
HAL Id: hal-04523478
https://hal.science/hal-04523478v1

Submitted on 27 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Linear construction of a left Lyndon tree
Golnaz Badkobeh, Maxime Crochemore

To cite this version:
Golnaz Badkobeh, Maxime Crochemore. Linear construction of a left Lyndon tree. Information and
Computation, 2022, 285, pp.104884. �10.1016/j.ic.2022.104884�. �hal-04523478�

https://hal.science/hal-04523478v1
https://hal.archives-ouvertes.fr

Linear Construction of a Left Lyndon Tree∗

Golnaz Badkobeh† and Maxime Crochemore‡

May 20, 2023

Abstract

We extend the left-to-right Lyndon factorisation of a word to the left
Lyndon tree construction of a Lyndon word. It yields an algorithm to sort
the prefixes of a Lyndon word according to the infinite ordering defined by
Dolce et al. (2019). A straightforward variant computes the left Lyndon
forest of a word. All algorithms run in linear time on a general alphabet,
that is, in the letter-comparison model.

Keywords: Lyndon tree, infinite ordering, prefix sorting, linear algorithm,
general alphabet.

1 Lyndon words

In this article we consider algorithmic questions related to Lyndon words. In-
troduced in the field of combinatorics by Lyndon (see [14]) and used in algebra,
these words have shown their usefulness for designing efficient algorithms on
words. The notion of Lyndon tree associated with the decomposition of a Lyn-
don word has, for example, been used by Bannai et al. [2] to solve a conjecture
of Kolpakov and Kucherov [12] on the maximal number of runs (maximal peri-
odicities) in words, following a result in [4].

The key result in [2] is that every run in a word y contains as a factor a
Lyndon root (according to the alphabet ordering or its inverse) that corresponds
to a node of the associated Lyndon tree. Since the Lyndon tree has a linear
number of nodes according to the length of y, browsing all its nodes leads to a
linear-time algorithm in order to report all the runs occurring in y. However,
the time complexity of this technique also depends on the time it takes to build
the tree and to extend a potential run root to an actual run.

Here we consider the left Lyndon tree of a Lyndon word y. This binary
tree has a single node if y is reduced to a single letter, otherwise its structure

∗Revision and extension of a contribution to Prague Stringology Conference 2020 [1]
†Goldsmiths, University of London, New Cross, London SE14 6NW, UK.

g.badkobeh@gold.ac.uk
‡King’s College London, Informatics, 30 Aldwych, LondonWC2B 4BG, UK, and Université

Gustave Eiffel, 77454 Marne-la-Vallée, France. Maxime.Crochemore@kcl.ac.uk

1

parallels recursively the left standard factorisation (see Viennot [18]) of y as uv
where u is the longest proper Lyndon prefix of y.

The dual notion of right Lyndon tree of a Lyndon word y (based on the
factorisation y = uv where v is the longest proper Lyndon suffix of y) is strongly
related to the sorted list of suffixes of y. Indeed, Hohlweg and Reutenauer
[11] showed that the tree is the Cartesian tree built from ranks of suffixes in
their lexicografically sorted list (see [6]). The list corresponds to the standard
permutation of suffixes of the word and is the main component of its suffix
array (see [15] or en.wikipedia.org/wiki/Suffix_array), one of the major
data structures for text indexing.

Inspired by a result of Ufnarovskij [17], Dolce et al. [8] showed that the
left Lyndon tree is also a Cartesian tree built from the ranks of prefixes sorted
according to an ordering they call the infinite order.

The main result of this article is to show that sorting prefixes of a Lyndon
word according to the infinite ordering can be attained in linear time in the
letter-comparison model. This produces the prefix standard permutation of the
word. The algorithm is based on the Lyndon factorisation of words by Duval [9]
and it extends naturally to build the left Lyndon forest of a word. Furthermore,
recovery of a word from its prefix standard permutation can be made in linear
time.

Recently, Bille et al. [3] designed an algorithm to build the right Lyndon
table of a word in linear time on a general alphabet, result from which the
right Lyndon tree can be deduced with the same time complexity. The reverse-
engineering question on this table is discussed by Nakashima et al. in [16].

Definitions

Let A be an alphabet with an ordering < and A+ be the set of non-empty
words with the lexicographical ordering induced by <. The length of a word w
is denoted by |w|. We say that uv (formally (u, v)) is a non-trivial factorisation
of a word w if uv = w and both u and v are non-empty words.

A word is said to be strongly less than a word v, denoted by u << v, if there
are words r, s and t, and letters a and b satisfying u = ras, v = rbt and a < b.
And a word u is smaller than a word v, u < v, if either u << v or u is a proper
prefix of v.

In addition to the usual lexicographical ordering, the infinite ordering de-
noted by ≺ (see [7, 8]) is defined by: u ≺ v if u∞ < v∞ or both u∞ = v∞ and
|u| > |v|. Note that the condition u∞ = v∞ implies that u and v are powers
of the same word, consequence of Fine and Wilf’s Periodicity lemma (see [13,
Proposition 1.3.5]).

