven by a constitutive law between the force fields

(F g, F ) and the displacement fields (W, W) on I'gg. The constitutive behavior at the different interfaces depends

on the type of interface behavior which is to be modeled, and is expressed as a constitutive law which can be formally
written as:

bEE’(EE’ EE’ EE” EE’) = 0’ V(I’ t) € FEE’ X [0» T] (1)

The interface constitutive operator bz describes in an abstract form the behavior of the interface. For example, for
a perfect interface, bgg: = 0 corresponds to the continuity of the displacements across the interface, W, — W, =0,
and the equilibrium of the interface forces £ + F,, = 0. Boundary conditions in displacements and forces are also
taken into account through a specific interface behavior (interfaces I'g~ ; and I'g 5 in Figure |7_3|) Then, the reference
substructured problem can be reformulated as:

Problem 2. Find Sexact = {Se}eeg, With sg = (ug, W, 0, Fp) € SEEO’T], verifying:

— the E-admissibility of sg, VE € E: sp € S[g’ard] (Definition ,

— the constitutive behavior of the interfaces (T]) .

3.2. A LATIN-based iterative solver

Let us denote with AEIO’T] the manifold of linear elastic solutions s satisfying the E-admissibility, and refer with
%71 to the manifold of solutions § satisfying the constitutive behavior at the interfaces bz = 0. The LATIN method
for solving Problem [2| consists in iterating successively between manifolds ALO’T], a phase which is called linear
stage, and T'*T] named local stage, by following two alternating search direction equations E* and E~ introduced to
iterate in a fixed-point manner between the two manifolds and to close the problem. Starting from an initial admissible
solution sy, at convergence the exact solution Se,c is reached at the intersection between the two manifolds:

local stage linear stage
soe AT = .=, € AT —— 8uip € rion siv1 € AT = = 50 € AT A TIOT]



3.2.1. The local stage

The local stage at the current iteration 7 + 1 consists in finding 8,41/, € I'%7!, givens, € A([iO’T] from the previous
iteration, by following the search direction E*. For each interface I'gg the following conditions must be verified, with
the subscripts n and n + 1/2 omitted to simplify the notations:

Problem 3 (local stage). Find § = {8g}gcg € I'%7 verifying, Vx € I'gp and V¢ € [0, T],

~ s E”EE’EE’):O
F.-F.-kt(W,-W_)=0

— the search direction E*: {:E =E E—f Wy =0

EE' _EE' -k (EE/ _EE/) = Q

— the interface constitutive behavior: bgg (EE, E

In the previous equations, k* is called search direction operator (or simply search direction), usually taken as
k™ = k1, with I the identity tensor. The search direction parameter k* is homogeneous to a stiffness and analogous
to the augmentation parameter in an augmented Lagrangian formulation. A reference close-to-optimal value for k*,
in the case of perfect interfaces, is given by k* = E/L, with E being the Young modulus of the substructure and
L a characteristic length of the interface. The value of k* does not affect the result at convergence, although it has
a significant impact on the convergence rate of the problem. The different interface behaviors and their explicit
resolution on the local stage of the LATIN method are reported in

3.2.2. The linear stage
Given the solution §,412 € I'%7] from the local stage, the linear stage at the current iteration n + 1 consists in
finding s, € ALO’T] following a search direction E™:

Problem 4 (linear stage). Find s = {sg}ger € A" verifying, Vx € Qg and Vr € [0, T,

— the E-admissibility of sg: Sgp € Sgag

— the search direction E™ : Fp = F . +k" (W, -W_)=0
where it is classicaly assumed that k= = k* = k. Taking into account E-admissibility and the search direction, the
following linear problem has to be solved at the linear stage for each substructure Q2 in the whole space-time domain:
Problem 5. Find (u,, W,) € EI") such that, V(u*, W*) € EI7,

f s(uy) : K : e(u*)dQdr + f kW, -W'dSdr =
Qpx[0,T] 8QpX[0,T]

- u*dQdr + f (F, +kW,) - W dSdt,
LEX[O,T] LMJE - agpxior) © T E T

with Fp = F, +k(W, — W,).

The solution of the linear stage problem associated with substructure Q2 depends solely on the known quantities
and §g on its boundary 0Q. If K and k are symmetric positive definite, the Problemhas a unique solution [19].

f

—d|Qg
The linear stage problems defined on the different substructures g are independent and are therefore parallelizable.

3.2.3. Initialization and control of the convergence

The iterative LATIN algorithm is initialized with an admissible solution sy € A[dO’T]. A classical choice is the
solution obtained assuming § = 0, that is, for each substructure:

Problem 6 (initialization). Find (u, ., W, ) € EX’T! such that, Y(u*, W*) € EI’T),

f ety ) ¢ K + e(u)dQdr + f kW, - WdSdt = f £ -udedr,
Qpx[0,T] i 095 x[0,T] : Qpxio,T] —48E

with F, , = kW .



The monoscale strategy converges in presence of boundary condition interfaces, perfect interfaces and frictionless
contact interfaces [19]]. For contact interfaces with friction, there is no convergence proof of the algorithm but con-
vergence is in practice obtained. To ensure the practical convergence of the method on a wider class of behaviors and
interface types, a relaxation step is introduced after the linear stage:

Sp+1 € MUSp+1 + (1 - /J)Sn, (2)

where u € [0, 1] is the relaxation parameter, generally taken to be 0.8 [19].

In order to check the convergence of the LATIN algorithm, one can build LATIN convergence indicators based on
the distance between two consecutive solutions belonging to each of the two manifolds. The classical convergence
indicator adopted, introduced in [19], is the LATIN indicator:

— &P
= /7 L lse ”# , wnhu&m2=bf (kW3 + k™' F1)dS dt. A3)
5 2e(lIsell? + 18£1%) 89 x[0,T]

The LATIN indicator characterizes the global distance (i.e., in space and time) between the solution of the linear stage
and the one belonging to the local stage for both displacements and interface forces, and is evaluated accounting for
the whole set of interfaces. When the solution converges to Sex,ct, the two consecutive iterates merge and the indicator
tends to zero.

If the exact solution Sex,e¢ Of the problem is available, one can compare the evolution of the LATIN indicator n
with reference solutions errors in terms of interface displacements or interface forces, defined as follows:

2 2

2E ”EE - EE,exact”Z 2E ”EE - EE,exact”Z
> nd np = 5
2E ”EE,exact'lZ 2E ”EE,exactHZ

nw = ,mmmﬁif [C2dSdr. )
0Qpx[0,T]

The LATIN indicator (Eq. (3)) gives an evaluation of the convergence of the problem in a global manner in space and
time for all the possible domains and interfaces. It is clear that such a global convergence indicator does not guarantee
that the solution has locally converged in space and time. For this reason, one could be also interested in looking for
the error at a specific time value ¢ by means of a LATIN time indicator 7;:

YelIse(®) = 8e(lg,

3 2eUse@lg, + 18I,

= . with [Ise(0)li3g, = f kW50 + k' F p(1)")dS. (5)
0Qr

A more severe convergence indicator has been proposed in [S5]], where a sup-norm over all the interfaces and all
the space-time domain is considered. However, the previous error indicators are dependent on the search direction k,
and therefore, if k varies, for a given value of the error the solution may be significantly different. This point is crucial
for contact problems where an accurate computation of local contact quantities is required, and it will be investigated
in a future work.

3.3. Application on the 1D test problem

In this section, the monoscale LATIN method presented previously will be applied to the one-dimensional test
problem described in Section [2 to highlight strengths of the method and critical points. The benchmark test of
Figure [Ia] will be adopted, with the loadcase 1 of Figure [Ibland the parameters of Table[I] We start with the case
where only one substructure Qf = ©, coincident with the space domain, is considered. A reference search direction
parameter k = ko = ES /L is chosen.

