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1Área de Electromagnetismo and Grupo Interdisciplinar de Sistemas Complejos (GISC),
Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
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We compare three available models of graphene conductivity: a non-local Kubo model, a local
model derived by Falkovsky, and finally a non-local Quantum Field Theory based (QFT-b) model.
The first two models are extensively used in the nanophotonic community. All these models are not
ab-initio since they contain phenomenological parameters (like Fermi velocity, chemical potential
and/or mass gap parameters that depend on the chosen material and possibly on external pertur-
bations), and are supposed to provide coherent results since they are derived from the same starting
Hamiltonian. While we confirm that the local model is a proper limit of the non-local Kubo model,
we find some inconsistencies in the QFT-b model as derived and used in the literature. In particular,
differently from the Kubo model, the QFT-b model shows a plasma-like behavior for the interband
transversal conductivity at low frequencies instead of the expected behavior (an almost constant

conductivity as a function of frequency ω with a gap for frequencies ℏω <
√

(ℏvF q)2 + 4m2). We
show how to correctly regularize the QFT-b model in order to satisfy the gauge invariance and, once
also losses are correctly included, we show that the Kubo and QFT-b model exactly coincide. Our
finding can be of relevant interest for both theory, predictions and experimental tests in both the
nanophotonic and Casimir effect communities.

I. INTRODUCTION

Since it was isolated in 2004 [1], the conductivity of
graphene has been of great interest due to its potential
applications [2][3][4]. There are several different mod-
els for the conductivity of graphene that can be clas-
sified into at least three different kinds: based on the
Kubo formula [5][6][7], Quantum Field Theory based
(QFT-b) models [8][9] and based on a hydrodynamic de-
scription [10][11][12]. Here we will focus on the com-
parison between the Kubo formula and QFT-b models.
These two families have a deep connection, but are not
necessarily equivalent. In Nanophotonics, the rule of
thumb is to use the Kubo formula [13], on the other
hand, in Casimir physics, some groups use the Kubo for-
mula [14][15][16][17] while another use the QFT-b models
[8, 9, 18] that has been used in several dozen papers in
last few years, and claimed as much fundamental than the
Kubo one since derived ”from first principles” [18][19].
In this article we compare Kubo-based and QFT-based
models for the conductivity of graphene. We find that,
by construction, the Kubo formula provides regularized
results that guarantees the fulfillment of the condition
lim
ω→0

Πµν(ω)Aν(ω) = 0 for constant static Aν(ω) [20] and

includes the effect of dissipation of electronic quasiparti-
cles in the conductivity. On the other hand, the QFT-
b model as it was developed and used in the literature
[8][9][21] not only does not consider unavoidable effects
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of losses on the conductivity, but also predicts an ad-
ditional divergent dissipation-less Plasma behavior that
cannot be cured by adding losses. We show that the
QFT-b model is derived using a not correctly regularized
theory and that, if correctly regularized not only does not
provide any non-physical results, but it becomes exactly
identical to the Kubo model. The Kubo and the QFT-b
model are not different, none of them has some partic-
ular ”first-principle” advantage, they start from exactly
the same Hamiltonian and they provide exactly the same
final conductivity/polarization result.
This dissipation-less Plasma behavior that appears in
the non-local transverse interband conductivity [8][9][21]
even when the chemical potential µ is inside the mass
gap of the band spectrum clearly is not an acceptable re-
sult in normal materials and it would lead to unobserved
dissipation-less currents in graphene, irrespectively of the
mass gap, chemical potential, temperature and dissipa-
tion, in close analogy to superconductivity [22][23], but
without a proper microscopic theory [24][25]. This is the
main difference between the two models. However, we
find a range of parameters where the 2 models give equiv-
alent results: 1) The longitudinal conductivity for all fre-
quencies; 2) in the local limit and 3) the transverse con-
ductivity, for a sufficiently large (real and/or complex)
frequency ω.