Let L be the set of Lyndon words on the alphabet A. The next proposition
defines Lyndon words that are not reduced to a single letter. Condition in item
(i) is the original definition and condition in item (iii) is by Ufnarovskij [17].

Proposition 1 Any of the following equivalent conditions define a Lyndon word
w, |w| > 1: (i) w < vu, for any non-trivial factorisation uv of w, (ii) w < v, for

2

any proper non-empty suffix v of w, (iii) u∞ < w∞, for any proper non-empty
prefix u of w.

2 Lyndon suffix table

Algorithms presented in the article strongly use the notion of Lyndon suffix
table of a word, which is denoted by LynS . The table LynS (more accurately
LynSy) of a word y is defined, for each position j on y, by

LynS [j] = max{|w| | w is the longest Lyndon suffix of y[0 . . j]}.

For y = babbababbaabb on the alphabet of constant letters {a, b, . . .} ordered
as usual a < b < · · ·, the LynS table is as follows:

j 0 1 2 3 4 5 6 7 8 9 10 11 12
y[j] b a b b a b a b b a a b b

LynS [j] 1 1 2 3 1 2 1 2 5 1 1 3 4

Table LynS is the dual notion of the Lyndon table of y (also called Lyndon
array) l in [2], L in [10] or Lyn in [6, 5], used to detect maximal periodicities
(runs) in words: Lyn[j] is the maximal length of Lyndon prefixes of y|j . . |y|−1].

The computation of LynS is a mere extension of the algorithm for testing if a
word is the prefix of a Lyndon word. It includes the key point of the factorisation
algorithm in [9] and is recalled first as Algorithm LyndonWordPrefix that
tests if its input is a prefix of a Lyndon word and that works online on its input.
Note that it is a Lyndon word if its final period equals its length.

LyndonWordPrefix(y non-empty word of length n)

1 (per , i)← (1, 0)

2 for j ← 1 to n− 1 do

3 if y[j] > y[i] then ▷ y[i] = y[j − per]

4 (per , i)← (j + 1, 0)

5 elseif y[j] < y[i] then

6 return false

7 else i← i+ 1 mod per

8 return true

y x x z
0 i j

z
-�

per

The key feature of the method stands in lines 3-4 of the algorithm and
is illustrated on the above picture. If y[j] > y[i] = y[j − per], not only the
periodicity per of y[0 . . j − 1] breaks but y[0 . . j] is a Lyndon word with period
j + 1. This results from the following known properties (see [13]).

3

Proposition 2 (i) Let z be a word and a a letter for which za is a prefix of a
Lyndon word and let b be a letter with a < b. Then zb is a Lyndon word.
(ii) Let u and v be two Lyndon words with u < v. Then uv is a Lyndon word.

Algorithm LyndonSuffixT below computes the Lyndon suffix table of a
Lyndon word. (It is extended in Section 6 to compute the same table of a non-
empty word.) The algorithm results from a minor modification of Algorithm
LyndonWordPrefix and can be easily enhanced to compute also the period
of all non-empty prefixes of the input.

LyndonSuffixT(y Lyndon word of length n)

1 LynS [0]← 1

2 (per , i)← (1, 0)

3 for j ← 1 to n− 1 do

4 if y[j] ̸= y[i] then ▷ y[j] > y[i] = y[j − per]

5 LynS [j]← j + 1

6 (per , i)← (j + 1, 0)

7 else LynS [j]← LynS [i]

8 i← i+ 1 mod per

9 return LynS

Proposition 3 Algorithm LyndonSuffixT computes the Lyndon suffix table
of a Lyndon word of length n in time O(n) in the letter-comparison model.

Given y = ababbababbabac, the corresponding LynS table and period table
are as follows:

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
y[j] a b a b b a b a b b a b a c

LynS [j] 1 2 1 2 5 1 2 1 2 5 1 2 1 14
period [j] 1 2 2 2 5 5 5 5 5 5 5 5 5 14

3 Left Lyndon tree construction

The left Lyndon tree L(y) of a Lyndon word y represents recursively the left
standard factorisation of y. It is a binary tree whose leaves are positions on the
word and internal nodes correspond to concatenations of two Lyndon factors of
the word, and as such can be viewed as interpositions. Precisely, L(y) = (p) if
|y| = 1 else it is (p,L(u),L(v)) where the node p ∈ {|y| . . 2|y| − 2} is an integer
and uv is the left standard factorisation of y, that is, u is the longest proper
Lyndon prefix of y (v is then a Lyndon word).

In the next algorithm, subtrees of L(y) are handled from positions on y as
follows. The subtree associated with position j is L(y[i . . j]) where j − i+ 1 =
LynS [j] and its root is root [j]. Thus, position j on y is the rightmost leaf of the

4

subtree and LynS [j] is its tree width. Besides, the left child of an internal node
q is left(q) and its right child is right(q).

It is known that y, as a Lyndon word with |y| > 1, is of the form xkzb where
x is a Lyndon word of length per = period(xkz), k > 0, z is a proper prefix of
x and b is a letter greater than letter a following z in x (za is a prefix of x) [9].

