
HAL Id: hal-04523393
https://hal.science/hal-04523393v1

Submitted on 27 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Cartesian and Lyndon trees
Maxime Crochemore, Luís M.S. Russo

To cite this version:
Maxime Crochemore, Luís M.S. Russo. Cartesian and Lyndon trees. Theoretical Computer Science,
2020, 806, pp.1-9. �10.1016/j.tcs.2018.08.011�. �hal-04523393�

https://hal.science/hal-04523393v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Cartesian and Lyndon trees

Maxime Crochemorea,∗, Lúıs M. S. Russob

aKing’s College London, London WC2B 4BG, UK

and Université Paris-Est, France.
bINESC-ID and the Department of Computer Science and Engineering

Instituto Superior Técnico, Universidade de Lisboa.

Abstract

The article describes the structural and algorithmic relations between Carte-
sian trees and Lyndon Trees. This leads to a uniform presentation of the
Lyndon table of a word corresponding to the Next Nearest Smaller table of
a sequence of numbers. It shows how to efficiently compute runs, that is,
maximal periodicities occurring in a word.

Keywords: Lyndon Tree, Cartesian tree, runs, word

1. Introduction

The Cartesian tree introduced by Vuillemin [15] is a binary tree associated
with a sequence of numbers that label its nodes. It is both a heap, with
the smallest element at the root, and the sequence is recovered during a
symmetric traversal of the tree.

Cartesian trees have a series of applications in addition to that introduced
by Vuillemin [15] on two-dimensional images. To quote a few of them, they
are used for range searching to implement range minimum queries in a se-
quence of numbers through the help of Lowest Common Ancestor queries in
the Cartesian tree of the sequence [8]. They are also part of sorting methods
that want to take advantage of partially sorted subsequences (see for example
[12]).

∗Corresponding author
Email addresses: Maxime.Crochemore@kcl.ac.uk (Maxime Crochemore),

luis.russo@tecnico.ulisboa.pt (Lúıs M. S. Russo)

Preprint submitted to Theoretical Computer Science June 22, 2018

Lyndon trees are associated with Lyndon words, words that are lexi-
cographically smaller than all their proper non-empty suffixes (see [13] and
[2]). They also have several interesting algorithmic applications and attracted
much interest in connection with the detection of runs (maximal periodic-
ities) in words. The notion of Lyndon roots of runs, introduced for cubic
runs in [5], has led to the property that there is linear number of square runs
in a word. Originally conjectured by Kolpakov and Kucherov [11], it has
eventually been proved by Bannai et al. [1]. They also show how to compute
efficiently all the runs using implicitly the notion of Lyndon table (array),
which is a side product of the Lyndon tree construction.

This article may be viewed as a follow-up of the publication by Hohlweg
and Reutenauer [10] in which they show the link between the two types of
trees. The bridge between them is a key property (stated in Proposition 1)
that relates a local condition on the factors of the word to a global condition
on its suffixes. It implies the structure of a Lyndon tree is the same as that
of the Cartesian tree of the associated word suffixes ranks.

2. Cartesian tree

Let x = (x[0], x[1], . . . , x[n−1]) be a sequence of numbers of length n. The
Cartesian tree of x is an ordered binary tree with the following properties:

• The tree contains exactly one node for each number in x. We identify
these nodes with the positions of numbers in the sequence, i.e., node i

will contain the value x[i], this value is labelled X [i].

• An in-order traversal of the tree results in sequence x. Therefore the
left subtree contains the values that occur before the root value, while
the right subtree contains that values that occur after the root value.
The same property holds for the remaining nodes.

• The min-heap property holds, i.e., for any node S, except the root, we
have that X [S.Parent] ≤ X [S].

If the values in x are pairwise distinct then the Cartesian tree is unique.
Figure 1 shows the Cartesian tree for a sample sequence x.