In [26] it was shown that the thermal Casimir energy
between graphene monolayers is corrected by ξT = βℏvF
instead of λT = βℏc (β = (kBT )

−1, vF ≈ c/300 is the
Fermi velocity of electronic excitations in graphene, c is
the speed of light, kB is the Boltzmann constant and ℏ is
the reduced Planck constant); the study of the Casimir
effect between graphene layers has been studied by the

ar
X

iv
:2

40
3.

02
27

9v
2 

 [
co

nd
-m

at
.m

es
-h

al
l]

  5
 M

ay
 2

02
4

mailto:pablo.ropez@urjc.es
mailto:mauro.antezza@umontpellier.fr


2

community as a platform to study the effect of tempera-
ture on Casimir effect [3].

Several different models of the em response have been
used to study the Casimir effect of graphene [2][3][27].
For safety small frequencies, as the Dirac point is close
to the chemical potential µ, the tight binding model of
graphene can be approached to two (2 + 1)D massless
four-spinor or to a sum of four two-spinors. Due to its
simplicity and adequacy to experimental results, the lo-
cal limit of the Kubo formula, derived by Falkovsky et.
al. [28] (see also [29] and [30]) has been widely used
[31][32][33]. This model takes into account the (real or
imaginary) frequency ω, the chemical potential µ, the
temperature T , and the dissipation rate Γ = τ−1 of
the electronic quasiparticles for the Drude conductivity.
However, the dissipation for interband transitions and
the non-zero mass gap cases are not considered in the
model.

In [6], by using the Kubo formula [34] and the two-
spinor representation, the generalization to non-local
conductivities of [28] for finite mass gaps and non-zero
dissipation rate of the interband conductivity was per-
formed. The authors presented closed analytical results
for all complex frequencies of the imaginary positive com-
plex plane for the zero temperature limit. From these
results, the conductivity for finite temperature is easily
obtained.

Another different approach based on Quantum
Field Theory (QFT-b) of the four spinor in (2 +
1)D and on the RPA, like in [35][36][37][38][39][40],
gives the conductivity from the polarization operator
[8][9][21][33][41][42][43][44][45][46][47][19] to cite a very
small set of the literature, in this case, the dissipation
rate Γ = τ−1 of the electronic quasiparticles is not con-
sidered (being equivalent to be set equal to zero), but
the results are valid for finite chemical potential µ, tem-
perature T and non-topological Dirac masses m (note
that, in [46], the effect of topological Dirac masses was
described). The results of those models are ”obtained
on the solid foundation of quantum field theory and do
not use any phenomenology” [19], as a consequence, they
lead to the presence of double poles at zero frequency
for the dielectric susceptibility ”of doubtless physical
significance.”[19]. Here, as this double pole is translated
into a single pole of the conductivity, we argue that the
inclusion of electronic quasiparticle’s dissipation and of
the proper definition of the conductivity tensor in terms
of the polarization tensor eliminate the spurious pole.

In this article, we compare the three different deriva-
tions of the conductivity of graphene in the small (k · p)
limit, and show that the local result of Falkovsky et. al.
can be derived from the non-local Kubo result. We show
how the QFT-b results are related with the non-local
Kubo results, that those results do not coincide and why
it is the case.

We hope that this study will clarify the kind of approx-
imations used in each different model, their similarities
and differences.

The article is organized as follows: In Sect. II, we in-
troduce the tight-binding model of graphene and the ap-
proximations used in the article, we also introduce the
notation we will be using throughout the article. In
Sect. III we derive and present the formulas used to ob-
tain the polarization and conductivity of graphene in the
three different models. In Sect. IV we show how to relate
the different quantities obtained in the non-local Kubo
model (the longitudinal and transversal conductivities)
with the quantities obtained in the QFT-b model (the
pure temporal term and trace of the polarization oper-
ator). In Sect. V, the non-local model of conductivity
derived from the Kubo formula is shown. In Sect. VI the
Falkovsky local model of conductivity is presented, and
its convergence of the non-local Kubo model is shown.
In Sect. VII, the QFT-b model for the polarization (and
therefore the conductivity) of graphene is presented. We
re-derive the results shown in other articles and explicitly
show what is the relation of this model to the non-local
Kubo model, when the results coincide and when and
why they do not. In Sect. VIII we compare numerically
the three different models, highlighting their similarities
and differences. We finish in Sect. IX with the conclu-
sions.