The construction of L(y) is achieved with the help of the table LynS of y.
It is done by processing y from left to right building first L(x) and reproducing
that tree or part of it up to z. The picture displays the subtrees built for the
word (ababb)2abac just before processing the letter c.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a b a b b a b a b b a b a c

The main step of the procedure, in addition to computing LynS identically
as in Algorithm LyndonSuffixT above, is to aggregate partial Lyndon trees
when processing the last letter b of y, which creates the final tree as a bundle
of all subtrees. In fact, this step is also carried out when dealing with xkz at
each position j for which LynS [j] > 1. In order to aggregate the subtrees, the
second property of Proposition 2 is applied iteratively, processing the trees from
right to left. An explicit instruction of this step is designed at lines 10-15 in
Algorithm LeftLyndonTree below.

The process of bundling can be viewed as a translation into the tree structure
of the proof of the key feature of Algorithm LyndonWordPrefix stated in
item (ii) of Proposition 2. Even so the latter algorithm deals with this process
in constant time using item (i) of the proposition, the iteration of instructions
during the bundling does not affect the asymptotic running time of the present
algorithm.

5

LeftLyndonTree(y Lyndon word of length n)

1 (LynS [0], root [0])← (1, 0)

2 (per , i)← (1, 0)

3 for j ← 1 to n− 1 do

4 root [j]← j

5 if y[j] ̸= y[i] then ▷ y[j] > y[i] = y[j − per]

6 LynS [j]← j + 1

7 (per , i)← (j + 1, 0)

8 else LynS [j]← LynS [i]

9 i← i+ 1 mod per

10 (ℓ, k)← (1, j − 1)

11 while ℓ < LynS [j] do

12 q ← new node ≥ n

13 (left [q], right [q])← (root [k], root [j])

14 root [j]← q

15 (ℓ, k)← (ℓ+ LynS [k], k − LynS [k])

16 return root [n− 1]

The picture below shows red nodes and links created by the final round of
instructions at lines 10-15 in Algorithm LeftLyndonTree.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a b a b b a b a b b a b a c

Proposition 4 Algorithm LeftLyndonTree builds the left Lyndon tree of a
Lyndon word of length n in time O(n) in the letter-comparison model.

Proof. All instructions inside the for loop execute in constant time except
the while loop. In addition, since each execution of instructions in the while
loop takes constant time and leads to the creation of an internal node of the
final tree twinned with the fact that there are eactly n− 1 such nodes, the total
(amortised) running time is O(n).

4 Sorting prefixes

This section shows that Algorithm LeftLyndonTree can be adapted to sort
the prefixes of a Lyndon word according to the infinite ordering ≺. This is a
consequence of Theorem 6 below.

6

For the Lyndon word y, an internal node p of the left Lyndon tree L(y) is the
root of a Lyndon subtree associated with a Lyndon factor w of y. This factor is
obtained by concatenating two consecutive occurrences of Lyndon factors u and
v. If the concerned occurrence of u ends at position j on y, node p is identified
with the prefix of y ending at position j. The correspondence between internal
nodes of the tree and proper non-empty prefixes of y is one-to-one (see picture
below).

Labelling internal nodes with the ≺-ranks of their associated prefixes trans-
forms the tree into a heap, i.e. ranks are increasing from leaves to the root.
The relation between the infinite ordering and left Lyndon trees is established
by the next result [8].

Theorem 5 (Dolce, Restivo, Reutenauer, 2019) For a Lyndon word y, the
tree of internal nodes of the left Lyndon tree L(y) in which nodes are labelled
by the ranks of proper non-empty prefixes of y sorted according to the infinite
ordering is the Cartesian tree of prefix ranks.

The picture below shows the left Lyndon tree of ababbababbabac and the
≺-rank labels of its internal nodes.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a b a b b a b a b b a b a c

0 1
2

3

4 5
6

7

8 9
10

11
12

Denoting a non-empty prefix of y by the position of its last letter, the tables
below show both ≺-ranks of proper non-empty prefixes of y = ababbababbabac

and its sorted list of prefixes, called the prefix standard permutation of y in
[8]. They are denoted by rank and psp and are inverse of each other when
considered as functions from (0, 1, . . . , |y| − 2) to itself. The sorted list is
(0, 2, 3, 1, 5, 7, 8, 6, 10, 12, 11, 9, 4), that is, a ≺ aba ≺ abab ≺ ab ≺ ababba ≺
ababbaba ≺ ababbabab ≺ ababbab ≺ ababbababba ≺ ababbababbaba ≺
ababbababbab ≺ ababbababb ≺ ababb.

j 0 1 2 3 4 5 6 7 8 9 10 11 12 13
y[j] a b a b b a b a b b a b a c

rank [j] 0 3 1 2 12 4 7 5 6 11 8 10 9

r 0 1 2 3 4 5 6 7 8 9 10 11 12
psp[r] 0 2 3 1 5 7 8 6 10 12 11 9 4

The tree below is the Cartesian tree of prefix ≺-ranks.