Let us now study a standard algorithm for computing Cartesian trees. To
simplify the algorithm we insert a sentinel into the original sequence, i.e., we

2

x : 7 15 12 4 10 1 5 13 6 14 11 3 9 0 2 8 −∞

7

15

12

4

10

1

5

13

6

14

11

3

9

0

2

8

−∞

7

15

12

4

10

1

5

13

6

14

11

3

9

0

2

8

−∞

Figure 1: Sample Cartesian tree.

add a number x[n] = −∞. This number is smaller than any other number
that already exists in the sequence.

The algorithm proceeds from right to left, instead of left to right as usual,
to fit with the Lyndon tree construction. One step i is to go up the leftmost
path of the tree from i + 1 to find where to insert the node i. The artificial
node n acts as a sentinel to simplify the design. During the traversal, going
to the parent of node S is like going to the next nearest value smaller than
x[i]. See Algorithm 1.

Figure 2 exemplifies Algorithm CartesianTree by inserting the number
5 into the tree. At each step the algorithm considers the leftmost branch of
the tree, highlighted by the arrows in the picture. These arrows represent
the Parent pointers that are used by the inner while cycle. In this example
the while guard is true twice, for 5 < 13 and 5 < 6. The final comparison
yields 5 > 3 and therefore the cycle stops. Notice that the Parent pointers
of 13 and 6 are not represented by arrows in the second tree, as they are no
longer part of the leftmost branch.

3

Algorithm 1 Build a Cartesian tree.

CartesianTree(x)

1 ⊲ x is a non-empty sequence of n numbers.
2 X [n]← −∞
3 n.LeftChild ← Null

4 for i← n− 1 downto 0 do

5 S ← i+ 1
6 while x[i] < X [S] do
7 S ← S.Parent

8 i.RightChild ← S.LeftChild

9 S.LeftChild ← i

10 return labelled built tree

The number of comparisons executed at line 6 is linear in n. Indeed,
any comparison that yields x[i] ≥ X [S] means that the while test fails and
therefore occurs at most once for each i. Moreover the comparisons that
yield x[i] < X [S] for some position j, i.e., x[j] = X [S] implies that position
j will no longer be involved in a latter comparison. An alternative view
of this process is that the assignment i.RightChild ← S.LeftChild adds
an element to the rightmost branch of the tree and that the assignments
S ← S.Parent move upward on the rightmost branch of the current tree.
Thus, the running time amortizes to O(n). More precisely the length of this
rightmost branch can be used as the value of a potential function Φ, which
yields the amortized cost of 2 for the assignment of line 8 and the amortized
cost of 1 for the while cycle of line 6.

This upwards process computed by the inner cycle, corresponds to finding
the Next nearest smaller value. In our example, when given the number 5
we searched the sequence until we reached the number 3. Note that moving
upwards on the tree is faster than computing linear scan from left to right,
in particular we did not compare with the numbers 14 and 11.

Next nearest smaller table. The Next nearest smaller table NNS of a (non-
empty) sequence y of numbers is defined as follows. For a position i on
x, i = 0, . . . , |x| − 1, NNS[i] is the smallest position j > i of an element
x[j] < x[i].

NNS[i] = min{j | i < j ≤ n and x[j] < x[i]}.

4

= x[i]x : . . . 5 13 6 14 11 3 9 0 2 8 −∞

5

13

6

14

11

3

9

0

2

8

−∞

5

13

6

14

11

3

9

0

2

8

−∞

5

13

6

14

11

3

9

0

2

8

−∞

5

13

6

14

11

3

9

0

2

8

−∞

<
<

>

Figure 2: Illustration of the Cartesian tree construction algorithm.

Due to our assumption that x[n] = −∞, the value NNS[i] is n if no other
value x[j] is smaller than x[i].

Figure 3 shows the NNS table illustrated over the Cartesian tree. We
show the corresponding table below the tree. Moreover each node also shows
an arrow that points to the corresponding Next nearest smaller node. When
a node is a left child of its parent the arrows are simply the parent pointers.
However when the node is a right child of its parent then the arrows are
shown with dashed lines and point to an ancestor of the node that is to its
right.

