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Received: 14 December 2022 / Accepted: 20 October 2023

Abstract. Surface response models, such as polynomial chaos Expansion, are commonly used to deal with
the case of uncertain input parameters. Such models are only surrogates, so it is necessary to develop tools to
assess the level of error between the reference solution (unknown in general), and the value provided by the
surrogate. This is called a posteriori model verification. In most works, people usually search for the mean
quadratic error between the reference problem and the surrogate. They use statistical approaches such as
resampling or cross-fold validation, residual based approaches, or properties of the surrogate such as variance
decay. Here, we propose a new approach for the specific framework of structural vibrations. Our proposition
consists of a residual-based approach combined with a polynomial chaos expansion to evaluate the error as a
full random variable, not only its mean square. We propose different variants for evaluating the error. Simple
polynomial interpolation gives good results, but introducing a modal basis makes it possible to obtain the
error with good accuracy and very low cost.

Keywords: Structural vibrations / uncertainty quantification / stochastic metamodeling / a posteriori error
estimation / polynomial chaos

1 Introduction

Dealing with uncertainties has been the subject of intense
research recently. The output of deterministic codes may
indeed differ from the reality because of several fac-
tors: (1) inadequacy between mathematical model and
reality (e.g. differences in material properties, boundary
conditions, loading, etc.) in both reality and numerical
simulation, and (2) numerical errors due to space or time
discretization, for example. Numerical methods, whether
for space or time discretization, are well-mastered today,
and error estimates can be obtained even in commer-
cial codes. Therefore, researchers have focused on the
development of stochastic methods, to generalize deter-
ministic codes and address parametric uncertainties in
the model, such as material uncertainty or geometrical
uncertainty in processes. Such algorithms have numerous
applications, including risk management, optimization,
and robust design [1,2]. The biggest drawback of stochas-
tic problems is the significant numerical cost required to
explore the stochastic space. A review of several stochastic
methods has been proposed in [3,4].
Monte Carlo (MC) simulation [5] is often used as

a reference. It is an approximate method for assessing
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some probabilistic moments of the quantity of interest.
The advantage is that it does not require any complex
computer code dedicated to stochastic problems, but its
drawback is slow convergence. Consequently, it entails a
significant computational cost. Variance reduction tech-
niques have been developed to achieve better convergence
[6]. Last, but not least, this method does not allow for
the generation of a surrogate. Therefore, it is not possi-
ble to approximate the quantity of interest outside of the
numerical experimental design (NED). Several strategies
have been developed to address this computational cost.
Perturbation methods are based on a Taylor series

expansion around the mean value of parameters. They
are limited to cases involving small variations of a smooth
random field around its mean value. A wide range of other
metamodeling techniques has been proposed, for example
Radial Basis Functions (e.g. [7,8]), kriging (e.g. among
many, [9]), Support Vector Machines (e.g. [10]), or coupled
approaches (e.g. [11,12]). We focus solely on polynomial
chaos, even though all of the content presented below can
be easily transposed to other surrogates. The polynomial
chaos (PC) expansion is a spectral method, it consists in
an approximation of the stochastic response in the space
spanned by a finite basis of orthonormal polynomials.
It is based on the Homogeneous Chaos theory initiated
by Wiener [13] and later extended by others [14,15]. An
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intrusive strategy is employed when the PC expansion is
used in conjunction with a Galerkin approach (see for
example [16,17]). However, this results in a significant
computational cost and the need to write a dedicated
program. A second strategy is non-intrusive, it consists
in computing the coefficients of the expansion as the pro-
jection of the Quantity of Interest (QoI) on the space
spanned by the polynomial basis. Two approaches are clas-
sically used. The first one is called Non-Intrusive Spectral
Projection [18], where the projection is computed numer-
ically using a quadrature rule. The second one relies on
linear regression to compute the best coefficients (in a
least square sense) of the PC expansion.
To assess the accuracy of the PC expansion and con-

trol the error, which represents the difference between the
response and its projection using the chosen polynomials,
we require error estimates. Several studies have explored
the a priori convergence behavior of the PC expansion
[19,20]. In the projection approach, the a priori error
bound is determined by the Koksma–Hlawka inequality,
and it is directly influenced by the choice of sampling
points.
In regression based framework, various authors have

recently developed different strategies to build adaptive
PC expansion. These strategies incorporate a posteriori
error control based on factors like the variance decrease
rate [21], the residual decrease rate [22,23], or scalar val-
ues such as the R2 regression coefficient or the Leave One
Out error [24–26]. However, while these indicators offer
valuable insights, these indicators provide only qualitative
information on the meta-model’s quality, necessitating
users to set tolerance values arbitrarily. An alternative
approach, commonly used in statistical learning, is to mea-
sure the mean square error on an empirical test dataset.
In Dao et al. [27], the authors proposed such an approach,
but the error was derived from a residual based problem.
However, using a small dataset leads to a non-robust esti-
mate of the mean square error, while employing a large
size of testing datasets leads to prohibitive computation
costs. Another drawback of a mean square estimate is that
the error estimate is global on stochastic domain, making
it impossible to assess the local error value at a given
arbitrary point.
Another approach is to introduce a dual problem to