II. TIGHT-BINDING MODEL OF GRAPHENE

In this section we are going to derive the tight-binding
model of graphene. The goal is to show what approxima-
tions are needed to obtain the (2+1)D Dirac Hamiltonian
and the sum of four (2+ 1)D 2-spinor Hamiltonian. The
relation between the two formulas for the conductivity
we are discussing pivots around those 2 different repre-
sentations and their Green functions.
Graphene is a 2D material with a honeycomb lattice,

whose unit cell consists on 2 nonequivalent carbon atoms
in sp2 electronic configuration. We model the electronic
excitations of graphene in the macrocanonical ensemble
with a tight-binding model of a bidimensional honeycomb
lattice [2][48][49][50][51]. This lattice consists on 2 non-
equivalent triangular lattices (denoted as A and B here).
The position of the atoms in each sublattice (or of the
unit cell) can be specified by a vector Rn1,n2

= n1a1 +
n2a2 (ni ∈ Z), with lattice vectors

a1 =

√
3a

2

(
1√
3

)
, a2 =

√
3a

2

(
1

−
√
3

)
, (1)

being a = 1.42 Å the carbon-carbon interatomic distance
in graphene. The nearest neighbors of an atom of the
sublattice A are given by the vectors

δ1 = a

(
0
1

)
, δ2 =

a

2

( √
3

−1

)
, δ3 =

a

2

(
−
√
3

−1

)
, (2)

The reciprocal lattice is also a honeycomb lattice, whose
fundamental translation vectors bj are defined by the re-
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k0 = ω q0 = Ω = ω + iΓ

k̃i = ℏvF ki q̃0 = ℏΩ = ℏω + iℏΓ
k̃µ = k̃0 + µ k̃0 = ℏω = iℏξ = iΞ

k̃∥ = ℏvFk∥ k∥ = (k1, k2)

k̃∥ = ℏvF k∥ =
√

k̃2
1 + k̃2

2 k∥ =
√

k2
1 + k2

2

q̃∥ = ℏvF q∥ q∥ = (q1, q2)

q̃∥ = ℏvF q∥ =
√

q̃21 + q̃22 q∥ =
√

q21 + q22

k̃z = ℏvF kz =
√

k2
0 − k̃2

∥ kz =

√(
ω
vF

)2

− k2
∥

q̃z = ℏvF qz =
√

q20 − q̃2∥ qz =

√(
Ω
vF

)2

− q2∥

κ̃z = ik̃z =
√

Ξ2 + k̃2
∥ k = kµ = (k0, k̃∥)

θ̃z = iq̃z =
√

Ξ2 + q̃2∥ q = qµ = (q0, q̃∥)

γ̃µ = (γ̃0, γ̃) = (ℏγ0, ℏvFγ) γ̃i = vF γi∫
k

=

∫ ∞

−∞

dk0
2π

∫
k

∫
k

=

∫
BZ

d2k∥

(2π)2

δ =
2m

θ̃z
γ =

Ξ

θ̃z
Kν = k + (µ,0) = (k̃µ, k̃∥) = (k0 + µ, ℏvFk∥)

Sµ = Kµ + qµ = (s̃0, s̃∥) = (k0 + q0 + µ, k̃∥ + q̃∥)

Table I. Table with the notation used along this article.

lation ai · bj = 2πδij , resulting in

b1 =
2π

3a

( √
3
1

)
, b2 =

4π

3a

(
−
√
3

1

)
, (3)