It is interesting to notice that the algorithm used for constructing Carte-
sian trees can be adapted to compute the NNS values. As illustrated by the
picture when a node is a LeftChild then the NNS value is actually a pointer

5

x : 7 15 12 4 10 1 5 13 6 14 11 3 9 0 2 8 −∞

NNS[i] 3 2 3 5 5 13 11 8 11 10 11 13 13 16 16 16

7

15

12

4

10

1

5

13

6

14

11

3

9

0

2

8

−∞

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

7

15

12

4

10

1

5

13

6

14

11

3

9

0

2

8

−∞

Figure 3: Illustration of the NNS table.

to its Parent on the tree. Now recall Algorithm CartesianTree and notice
that whenever a value is inserted in the tree it is always a LeftChild and
therefore its Parent, when it gets inserted, is the corresponding NNS value.
Recall our example when the value of x[6] = 5 is inserted into the tree it
becomes the LeftChild of node 11 (with x[11] = 3) therefore NNS[6] = 11.
Note also in this example that when x[6] is processed we have that the node
8 (with x[8] = 6) was a LeftChild of node 11 (with x[11] = 3) before
the insertion but becomes a RightChild after the insertion. Still the value
NNS[8] = 11 is not altered by this procedure. Algorithm 2 is a modification
of Algorithm CartesianTree that uses this information to obtain the NNS
values. Likewise it also runs in linear time.

3. Lyndon tree

Lyndon trees are associated with Lyndon words. Recall that a Lyndon
word is a non-empty word lexicographically smaller than all its proper non-
empty suffixes. The Lyndon tree of a Lyndon word y corresponds recursively
to the following Lyndon (or standard) factorisation of y. If y is not a single
letter, y can be written uv where v is chosen as the smallest proper non-empty
suffix of y. The word u is then also a Lyndon word (see [13]).

Figure 4 shows the Lyndon tree of the word #abbabaababbabaab.

6

Algorithm 2 Compute NNS table.

NextNearestSmaller(x non-empty sequence of numbers of length n)

1 (x[n],NNS[n− 1])← (−∞, n)
2 for i← n− 2 downto 0 do

3 j ← i+ 1
4 while x[i] < x[j] do
5 j ← NNS[j]
6 NNS[i]← j

7 return NNS

Algorithm LyndonTree builds the Lyndon tree of a Lyndon word y.
The hypothesis that y is a Lyndon word is not a significant restriction because
any word can be turned into a Lyndon word by prepending to it a letter
smaller than all letters occurring in it. We use the symbol # for this purpose
in our examples. Otherwise, since any word factorises uniquely into Lyndon
words, the algorithm produces the forest of Lyndon trees of the factors. We
show the psedo-code in Algorithm 3.

The algorithm proceeds naturally from right to left on y to find the longest
Lyndon word starting at each position i. It applies a known property: if u
and v are Lyndon words and u < v then uv is also a Lyndon word and
satisfies u < uv < v.

To facilitate the presentation, variable u stores a phrase, that is, the
occurrence of a Lyndon factor of y though the position of the factor is not
explicitly given, and T (u) is the Lyndon tree associated with this occurrence.
Idem for v.

Figure 5 illustrates this processes by inserting the letter y[i] = a. The
top of the figure shows the forest on Lyndon trees that exists before the
letter is processed and the bottom shows the forest after y[i] is inserted.
The comparisons that are executed during this process are also shown. Note
that these comparisons, in line 5, are actually lexicographical comparisons of
strings, and in straightforward implementation require more than constant
time.

If the comparison u < v at line 5 is done by mere letter comparisons, the
algorithm may run in quadratic time, for example if applied on y = akbakc.
Each factor aib is compared with the prefix ai+1 of akc or with akc itself,
Figure 6 illustrates this argument.