7

0 3 1 2 12 4 7 5 6 11 8 10 9a b a b b a b a b b a b a c

0 1
2

3

4 5
6

7

8 9
10

11
12

The next theorem is the computational complement of Theorem 5 show-
ing additionally that the construction of the left Lyndon tree by Algorithm
LeftLyndonTree processes the nodes of the tree in a left-to-right postorder
traversal.

Theorem 6 Algorithm LeftLyndonTree applied to a Lyndon word y of length
n > 1, creates and processes internal nodes of the tree L(y) in the order of their
corresponding prefix ranks according to the infinite ordering ≺.

Proof. Since word y is a Lyndon word not reduced to a single letter, it is of
the form xkzb where x is a Lyndon word of length period(xkz), k > 0, z is a
proper prefix of x and b is a letter greater than letter a following prefix z in x
(see [9]).

Algorithm LeftLyndonTree processes nodes of the tree L(y) as follows.
First it builds L(x) and Lyndon subtrees of the next occurrences of x in a left
to right manner. It continues with the trees related to z. Eventually during the
last bundling (run of instructions at lines 10-15) the algorithm builds L(zb) and
follows with the nodes corresponding to the concatenations x · zb, x · xzb, . . . ,
x · xk−1zb in that order.

We will prove the statement by induction on the length of the period |x| of
xkz. If |x| = 1, x is reduced to a single letter and y is of the form akb for two
letters a and b with a < b. Nodes associated with prefixes ak, ak−1, . . . , a are
processed in this order, which matches the ≺-order of prefixes, ak ≺ ak−1 ≺
· · · ≺ a, as expected.

We then assume |x| > 1 and consider disjoint groups of non-empty proper
prefixes of y. For e = 0, 1, . . . , k, let

Pe = {xeu prefix of y | e|x| < |xeu| < min{(e+ 1)|x|, |y|}}.

The main part of the proof relies on three claims that we prove first.

Claim 1: prefixes xeu ∈ Pe, 0 < e ≤ k, are in the same relative ≺-order as
prefixes u ∈ P0. Let u, v ∈ P0 with u ≺ v and let us show xeu ≺ xev considering
two cases.

x

u ū

v w v̄

x

8

Case u∞ = v∞ and |u| > |v|. By the Periodicity lemma u, v and v−1u are
powers of the same word. Let w = v−1u, v̄ = w−1x and ū the prefix of x of
length |v̄| (see picture). Since x is a Lyndon word, ū < x < v̄, which implies
ux < vx because w is a prefix of x. Therefore we have (xeu)∞ < (xev)∞, that
is, xeu ≺ xev.

Case u∞ < v∞. Assume u is shorter than v and let h be the largest
exponent for which uh is a prefix of v. It is a proper prefix because u∞ < v∞

and then w = (uh)−1v is not empty.
If |u| ≤ |w|, we have u << w, which implies ux << vx and (xeu)∞ < (xev)∞,

that is, xeu ≺ xev.

x

u u u u

v u

x

If |u| > |w|, v is a proper prefix of uh+1 but uh+1 shorter than vu cannot
be a prefix of it due to the Periodicity lemma applied on periods |u| and |v|
of uh+1. Then u << wu and since u is a prefix of x it implies ux << vx and
(xeu)∞ < (xev)∞, that is, xeu ≺ xev as before.

The situation in which u is longer than v is fairly symmetric and treated
similarly. Therefore again u ≺ v implies xeu ≺ xev, which proves the claim.

Claim 2: prefixes in Pe are ≺-smaller than prefixes in Pf when 0 ≤ e < f ≤ k.
Let u ∈ Pe and v ∈ Pf . We have to compare u and v according to ≺, that is,
to compare u∞ and v∞.

xkz x x x x z

u∞ · · ·r r

v∞ · · ·s

When e > 0, u is longer than x. Let r be the prefix of u for which |ur| =
|xe+1| (see picture in which u ∈ P1 and v ∈ P2) and s the suffix of x of the
same length. Comparing u∞ and v∞ amounts to compare r and s because u is
a prefix of v. Since r is a prefix and s a suffix of the Lyndon word x, we have
r < s and even r << s, then u∞ < v∞ and u ≺ v.

When e = 0, u is shorter than x. Let then h be the largest integer for
which uh is a prefix of x. It is a proper prefix because x is a Lyndon word
and w = (uh)−1x is not empty. As in the proof of previous claim, uh+1 cannot
be prefix of xu that is a prefix of v. The same conclusion follows, that is,
uh+1 << vu and eventually u ≺ v.

Claim 3: prefixes in Pe, 0 ≤ e ≤ k, are ≺-smaller than prefixes xf , 0 <
f ≤ k. To prove the claim, in view of the statement of Claim 2 and the fact
xk ≺ xk−1 ≺ x by definition, it is enough to show that Pk ≺ xk. Note that if

9

Pk is empty the proof can be done with Pk−1 instead, and if in addition k = 1
then we are left with an element in the proof of Claim 2.

Let xku ∈ Pk, s = u−1x and r the prefix of x of length |s|. As prefix and
suffix of x, r and s satisfy r < s. Since xkur < xkus = xk+1 and r is a prefix of
x, it results (xku)∞ < x∞ and eventually xku ≺ xk. This prove the claim.