estimate the local error (see [28,29] for details). It makes
it possible to estimate the local error with a good accu-
racy but requires to define the dual problem associated
with the chosen QoI. The QoI must depend linearly on
the displacement. In addition to the necessary theoretical
developments, this method generates additional simula-
tion costs which are far from negligible. The objective
of this paper is to define a method that is simple to
implement and has a reasonable cost (like the MSE and
LOO methods) for local quality estimation (like the dual
methods).
While Dao et al. explored transient dynamics in their

study [27], our focus in this paper is on structural vibra-
tions. This type of problem is quite common, as uncertain-
ties often manifest themselves in the mid-frequency range.
Consequently, there’s a substantial body of scientific work
in this area (e.g., [30]). An earlier study by [16] has shown

that a frequency-frozen intrusive polynomial chaos expan-
sion does not converge quickly, and the convergence rate
depends on the parity of the polynomial order. Aitken’s
sequence has been proposed in [16] to improve the rate
of convergence of PC expansion, but once again the con-
vergence is slow. Two different approaches have resulted
in a better match between the polynomial chaos surro-
gate and the reference model. The first approach uses a
PC expansion, not on the physical unknown but on the
modal parameters of the system. The second one consists
in adding supervision on the spectrum of the output, using
Padé expansion [17]. However, in these articles the refer-
ence was always provided, and the MSE and the LOO
were taken as error estimates.
In real-world industrial scenarios, the computational

cost limits the use of PC expansions to lower polyno-
mial orders. Hence, accurate quantitative error estimates
are crucial to assess the metamodel’s validity. How-
ever, many existing literature-derived error estimates fall
short when dealing with small Numerical Experimen-
tal Designs (NEDs). Furthermore, the reference is often
unknown beyond the training points. In this paper, we
propose employing a polynomial chaos expansion to solve
a residual-based stochastic equation associated with the
reference problem. Our aim is to assess the error result-
ing from the PC expansion efficiently, not just the global
mean square error, but also the local error at specific test
points. Additionally, we validate our approach by compar-
ing it to the reference error value, even though, in practical
industrial cases, a reference value for validation might not
be accessible.
Another crucial aspect to consider while reading this

document is that we are primarily interested in quanti-
fying the error attributed to the metamodel. Typically,
the error stemming from stochastic metamodeling tech-
niques is much larger than the error from conventional
discretization methods, such as finite difference for time
discretization or finite elements for space discretization.
Therefore, we don’t need to employ an overly precise
method for the initial metamodel. Instead, our goal here
is to develop efficient error estimation strategies for such
a coarse PC surrogate.
The manuscript is structured as follows. In Section 2, we

provide a theoretical overview of PC expansion applied to
structural vibrations. In Section 2.4, we present a prac-
tical example that showcases a three-degree-of-freedom
(3-DOF) problem. Despite its apparent simplicity, this
academic system serves as a representative model for vari-
ous industrial challenges related to mechanical vibrations.
Section 3 delves into the details of our error estimation
strategy. The primary concept introduced in this article is
that we can estimate the error using a non-intrusive poly-
nomial chaos approach, and we present two variants of
this approach. The first variant involves straightforward
error interpolation, while the second variant employs a
modal basis decomposition of the approximation, offer-
ing a highly cost-effective error estimation tool. This tool
enables precise control of mechanical vibration problems
with minimal additional expenses. In Section 4, we exam-
ine and analyze the results using the common thread
example.
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2 Structural vibrations and polynomial chaos
expansion

2.1 Notations

Scalar numbers and functions are written in a normal font,
e.g. x, y, a, b, ω. Vectors are written with an underlined
font, e.g. Fx,R. Matrices are written roman bold symbol
font, e.g. K,M, ϕ. For sake of clarity, Tables A.1 and A.2
in appendix A present the list and description of every
variable used in the paper.

2.2 Structural vibrations with parametric
uncertainties

Assuming that the problem has been discretized in a finite
number (n) of discrete unknowns, the dynamic equilib-
rium of a linear mechanical system can be written for
each pulsation ω as:[

−ω2M+ iωC+K
]
x(ω) = F (ω) (1)

where M, C and K are respectively the (n × n) mass
matrix, damping matrix and stiffness matrix of the dis-
crete system, x is the vector of nodal displacements, which
are unknown, F is the vector of nodal loads.
This problem can be solved in physical coordinates,

but often, the transformation into modal coordinates is
preferred. This reduces the numerical cost, especially for
finite element studies in the low frequency range. It is also
very useful for sub-structuring complex systems.
Structural modes (ωi, ϕi

) are defined by the classical
relations:

Kϕ
i
= ω2

iMϕ
i

(2)

and usually the nm eigenvectors are normalized with
respect to the mass matrix, so the modal matrix ϕ =
[ϕ

1
...ϕ

nm
] is such that:

ϕTMϕ = Id, ϕTKϕ = diag(ω2
i ) (3)

The Basile’s hypothesis states that the damping matrix is
also diagonalized in the modal basis, several possibilities
exist to define this matrix: Rayleigh damping, hysteretic
damping or viscous damping hypothesis can be classically
found. We consider here the hypothesis of an hysteretic
damping iωC = iηK. Once the modal characteristics of
the system are known, the complex physical response x
can be obtained as a linear expansion on the modes:

x = ϕQ =

nm∑
i=1

Qi(ω)ϕi
(4)

where

∀i ∈ {1, . . . , nm}, Qi(ω) =
ϕT

i
F (ω)