However the algorithm can be implemented to run in linear time if the

7

a b b a b a a b a b b a b a a b

a b

a a b

a ba b

a b b

a b

a b a b b

a a b a b b

a a b a b b a b

a ba b

a b b

a b b

a b b a b

a b b a b a a b a b b a b

a b b a b a a b a b b a b a a b

Figure 4: Lyndon tree.

test u < v at line 5 is done in constant time because each execution of
instructions at lines 6-8 decreases the number of Lyndon phrases, which goes
from n to 1.

Lyndon table. The Lyndon table Lyn of a (non-empty) word y is defined as
follows. For a position i on y, i = 0, . . . , |y| − 1, Lyn[i] is the length of the
longest Lyndon factor of y starting at i:

Lyn[i] = max{ℓ | y[i . . i+ ℓ− 1] is a Lyndon word}.

Figure 7 shows an illustration of the Lyn table below the Lyndon tree, the
arrows point to the nodes of the tree that contain the corresponding longest
Lyndon factors. Moreover those nodes are also drawn with thicker lines. The
line for i shows the indexing of the letters and of y, note that the symbol #
is not indexed, it would correspond to index −1. For now ignore the values
i+ Lyn[i], they will be explained in the next section.

The computation of the Lyndon table is an offspring of the previous algo-
rithm, like the computation of the Next nearest smaller table for Algorithm
CartesianTree. The procedure LongestLyndon of Algorithm 4 com-
putes Lyn using the same right-to-left detection of Lyndon factors as above.

The Lyndon factorization of y can be obtained from the Lyn table. Note
that in the previous algorithm we did not assume that the character # was

8

Algorithm 3 Build Lyndon tree.

LyndonTree(y)

1 ⊲ y is a Lyndon word of length n

2 (v, T (v))← (y[n− 1], (y[n− 1]))
3 for i← n− 2 downto 0 do

4 (u, T (u))← (y[i], (y[i]))
5 while u < v do

6 T (uv)← (new node, T (u), T (v))
7 u← uv

8 v ← next phrase, empty word if none
9 return T (y)

Algorithm 4 Lyn table computation.

LongestLyndon(y non-empty word of length n)

1 for i← n− 1 downto 0 do

2 (Lyn[i], j)← (1, i+ 1)
3 while j < n and y[i . . j − 1] < y[j . . j + Lyn[j]− 1] do
4 (Lyn[i], j)← (Lyn[i] + Lyn[j], j + Lyn[j])
5 return Lyn

part of the string, otherwise the factorization would be trivial, because y

was a Lyndon word. After the algorithm finishes its execution, with i = 0,
consider a final execution to insert the character #, with i = −1. We are
interested in the values of j during this process. Initially j is i+ 1 = 0, then
the values get updated as j+Lyn[j], these values are shown in the last line of
Figure 7. For the running example the values form the sequence 0, 3, 5, 13, 16,
this sequence highlighted with dashed lines and arrows between the bottom
two lines. The resulting factorization is abb ·ab ·aababbab ·aab. This process
is illustrated in the figure using dashed nodes and dashed arrows.

4. Key property

It is clear that the previous algorithms all share the same algorithmic
structure. The link between the trees or their reduced versions is even tighter
when the running time of the Lyndon tree construction is concerned. Indeed,
the comparison between two consecutive phrases of the factorisation of y at
line 5 in LyndonTree or at line 3 in LongestLyndon comes back to

9

b a b b a b a a b

a b

a a b

a ba b

a b b

<

<

>

a b a b b a b a a b

a b

a a b

a ba b

a b b

a b

a b a b b

Figure 5: Illustration of comparisons for Lyndon tree construction.

considering the ranks of suffixes in alphabetic order. This is shown by the
next proposition where the local comparison between two phrases is shown
to be equivalent to the comparison of their associated suffixes.