To emphasize the peculiarity of the LATIN to solve the nonlinear problem in a non-incremental manner, the
solution obtained for the frictional contact forces, in space and time, along different iterations of the LATIN is shown
in Figure[8| Already from the first iteration, the algorithm produces a global space-time view of the problem, which
is subsequently refined locally along the iterations. Figure [9a|shows the evolution of the LATIN indicator 1 (3)) along
the iterations, compared with the reference errors ny and nr (@). Displacements and interface forces have roughly
the same convergence rate, although, for a fixed number of iterations, the interface forces are less accurate than the
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LATIN iteration 1 LATIN iteration 10 reference solution

friction force [N/m]
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Figure 8: Space-time distribution of frictional forces along some LATIN iterations and reference solution.

displacements, and more critical to make converge. The LATIN indicator, which blends displacements and forces
through the search direction k, presents approximately the same rate of convergence as 1y and 7, and an accuracy
for a fixed number of iterations that lies in between the two. In Figure [9b]is shown the LATIN time indicator 7, (3))
along the time interval at different iterations. As expected, the error on the different time steps is not uniform.

] 10t —LATIN iteration 5 -
---LATIN iteration 50
e A LATIN iteration 100
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o e]
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o z
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| -
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LATIN iteration time (s)
(a) LATIN indicator 5 and error indicators nw and ng. (b) LATIN time indicator 7;.

Figure 9: LATIN convergence and error indicators.

As mentioned previously, the value of the parameter k that one makes use of in the LATIN algorithm affects
the convergence rate of the problem, but not the result at convergence, which renders the method strongly robust
for whatever complex loading and any number of frictional contact interfaces. The results in Figure [I0a] show how
different values of k affect the convergence rate of the algorithm. The optimal search direction parameter k for
frictional contact problems, which guarantees the best convergence rate, is not known a priori since it depends on
the particular problem. It is crucial also to evaluate the influence of the search direction parameter k on the quality
of a converged solution. In Figure [I0b]is shown a snapshot of the frictional forces distribution at time 7 = 0.5 s of
the problem solved with three different values of the search direction parameter, k = kg = ES/L, k = 0.1 ky and
k = 10 ko, until reaching a LATIN convergence indicator threshold of 7 = 1073, A good convergence indicator should
provide solutions of comparable quality whatever the value of the search direction adopted, for a fixed value of the
convergence threshold. In this case one can notice that for a given convergence threshold 7, the solutions provided
for different values of the search directions are quite different. In particular, the error concerns mostly the accurate
identification of the sticking-sliding transition zones. The issue of proposing a convergence indicator independent
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from k will be addressed in a later article.
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(a) Influence of the search direction parameter k on the convergence rate of the (b) Influence of the search direction parameter k on the solution quality for a given
LATIN method. value of n = 1073,

Figure 10: Influence of the search direction parameter k.
A monostructure case of the problem was considered in previous results. The LATIN, however, naturally leads
to a monoscale domain decomposition method. Let us consider how the solution of the original problem behaves by

partitioning it into substructures, as in Figure[11] Each substructure is assigned the parameters of Table[d] and each
substructure is linked to the neigbouring ones through perfect interfaces.

p
L [ [ T[4 d ]

= Fq
1 2 3 4 5
X
perfect contact force BCs  displacement BCs

interface interface

Figure 11: Substructured 1D test problem into 5 substructures, with respective numbering.

Figure @ shows, in the case of 10 substructures, the frictional forces distribution at time ¢ = 0.5 s along some
iterations of the LATIN. The monoscale nature of the approach allows the exchange of information only between
neighboring substructures. In the first iteration, only the substructure directly subject to the external load sees the effect
of the loading. The influence of the external load is then slowly propagated to the remaining substructures iteration
after iteration, which causes a decrease of the convergence rate with the number of substructures (Figure [12b). This
domain decomposition strategy is clearly not numerically scalable. It will be shown subsequently in Section [5|how
the multiscale strategy allows to address this issue as well.
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Figure 12: Monoscale LATIN-DDM applied to the substructured 1D problem in Figure

4. Solving linear stage problems with PGD

The linear stage of the LATIN algorithm, as described in Section [3] consists in solving independently, for each
substructure Qp, a linear problem on the whole space-time domain. For this reason, it is suitable for model-order
reduction based on the separation of variables. In particular, a priori model reduction based on the PGD [28]] can be
introduced in the linear stage of the LATIN method in order to speed up the computations [19}139,156].

First of all, starting from the initial linear elastic solution sy given by Problem @ let us write the solution S,,;;
at the current iteration as a correction with respect to the previous iteration solution, that is s,+; = s, + 4s. Given
the linearity of the equations pertaining to the manifold AL,O’T], the E-admissibility conditions and the search direction
equation can be equivalently written, for each substructure Qf, in terms of corrections.

Definition 7 (E-admissibility to zero). Asg = (Aug, AW o, Ao, AF ) € S?’T] is said to be E-admissible to zero, that

slo.7]

£ ado- i it verifies:

is Asg €
— the kinematic admissibility to zero: (du,, AW ) € EEEO’aTd]O | ddu, € ‘L{g)’ﬂ such that duglpo, = AW,

— the static admissibility to zero: (dog,4F ) € FE?L]O | Yu*, W) e E?QO

f Ao+ eu)dQdr = f AF . - W*dSdt,
Qpx[0,T] 0Qpx[0,T]

— the constitutive relation: 4o = K : &(duy).
Similarly, the search direction equation E™ at the current iteration n + 1 can be equivalently written as
AFp + kAW -6, =0, (6
with the quantity 6. = EE + kV_VE - (Eg, + kW, ) known at the current iteration, and which depends on the previous

local and linear stage. By taking into account kinematic and static admissibility to zero and the constitutive relation,
the equivalent problem in terms of corrections to be solved at the linear stage is the following linear problem:
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Problem 8. Find (du,,4W,) € EX'1) such that, V(u*, W*) € E}7/

f s(duy) : K : e(u")dQds = f AF - W*dSd,
Qpx[0,T] 0Qpx[0,T]

with AF, + kAW, — 6, = 0.

A progressive construction of space-time functions for PGD is classicaly used [28], and consists in looking for a
separated representation solution of Problem [§]for the corrections of forces and displacements, that is

Au, = Z(X)A(1) on Qg X [0,T], AW, = Z(x)A(r) and AF . = G(x)y(1) on 8Qg X [0, T], 7

where A,y € J = L2 (0.7] and time functions of Au, and AW . are taken equal for kinematic admissibility. By injecting
the separated representatlons in Probleml 8l and by maklng use of trial functions u* = z*A+zA" and W* = Z"A+ZA*

belonging to E%7]  one obtains the following two conditions to be satisfied in order for the separated representations

E.: dO’
() to be admissible:
Yi1*e 9, /l/l*dtf &) K : e(x)dR = z///l*dtf G- Zds, ®)
[0,T] Q B [0,7] 0Qx
V(" Z") € Egad0, f &(2) : K : &(z")dQ A2dt = f G-7Z'dS f Aydt. )
QE [0,T] 0Qk [0,T]

In Eq. (9), the space Eg a0 is the space of kinematic admissibility to zero for functions not depending on time, such
as space modes z, Z and G. Similarly, in the following, Sg .40 will indicate the E-admissibility to zero for space
modes (see Definition [7). From Eq. (), the arbitrary of A1* enables one to say that, up to a multiplicative constant,
Y(t) = A1), Yt € [0, T]. On the other hand, from Eq. (9), the following admissibility condition between space modes
of forces and displacements holds:

Y(z*, Z") € Eg 40, f

&(2) : K : &(z")dQ = f G-Z'dS. (10)
Qp

These two conditions (i.e., time modes being equal and space modes verifying condition (T0)) have to be satisfied
by the space and time modes of the separated representation of the current linear stage to belong to the admissible
space ALO’T] of the LATIN algorithm. However, with such an admissible separated representation, the search direction
equation (6), rewritten as (G + kZ)A — 6, = 0, cannot be strictly verified since §,, is not in a separated format.