The tight-binding Hamiltonian of graphene in real space
is

H =
∑
n∈Zd

∑
λ,λ′

|δj |<δ∑
j=1

ĉ†λ,Rn
tλ,λ′(δj)ĉλ′,Rn+δj , (4)

where ĉ†λ,Rn
is the creator operator of an electron placed

at Rn = a1n1 + a2n2, with spin s = {↑, ↓}, triangular
sub-lattice (A or B) and orbital (2pz only in our case)
labelled by λ in the unit cell. ĉλ,Rn is the annihilation
operator of the electron. tλ,λ′(δj) is the tight-binding
coupling between an electron placed at Rn, with spin
and orbital λ and another electron placed at Rn + δj ,
with spin and orbital λ′. Those coefficients can be calcu-
lated for each particular case. δ is the maximum hopping
distance between atoms we consider in the model. As
the chemical potential µ is close to the Dirac points, and
we are interested in relatively small frequencies, we only
take into account the π and π∗ bands in our model and
first neighbors coupling only, therefore, the tight-binding
Hamiltonian operator of graphene in real space is reduced
to

H = t
∑
s=±1

∑
⟨i|j⟩

ĉ†i,sĉj,s. (5)

For clarity, we will add the contribution of the chemical
potential to the Hamiltonian later. t = Vppπ ≈ 2.8 eV is

the nearest-neighbor hopping energy [2][50], ĉ†i,s and ĉj,s

are the creator and annihilation operators of electronic
excitations with spin s = {↑, ↓} at site i, and in ⟨i|j⟩ i
run to all the atoms of the lattice while j run all over the
nearest neighbors hopping sites of i.
In the momentum space, the Hamiltonian becomes

H =
∑
s=±1

∫
p

χ̂†
s(p)Ĥs(p)χ̂s(p), (6)

where we have defined

∫
p

=

∫
BZ

d2p

(2π)2
as the momentum

integral defined over the Brillouin Zone BZ (see tab. I),

Ĥs(p) = t

(
0 f(p)

f∗(p) 0

)
, (7)

and the bi-spinor in the valley sub-space as

χ̂s(p) =

(
ĉA,s(p)
ĉB,s(p)

)
, (8)

where ĉA,s(p) is the annihilation operator of electronic
excitations in the sublattice A with spin s and momen-
tum p, and

f(p) = −
3∑

j=1

eip·δj

= −e−iapy − 2ei
apy
2 cos

(√
3

2
apx

)
. (9)

Diagonalizing Ĥ in momentum space gives the energy
spectrum as

Eλ(p) = λt|f(p)|, (10)

with λ = ±1 representing the conduction (λ = +1) and
valence (λ = −1) bands respectively, and,

|f(p)|2 = 1 + 4 cos2

(√
3apx
2

)

+4 cos

(
3apx
2

)
cos

(√
3apy
2

)
. (11)

Inside the Brillouin Zone defined by the parallelogram
b1 ⊗ b2, this function is zero at the K± points defined as

Kη =
2π√
3a

(
1− η

3
0

)
, (12)

with η = ±1 the valley index. As the chemical potential
µ is close to the crossing points between π and π∗ bands
at the Kη points, the dispersion of the bands can be
approached as [52]

Ĥs(Kη + k) =
3at

2
(ηk1τ1 + k2τ2) , (13)
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where τi is the i
th Pauli matrix of the sublattice pseudo-

spin for the A and B sites. From this expression the
Fermi velocity is [50][52]

vF =
3at

2ℏ
≈ c

300
. (14)

Then, the dispersion band for each valley is approached
as

Ĥs(Kη + k) = Ĥη
s (k) = ℏvF (ηk1τ1 + k2τ2) . (15)

After applying this small (k ·p) expansion, the electronic
Hamiltonian can be approached as a family of 4 (gs = 2
because of spin degeneration and gv = 2 because of the
2 different valleys) 2D Dirac Hamiltonians placed in the
continuum limit as [50]

H =
∑

s,η=±

∫
k

χη,†
s (k)Ĥη

s (k)χ
η
s(k). (16)

This Hamiltonian represent a set of 4 equal Dirac cones,
labelled by their valley η and spin s. As a consequence,
in addition to the discrete CPT symmetry, the Hamilto-
nian possesses a global continuous U(4) symmetry that
operates in the valley, sublattice and spin spaces [49].