To summarise, claims show

P0 ≺ P1 ≺ · · · ≺ Pk ≺ xk ≺ xk−1 ≺ · · · ≺ x.

Let us go back to induction. By induction hypothesis, the result holds for
internal nodes of L(x) corresponding to prefixes in P0.

Consider the next occurrences of x. Since the Lyndon suffix table for each of
them is copied from that of prefix x due to the instruction at line 8 in Algorithm
LeftLyndonTree, the Lyndon trees of all occurrences of x have the same
structure. Therefore, both from the induction hypothesis and from Claim 1,
the order in which internal nodes of the eth occurrence of x are processed and
created matches the ≺-order of prefixes in Pe, for 0 < e ≤ k.

The algorithm processes occurrences of x from left to right, which corre-
sponds to the result of Claim 2. The treatment of zb is done at the beginning
of the bundling run, which also corresponds to the fact that prefixes in Pk are
≺-larger than all prefixes that have been considered before.

Finally, the last part of the bundling creates nodes associated with xk, xk−1,
. . . , x in that order, which matches the order xk ≺ xk−1 ≺ · · · ≺ x.

This ends the proof of the theorem.

An immediate consequence of Theorem 6 is that Algorithm LeftLyndon-
Tree can be down-graded and adapted to compute directly the ≺-sorted list
of non-empty proper prefixes of a Lyndon word, that is, to compute its prefix
standard permutation (PSP). See the details of this adaptation in the following
algorithm.

PrefixStandardPermutation(y Lyndon word of length n)

1 psp ← ()

2 (LynS [0], per , i)← (1, 1, 0)

3 for j ← 1 to n− 1 do

4 if y[j] ̸= y[i] then ▷ y[j] > y[i] = y[j − per]

5 LynS [j]← j + 1

6 (per , i)← (j + 1, 0)

7 else LynS [j]← LynS [i]

8 i← i+ 1 mod per

9 (m, k)← (1, j − 1)

10 while m < LynS [j] do

11 psp ← psp · (j −m)

12 m← m+ LynS [k]

13 k ← k − LynS [k]

14 return psp

10

Corollary 7 Sorting the proper non-empty prefixes of a Lyndon word of length
n according to the infinite ordering ≺ can be done in time O(n) in the letter-
comparison model.

Proof. It essentially suffices to substitute the handling of sequence psp to the
processing of internal nodes of the Lyndon tree in Algorithm LeftLyndon-
Tree. The change is realised by Algorithm PrefixStandardPermutation
above.

5 Reverse-engineering a PSP

This section discusses how to recover a word of length n from a permutation of
(0, 1, . . . , n− 2) assumed to be its prefix standard permutation (PSP).

We first consider the case of binary words on the alphabet {a, b}. Function
psp from Ln = L∩ {a, b}n to the set of permutations of (0, 1, · · · , n− 2) is one-
to-one. Thus psp−1 is a function from psp(Ln) to Ln and psp−1(psp(y)) = y.
To show the property, given a permutation p of (0, 1, · · · , n− 2), we propose the
following algorithm to recover the possible word y that admits the permutation
as its PSP.

InversePsp(p permutation of (0, 1, . . . , n− 2))

1 rank ← inverse of p

2 C ← Cartesian tree of rank

3 T ← C extended with leaves to form a complete binary tree

4 L← labelled T : left-child leaves labelled by a others by b

5 y ← word-label of leaves of L

6 if psp(y) = p then

7 return y

8 else return p ̸∈ psp(Ln)

From the permutation p = (1, 0, 4, 3, 5, 2, 6) the algorithm computes rank =
(1, 0, 5, 3, 2, 4, 6) and eventually the labelled Lyndon tree below left. The word
label of its leaves is aabaabbb and effectively psp(aabaabbb) = (1, 0, 4, 3, 5, 2, 6).

0 1 2 3 4 5 6 7

a a b a a b b b

0
1

2
3

4
5

6

0 1 2 3 4 5 6 7

a a b a b a b b

0
1

3

4

2

5
6

11

However with the permutation p = (1, 0, 5, 3, 2, 4, 6), the algorithm computes
rank = (1, 0, 4, 3, 5, 2, 6) and the correponding L tree (above right), which pro-
duces the word aabababb. But psp(aabababb) = (1, 0, 3, 2, 5, 4, 6) is not the
input permutation. This is because obviously not all the (n− 1)! permutations
are PSPs of some binary Lyndon words (less than 2n). It may also happen that
word y built in the procedure is not even a Lyndon word.

Proposition 8 On a binary alphabet the prefix standard permutation is a one-
to-one function and computing the Lyndon word y for which psp(y) is a given
valid permutation can be done in linear time.

Proof. From the above discussion and Algorithm InversePsp, the one-to-
one feature is a consequence of Theorem 5. As for the running time it comes
from the linearity of all operations, especially those of the Cartesian tree con-
struction1 and of the prefix standard permutation computation by Algorithm
PrefixStandardPermutation in Section 4.