4.1. Finding a new pair of modes

The admissibility condition of Eq. (I0) guarantees that the separated representation lies in the admissible space
A[dO’T]. However, the search direction can be verified only in a weak sense:

Problem 9 (enrichment stage). Find (z,Z,G) € Sg .40 and A € J minimizing the error in search direction

Z.GH=arg __min |G +kDA- b, (1n
(G.Z,D)ESEaa0XT
and satisfying the admissibility condition of Eq. (TI0), with ||D||% = f ?dSdr.
0QpX[0,T]

In order to solve the above defined problem, an auxiliary mixed space mode, defined on the boundary 0Qg, is
introduced [35]:
L:=G+kZ 12)

Subsequently, the minimization problem of Eq. (TT)) is solved for L and A with a fixed point iterative strategy, shown in
Algorithm E], where we arbitrarily choose to normalize space modes. The first step consists in computing L knowing
A from the previous iteration. Then, the second step consists in updating A knowing L from the first step. After few
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iterations (two or three are usually enough), L and A are no more significantly updated and the process is stopped
[28]. Then, by making use of admissibility condition (I0), one can retrieve the admissible z, Z and G space modes

from L. Therefore, ¢, is approximated as ¢, = EE + kEE —(Egp +kW,p + Zi;l L, A), and solution fields, which

Algorithm 1: Enrichment stage: new pair of PGD modes
M initialization: A(¢) = 1
for n = 1 to ny,, do
— compute space mode: L = fo Pard 0,4 dt/ fo 1] A% de
— compute time mode: A = f d,-LdS / f L*dS
—normalize space mode: L « L/ ||L||
— amplify time mode: A « A||L||

o . . . 1 1
are admissible, can be written in a separated representation as u, = u, p + Zf; A Wi Z’” Z, A and

Fp=Fy; + Zf;l G, A, with p + 1 being the current PGD basis size after the enrichment stage.

The minimization problem (TT), since the substructure is linear and search directions only concern interface quan-
tities, is defined in space on the substructure boundary. When generating new modes the most costly part concerns
the generation of space modes, due to the admissibility condition (I0), which requires the resolution of a problem in
space of the size of the substructure. For this reason, prior to adding a new pair of modes in the enrichment stage, if
a given basis of p modes {L,, /lk}le is available, a preliminary updating of time modes can be performed by keeping
fixed the space modes, as shown in Problem[I0] The updating stage consists in a cheap projection onto the current
PGD basis and, since space modes are fixed (i.e., they are already admissible), there is no need to verify admissibility
condition for the p space modes.

Problem 10 (preliminary updating stage). Find A, € J, k = 1,..., p minimizing the error in search direction

A}, = arg min || X5 LAA — 6,413, (13)
ANeT

and subsequently update time modes {A},_, — {4}, + {44},

The updating stage largely improves the quality of the PGD representation [28]. After the updating stage, if the
quality of the representation is not satisfactory, one proceeds to add a new pair (or more) of modes. This step is
crucial. In fact, for a better efficiency of the method, it is necessary to create the minimum amount of modes and to
avoid the creation of redundant and unnecessary ones, as shown in the next Section[@

Remark 11. Since nonlinearities are confined only to interfaces, search directions have been introduced only for
interface quantities, resulting into a simple interface residual minimization for the generation of a new mode. For
more general nonlinear problems where nonlinearities can also occur within the substructures, search directions have
to be introduced for quantities defined on both interfaces and substructures, resulting into a more involved formulation.
For material nonlinearities, interested readers can refer to [41} 153} 57].

4.2. Controlling the size and quality of the PGD basis

A generally adopted enrichment criterion (e.g., in [35]]) used to decide whether to add or not a new pair of modes
is the one based on the LATIN indicator stagnation. Given the LATIN indicator 7 at the previous iteration, and 7 after
the updating stage (Problem[10), a new pair of modes is added if the following stagnation criterion is satisfied:

6 = ? < 6. (14)

However, this indicator is poorly suited for frictional contact problems. In fact, as shown in Figure [10a] the conver-
gence rate of the LATIN is mainly dependent on the search direction parameter k. Since in the presented formulation
admissibility is exactly verified and only the search direction is approximated (see Problem [9), after a certain point
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adding new modes will not improve the convergence rate, which is driven by k, and new useless modes would be
consistently added. A more appropriate criterion is naturally based on the definition of the separated representation
itself, according to Problem @ In fact, what one approximates is the quantity ¢, at every iteration (see Eq. (II))). For
this reason, it is natural to choose a criterion based on the accuracy of the approximated search direction:

16 — Sl
[ (>
where 65 = EE + kEE - (Eop +kW,p + Zle L, (Ax + 44;) is the approximation of the search direction after the
updating stage, by keeping constant the space basis {Lk}le. In both cases, a threshold of 0.1 is commonly adopted.
In the 6-criterion (T4)), this corresponds to a decrease of the LATIN indicator by a factor less than 10%, while, in the
&-criterion (I3)), it corresponds to an approximation of the search direction with a relative error more than 10%.

A reasonable enrichment criterion is crucial for the PGD basis not to grow uncontrollably in size, loosing effec-
tiveness of the method. For highly non-regular phenomena like frictional contact problems, it is challenging to create
progressively a ROB of the smallest size possible to ensure a given accuracy, that is to be close to the SVD basis of
the final solution. The progressively found PGD modes may be highly redundant even when performing the updating
stage, and the basis size may increase with modes which add little to no contribution to the representation accuracy.
This problem can be palliated, for example, by systematically performing a Gram—Schmidt orthonormalization for
the space modes. However, even after orthonormalization of space modes, redundancy may still occur on time modes
[58]]. An approach that can be adopted is to perform a full SVD computation of the solution after each enrichment
step, and to keep the most significant modes as basis for the next iteration. Less expensive methods could make use of
SVD updating techniques [59}160] or randomized SVD [58]. However, these methods aim at computing precisely the
SVD of the solution throughout the iterations of the LATIN, with an effort which may be not worthwhile knowing that
the solution may be far from convergence. In [35], in the context of frictional contact problems, an iterative sorting
and downsizing algorithm has been proposed to decrease the size of the PGD basis throughout the LATIN iterations,
while maintaining a given quality of the solution. At convergence, the algorithm is equivalent to an SVD, however,
since it is not required to compute exactly the SVD at each LATIN iteration, few iterations (1 or 2) of the algorithm
at each LATIN iteration are sufficient for the purpose. Applied in the case of the monoscale LATIN method without
domain decomposition, the downsizing algorithm is indeed effective in controlling the size and quality of the reduced
basis. However, it will be shown throughout this paper (Section [6) that it may still be too costly and that, with a
proper choice of the enrichment criterion and taking into account the multiscale aspects of contact problems through
a multiscale approach based on DDM, it is possible to create PGD reduced bases of controlled size and good quality
without resorting to SVD-like techniques.

4.3. Application on the 1D test problem

Here, the LATIN-PGD strategy is applied to the resolution of the benchmark problem illustrated Figure [Ia] with
the loadcase 1 of Figure [Ib] and the parameters of Table [l The monostructure case 2 = Q without DDM is
considered. The goal is to study deeply the PGD only.

First, the LATIN-PGD algorithm with the 8 enrichment criterion (I4), with 6§, = 0.1, is considered. A first
strategy consists in adding a new pair of modes any time the enrichment criterion (I4) is satisfied after the updating
stage (LATIN-PGD(6)), without making use of sorting algorithms for the PGD basis. A second strategy consists
in performing also a Gram—Schmidt orthonormalization of the space modes any time a new pair of modes is added
(LATIN-PGD(6)+GS), and a third one consists in performing an additional downsizing stage (see for
the PGD basis at each LATIN iteration (LATIN-PGD(6)+D). In the LATIN-PGD(0)+D strategy, a single iteration of
the downsizing algorithm presented in [33] is performed at each LATIN iteration, and a threshold € = 10~ is chosen
for the mode rejection. The different strategies investigated throughout the paper and their properties are reported in
Table 2] We consider to add at most one pair of modes after the updating stage. In fact, more pairs of modes can be
added at each LATIN iteration, however, adding more modes leads to increase the PGD basis with unnecessary modes
when far from convergence.

Figure [13b] shows the evolution of the PGD basis size along the LATIN iterations by making use of the three
different strategies described previously. Regarding the LATIN-PGD(6), the basis size largerly exceeds the original
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LATIN-PGD strategies

Strategy

ROB enrichment
criterion

ROB sorting algorithm

Comments

full LATIN

no PGD

LATIN-PGD(6)

f-criterion (14)

no ROB sorting algorithm

LATIN-PGD(6)+GS

6-criterion (14)

Gram-Schmidt

only space modes are sorted

LATIN-PGD(6)+D

f-criterion (14)

downsizing (Appendix B)

low-cost SVD algorithm [335]]

LATIN-PGD(¢)

&-criterion (15)

no ROB sorting algorithm

LATIN-PGD(£)+D

&-criterion (I3))

downsizing (Appendix B)

low-cost SVD algorithm [335]]

Table 2: Different LATIN-PGD strategies investigated throughout the paper.

size of the problem (considering the problem size in space variable, a maximum of 50 modes is required for an exact
evaluation of the quantities, see Figure[5a). Given the particular behavior of the LATIN convergence indicator, with
a high rate in the first iterations (almost independent from the search direction parameter k) and a lower rate in the
subsequent iterations (controlled by the value of k), the #-criterion generates less modes in the first part and more
modes in the second one. However, since the convergence rate in this second part is driven by the search direction
parameter k, most of the generated modes will be useless.