ω2
i (1 + iη)− ω2

(5)

The nature of the vibratory response reveals that high-
frequency modes exhibit relatively low amplitudes in the
modal expansion. As a result, engineers often employ a

truncation criterion based on the eigenfrequencies to elim-
inate these high-frequency modes from the expansion.
This leads to a significantly smaller number of modes
compared to the number of degrees of freedom in finite
element analysis. In certain cases, a static correction tech-
nique is employed to account for the contribution of
high-frequency modes. In situations involving paramet-
ric uncertainties, some values within the matrices and
the external load vector may be subject to randomness.
Consequently, the dynamic response vector x, along with
the eigenmodes, eigenvalues, and eigenvectors, becomes a
random variable. Various examples can be found in the
literature, such as the one mentioned in [31], which serves
as the basis for our common thread example discussed in
Section 2.4.

2.3 Polynomial chaos approximation

A polynomial chaos approximation of a random pro-
cess with finite second-order moments is a mathematical
model obtained by the approximation of the exact random
process in the space spanned by a family of polynomials.
Generally, in vibration problems, the quantity of inter-

est is the vector of displacements at each frequency. This
quantity of interest can be obtained for an arbitrary real-
ization of the random input parameters as the result
of a reference model M applied at pulsation ω to the
normalized random input variables ξ, by:

x(ξ, ω) = M(ξ, ω) (6)

For any realization of the vector of input parameters
ξ, the QoI is computed approximately using a linear
combination of polynomials xPC such as:

x(ξ, ω) ≈ xPC(ξ, ω) =

nPC∑
j=1

Xj(ω)Ψj(ξ) (7)

where Ψj are the chaos polynomials and Xj are the nPC

chaos coefficients. While numerous infinite families can
theoretically represent the random process, practical con-
siderations necessitate using a finite family. Therefore, the
choice of the polynomial family directly impacts the con-
vergence of the expansion, as described in equation (7).
An optimal choice of the polynomial family depending
on the distribution of the random input parameter ξ is
provided in [14].
Due to the hypothesis of uniform distributions, we

consider here Legendre polynomials.
The regression approach is used in this article to eval-

uate the chaos coefficients Xj . It consists in searching an
optimal set of chaos coefficients Xj in the least square
sense:{
X1(ω), ..., XnPC

(ω)
}

= argmin{
X1(ω),...,XnPC

(ω)
}
(

1

Q

Q∑
q=1

∣∣∣∣∣x(ξq, ω)−
nPC∑
j=1

Xj(ω)Ψj(ξ
q
)

∣∣∣∣∣
2)
(8)
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where ξ
1
, ξ

2
, ..., ξ

Q
are the Q realizations of the input

parameters and |•| is the modulus of a complex number.
If we introduce the matrix Ψ = (Ψqj)q∈{1..Q},j∈{1..N}

with Ψqj = Ψj(ξq), then the solution can be obtained
by computing the Moore-Penrose pseudo-inverse of Ψ
denoted Ψ+:

Ψ+ =
(
ΨTΨ

)−1

ΨT (9)

The number Q of sampling points ξ
q
should be at least

equal to the number of polynomials. The robustness of
the estimation of the chaos coefficients increases with this
number, but so does the numerical cost. Writing r the
number of random input parameters and p the maximal
order for each polynomial, a full tensor product of mono-
variate polynomials leads to nPC = (p+ 1)r polynomials.
For this reason polynomial chaos suffers from the curse
of dimensionality. Another problem arises from the con-
dition number of the Fisher matrix ΨTΨ, which depends
on the choice of the polynomials but also on the choices
of the sampling points.
In the literature, the sampling points are classically

chosen among Gauss collocation points, or with (quasi-
)random sequences [32]. A Latin Hypercube sampling
(LHS), using Q = κ.nPC simulations (with κ = 2, 3 or 4),
is usually considered. This choice is a good compromise
between robustness of least square minimization, numeri-
cal cost, and ease in programming for industrial codes or
adaptive schemes.
Sparse truncation techniques [33] can be used to reduce

computational burden. Here, we only consider the classical
truncation scheme, which conduces to a reduced number
of polynomials:

nPC =
(p+ r)!

p!r!
. (10)

These techniques are typically used with adaptive algo-
rithms, which need efficient error measures. The matter of
measuring errors holds significant importance when deal-
ing with these sparse models. It’s essential to clarify that
in this work, our primary goal is not to reduce the cost of
the surrogate model. Instead, our objective is to predict
the approximation error. Therefore, we’re not seeking to
determine the optimal choices for factors like polynomials
or sampling methods. Instead, we will rely on conventional
PC approaches.