In addition, the next statement also leads to a proof that the Lyndon
tree of y, possibly reduced to its internal nodes, has the same structure of
the Cartesian tree built from the ranks of the word suffixes, which was first
noticed by Hohlweg and Reutenauer in [10].

Proposition 1. Let u be a Lyndon word and v · v1 · v2 · · · vm be the Lyndon
factorisation of a word w. Then u < v iff uw < w.

Proof. In the proof we use the notation u << v to mean that u is lexico-
graphically smaller than v, u < v, and that u is not a prefix of v.

Let us consider the different cases.
Assume first u < v. If u << v then uw << vv1v2 · · · vm = w. Alternatively

consider the case where u is a proper prefix of v. Let e > 0 be the largest
integer for which v = uez. Since v is a Lyndon word, z is not empty and we
have ue < z. Since u is not a prefix of z (by definition of e) nor z a prefix of
u (because v is border-free) we have u << z. This implies ue+1 << uez = v

and then uw < w.

10

>

>

>

>

>

>

<

a a a a a a b a a a a a a c

a c

a a c

a a a c

a a a a c

a a a a a c

a a a a a a c

a b

a a b

a a a b

a a a a b

a a a a a b

a a a a a a b

a a a a a a b a a a a a a c

a a a a a a b a a a a a a c

Figure 6: Quadratic time example.

Then assume v ≤ u. If v << u we have obviously w < uw. It remains
to consider the situation where v is a prefix of u. If it is a proper prefix, u
writes vz for a non-empty word z. We have v < z because u is a Lyndon
word. The word z cannot be a prefix of t = v1v2 · · · vm because v would not
be the longest Lyndon prefix of w, a contradiction with a property of the
factorisation. Thus, either t ≤ z or z << t. In the first case, if t is a prefix
of z, w = vt is a prefix of u and then of uw, that is, w < uw. In the second
case, for some suffix z′ of z and some factor vk of t we have z′ << vk. The
factorisation implies vk ≤ v. Therefore, the suffix z′ of u is smaller than its
prefix v, a contradiction with the fact that u is a Lyndon word.

The suffix array SA of a string y indicates the lexicographical order of all
the suffixes of y, i.e., if i < j then y[SA[i] . . |y| − 1] < y[SA[j] . . |y| − 1]. The
Rank array is the inverse of the suffix array, thus Rank[i] is the rank of the
suffix x[i . . |y| − 1] is the increasing alphabetic list of all non-empty suffixes
of y (ranks run from 0 to |y| − 1).

Figure 8 illustrates this computation for the steps we considered through-
out the paper, thus unifying the computation for both trees. The first two
columns on the left are identical and contain the Rank[i] values. The third
column contains the suffix array of the text, thus it is the inverse of the first
column. The fourth column contains the indexes i. The values involved in the

11

a b b a b a a b a b b a b a a b

a b

a a b

a ba b

a b b

a b

a b a b b

a a b a b b

a a b a b b a b

a ba b

a b b

a b b

a b b a b

a b b a b a a b a b b a b

a b b a b a a b a b b a b a a b

Lyn[i] : 17 3 1 1 2 1 8 5 1 3 1 1 2 1 3 2 1

i : 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

i+ Lyn[i] : 3 2 3 5 5 1113 8 11 10 11 13 13 1616 16

Figure 7: Lyn table.

computation are underlined. The suffixes, in lexicographical order are shown
on the right, twice for illustration purposes. According to the key property,
the operations on the Lyndon tree use the comparisons of suffixes on the
right and the operations on the Cartesian tree use the corresponding integer
comparisons of underlined numbers on the left. The comparisons on suffixes
proceed bottom up, because the suffixes compared are lexicographically de-
creasing. On the other hand the index j on Rank is increasing and therefore
the computation proceeds bottom-up in rank columns. These directions are
indicated by large grey arrows.