The curve in Figure [I3b|of the LATIN-PGD(6)+D confirms the previous hypothesis on the useless modes gener-
ated. In fact, the downsizing algorithm does not reduce the size of the basis in the first part of the LATIN iterations,
while, after a certain point (approximately after iteration 40, where the LATIN indicator curve changes slope), most of
the newly added modes are rejected. The final size of the downsized basis lays between 30 and 40 modes, which is the
size required for the contact quantites to be accurately represented (see Figure [5a). Finally, the LATIN-PGD(6)+GS
shows to be uneffective to control the basis size, as it just limits the basis size not to exceed the size of the problem.

Figure @] shows the behaviour of the LATIN indicator for the full LATIN (i.e., without PGD) and the different
LATIN-PGD(6) strategies. The high slope initial convergence is oscillating and not well captured, while the second
part of the curve, where a new mode is generated almost systematically, is more uniform and tends to the full LATIN
curve. The convergence curves of the different LATIN-PGD(0) strategies described are in practice coincident, since
the goal of ROB sorting methods is to control the size of the progressively built PGD basis without losing appreciable
accuracy.
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(b) Basis size along the LATIN iterations of the LATIN-PGD(#), LATIN-
PGD(6)+GS and LATIN-PGD(0)+D.

(a) LATIN convergence indicator for full LATIN, LATIN-PGD(¢), LATIN-
PGD(6)+GS and LATIN-PGD(#)+D.

Figure 13: Convergence curves and PGD basis analysis for the LATIN-PGD(6) strategies.
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The behavior of the PGD basis along the iterations with the LATIN-PGD(8)+D can be easily visualized by making
use of the Modal Assurance Criterion (MAC) diagrams between the PGD modes and the SVD modes [61]]. Shortly,
given two sets of vectors of the same dimension {X,»}ip:l and {Y.f}?:l , the MAC matrix M is defined as:

X[ Y 0,1 16

i = e <O 1o

M;; measures the correlation between mode X; and mode Y;. M;; = 1 means that the modes are collinear, that is

highly correlated, otherwise M;; = 0 means that the modes are orthogonal, that is highly uncorrelated. At every

LATIN iteration n, a full SVD of the linear stage solution F/, + kW for the mixed quantity is computed and compared
to downsized PGD modes {L,} (I2Z) by making use of the MAC criterion definition (I6).

Figure [14] displays the MAC diagram for the auxiliary mixed modes. The downsizing algorithm provides along
the iterations a quasi-optimal basis correlated to the SVD (as shown in [35]]). The resultant correlation for downsized
space modes {Z,} and {G, }, not shown here, obtained from the admissibility condition of Eq. (I0), is still good but not
as accurate as for {L,}.

Nevertheless, the PGD strategy is based on the approximation of the search direction through space modes {L,},
from which the admissible space modes {Z,} and {G,} are obtained through the solution of a problem in space at
the substructure level. Although applying downsizing to the {L,} basis is cheap, after the process, to compute the
downsized space basis {Z,} and {G,} of displacements and frictional forces, equation (I0) must be solved again for
all the basis and this step may be expensive, as it will be shown on a more complicated 2D case in Section [6] It is
therefore clear that the most important thing is to choose a relevant enrichment criterion, and a proper strategy, which
enable to generate relevant modes and reduce the generation of redundant and useless ones.
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Figure 14: MAC diagrams for auxiliary space modes {L,} along the iterations of the LATIN method.

Let us consider now the LATIN-PGD(¢) strategy by making use of the & criterion (I3)), with & = 0.1, without
resorting to orthonormalization or downsizing. Figure [I5a]shows the LATIN-PGD(¢) strategy convergence indicator
and basis size along the LATIN iterations. In this case, the evolution of the PGD basis along the iterations is different
from the LATIN-PGD(6#). More modes are created in the first iterations, where the LATIN convergence indicator rate
is higher and there is a large variation in the solution from one iteration to another. Afterwards, the contact quantities
converge locally slowly and for several LATIN iterations there is no need to enrich the ROB. The LATIN indicator
behaves accordingly. A perfect match in the first part of the convergence curve with respect to the full LATIN indicator,
and a very good match in the second part. Remarkably, the size of the PGD basis remains limited, and the final size
is in the range of the one obtained previously by means of the LATIN-PGD(8)+D strategy, which corresponds to the
range in which the contact forces are accurately approximated (Figure[5a)). The progressively built PGD basis, in this
case, is not correlated with the SVD, as it can be seen from Figurefor the auxiliary mixed modes {L, }. However,
it can be noticed that the very first modes have a good correspondence with the first structural modes of the SVD,
while subsequent ones, more related to local corrections, are more dispersed and harder to capture optimally. This
is because, in the analyzed case, a monostructure case Qr =  was considered and, as seen in Section |2} higher-
order modes carry localized corrections in different areas of the structure according to sticking/sliding conditions. As
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suggested in [35]], a multiscale strategy may be useful in this context, with the coarse/macroscale problem quickly
capturing the solution at the global scale, and the model-order reduction technique (here PGD) then being able to
capture microscopic/local variations in the solution more effectively. This will be illustrated in the next section, where
a multiscale strategy based on DDM is proposed within the framework of the LATIN method.
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(a) LATIN convergence indicator and the PGD basis size throughout the iterations  (b) MAC correlation matrix for auxiliary mixed modes {L, } for the LATIN-PGD(¢)
for the LATIN-PGD(¢) strategy. strategy.

Figure 15: Convergence curve and PGD basis analysis for the LATIN-PGD(¢) strategy.

5. Introduction of a multiscale strategy

In this section, the main features of the multiscale strategy are recalled, for further details the interested reader can
refer to [23, 56]. The multiscale strategy is introduced in space at the interface level, where the interface unknowns
(interface displacements and forces) are additively split into (] = (O™ + 0" (prior to any discretization), with O being
the set of macroscopic quantities and L1 the complementary set of microscopic ones. The macroscale is defined by
the characteristic length of the interfaces, which is a priori greater than the discretization on the microscale. Let us
consider an interface I'gg, one may freely choose the spaces TIE%T]’M and (W‘[EO;ET,]’M in which the macroforces and
macrodisplacements are sought, provided that these spaces are compatible with the work bilinear form [22} 56]

(W, F) - F-Wdsdr. a7
TeeX[0,T]
Once these spaces are chosen, the macroquantities are provided by:

Definition 12. The macroquantities (WY, F) € (Wg)g]’M X ?}E%,T]’M of (W,F) € ‘W‘[E()g] X 7:1;E%/T] are defined by the

following expressions:

wM c (Wg)g:],M’ f (EM _ w) . EM*det — O, VEM* c ¢££%’T],M’
T'gerx[0,T]

FM e FloTM, f (FM — F)- WM*dSdr = 0, YW"* € WM,
T x[0,T]

Consequently, the microquantities are given by F" = F — FM and W" = W — W™, and they are uncoupled in the
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following energetic sense:

f F-WwdSdr = f FM . wMdsdr + f F™. wmdSdr.
T'gerX[0,T] TegrX[0,T1] g X[0,T1]

This partitioning, extended to the whole set of interfaces, leads to spaces W O.T1LM Ap/0.1hm gl0.TLM (0. ]m
Usually one chooses for FM and W¥ affine functions in space variable over Iz, with the only constraint being

for the space of the macrodisplacements to include the rigid body modes over 02, so that the multiscale approach is

numerically scalable [22,162]]. Finally, F* and W" can be written over I'gp as OM = 377 ( frEE, O - eM(x)dS)eM (x).

A classical choice of affine macrobasis functions {QM (x)}i=1,..4 is represented in Figure [16|for a 2D straight interface,
it contains the rigid body motions of the interface (two translations and rotation) and the linear elongation of the
interface [22162]. These quantities are mean values with regard to space and enable to represent in particular interface

rigid body modes and resultants and moments at the interfaces.