On alphabets with more than two letters the function psp is not one-to-one.
For example (0, 2, 3, 1, 4) is the PSP of Lyndon words ababbb, ababbc, ababcb
and ababcc, and permutation (0, 1, 2, 3) is the PSP of all (Lyndon) words in
a{b, c}4.

Nevertheless, given the permutation p = psp(z) associated with a Lyndon
word z of length n, we can compute an equivalent word y whose PSP is p. The
simplest approach to carry out this computation is to deal with prefix periods
of the word.

Indeed, periods of prefixes of y can be retrieved from p by looking at some
positions where p is decreasing. Due to properties (proof of theorem 6, after
claim 3; the only case where a longer prefix is ≺-smaller than a shorter prefix is
when the shorter one is a period of the longer) and the definition of the prefix
standard permutation, when there is a decrease in the order of prefixes it is
because there is a non-empty border. Therefore scanning p from right to left
enables tracing the periodicity of each proper prefix. This is how Algorithm
PeriodsFromPsp computes the period table of a word from its PSP.

PeriodsFromPsp(p PSP of a Lyndon word of length n)

1 q ← n

2 for j ← n− 2 downto 1 do

3 if j ≥ q then

4 per [j]← q

5 elseif p[j] < p[j − 1] then

6 per [j]← q ← p[j] + 1

7 else per [j]← j + 1

8 per [0]← 1

9 return per

1See for example https://en.wikipedia.org/wiki/Cartesian tree

12

In the example below, positions on the PSP p, where condition at line 5 is
met, are j = 6 and j = 2 corresponding respectively to periods 4 and 2.

Here is the step-by-step computation of the periods. For the following ex-
ample, we start at j = 7, since p[j] > p[j − 1] then per [j] = j + 1 = 8 , now
p[6] < p[5] which means per [6] = p[6]+1 = 4. Next, we can move on to position
p[6]− 1; p[2] < p[1] so per [2] = 1 + 1, and we are done.

0 1 2 3 4 5 6 7 8

a b a c a b a d e

0 1
2

3 4
5

6
7

j 0 1 2 3 4 5 6 7 8
y[j] a b a c a b a d e

psp[j] 0 2 1 4 6 5 3 7
rank [j] 0 2 1 6 3 5 4 7
per [j] 1 2 2 4 4 4 4 8 9

Another way to retrieve periods of prefixes is to look at prefix ranks according
to the infinite order. To do so amounts to looking at ranks of proper Lyndon
prefixes of y, because their periods are their lengths, starting with the first rank,
r. Then the next Lyndon prefix is the shortest prefix having a rank greater than
r, which is iterated until the end. This amounts to going up the left Lyndon
tree from its leftmost leaf to its root. In the example (above) positions on the
rank table that correspond to the traversal are j = 0, 1, 3, 7.

Following the discussion, AlgorithmWordFromPsp takes as input the PSP
p of a Lyndon word and builds an equivalent word, that is, a Lyndon word having
the same PSP. The output is a word on the (constant) alphabet {a, b, · · ·}. If
y ∈ L2, the output is y itself. Else, the output is the smallest lexicographic
Lyndon word having the same PSP.

After the inversion of p to get the table rank (lines 1-2), the algorithm
proceeds online on that table. It keeps information on the last highest rank
met so far in variable r and on the current period of the being-built word y in
variable q. Instructions at lines 5-8 implement the bottom up description on
the virtual left Lyndon tree of the future output.

13

WordFromPsp(p PSP of a Lyndon word of length n)

1 for j ← 0 to n− 1 do

2 rank [p[j]]← j

3 (y, r, q)← (a, rank [0], 1)

4 for j ← 0 to n− 2 do

5 if rank [j] ≤ r then

6 y ← y · y[j − q]

7 else y ← y · (smallest letter larger than y[j − q])

8 (r, q)← (rank [j], j + 1)

9 y ← y · (smallest letter larger than y[n− 1− q])

10 return y

Applied to the example whose PSP is (0, 2, 1, 4, 6, 5, 3, 7) = psp(abacabade)
the algorithm produces the Lyndon word abacabadb. Indeed, in the initial
word, letter b is necessarily greater than a, letter c greater than b and letter d
greater than c. But letter e is only required to be greater than a.

Proposition 9 Given the PSP table p of a Lyndon word, WordFromPsp(p)
is the lexicographic smallest Lyndon word y ∈ {a, b, · · ·} for which psp(y) = p.
The computation is done in linear time.

Note that when applied to the PSP of a half Zimin word the algorithm
recovers the word itself up to an alphabetic translation. Recall that Zimin
words Zi are defined by the relations: Z0 is the empty word and, for i > 0,
Zi = Zi−1 ·ai ·Zi−1, where ai is a letter not occurring in Zi−1. Then half Zimin
words are Z ′

i = Zi−1 · ai. Using the usual ordered constant alphabet, first half
Zimin words are ϵ, a, ab, abac, abacabad and abacabadabacabae.

Half Zimin words contain the largest alphabet amongst the class of solution
words of length n constructed by Algorithm WordFromPsp. They contain
⌊log(n+ 1)⌋+ 1 distinct letters.