Applying the above property to update line 3, Algorithm 5 uses a rewrite
of the LongestLyndon procedure, where tables Lyn and Rank concern the
input word y.

As for the running time, when the table Rank is precomputed, the com-
parison of words at line 3 is obtained in constant time. And since the number
of comparisons is no more than 2|x| − 2 (exactly n− 1 comparisons fail be-
cause Rank[i] > Rank[j], which stop the while loop and no more than n− 1

12

aab aab
aababbabaab aababbabaab
ab ab
abaab abaab
abaababbabaab abaababbabaab
ababbabaab ababbabaab
abbabaab abbabaab
abbabaababbabaab abbabaababbabaab

b b
baab baab
baababbabaab baababbabaab
babaab babaab
babaababbabaab babaababbabaab
babbabaab babbabaab
bbabaab bbabaab
bbabaababbabaab bbabaababbabaab

13
5
14
11
3
6
8
0

15
12
4
10
2
7
9
1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

7 7
15 15
12 12
4 4
10 10
1 1
5 5
13 13

6 6
14 14
11 11
3 3
9 9
0 0
2 2
8 8

>

<

<

<

<

>

aab aab
aababbabaab aababbabaab
ab ab
abaab abaab
abaababbabaab abaababbabaab
ababbabaab ababbabaab
abbabaab abbabaab
abbabaababbabaab abbabaababbabaab

b b
baab baab
baababbabaab baababbabaab
babaab babaab
babaababbabaab babaababbabaab
babbabaab babbabaab
bbabaab bbabaab
bbabaababbabaab bbabaababbabaab

13
5
14
11
3
6
8
0

15
12
4
10
2
7
9
1

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

7 7
15 15
12 12
4 4
10 10
1 1
5 5
13 13

6 6
14 14
11 11
3 3
9 9
0 0
2 2
8 8

Rank[i] SA[i] i

Figure 8: Rank and SA arrays in a sample computation.

comparisons succeed when Rank[i] < Rank[j], since each reduces the number
of Lyndon factors in the overall factorisation of y), the total running time is
linear.

An immediate consequence of Proposition 1 is that the computation of
the Lyndon factorisation of y can also be recovered from the left branch of
the Cartesian tree. This is done by iterating NNS from position 0 on y. The
next statement follows Corollary 3.1 by Holweg and Reutenauer in [10].

Corollary 2. Associated with a word y, the sequence (0,NNS[0],NNS2[0], . . .)
(without the last value |y|) is the sequence of left-to-right starting positions
of factors of the Lyndon factorisation of y.

Corollary 3.1 by Holweg and Reutenauer in [10], establishes that the left-
to-right starting positions of factors of the Lyndon factorisation of y can be
obtained by tracking the left to right minima in SA. In Figure 8 this left-to-
right process becomes top-to-bottom. Consider keeping track of the value of
the minimum. Initially this value is 13, then, when i = 1, the value changes
to 5. The value changes again to 3 at position i = 4 and to 0 at position

13

Algorithm 5 Efficient computation of the Lyn table.

LongestLyndon(y non-empty word of length n)

1 for i← n− 1 downto 0 do

2 (Lyn[i], j)← (1, i+ 1)
3 while j < n and Rank[i] < Rank[j] do
4 (Lyn[i], j)← (Lyn[i] + Lyn[j], j + Lyn[j])
5 return Lyn

i = 7, which is the overall minimum. The resulting sequence of minima is
(13, 5, 3, 0), which corresponds to the Lyndon factor positions in reverse, for
our running example. The sequence of positions (0, 3, 5, 13) corresponds to
the rank values 7, 4, 1, 0. These values are highlighted with dashed boxes in
Figure 8. Note the relation between Lyn and NNS: NNS[i] = i+Lyn[i], since
Lyn[i] is the smallest distance to a next rank value smaller than Rank[i].

5. Computing runs

Algorithm LongestLyndon extends to an algorithm for computing ef-
ficiently all runs occurring in a word.