1 el (x) ey’ (x)
=)

L Y A,

M M
es (x) ey (x)
3 —
A T T ——« >—>—>
|+
Figure 16: Affine macrobasis {Q[‘W@)}iﬂ,---,“ (ny = 4) for an interface I'ggr.

The key feature of the multiscale strategy is that the equilibrium conditions at the interfaces are required to be
verified a priori in a macrosense [22,|56]. The macroforces must be balanced at the interfaces, including the interfaces
with boundary conditions. The corresponding space is designated by ﬂg’TJ’M , and represents the admissibility of F/:

FOTIM {EM e FOTIM | YE ¢ E, VE €V, FY + FY = Q}. (18)
5.1. The multiscale strategy within the LATIN framework

With reference to the substructured Problem [2] the partial verification of the transmission conditions a priori at
the interfaces (I8)) leads now to the following partitioning in the LATIN framework:

— the E-admissibility of sg, VE € E : sp € Sg{’aTd] (Definition |
A[O‘T]:
d

— the admissibility of F¥ : FM e 7107 (T8)

TO71: | - the constitutive behavior of the interfaces (T))

The local stage remains unchanged from the one described in Problem (3] One has to solve a local problem in space
and time for the whole set of interfaces based on known quantities coming from the linear stage. Conversely, in the
linear stage, now the a priori balance of the macroforces (T8) must be enforced. The admissibility of F¥ € ?a[g’T]’M is

enforced on the search direction equation E~ by means of a Lagrange multiplier EM = {ﬁg} EcE [56]:

VE e F0T N f k" (Fy—Fp)+ (W, - Wp)) - FrdSde = ) f Wy - Fpdsd,  (19)
FeR Y 0Qex[0.T] FeR Y 0Qex[0,T]
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= M [0.71.M
vt e Wit Z f

WY FodSdr = Z f L F,dSdr. (20)
ok JoQex10.T) oh J 02N, 0x(0, T]
The Lagrange multiplier W w belongs to the space "W[0 TIM of macrodisplacements which are continuous at the inter-
faces and equal to zero on 9;Q. Eq. (I9) represents the search direction in a weak sense with enforced admissibility
of macroforces, and Eq. (20) expresses the admissibility of macroforces in a weak sense. The admissibility of the
macroforces ensures the propagation of global information throughout the whole set of substructures across the inter-
faces. The strategy is numerically scalable provided that the macroforces can represent the resultants and moments at
the interfaces, which is ensured with an affine macrobasis (Figure @]) The linear stage can now be reformulated as
follows:

Problem 13 (modified linear stage). Find s = {Sg}geg € AEZO’T] verifying, Vx € Qg and Vr € [0, T7],

— the E-admissibility of sg: Sg € Sgad
— the modified search direction (T9)
— the admissibility of macroforces (20)

Taking into account the E-admissibility and the modified search direction, the following linear problem, called
microproblem, has now to be solved for each substructure:

Problem 14 (microproblem on a substructure). Find (ug, W) € E[0 T] such that, V(u*, W*) € E?;‘Td],
f s(uy) : K : g(u*)dQdr + f kW, -W'dSdr =
Qex[0,T] 8QpX[0,T]

f f o, W AQdr + f (Fp + kW, +kWy) - WdSdr,
Qux(o,r] —M% 30, x[0.T1]

with Fp = F, +k(W, — W, + W)
The solution of Problem@ associated with substructure Qg, depends only on the known quantities ]_‘d 2 Sg and
the unknown Lagrange multiplier V_V}g over 0Qg. Since the problem is linear, the following proposition holds:

Proposition 15. If K and k are symmetric and positive definite, then Problem [I4] defined over 2 and its boundary
0Qg, has a unique solution such that _ _
FY = LEW) + Fi . @0

oM 0.T1.M =M A
where W € "W‘[E MM and Fj, , depends on ]_‘deE and Sg.

L? is a linear operator from ‘W‘[EO’T]’M onto F, E[O’T]’M. It can be interpreted as a homogenized behavior operator over
substructure 2 which ensures the coupling between the microscale and the macroscale. Lg is in practice evaluated

by solving a set of microproblems for a set of loading cases EZ’ with LI o and 8§ set to zero. If k is constant (and
E

since K is the constant Hookean operator for linear elasticity), Lg can be precomputed offline once and for all before

starting the iterative process. Since E? depends on only a few interface kinematic parameters, the calculation of L
is obtained at relatively low cost [56] 57]].

5.1.1. The macroproblem over Q

The Lagrange multiplier W w {WM }eeg 1s found by solving a macroproblem (or coarse scale problem) over all
the set of interfaces. The weak form of the static admissibility of macroforces (20) and the relatlon (21) lead to the
following displacement formulation of the macroproblem in terms of the Lagrange multiplier W w

Problem 16 (macroproblem). Find W" = (W}/}zeg € WIS (M which verifies, YW"* € WG () M,

Z f Wi (LEWY) + EyY pdSdr = Z f WM F dsdr. (22)
fon Joex[0T1 fog J02pU0, (0.7
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The problem has a unique solution if mes(9,2) # 0 [57].

The Lagrange multiplier WM given by the macroproblem is equal to zero at convergence of the LATIN algorithm,
when the balance of interface forces is verified. In practice, it tends to zero quickly in the first iterations, where the

macroquantities are rapidly made converge. The macroproblem has a size in space of ;- . n;}, with n being

the total number of interfaces and n;’} being the number of macroscopic kinematic unknowns (translations, rotations,
extensions) for the interface i. Such kinematics belong to specific classes of continua with affine microstructure [[63]].

Remark 17. The macroscale has been introduced only in the space variable, while no macroscale was considered in
time variable. Defining macroquantities for both space and time variables is addressed in [56]. When the strategy is
multiscale only in space, the macroproblem must be solved at each time interval of the fine time partition. When the
macroproblem becomes very large, this step can become prohibitive in the case of evolution problems with a lot of
time steps. Introducing a macroscale in time may then be necessary [S6], and possibly model-order reduction to solve
the macroproblem [38]].

5.1.2. The final algorithm

The final algorithm of the LATIN-based multiscale DDM is shown in Algorithm [2] It is an extension of the
strategy presented in Section [3|for the monoscale case. After the local stage (Problem 3)), local stage quantities § are
used as boundary loadings to solve a problem at the substructure scale. This is called microproblem 1, coincident with
the linear stage problem to be solved in the monoscale case (Problem [5). In the multiscale approach, after solving
microproblem 1 for each substructure, the macrocomponent F of the interface forces are extracted and used to solve
the macroproblem (Problem and to find the Lagrange multiplier W? of each interface, which is used as boundary
loading to solve the microproblem 2. Thus, the linear stage solution is the sum of the solutions of microproblem 1 and
microproblem 2.

5.2. Resolution of microproblems with PGD

The introduction of PGD in the multiscale approach to solve the two microproblems is entirely analogous to what
was presented in Section [] for the monoscale case. Starting from an admissible initial solution sy (Problem [6)),
the current iteration solution can be expressed as a correction with respect to the previous one: s,,; = s, + 4s.
Therefore, each microproblem of the multiscale strategy can be expressed in terms of corrections as in Problem 8] with
Op, = F + kW - (Fg, + kW, ) for microproblem 1 and ¢, , = kW for microproblem 2. The two microproblems
share the same PGD basis and the procedure is analogous as the one descnbed in Section[d] with the only difference
that now it is applied to two microproblems. In microproblem 1, an updating of the time modes is operated with the
given space modes fixed with Problem[10]and, if the ¢ enrichment criterion (I3)) is not satisfied, a new pair of modes
is added with Algorithm (] Once the first microproblem is solved for each substructure, the macroforces are extracted
and the Lagrange multipliers W wM {Wg }geg are found through the resolution of the macroproblem (Problem |16
Then, one proceeds to solve microproblem 2 by updating the current time modes and eventually adding a new pair of
modes if the enrichment criterion is not satisfied.