2.4 Illustrative example

In this section, we present some results demonstrating the
application of PC approaches to vibration problems.
We consider here the following stochastic problem with

three degrees of freedom n = 3, illustrated in Figure 1,
where the quantity of interest is the random vector:

x(t) = [x1, x2, x3]
T (11)

This simple system can be understood as a 3-mode

Fig. 1. 3-dof system considered in the study, issued from [31].

reduction of a real, continuous,3d, mechanical structure.
The mass and stiffness matrices are given by:

M =

[
m1 0 0
0 m2 0
0 0 m3

]
,

K =

[
k1 + k4 + k6 −k4 −k6

−k4 k2 + k4 + k5 −k5
−k6 −k5 k3 + k5 + k6

]
(12)

The values of the stiffness ki vary randomly, each ran-
dom stiffness follows a uniform distribution of mean ki =
1N/m for i = 1...5, and equal to 3N/m for k6. The stan-
dard deviation of each random stiffness is σk = 0.15N/m.
The three masses are defined as mi = 1 (deterministic).
The load, applied to the first dof, is equal to 1N at every
frequency, its amplitude follows a uniform distribution
with a standard deviation equal to 0.15N. A deterministic
hysteretic damping η = 0.01 is used to compute the fre-
quency spectrum. Therefore, the stochastic problem has 7
random variables.
The reference is computed with a Monte Carlo approach

using a random sampling of 105 samples, this number
being chosen to reach convergence. Finally the x-axis
is transformed into a non-dimensional axis using as a
reference pulsation ω0 =

√
mean(k1)/m1.

We only present results for x1, dof number 1, but similar
results are obtained for other dofs.
Figure 2a displays the mean and the envelope (95%

confidence interval) of the response obtained by the ref-
erence computation (Monte Carlo) and by a first-order
PC approximation. To assess the method’s accuracy, we
propose to plot in Figure 2b the residue of the PC
approximation. This residue is defined by:

R(ξ, ω) = F (ξ)−
[
−ω2M+K(ξ)(1 + iη)

]
xPC(ξ, ω)

(13)
This residue can be evaluated very quickly, the numerical
cost coming only from the large amount of snapshots, and
from the need to evaluate the system matrices for each
random realization. We recall that the load applied on the
first dof is such that F1 = 1N , so that 10 log10(F1) = 0.
Consequently, the residue can be considered as small if
10 log10(|R1|) < −10.
The same figures are plotted on Figure 3 for a fourth-

order PC expansion.
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Fig. 2. Mean and 95%-confidence interval envelope of the displacement x1 and of the residual R1 on reference (105) points for a
1st-order PC approximation. Black line and grey envelope: reference results.

Fig. 3. Mean and 95%-confidence interval envelop of the displacement x1 and of the residual R1 on reference (105) points for a
4th-order PC approximation. Black line and grey envelope: reference results.

It can be observed that PC expansions lead to good
prediction of the stochastic field, but only far from the res-
onance pulsations. The prediction becomes globally closer
to the reference when the approximation order increases.
However, in the vicinity of resonance frequencies, an
increase of the order increases slightly the quality of the
approximation, but the residual stays at a high level. This
occurs because the eigenvalue is stochastic, which means
that the resonance peak can either be lower or higher
than the load pulsation. This results in a non-smooth
function that is challenging to represent accurately using
polynomials. Furthermore, looking to both displacement
and residual results makes it possible to conclude that the
residual is high when the loading frequency belongs to the
interval of possible eigenfrequencies. Thus, as an interme-
diate conclusion for this part, we can state that a classical
PC approach should only be used for frequencies which
do not belong to the confidence interval of the stochastic
eigenfrequencies. Thus, when applying PC expansion to
vibrations problems, the main difficulty for the user lies
in evaluating the metamodel’s quality. This evaluation is
the goal of the next section.

3 A posteriori estimation of the error

A posteriori estimation of the approximation error is of
main importance in industrial cases, because the Monte
Carlo approach is not computationally affordable, and the
residual does only provide a qualitative information on
the accuracy of the surrogate. The idea we defend in this
work lies in the fact that every numerical model should be
presented with the associated quality level. In this part we
will recall classical a posteriori estimates. It will be shown
that they are limited in their use and in their ability to
catch the error. Another original estimation strategy will
be proposed.

3.1 Literature survey

Using xPC as an approximation of x following
equation (7) leads to an error defined as:

e = x− xPC (14)
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A measure of the error, called “generalization error” or
Mean Square Error MSE, can be defined:

MSE = E[|e|2] (15)

This measure takes into account the error on the mean as
well as the error on the variance. However it cannot be
computed directly. As a consequence, several error esti-
mates have been developed in the literature to estimate
this error with a reasonable cost.

3.1.1 The empirical error on training dataset

The Empirical Error on training dataset is a measure of
the residue of the least square minimization equation (8).
It approximates the empirical error using the different Q
sampling points defined in the PC approximation. The
empirical error MSEtrain is computed at a very low cost
using:

MSEtrain =
1

Q

Q∑
q=1

|x(ξ
q
)− xPC(ξq)|2 =

1

Q

Q∑
q=1

|e(ξ
q
)|2

(16)
It can be remarked here that the regression approach of
the PC naturally minimizes the empirical error so that
this measure can dramatically underestimate the actual
level of error. This estimate can also be seen as a coarse
Monte Carlo approximation of MSE.