6 Lyndon forest

Methods of previous sections that concern Lyndon words easily extend to all
(non-empty) words. Trees become forests due to the Lyndon factorisation of
words. A forest is reduced to a single tree when the considered word is a
Lyndon word.

The Lyndon factorisation of a non-empty word y is a decreasing list of Lyn-
don factors of the word. It is a list x1, x2, . . . , xk for which both x1x2 · · ·xk = y
and x1 ≥ x2 ≥ · · · ≥ xk hold. This factorisation is unique (see [13, Theorem
5.1.5]) and the left Lyndon forest of word y is the list of left Lyndon trees L(x1),
L(x2), . . . , L(xk).

The factorisation and its algorithm by Duval [9] is the guiding thread of
previous algorithms. Following the techniques in Section 3 the computation

14

of Lyndon forest also uses the Lyndon suffix table of the word. Algorithm
LyndonSuffixTable deals with words that are not necessarily Lyndon words,
and it can be viewed as an extension of Algorithm LyndonSuffixT.

Computing the forest from the table can then be carried out as in Section 3,
therefore we only describe the table computation below.

y x x z
h i j

z
-�

period(y[h . . j − 1])

LyndonSuffixTable(y non-empty word of length n)

1 LynS [0]← 1

2 (per , h, i, j)← (1, 0, 0, 1)

3 while j < n do

4 if y[j] < y[i] then

5 h← j − (i− h)

6 LynS [h]← 1

7 (per , i, j)← (1, h, h+ 1)

8 elseif y[j] > y[i] then

9 LynS [j]← j − h+ 1

10 j ← j + 1

11 (per , i)← (j − h, h)

12 else LynS [j]← LynS [i]

13 (i, j)← (h+ (i− h+ 1 mod per), j + 1)

14 return LynS

The update of Algorithm LyndonSuffixT to get Algorithm LyndonSuf-
fixTable essentially lies in instructions on lines 4-7 in Algorithm LyndonSuf-
fixTable. They reset the computation to the suffix y[h . . n − 1] of the input
after the factorisation of the prefix y[0 . . h − 1] is definitely achieved. Variable
h becomes the starting position of the next Lyndon factor of y.

Proposition 10 Algorithm LyndonSuffixTable computes the Lyndon suffix
table of a word of length n > 0 in time O(n) in the letter-comparison model.

Proof. Let us consider the values of expression h + j and show they strictly
increase after each iteration of the while loop. The claim holds if the condition
at line 4 is false, because j is incremented by at least one unit (on line 10 or
on line 13) and h remains unchanged. The claim also holds if the condition at
line 4 is true, because h is incremented by at least period(y[h . . j − 1]) while j
is decremented by less than the same value.

Thus, since h+ j goes from 1 to at most 2n− 1 combined with the fact that
instructions at lines 4-13 execute in constant time, the running time is O(n).

Note that the Lyndon factorisation of a word y can be retrieved from its LynS
table by sequentially tracing back from |y| starting positions of previous factors.

15

The list of starting positions of factors, in reverse order, is ik = |y|−LynS [|y|−1],
ik−1 = ik − LynS [ik−1 − 1], . . . , 0.

The Lyndon suffix table of y = babbababbaabb is as follows:

j 0 1 2 3 4 5 6 7 8 9 10 11 12
y[j] b a b b a b a b b a a b b

LynS [j] 1 1 2 3 1 2 1 2 5 1 1 3 4

Starting positions of factors of its Lyndon factorisation are 9 = 13− LynS [12],
4 = 9 − LynS [8], 1 = 4 − LynS [3], 0 = 1 − LynS [0]. The figure below depicts
the Lyndon forest of this example.

0 1 2 3 4 5 6 7 8 9 10 11 12

b a b b a b a b b a a b b

Algorithm LeftLyndonForest is merely adapted from the previous al-
gorithm in order to manage Lyndon tree constructions of each factor of the
Lyndon factorisation while computing the latter. The next proposition is a
direct consequence of Proposition 10.

Proposition 11 Algorithm LeftLyndonForest computes the Lyndon forest
of a word of length n > 0 in time O(n) in the letter-comparison model.

16

LeftLyndonForest(y non-empty word of length n)

1 (LynS [0], root [0])← (1, 0)

2 (per , h, i, j)← (1, 0, 0, 1)

3 while j < n do

4 root [j]← j

5 if y[j] < y[i] then

6 h← j − (i− h)

7 LynS [h]← 1

8 (per , i, j)← (1, h, h+ 1)

9 elseif y[j] > y[i] then

10 LynS [j]← j − h+ 1

11 j ← j + 1

12 (per , i)← (j − h, h)

13 else LynS [j]← LynS [i]

14 (i, j)← (h+ (i− h+ 1 mod per), j + 1)

15 ▷ Bundle

16 (p,m, k)← (root [j], 1, j − 1)

17 while m < LynS [j] do

18 q ← new node ≥ n

19 (left [q], right [q])← (root [k], p)

20 (p,m)← (q,m+ LynS [k])

21 k ← k − LynS [k]

22 return root [n− 1]

7 Conclusions

In this paper, Algorithm LyndonSuffixTable computes the Lyndon suffix
table of a word. The table is an essential part of algorithm LeftLyndonTree
that constructs the left Lyndon tree of a Lyndon word in linear time.