At the start of the multiscale strategy, convergence is mainly driven by the macroquantities, which converge rapidly
in the first iterations. Therefore, it is reasonable to require the macroquantities to be sufficiently well approximated
in the early stages of the iterative process, in order to take full advantage of the multiscale strategy. We recall that
each microproblem 2 has as a loading the Lagrange multiplier W W on the boundary 0Qg, and that W belongs to
a finite-dimensional space of small size. Therefore, a small ﬁnlte number of modes is sufficient to precnsely solve
microproblem 2 over all the iterations. For this reason, it is reasonable to require a bit more strict enrichment criterion
threshold &, for microproblem 2 (e.g., & = 0.01), and a bit coarser enrichment criterion threshold for microproblem
1 (e.g., é0,1 = 0.1). Consequently, at the beginning of the iterations, the algorithm tends to generate systematically
more modes arising from microproblem 2, so that macroquantities converge quickly and accurately. Thereafter, once
a sufficient basis has been formed for the macroquantities, in the following iterations most of the generated modes
will be generated from microproblem 1, which converges more slowly and brings more localized corrections.

It is clear that with such a strategy, based on the physics of the problem, the algorithm naturally tends to generate
macro/coarse modes due to the macroproblem and microproblem 2, and bring local refinements with modes generated
from microproblem 1. Orthonormality criteria and sorting and downsizing methods are therefore not very natural in
this case since the two microproblems already reflect corrections from different scales, as shown in the following.
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Algorithm 2: Multiscale LATIN-DDM

B preliminary computations
for each substructure Qr do
— compute the homogenized operator Lg
| - initialize admissible solution so z (Problem|[6)
Bl LATIN iterations
for n = 1 to ny.x do
B local stage: find §,,, € [0
for each interface I'rp do

L — solve interface Problemto find §¢ = (EE, EE) (see|Appendix A)

—set8,.12 = {8e}eek

B linear stage: find s, € AE?’T]
B microproblem 1
for each substructure Qf do

— find (&, ,» W, ) € E®T) such that, Y(u', W*) € ERT],

f &lii, )+ K @ e(u")dQdr + f kW, - W*dSdr =
Qpx[0,T] ’ 3Qpx[0,T] ’

L J_fd‘QE -yt dQdr + f (F,+kW,)- WdSds
£X[0,T] 0Qpx[0.T]

— find EE’d through the search direction E™: EE’d - EE + k(EE,d - EE) =0
— compute macroforces Eg p

—setSyy1 = {SpaleeE
if multiscale then
B macroproblem: _
—find WY = (W)} per € WISTM such that, vW"* e ST

d,0 ad0
f Wi (LEWY) + Fy dSdr = Z W FMasdr
EeE Y 02eX[0.T] Fof Y 02pUd,2X[0,T]

B microproblem 2
for each substructure Qf do

—find (i1, W,) € EXT! such that, V(u*, W*) € ERT),

f &(iy) © K : e(u’)dQdr + f kW, - WdSdr = f kWY - wrdsdr
Qpx[0,T] 0Qpx[0,T] 0QEx[0,T]

| —find F  through the search direction E™: F, gt k(EE - ng )=0
—set 8,41 = {SplEeE

L~ update Sn+1 € Spy1 t §n-¢—1

— apply relaxation: s,;; < us,+1 + (1 — p)s,

| — compute error indicator n (3)

5.3. Application to the test problem

The multiscale strategy is applied here to the 1D test problem. Substructured cases are considered, as in Figure[T1]
In Figure is shown, for different number of substructures, the behavior of the LATIN indicator 7 in the monoscale
version and in the multiscale one, without resorting to PGD. The multiscale approach allows for a considerable
convergence gain in the first iterations, where macroquantities are rapidly converged. Subsequently, contact quantities
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are converged to the local microlevel. In this second stage, the monoscale and multiscale approach exhibit roughly the
same convergence rate since both of them are making converge the quantities at the microlevel, and the convergence
rate at the microlevel is mainly driven by the search direction k. To highlight the effect of the multiscale strategy

100 K n° substructures
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- - ‘multi 30 ~—=--mono 30
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Figure 17: Monoscale and multiscale LATIN convergence indicator for different number of substructures.

on the solution of the problem, in Figure |1;8| is shown, in the case of 10 substructures, the solution for the frictional
forces after 10 iterations of the LATIN method for the monoscale approach and the multiscale one, compared to the
reference solution at time 7 = 0.5 s (Figure[I8a) and 7 = 1 s (Figure[I8b). Already after few iterations, the multiscale
approach succeeds in capturing the global behavior of the problem. Subsequently, further iterations are needed to
make converge the microquantities, especially at the sticking-sliding discontinuity zones which need accurate local
refinements. The monoscale approach, on the other hand, turns out to be far from the reference solution, with the
loading boundary condition still not fully propagated along all the substructures.

t=0.5s t=1s
—reference solution —reference solution
1500 | = - ‘multiscale 1 1500 [ - - ‘multiscale 7
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(a) Frictional forces distribution at time ¢ = 0.5 s. (b) Frictional forces distribution at time ¢ = 1 s.

Figure 18: Frictional forces distribution after 10 iterations of the full LATIN (without PGD) for the monoscale and the multiscale approach.

The effect of introducing PGD in the multiscale approach is shown in Figure [I9] By making use of DDM, one
is able to create local reduced bases per substructure and enrich the basis in the areas with more complex contact
conditions, as exemplified in Figure d In Figure [19a] in the case of 5 substructures, is shown the evolution of the
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PGD basis size for different substructures. An enrichment threshold &, ; = 0.1 for microproblem 1, and &, = 0.01
for microproblem 2 was adopted. Different substructures require a different number of modes. For substructure 1,
constantly under sticking conditions, the macrobasis is sufficient to capture the solution. Subsequent substructures, on
the other hand, require more modes based on the complexity of the sticking-sliding conditions. What is important to
remark is that the PGD basis remains in fact limited in size and, in addition, the MAC diagram in Figure @] shows
that the first structural modes are roughly well captured by the macroproblem.

0 T T T 25
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(a) LATIN indicator and PGD basis size per substructure. (b) MAC diagram for mixed modes {L,} of substructure 5.

Figure 19: Convergence curve and PGD basis analysis for the multiscale LATIN-PGD(¢) strategy.

6. A 2D numerical application

6.1. Problem setting and analysis of the solution

In this section, the multiscale strategy is applied to the two-dimensional quasistatic frictional contact problem
depicted in Figure 20a] The problem consists of a group of three clamped beams subjected to a constant external
pressure p and to time-dependent oscillating traction and shear (which causes bending) loads in correspondence of
the free side. Each beam is decomposed internally into 6 substructures, and they are in contact with each other
through frictional contact interfaces. The external pressure is constant and equal to 100 MPa, while the external
loads evolution in time is represented in Figure 20b] The parameters of the problem are reported in Table 3] Plain
strain assumptions are considered, and 8-node quadrilateral elements (QUAS) are adopted for the discretization of
the substructures. For the discretization of interface quantities, on the other hand, piecewise constant elements are
adopted while satisfying the LBB condition [23]]. A reference search direction parameter k = E/L; was chosen for
each interface, with L, being the length of the interface. The test case can be seen as representative of structures
with multiple contact interfaces subjected to oscillating traction and bending loads, such as wire ropes for offshore
applications [2, 37]. These kind of structures require an accurate computation of local contact quantities for fretting
fatigue life prediction [|64].

The reference solution is here obtained with the full multiscale LATIN method, for a convergence indicator value
of n = 1.5- 1073, In Figure 22{is shown the trend of the tangential frictional forces and their macroscopic part at time
instant A (¢ = 0.5 s) along the contact interface I, highlighted in Figure 20a] which goes along the entire length of
the structure. As it can be seen, the affine macroscopic part roughly captures the trend of forces on each interface. In
Figure@]is shown the relative sliding along I',, at time instants A (f = 0.5 s) and B ( = 1.5 s). In A, where minimum
bending occurs, almost the entire structure results in a sticking state. The sliding is confined near the clamped bound-
ary, between substructures 1 and 7. In B, corresponding to maximum bending, on the other hand, the whole contact
interface turns out to be in a sliding state. In this case, the sliding propagates through the substructures. Sliding fronts
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Figure 20: Two-dimensional problem.