3.1.2 The Leave One Out (LOO) error

The LOO error [34–36] is a measure of the error derived
from cross-validation techniques [37]. Considering first a
set of Q deterministic samples, it is possible to take Q−
1 samples arbitrarily – that is a set {1, ..., Q}\q – and
to derive the associated PC expansion: x(\q)

PC . Instead of
this bootstrap approach, Blatman uses in [24] the direct
expression :

LOO =
1

Q

Q∑
q=1

|e(ξ
q
)|2

h2
q

(17)

where hq are the diagonal terms of the matrix : H =
Id−ΨΨ+.
The interest of LOO andMSEtrain is that their calcula-

tion is based only on the values of the QoI in the training
dataset, so the numerical cost is very low. However, they
only provide qualitative information on the level of error,
as it will be illustrated in the next section. An arbitrary
tolerance value has to be fixed to evaluate if the PC
expansion approximates the random variable correctly.

3.1.3 The empirical error on a (coarse) testing dataset

A third measure is very classical in statistical learning, for
example machine learning. It is another empirical mea-
sure, based on a coarse Monte-Carlo method. One can
remark that the empirical error based on the training
dataset (values used to compute the surrogate) is minimal,
because the surrogate coefficients are computed through a

least-square minimization of this empirical error. So, one
can think that these points are not appropriate to evalu-
ate the error. The idea is to measure an empirical error
on arbitrary random points in the stochastic space, dif-
ferent from the training points. The cost is much larger,
because the exact response of the QoI is needed on the
testing dataset. In typical applications the following recipe
is often applied: 70% of the sampling points is affected to
training, and 30% is affected to tests. This way of mea-
suring the error is more costly, but leads to error levels
much more realistic than with the empirical error on train-
ing dataset. However, the inherent question concerns the
choice of the sampling points, and the consequences of
this choice on the variability of the error estimate. Fur-
thermore, using a small amount of sampling points for
error estimation may be quite efficient for measuring the
mean square error, but it is generally not optimal to eval-
uate the distribution of the error, typically the histogram
and the variance.
In summary, MSE on training data is very fast to com-

pute but suffers in quality. The quality of the prediction
can be improved using testing points at the price of a huge
numerical cost. Between the two models, LOO is very fast,
and is considered as reference in literature. All of the three
mentioned methods have the same drawback. They only
provide a global indicator, the mean square value over the
stochastic space. Neither do they provide the distribution
of the error.
The idea developed in this article consists of building a

low cost surrogate for the random variable “error” itself,
so that each moment of the error can be evaluated, in an
approximate way, at a low numerical cost. In particular,
the mean, the variance, and the histogram of the PC sur-
rogate of the error can be computed efficiently. Such local
surrogate is of great interest.

3.2 Strategy

Introducing the error e defined in equation (14) into
equation (1), the problem can be written:[

−ω2M(ξ) + iωC(ξ) +K(ξ)
]
e(ξ, ω) = R(ξ, ω) (18)

where, R is the residue associated to the PC approx-
imated solution of the dynamic equilibrium, defined in
equation (13).
Therefore, two reasons explain why the error may be

larger at some frequencies. The first one is that the form
of the equation being similar, the error amplitude may
become very important in the vicinity of the eigenfre-
quencies. The second one comes from the load term, the
spectrum of the error increasing with the spectrum of the
residual.
The original idea presented in this paper consists of

using another PC expansion to solve for equation (18).
More explicitly, in literature, error is typically measured
at some points (so its exact value is known there), but the
computation of the MSE is made by numerical integration,
which is approximate, the integral being computed by a
weighted sum (Monte Carlo, MSEtrain,MSEtest, quadra-
ture rules can be seen like this). Each error measurement
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needs the evaluation of the reference solution, so due to
the computational burden only a few points are available.
The resulting MSE estimate may be far from the reality.
On the contrary, we propose in this paper to take advan-

tage from PC expansion by using reference testing points
to derive a surface response surrogate of the error. The
MSE of the error surrogate can then be computed exactly
at a low numerical cost. The consequence of the approach
is that it makes it possible to estimate the error random
variable itself, and not only its mean square value, giving
access to other interesting properties, such as the local (in
stochastic domain) behaviour of the error.
The key point is to solve correctly equation (18). Indeed,

the numerical strategy used to solve this error problem
governs the quality and the efficiency of the error estimate.
We propose three different numerical strategies, based on
polynomial chaos:

1. a PC surrogate of error (PCe).
2. a Modal Basis PC surrogate of error (MbPCe).
3. a One-mode Reduced Modal Basis PC surrogate of
error (OR-MbPCe).

The numerical strategy PCe is presented in Section 3.2.1;
MB-PCe is presented in Section 3.2.2 and its variant OR-
MbPCe in Section 3.2.3.
In the following, notations for the construction of the

error surrogate will be kept the same than from the
PC surrogate of the displacement, except that for a e-
superscript which will be used for the construction of the
PC expansion of the error when needed.