Recall that a run in the word y is a maximal (non-extensible) occurrence
of a factor, say y[i . . j], whose length is at least twice its (smallest) period.
The main result in [1] shows that a run can be identified with a special
position s, i < s ≤ j, for which both Lyn[s] is the period of y[i . . j] and
2× Lyn[s] ≤ j − i+ 1, considering some alphabet ordering or its inverse for
the table Lyn.

To compute all runs of the word y, we just have to check if the longest
Lyndon factor starting at i produces a special position of a run. This is done
by extending the Lyndon factor to the left and to the right according to the
period of the resulting factor and using longest common extensions. This is
done by computing r = LCER(i, i+Lyn[i]) and ℓ = LCEL(i−1, i+Lyn[i]−1)
when appropriate and verifying if ℓ + r ≥ Lyn[i]. If the inequality holds a
run can be reported.

The longest common extension to the right of two suffixes starting at
positions i and j, LCER(i, j), is the size of the largest common prefix among
them. In our example, for i = 8 and j = 8 + Lyn[8] = 8 + 3 = 11, the cor-
responding suffixes are abbabaab and abaab. The resulting largest common
prefix is ab, therefore r = 2. Likewise the longest common extension to the

14

left of two prefixes i and j, LCEL(i, j), is the size of the largest common suffix
among their associated prefixes. Figure 9 illustrates this process, where the
run, occurrence of bab · bab is identified by starting with the Lyndon factor
abb and obtaining r = 2 and ℓ = 1.

r = 2

ℓ = 1

a b b a b a a b a b b a b a a b

Figure 9: LCE illustration.

In Algorithm 6 we assume ℓ to be set to null if i = 0 and r to null also if
i+ Lyn[i] = n.

Algorithm 6 Computation of runs.

Runs(y non-empty word of length n)

1 for i← n− 1 downto 0 do

2 (Lyn[i], j)← (1, i+ 1)
3 while j < n and Rank[i] < Rank[j] do
4 (Lyn[i], j)← (Lyn[i] + Lyn[j], j + Lyn[j])
5 (ℓ, r)← (LCEL(i− 1, i+ Lyn[i]− 1),LCER(i, i+ Lyn[i]))
6 if ℓ+ r ≥ Lyn[i] then
7 output run x[i− ℓ . . i+ Lyn[i] + r − 1]

To locate all runs, procedureRuns has to be executed twice, for the tables
corresponding to some alphabet ordering and for the tables corresponding to
the inverse alphabet ordering.

Running time of Runs. Procedure Runs can be implemented to run in
linear time O(|y|) when the alphabet is linearly-sortable.

Indeed, with the hypothesis, it is known that suffixes of y can be sorted
in linear time (see for example [3]). Then also the table Rank that is just
the inverse of the sorted list of starting positions of the suffixes.

Again with the hypothesis, LCE queries at line 5 can be executed in
constant time after a linear-time preprocessing. The reader can refer to the

15

review by Fischer and Heun [6] concerning LCE queries. More advanced
techniques to implement them over a general alphabet and to compute runs
can be found in [9, 4] and references therein.

Therefore the whole algorithm Runs runs in linear time when the alpha-
bet is linearly-sortable.

6. Concluding remarks

In this article we detailed the relation between the Lyndon tree of a word
and the Cartesian tree of the corresponding Rank array of its suffixes. Thus
pointing out a simple process to compute Lyndon trees in linear time, for
linearly-sortable alphabets. We also explained how to extend this computa-
tion to locate all runs in the same time.

The relation between suffix sorting, part of the suffix array, and Lyndon
factorisation is examined by Mantaci, Restivo, Rosone and Sciortino in [14].
Franek, Islam, Rahman and Smyth present several algorithms to compute
the Lyndon table [7].

The structure of the Cartesian tree with its nodes labelled by numbers
is richer than the structure of the Lyndon tree because it seems difficult
to recover the labels without completely sorting the ranks of suffixes. This
question is certainly related to the application of Cartesian trees to sorting
(see for example [12]).