Parameters of the 2D problem

Young modulus, E 130,000 MPa
Poisson ratio, v 0.2

structure size Ly, L, 180, 90 mm
number of elements per substructure 20 x 20 QUAS
number of DOFs per substructure, N, 2562

number of time steps, N; 1000

time interval, [0, T'] [0, 10 s]
friction coefficient, f 0.3

pressure load, p 100 MPa

Table 3: Parameters for the two-dimensional problem.

propagating through all the substructures can affect the relevance of the coarse scale Problem [T6] The evolution of
the LATIN indicator in Figure 21] shows that there is in fact an initial gain in convergence, where boundary condi-
tions and macroquantities are propagated throughout the whole structure. However, thereafter the convergence rate
turns out to be comparable to the monoscale one. Since the macroproblem is based on the balance of macroforces,
in a problem where a large sliding/discontinuity front propagates through the substructures, the macroproblem after
a certain point brings few contribution on the solution of the contact problem locally, and iterating more is necessary
[43]144].

The convergence state of the contact quantities coming from the linear and local stage (normal and tangential
forces and displacements) along the iterations of the multiscale full LATIN, at the contact interface /. ;_7 between
substructures 1 and 7, is shown in Figure |2_3| for the time instant A of the loading. After 100 iterations, and a LATIN
indicator value of 7 = 4 - 107*, the structure results are far from convergence. Regarding contact forces, the quantities
coming from the local stage appear to have already identified the sticking and sliding zones. This means that the
contact status, thanks to the multiscale approach, has converged quickly. As it can be seen in the next iterations,
500 (7 = 8- 107%) and 1000 (n = 1.5 - 107°), the forces from the local stage identify roughly the same sticking-
sliding transition zones. However, the tangential forces of the linear stage turn out to converge very slowly toward
this threshold of sticking-sliding. In contrast, the normal forces result to converge more rapidly. This fact may be due
to the choice of search direction parameter k. Tangential contact and normal contact should require different stiffness
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Figure 23: Relative sliding along the contact interface I'; at time instants A and B.

[55]. In the case of normal contact, under closed gap conditions, the stiffness can be considered as the one of perfect
interfaces. In the case of tangential contact, on the other hand, more prone to slippage, the contact stiffness should be
lowered. As a result, convergence can be very slow in specific areas where sliding occurs. Optimizing and updating
the search direction for this class of problems requires further study and will be covered in a later article.

6.2. Introduction of PGD

6.2.1. Influence of the choice of the PGD enrichment criterion

The introduction of PGD is performed at the substructure level, with the enrichment criterion of Eq. (T3) which
takes into account the approximation on the search direction. Figure 25a]shows the evolution of the LATIN indicator
in the multiscale full LATIN case and in the case of the LATIN-PGD(¢) strategy with different enrichment thresholds.
A very strict enrichment threshold of &y ; = &, = 107 for both microproblems leads the LATIN-PGD(&) convergence
curve to coincide with the full LATIN curve, since at each iteration the search direction is approximated with very
good accuracy. A very coarse enrichment threshold, such as &,; = &2 = 0.5 on both microproblems, on the other
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Figure 24: Convergence state of normal (in red) and tangential (in black) forces and displacements at time instant A for interface I'. 7 through
the LATIN iterations.

hand, leads the solution to stagnate and risk diverging. The initial part of the curve is not properly approximated,
which leads to affect the convergence in the rest of the iterations. By making use of a different enrichment threshold
for the two microproblems, as explained in Section @ that is, a bit more strict for microproblem 2 (¢p, = 0.01),
and a bit coarser for microproblem 1 (£y; = 0.1), leads to a good approximation of the problem. In fact, it is not
important to correctly approximate the search direction at each iteration, as it is useless when the algorithm is still far
from convergence. The important thing is to approximate the problem sufficiently to stay close to the convergence
given by the full LATIN (which, in fact, is the best that can be done with a given search direction k), while trying to
generate as few modes as possible.

In Figure 25b]is shown the evolution of the PGD basis size along the LATIN iterations in two different substruc-
tures for two choices of the enrichment threshold, that is & = &g = 10~* and &o.1 = 0.1, &, = 0.01. The considered
substructures are substructure 7 and substrcture 12. The former is located in the clamped zone, and features edge
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effects that make the contact conditions more difficult to capture. It is therefore expected that a higher number of
modes will be required compared to substructure 12.
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(a) LATIN convergence indicator of full LATIN and LATIN-PGD(¢). (b) PGD basis size along the iterations for the LATIN-PG(¢) strategy.

Figure 25: Convergence curves and PGD basis size for the multiscale LATIN-PGD(¢) strategy.

Both choices systematically generate two pairs of modes, one from each microproblem, in the first iterations,
where the slope of the LATIN curve is higher. Thereafter, in the case with &1 = &, = 107*, only one pair of modes,
coming from microproblem 1, is generated systematically at each iteration for both substructures. In fact, as explained
in Section[5.2] a relevant basis of small size for microproblem 2, related to macroquantities, has been generated in the
first iterations, where macroquantities are quickly made converge. Therefore, after the first iterations, there is no need
for microproblem 2 to generate new modes and the updating of time modes (see Problem [I0) is sufficient. In contrast,
for microproblem 1, related to microquantities, it is necessary to enrich the basis frequently. However, as mentioned
previously, it is not strictly necessary to correctly approximate microproblem 1 from the beginning, since it converges
slowly. Accordingly, with the choice of &} = 0.1 and &, = 0.01, a relevant basis for microproblem 2 is generated in
the first iterations. Thereafter new modes are generated sporadically when needed only for the microproblem 1, thus
reducing the size of the final basis.

The accuracy of the contact quantities for the two enrichment threshold choices described above are shown in Fig-
ure 26| for the contact forces along interface I'.;_7 at time instant A. When the search direction is well approximated,
as in the case of &y = & = 107, the solution coincides in practice with the full LATIN solution at each iteration,
and a large number of modes is required. In the other case, the approximation becomes better as one approaches the
converged solution where the two strategies are indistinguishable. Nevertheless, the difference in the size of the PGD
basis built by the two strategies per substructure, as it can be seen from Figure 25b] is of a factor of 4.

6.2.2. Analysis of the computational cost

It is also crucial to quantify the gain in computational time that adopting PGD brings to the LATIN algorithm,
based on the choices of the enrichment criterion threshold and possible algorithms to control the size and quality
of the progressively built PGD basis. The average computational time (over 100 iterations) of the linear stage of the
LATIN-PGD(¢) and LATIN-PGD(£)+D strategies (see Table E]), with the two choices of enrichment criteria described
previously, is shown in Figure27] Concerning the LATIN-PGD(¢), undoubtedly a criterion that creates fewer PGD
modes is less expensive, and saves up to 40% of the time in this case. Compared with the the full LATIN, the
LATIN-PGD(¢) allows a gain of a factor larger than 10.

In the LATIN-PGD(¢)+D strategy with & = &, = 107*, which leads to the generation of a large number
of modes (see Figure [25b)), the downsizing stage turns out to be very expensive, with the cost associated with the
satisfaction of the admissibility condition (I0) for the separated representation of interface quantities each time the
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Figure 26: Linear stage normal and tangential forces at time instant A for interface I'; 7 for the LATIN-PGD(¢) strategy at two different number
of iterations.

downsizing stage is applied. Its overall computational cost becomes therefore comparable with the cost of the full
LATIN, leading to a very low gain in computational time. Instead, when in the LATIN-PGD(¢)+D a more appropriate
threshold is chosen (£p; = 0.1 and &> = 0.01), performing downsizing becomes less costly, as less modes are
generated, yet still the cost is non-negligible.
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Figure 27: LATIN-PGD(¢)+D strategy computational cost and basis size.

The influence of a downsizing stage on the size of the PGD reduced basis is shown in Figure where the
evolution of the size of the total basis for substructures 7 to 12 of the central beam of Figure 20a] is plotted. In
the LATIN-PGD(¢) strategy with & ; = &, = 107*, the size of the progressively built reduced basis is remarkably
large. In this case, downsizing significantly reduces the size by sorting and taking out unnecessary modes, however,
at a non-negligible computational cost. In the case of LATIN-PGD(¢) with &y = 0.1 and &;, = 0.01, instead, the
redundancy of the progressively found modes is minimal, and the effect and the need of of the downszing stage can
be said to be negligible on the final size of the basis.
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7. Conclusions and perspectives

A multiscale strategy to model-order reduction for frictional contact problems was discussed in this paper. The
multiscale strategy is based on a mixed DDM equipped with a coarse scale problem solved with the LATIN method.
PGD-based model reduction is naturally introduced in the LATIN through the separation of variables at the linear
stage. The analysis of a simple one-dimensional frictional contact problem brought to light some aspects of this type
of problems:

— space modes bring localized corrections on the different sticking-sliding areas, indicating the potential benefit
of their a priori separation through a DDM approach to be more accurate locally,

— alarge propagation in sliding front drastically decreases reducibility, as also affects the relevance of the coarse
scale problem on the convergence speed-up.