3.2.1 PC surrogate of error (PCe)

In this approach the user has to fix a priori the PC
expansion order pe of the resolution of the error prob-
lem equation (18), and the set of the Qe sampling
points. Using this sampling of error measurements, the
PC expansion of the error takes the form:

e(ξ, ω) ≈ ePC(ξ, ω) =

ne
PC∑
i=1

Ei(ω)Ψi(ξ) (19)

The first interest of the PC expansion is that the error
surrogate is a local estimate in the stochastic space.
The second interest is that, once the local approxima-
tion is known, it is very easy to have a global value
on the stochastic space. In particular, due to the choice
of an orthonormal basis, the MSE can be approximated
analytically:

MSE ≈ MSEPC = E
[
|ePC |2

]
=

ne
PC∑
i=1

|Ei(ω)|
2 (20)

For another choice of polynomial basis, one could have
performed a Monte-Carlo estimate of MSEPC , but this
is easy because the expression of the error surrogate is
analytic.
The question concerning the optimization of the local-

ization of the sampling points for the error problem will

not be investigated in the present paper. Although many
different sampling strategies can be used, we will only con-
sider a classical Latin hypercube sampling, which lead to
robust results.
As observed in Section 2.4, the PC expansion generally

yields poor results in the proximity of resonances, thus
leading to significant disparities between the actual error
level and the predicted error level. To address this issue,
in the following section, we propose the application of a
Modal Basis PC approach for handling the error problem.

3.2.2 Modal Basis PC surrogate of error (MB-PCe)

The idea behind Modal Basis PC expansion is to use the
physical properties of the system. Instead of taking a PC
approximation of the error, a PC approximation of the
eigenvectors and eigenvalues is computed. Ghienne and
Blanzé [31] proposed instead a Taylor based approach to
evaluate the approximation of the random eigenvectors
at the current sampling point. The method allows us to
derive the same results, but the real challenge lies in cal-
culating the derivatives of the eigenmodes with respect to
the random parameters.
The total error is subsequently evaluated using a Monte

Carlo approach using these approximations to fasten up
the computation.
Let us first compute ϕ

i,PC
, polynomial chaos approxi-

mations of the random eigenvectors. They can be written
as a linear combination of several snapshots of eigenvec-
tors, and each of the components of the expansion can
also be written as a linear combination of deterministic
eigenvectors ϕ̄

k
:

∀i ∈ {1, . . . , nm},

ϕ
i,PC

(ξ) =

nPC∑
j=1

ΦijΨj(ξ) =

nPC∑
j=1

nm∑
k=1

λijkϕ̄k
Ψj(ξ), (21)

Let us now define the approximated generalized mass
matrix M̃ = (m̃ij) and stiffness matrix K̃ = (k̃ij) by:

∀(i, j) ∈ {1, . . . , nm}2, m̃ij = ϕ
i,PC

(ξ)TM(ξ)ϕ
j,PC

(ξ)

∀(i, j) ∈ {1, . . . , nm}2, k̃ij = ϕ
i,PC

(ξ)TK(ξ)ϕ
j,PC

(ξ)

(22)
These matrices correspond to the projection of the ran-
dom matrices K and M on the space spanned by the
approximated eigenvectors ϕ

i,PC
. Thus these matrices are

not diagonal. It is still possible to seek the solution by
taking into consideration the off-diagonal terms of the
generalized mass and stiffness matrices, but the problem
becomes as complex as the initial problem equation (18),
with full matrices to invert instead of sparse matrices.
Thus, it is not interesting from a computational point of
view.
By making the diagonal approximation of the general-

ized matrices, the error at pulsation ω can be evaluated
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Fig. 4. MSE estimates for a 1st-order PC surrogate (plot in dB). Black: reference; blue: MSEtrain; red: LOO.

as e ≈ eMbPC with the following expression:

eMbPC(ξ, ω) =

nm∑
i=1

ϕ
i,PC

(ξ)TR(ξ, ω)

k̃ii(1 + iη)− ω2m̃ii

ϕ
i,PC

(ξ) (23)

The expression equation (23) can be evaluated very
quickly once the eigenvalue approximations are known,
because equation (23) is analytic and does not imply any
linear system to solve, so a Monte Carlo approach can be
used.
Once again, a key point will be the influence of the

choice of the order and of the sampling for the error
PC expansion, relatively to the parameters chosen for
the displacement metamodel. However, as we will see in
Section 4.3, given the substantially different resolution
strategies employed, there are fewer couplings between
the parameters of the two surrogates.

3.2.3 One-mode reduced modal basis PC surrogate
of error (OR-MB-PCe)

This part is a model reduction approach for the MbPCe
strategy.
As it was observed in the beginning of this study,

classical PC expansion often fails in the vicinity of
the eigenfrequencies. Furthermore, the error equation
equation (18) shows that the error can be very large
in these frequency bands because eigenfrequencies of the
system are also eigenfrequencies of the error. So, a good
quality estimate is observed by looking at the error level
at the resonance peaks. To reduce the amount of modes,
which could be high in an industrial context, we propose
to select only the modal contribution of the modes belong-
ing to the frequency band of interest. This leads to a huge
reduction of memory needs and time to compute the eigen-
vectors (only one eigenvector to find) and to post-process
the error. The drawback lies in the eventual coupling
between the modes having the same eigenfrequencies or
when modes are coupled by damping effects.