We further investigated the prefix standard permutation of a Lyndon word,
initially introduced by Dolce et al. [8], and its relation to the left Lyndon
tree. This study resulted in a linear-time algorithm for sorting the prefixes
of a Lyndon word according to infinite ordering. In addition, we showed how
to recover a word from a given permutation assumed to be a prefix standard
permutation.

To achieve the results, we exhibited a strong connection between the prefix
ranks and the left Lyndon tree. This connection dictates that the order in which
the internal nodes of the left Lyndon tree are created and processed coincides
with that of the prefix ranks according to infinite ordering and corresponds to
the left-to-right postorder traversal of the tree.

17

We finally endeavoured to design a linear-time algorithm, LeftLyndon-
Forest, that computes the Lyndon forest of an ordinary word.

Many interesting questions remain, among them are: Is there a connection
between runs and the internal nodes of the left Lyndon forest? Is there a tight
relation between the left Lyndon trees and the right Lyndon trees?

References

[1] G. Badkobeh and M. Crochemore. Left Lyndon tree construction. In
J. Holub and J. Zdárek, editors, Prague Stringology Conference 2020,
Prague, Czech Republic, August 31-September 2, 2020, pages 84–95. Czech
Technical University in Prague, Faculty of Information Technology, De-
partment of Theoretical Computer Science, 2020.

[2] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta.
The “runs” theorem. SIAM J. Comput., 46(5):1501–1514, 2017.

[3] P. Bille, J. Ellert, J. Fischer, I. L. Gørtz, F. Kurpicz, J. I. Munro, and
E. Rotenberg. Space efficient construction of Lyndon arrays in linear time.
In A. Czumaj, A. Dawar, and E. Merelli, editors, 47th International Col-
loquium on Automata, Languages, and Programming, ICALP 2020, July
8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of
LIPIcs, pages 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Infor-
matik, 2020.

[4] M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter,
and T. Walen. The maximal number of cubic runs in a word. J. Comput.
Syst. Sci., 78(6):1828–1836, 2012.

[5] M. Crochemore, T. Lecroq, and W. Rytter. 125 Problems in Text Algo-
rithms. Cambridge University Press, 2021. In press.

[6] M. Crochemore and L. M. S. Russo. Cartesian and Lyndon trees. Theoret-
ical Computer Science, 806:1–9, February 2020.

[7] F. Dolce, A. Restivo, and C. Reutenauer. On generalized Lyndon words.
Theor. Comput. Sci., 777:232–242, 2019.

[8] F. Dolce, A. Restivo, and C. Reutenauer. Some variations on Lyndon
words. CoRR, abs/1904.00954, 2019.

[9] J. Duval. Factorizing words over an ordered alphabet. J. Algorithms,
4(4):363–381, 1983.

[10] F. Franek and M. Liut. Algorithms to compute the Lyndon array revisited.
In J. Holub and J. Zdárek, editors, Prague Stringology Conference 2019,
Prague, Czech Republic, August 26-28, 2019, pages 16–28. Czech Technical
University in Prague, Faculty of Information Technology, Department of
Theoretical Computer Science, 2019.

18

[11] C. Hohlweg and C. Reutenauer. Lyndon words, permutations and trees.
Theor. Comput. Sci., 307(1):173–178, 2003.

[12] R. M. Kolpakov and G. Kucherov. Finding maximal repetitions in a word
in linear time. In 40th Annual Symposium on Foundations of Computer
Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages 596–
604. IEEE Computer Society, 1999.

[13] M. Lothaire. Combinatorics on Words. Addison-Wesley, 1983. Reprinted
in 1997.

[14] R. C. Lyndon. On Burnside problem I. Trans. Amer. Math. Soc., 77:202–
215, 1954.

[15] U. Manber and G. Myers. Suffix arrays: A new method for on-line string
searches. In D. S. Johnson, editor, Proceedings of the First Annual ACM-
SIAM Symposium on Discrete Algorithms, 22-24 January 1990, San Fran-
cisco, California, USA, pages 319–327. SIAM, 1990.

[16] Y. Nakashima, T. Takagi, S. Inenaga, H. Bannai, and M. Takeda. On
the size of the smallest alphabet for Lyndon trees. Theor. Comput. Sci.,
792:131–143, 2019.

[17] V. A. Ufnarovskij. Combinatorial and asymptotic methods in algebra. In
A. Kostrikin and I. Shafarevich, editors, Algebra VI: Combinatorial and
Asymptotic Methods of Algebra. Non-Associative Structures, volume 57
of Encyclopaedia of Mathematical Sciences, pages 1–196. Springer, Berlin,
2011.

[18] G. Viennot. Algèbres de Lie libres et monöıdes libres, volume 691 of Lecture
Notes in Mathematics. Springer-Verlag, Berlin, 1978.

19