In the analyzed 2D problem it was shown how, for a given accuracy, in order to achieve the best efficiency in terms of
computational cost reduction it is required to create as few PGD modes as possible. Therefore, the choice of the PGD
basis enrichment criterion is crucial. By exploiting the fact that the coarse scale problem brings advantages especially
in the first iterations of the LATIN, it is suggested to:

— systematically enrich in the first iterations the ROB due to macroquantities (microproblem 2), so as to form a
relevant basis for the macroquantities for the rest of the iterations,

— select a more precautionary enrichment criterion threshold for the microquantites (microproblem 1), whose
convergence is much slower especially in problems with large sliding fronts across multiple substructures, so
as to not add unnecessarily modes when far from convergence.

The sorting and downsizing algoritm proposed in [35] has been adapted and extended here in the multiscale and DDM
version of the LATIN. The algorithm controls the PGD basis size and creates a close-to-optimal basis throughout
the computations. However, its computational cost, due to the need to guarantee admissibility between the modes
of displacements and forces each time it is applied, is not negligible, especially when using an inappropriate ROB
enrichment criterion which leads to add many modes. It was shown that, by making use of the previous suggestions,
the need for downsizing can be avoided thanks to the multiscale aspects and the DDM, since the two microproblems
already reflect corrections from different scales. In such a way, an important gain in computational time with respect
to the full LATIN solver is achieved, and a ROB of controlled size and good quality is progressively created. Modes
due to the macroproblem capture the low frequency modes of each subdomain, while those from the microquantities
capture progressively modes that carry more local and refined corrections.

In the analyzed 2D problem, the large contact interfaces subjected to sliding along the whole set of substructures
affect the solution at the global level over the whole structure, and the coarse scale problem, after an initial convergence
gain, reduces its effect and at the microlevel still many iterations are needed. A future perspective to deal with this
issue is to resort to contact status-based search direction update techniques, in order to speed up convergence at the
microlevel. However, this requires the recomputation of the LATIN linear operators, which may be expensive, as well
as a more appropriate convergence indicator which does not depend on the search direction. Moreover, even though
a reduced computational time can be achieved for the linear stage with a separated representation, the local stage
is still solved in a full format. When a large number of interfaces and many time-steps are present, the local stage
may become expensive, especially for frictional contact interfaces which are solved incrementally over time. Another
future perspective is thus the possibility to integrate the local stage in a reduced format as well by making use, for
example, of an a hyperreduction format dedicated to the LATIN-PGD [65]].

Appendix A. Local stage for different interface behaviors

B Displacement boundary conditions
For a displacement U, imposed on I'g; = Qg N 812, taking into account the search direction, the following
conditions have to be imposed:
W,=U
{—E = (A.1)

EE = EE + k(EE - EE)
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B Force boundary conditions
For an imposed force ', on I'gp = 0Q¢ N 9,L, taking into account the search direction, the following conditions

have to be imposed:
L _ (A.2)
Wp=W,+k'(Ep - Fp)

B Perfect interfaces
For a perfect interface I'gg, displacement continuity W, = W, and force equilibrium F + F,, = 0 have to be
verified. By taking into account the search directions, the following explicit expressions are obtained:

= = %(EE +AEE/ - k_](EE + EEr))
EE = EE + k(ﬂg - KE)

A3
W, -, (A.3)

B Frictional contact interfaces

For frictional contact interfaces, here small displacements are assumed, which greatly simplifies contact pairing
as well as the integration of the frictional contact conditions. At a contact interface I g between substructure Qp
and Qp, Signorini non penetration conditions for the normal contact and Coulomb’s law for the tangential frictional
behavior [3,!4] have to be satisfied at the current time step ¢;, as well as the interface force equilibrium. For the normal
contact, the following conditions have to be verified:

=)

Wi
n-F, V<0 > compressive contact force (A4

(n- WEE, +gn-F (J)) =0 = complementarity condition

N

+ g > 0 = non penetration condition

with g being the initial normal gap and n the outward normal from E to E’. For the tangential contact, a formulation
in displacement increment is considered [32} 35]]:

(/)

if IIHFZ)” <fln-F g)| = sticking : [TAW ., =0 (A5)
if [ITE | = fln-FY| = sliding : 1AW, = —pIIF; ., with p >0 '
=) = =0 =) =) (=D .
In the previous equations, W, = W, — W is the displacement jump at the interface, AW ., = Wy, — W W, isthe

increment of displacement jump between time step ¢; and ¢;_;, and f is the friction coefficient of the interface. I7 is
the projector on the tangential plane of the interface. The contact conditions are detected by means of proper contact
indicators for the normal and tangential status. They are defined on unknown quantities of the local stage, and, by
making use of the search directions, they can be equivalently written in terms of known quantities of the previous
linear stage. Normal contact indicator Cy, and tangential sliding indicator G, at the current time step are defined as
follows:

i =) F(j) F(J) FU) ) _ pU
{C%) : ” Wep 2( )-n 2(” g;:") ” ’2‘g é( Y —g)) n (A.6)
i (/) =) =), i :
G(J) =k U 1W ) 1 U(F F )= k H(“r(l), W i ) 1 .U( F(/) F(/))

It should be noted that the evaluation of the tangential contact indicator at time #; requires to know the solution of the
local stage at time ¢;_;. For this reason, the local stage has to be solved incrementally along the time steps. Once the
contact indicator has been evaluated, contact forces are updated accordingly, as shown in Table [TAE

. . .. . . . . =0 j 1,0
Subsequently, interface displacements are found explicitly with the search direction equations: EEJ) = Eg)+k I(E g -

F (’)) and W(J) = K(E’) + k™ 1(F ) -F g) ). The verification of contact conditions in the local stage of the LATIN is
therefore completely explicit and does not require to solve a local nonlinear problem. It can be shown that contact
forces and displacements satisfy contact conditions of Eq. (A4) and Eq. (A-3)), as well as the equilibrium of forces.
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Normal contact

B open contact: Cj(j) >0 B closed contact: Cl(\i) <0
=0) _ ’\(J) =0 =0 )
EE - =0 EE'E__EE/'Q_CN

Tangential contact: if Cz(\{) <0
W sticking: |GVl < fln- F. |

. i ()
B sliding: |G| > fln - F,. |

HF(’) _ H’E‘(E]) _ Q;j) HF(]) _ —HF(]) meG(J) /||G(’)||

Table A.4: Resolution of the local stage for a frictional contact interface.

Appendix B. Downsizing stage

Here, the downsizing stage of the LATIN-PGD+D strategies is reported. The downsizing stage is performed on
each substructure Qf and the downsizing algorithm [33] operates on the current basis {L,, /lk}le of auxiliary mixed

modes and time modes. Here (UJ, ()9 7} indicates f[o 7] 0-0Odr and ([, Oy, stands for fagf [J-0JdS. The associated
norms are respectively [|0|ljo,r; and [|C||so, -

Algorithm 3: Downsizing stage

for each substructure Qf do

B input:

— current basis of size p: {L,, /lk}le

— relative amplitude cut-off: €

B output:

— downsized basis of size ¢ < p: {L,,, An X
B downsizing algorithm [35]

for n = 1 1o ny,, do

— sort modes such that [|4]ljo,r) = - - - = |4pllo,1

for i = p down to 2 do

for j=1t0i—-1do

— project time mode: a = {4, A)[0,r1/{4}, 410,11

— update corresponding space mode: L, —L;+al,

— substract projected component: A; « /l - a//l

— project space mode: § = (L , Lo, /L, L oo,

— update corresponding time mode: A; < A; + B4,

— substract projected component: L, < L, ,BL

— normalize L — L /||L ||d_QE and update Aj 4 ||L IIdgE

Mmim=1

— normalize L « L,»/HL,-”@QE and update 4; « AL, llso,

for i = p downto 1 do
if ll4illio,r) < €llilljo,r) then
— eliminate L; and 4;
— decrease basis size: p «— p — 1

| —getqu
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