For example, let us say we are interested by the ampli-
tude of the error around the pulsation ωj , where j
corresponds to the j − th mode, then a one-mode trun-
cation of the error modal expansion equation (23) would
be:

e
(j)
OR−MbPC(ξ, ω) =

ϕ
j,PC

(ξ)TR(ξ, ω)

k̃jj(1 + iη)− ω2m̃jj

ϕ
j,PC

(ξ) (24)

Of course, a subset of modes could have been considered
in the case of modes having similar eigenfrequencies, we
consider here one mode expansion because of the empirical
distribution of the eigenfrequencies (cf. Fig. 6). Finally,
the approximation of the MSE is obtained by computing
the Monte-Carlo mean of the square of the error estimate,
this computation being fast because of the analytic nature
of equation (24).

4 Numerical results

In this section, we apply the error estimation strategies to
the PC surrogate depicted in Section 2.4, corresponding
to the mechanical system illustrated in Figure 1. We con-
sider a low cost PC surrogate obtained by taking classical
rules of thumb for the amount of points and a first order
PC expansion of the displacement (the surrogate depicted
in Fig. 2). The idea behind this choice, which is obvi-
ously not the best, is that our strategy does not depend
on the displacement surrogate. Moreover, for industrial
problems, simple surrogates are typically tested first; the
key point is thus to know how far from the reality these
coarse surrogates are. For sake of conciseness, results are
only presented for the first degree of freedom.

4.1 LOO and training MSE

Figure 4 presents the classical error estimates presented
in the previous section: MSE on training data and
LOO. The exact MSE is approximated by the empiri-
cal MSE on testing points (105 samples). We can observe
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Fig. 5. Quadratic error MSE estimates (dB scale). Black: reference; red: LOO; blue: PCe strategy.

a qualitative agreement between the three curves on the
whole frequency range. Empirical MSE on training points
globally underestimates the MSE, while LOO globally
overestimates it. Although these curves seems globally in
agreement with the reference black curve, we shall already
remark the log scale, meaning that the amplitude of the
error is not so well measured by the the two literature esti-
mates. If we look more closely at the LOO curve in red,
for example, we can see that the overestimation of the
MSE is often two times higher than the reference value.
Thus, we cannot be satisfied of the level of accuracy of

LOO obtained in this example if we need a quantitative
error estimate, and not only a qualitative estimate. We
should remark that LOO’s accuracy increases with the
amount of training points because it is a statistical tool.
However, especially in industrial contexts, high order PC
expansions cannot be achieved, leading often to a poor
accuracy of LOO.

4.2 PCe strategy: PC on error problem

Figure 5a presents the error estimate obtained by apply-
ing the PC methodology on equation (14) as a function
of normalized pulsation, using the sampling points ξ

q
as

training data and the same polynomial order. This esti-
mate is compared to the LOO estimate and the reference
value.

Fig. 6. Empirical distributions of eigenvalues (105 realizations).

The PC surrogate of the displacement, xPC , is obtained
as a linear combination of snapshots, each of them satis-
fying the linear equation (1). Thus the residue is equal
to zero at this points, and finally we can conclude that
the error computed using equation (18) at the sampling
points ξ

q
is nearly equal to zero (cf. Fig. 5b). Thus the

sampling points of the error ξe
q
should be different from

the sampling points used for building the main surrogate.
Figures 5b to 5d present the mean square error at each

frequency in dB scale, computed with the Monte Carlo
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Fig. 7. Quadratic error MSE estimates (dB scale). Black: reference; red: LOO; blue: MbPCe strategy.

reference technique (105 samples), and with several orders
for PC expansion: pe = p (different points), pe = p+1 and
pe = p+ 2.
It can be observed that the mean square error is well

estimated, in particular for pe > p, even if it leads to a
higher numerical cost. Furthermore, the PC expansion suf-
fers from the same drawbacks as stated previously: while
the prediction remains accurate far from the resonance
frequencies, the estimation of the error becomes less pre-
cise in the vicinity of resonance peaks. This is typically
where the error is substantial, so this method cannot be
deemed sufficiently accurate.
In the next subsection, we apply MbPCe expansion on

the error problem.

4.3 MbPCe: modal basis PC expansion of the error
problem

This part is dedicated to the case where the initial meta-
model is obtained with a 1st-order PC approach, but the
error surrogate is obtained using a MbPCe approach. The
residual of the displacement surrogate acts as a source
term, and the error can be estimated analytically as a
linear combination of eigenmodes.
First, we present on Figure 6 the localization of the

eigenvalues of the system (empirical histogram on the 105

Table 1. Mean and standard deviation of the eigenvec-
tors for the reference 105 samples.

Mode dof Mean Std.
x1 0.060 0.574

1 x2 0.046 0.574
x3 0.060 0.574
x1 0.143 0.383

2 x2 -0.281 0.765
x3 0.112 0.394
x1 –0.538 0.458

3 x2 0.0004 0.0382
x3 0.538 0.458

reference samples), and in Table 1 the mean and standard
deviation of the eigenvectors.
Figure 7 presents the mean square error estimated for

different levels of approximation of random eigenvectors.
A zero-order approximation of the eigenmodes at the

nominal design yields results that are already fairly close
to the reference value. The error on the MSE have the
same order of magnitude as for the LOO estimate, and
is even better far from eigenfrequencies. Around eigenfre-
quencies though, the error is badly estimated. However,
using a first order surrogate of the eigenmodes leads to
a very close agreement between the estimated MSE and
the reference, using the same sampling points or not. This
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Fig. 8. Quadratic error MSE estimates (dB scale). Black: reference; red: LOO; blue: OR-MbPCe strategy (full MbPCe in
Figure 8d).

result is interesting because it means that, on the con-
trary of what has been observed in the previous section,
no additional points are needed for the construction of the
PCe surrogate.