Acknowledgements

This work was funded in part by national funds through Fundação para
a Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

[1] H. Bannai, T. I, S. Inenaga, Y. Nakashima, M. Takeda, and K. Tsuruta.
The “runs” theorem. CoRR, abs/1406.0263v7, 2015.

[2] J. Berstel, A. Lauve, C. Reutenauer, and F. Saliola. Combinatorics on
Words: Christoffel Words and Repetition in Words, volume 27 of CRM
Monograph Series. Université de Montréal et American Mathematical
Society, Dec. 2008.

[3] M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings.
Cambridge University Press, 2007. 392 pages.

16

[4] M. Crochemore, C. S. Iliopoulos, T. Kociumaka, R. Kundu, S. P. Pissis,
J. Radoszewski, W. Rytter, and T. Walen. Near-optimal computation of
runs over general alphabet via non-crossing LCE queries. In S. Inenaga,
K. Sadakane, and T. Sakai, editors, String Processing and Information
Retrieval - 23rd International Symposium, SPIRE 2016, Beppu, Japan,
October 18-20, 2016, Proceedings, volume 9954 of Lecture Notes in Com-
puter Science, pages 22–34, 2016.

[5] M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter,
and T. Walen. The maximal number of cubic runs in a word. J. Comput.
Syst. Sci., 78(6):1828–1836, 2012.

[6] J. Fischer and V. Heun. Theoretical and practical improvements on
the RMQ-problem, with applications to LCA and LCE. In M. Lewen-
stein and G. Valiente, editors, Combinatorial Pattern Matching, 17th
Annual Symposium, CPM 2006, Barcelona, Spain, July 5-7, 2006, Pro-
ceedings, volume 4009 of Lecture Notes in Computer Science, pages 36–
48. Springer, 2006.

[7] F. Franek, A. S. M. S. Islam, M. S. Rahman, and W. F. Smyth. Algo-
rithms to compute the lyndon array. CoRR, abs/1605.08935, 2016.

[8] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scaling and related
techniques for geometry problems. In R. A. DeMillo, editor, Proceedings
of the 16th Annual ACM Symposium on Theory of Computing, April 30
- May 2, 1984, Washington, DC, USA, pages 135–143. ACM, 1984.

[9] P. Gawrychowski, T. Kociumaka, W. Rytter, and T. Walen. Faster
longest common extension queries in strings over general alphabets. In
R. Grossi and M. Lewenstein, editors, 27th Annual Symposium on Com-
binatorial Pattern Matching, CPM 2016, June 27-29, 2016, Tel Aviv,
Israel, volume 54 of LIPIcs, pages 5:1–5:13. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2016.

[10] C. Hohlweg and C. Reutenauer. Lyndon words, permutations and trees.
Theor. Comput. Sci., 307(1):173–178, 2003.

[11] R. M. Kolpakov and G. Kucherov. Finding maximal repetitions in a word
in linear time. In 40th Annual Symposium on Foundations of Computer

17

Science, FOCS ’99, 17-18 October, 1999, New York, NY, USA, pages
596–604. IEEE Computer Society, 1999.

[12] C. Levcopoulos and O. Petersson. Heapsort - adapted for presorted files.
In F. K. H. A. Dehne, J. Sack, and N. Santoro, editors, Algorithms and
Data Structures, Workshop WADS ’89, Ottawa, Canada, August 17-19,
1989, Proceedings, volume 382 of Lecture Notes in Computer Science,
pages 499–509. Springer, 1989.

[13] M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, Mass.,
1983.

[14] S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino. Suffix array and
lyndon factorization of a text. J. Discrete Algorithms, 28:2–8, 2014.

[15] J. Vuillemin. A unifying look at data structures. Commun. ACM,
23(4):229–239, 1980.

18