4.4 OR-MbPCe: one-mode reduction of modal basis
PC expansion of the error problem

Figures 8a–8c present respectively the mean square error
of the first component of e

(1)
OR−MbPC , e

(2)
OR−MbPC and

e
(3)
OR−MbPC , when only one mode is included in the modal
superposition. Figure 8d is the result of MbPC approach
with all the modes.
The modes are approximated with a first-order PC

expansion.
In these figures, the whole spectrum is plotted to illus-

trate the fact that the results are close to the reference
only in the vicinity of the selected eigenfrequency. How-
ever, in an industrial context, one could of course compute
the error level at the nominal eigenfrequency only, without
drawing the whole spectrum.

5 Conclusion

In this paper, an innovative approach for assessing the
approximation error introduced by a surface response
method, specifically the polynomial chaos method, has

been presented. Classic tools are based on the measure of
the error on the training data set, or on a test data set,
in order to approximate the global mean square error. On
the contrary, the originality of this works lies in the res-
olution of a stochastic residual-based problem, enabling
the derivation of a local approximation of the error. This
additional problem is solved using a polynomial chaos
expansion with additional parameters. It is shown that if
both PC metamodels, displacement and error, are gener-
ated with the same approaches, sampling and parameters,
the error value is equal to zero. Thus, an accurate error
estimate can only be obtained by using a polynomial order
for error approximation higher than the polynomial order
for displacement approximation. Furthermore, a modal
based strategy of the error problem has been tested with
success, a first order approximation of the eigenmodes
is often enough to estimate the error, and it is possible
to use only one mode to estimate the error at the res-
onance peaks to reduce the numerical cost. This paper
represents an initial effort to demonstrate the viability of
this approach. Subsequent steps will focus on addressing
more practical industrial scenarios, and we will delve into
the pertinent technical specifics in upcoming publications.
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Appendix A: Variables

Table A.1. List of each of the variables – Part 1/2.
Name Type Description
ω scalar Angular pulsation
i scalar Complex number i2 = 1

i, j, k, q scalar Integers indexes
M , C, K matrix Matrices of mass, damping, stiffness

F vector Nodal load vector
Fi scalar ith nodal load
x vector Vector of nodal displacements
xi scalar ith nodal displacement
ϕ
i

vector ith eigenvector
ϕ matrix Matrix of eigenvectors
ωi scalar ith eigenpulsation
Id matrix Identity matrix
η scalar Structural damping
Q vector Vector of modal amplitudes
Qi scalar ith modal amplitude
nm scalar Number of modes in structural modes expansion
ξ vector Vector of standard input parameters
M function Input-output model
xPC vector PC approximation of the vector of nodal displacements
nPC scalar Number of polynomials used in PC expansion
Xj vector Vectors of chaos coefficients for approximating x
Ψj polynomial jth chaos polynomial
Q scalar Number of points in NED
ξ
q

vector Vector of standard input parameters, qth sample in the NED.
Ψ matrix Matrix of chaos polynomials evaluated on NED sampling points
H matrix H = Id−ΨΨ+

hq scalar diagonal terms of the matrix H
p scalar Maximal order of selected polynomials

Table A.2. List of each of the variables – Part 2/2.
Name Type Description
κ scalar Ratio between the number of points in NED w.r.t the number of polynomials

m1, m2,m3 scalar Values of masses in the numerical example
k1 to k6 scalar Stiffness of springs in the numerical example

ω0 scalar Reference eigenpulsation for axis normalization
σ1 to σ6 scalar Standard deviations of the stiffness of springs in the numerical example

R vector Vector of nodal residuals
Ri scalar ith nodal residual
e vector Vector of nodal errors

MSE vector Vector of mean square errors computed at each node
MSEtrain vector Vector of mean square errors computed at each node using a MC approximation with

training data
LOO vector Vector of Leave One Out error computed at each node
ne
PC scalar Number of chaos polynomials in PC approximation of error
pe scalar Maximum order of polynomials used for the error PC expansion
Qe scalar Number of samples in NED for building the error metamodel
ξe
q

vector Vector of standard input parameters, qth sample in the NED for building the error meta-
model.

Ej vector jth vector of chaos coefficients for approximating e
ϕ
j,PC

vector PC approximation of jth eigenvector
λijk scalar Coefficients used for computing PC approximation of eigenvectors
ϕ̄
k

vector kth deterministic eigenvector
M̃ , K̃ matrix Approximation of modal mass and modal stiffness matrix using PC expansion of eigenvectors
m̃jj , k̃jj scalar jth diagonal term of the modal mass and modal stiffness approximated matrices respectively
eMbPC vector Vector of nodal errors approximated by modal based PC expansion

e
(j)
OR−MbPC vector Vector of nodal errors approximated by modal based PC expansion with only the jth mode
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