Finally, we combine the bi-spinors of the same spin
of the 2 valleys to form a Dirac four-spinor (note the
exchange of sublattices of the η = −1 valley terms) [49]

Ψs(k) =

(
χs(K+ + k)

τ1χs(K− + k)

)
=

cA,s(K+ + k)
cB,s(K+ + k)
cB,s(K− + k)
cA,s(K− + k)

 ,(17)

resulting into

H =
∑
s=±

∫
k

Ψ†
s(k)Ĥ

D
s (k)Ψs(k), (18)

ĤD
s (k)=ℏvF

 0 k1 − ik2 0 0
k1 + ik2 0 0 0

0 0 0 −k1 + ik2
0 0 −k1 − ik2 0


= ℏvF

(
α1k1 + α2k2

)
. (19)

Here the αµ matrices are the Dirac matrices. For i =
{1, 2, 3}, we have

αi = τ̃3 ⊗ τi =

(
τi 0
0 −τi

)
, (20)

where τ̃i is the i
th Pauli matrix of the valley pseudo-spin

η [49]. It will be useful to define α0 as

α0 =

(
τ0 0
0 τ0

)
= τ̃0 ⊗ τ0, (21)

and we define the β matrix as α4 in what follows

α4 = β = τ̃1 ⊗ τ0 =

(
0 τ0
τ0 0

)
. (22)

From those definitions, we have that α0 is a 4×4 identity
matrix, and the anticommutation relations

{αi, αj} = 2δijα0 ∀ i, j ∈ {1, 2, 3, 4}. (23)

As a conclusion, we obtain 2 equivalent descriptions of
the Hamiltonian of graphene, one in Eq. (16), as the sum
of gsgv = 4 bi-spinors in the sub-lattice space, and an-
other one in Eq. (18) the sum of gs = 2 four-spinors in
the sub-lattice-valley space.

A. Action of graphene

To connect to the covariant QFT description of
graphene [8][9][21][49], we write the full space-temporal
second quantized action of graphene given in Eq. (18) as

S0 =
∑
s=±

∫
k

Ψ†
s(k)

[
ℏωα0 − ĤD

s (k)
]
Ψs(k)

=
∑
s=±

∫
k

Ψ†
s(k)ĤD

0,s(k)Ψs(k), (24)

ĤD
s,0(k) = k̃0α

0 − ℏvF
(
α1k1 + α2k2

)
, (25)

with k̃0 = ℏω (see tab. I). This is the Dirac representation
of the action of the (2 + 1)D Dirac field. To write this
action in a full covariant way by using the Weyl represen-
tation, we define the γ matrices as γµ = α4αµ. With this
prescription, we have γ0 = α4α0 = α4, γ4 = α4α4 = α0

and, for i = {1, 2, 3}

γi = α4αi = (−iτ̃2)⊗ τi =

(
0 −τi
τi 0

)
. (26)

The usual anti-commutation relations are fulfilled

{γµ, γν} = 2gµνγ4 ∀{µ, ν} ∈ {0, 1, 2, 3}, (27)

where gµν = diag(+1,−1,−1,−1) is the metric ten-
sor. The Dirac conjugated spinor is defined as Ψ̄s(k) =
Ψ†

s(k)α
4 = Ψ†

s(k)γ
0. Then the action is now represented

as

S0 =
∑
s=±

∫
k

Ψ̄s(k)ĤW
s (k)Ψs(k), (28)

with

ĤW
s,0(k) = k̃0γ

0 − ℏvF
(
γ1k1 + γ2k2

)
. (29)

When this Hamiltonian is perturbed, depending of the
breaking of the CPT discrete symmetries and on the
generators of the U(4) symmetry used, different kinds
of gaps in the Dirac bands can be induced [49][51]. Here
we will focus in two kind of non-topological mass gaps,
that we will denote them as mz and m in what follows.
The full Hamiltonian become

ĤD
s (k) = k̃0α

0 −
(
α1k̃1 + α2k̃2

)
− α3mz − α4m, (30)
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ĤW
s (k) = k̃0γ

0 −
(
γ1k̃1 + γ2k̃2

)
− γ3mz − γ4m, (31)

wheremz is a hopping term between fermions of the same
valley [50][51], whilem couples quasi-particles of different
valleys, being it a non-local interaction, but it is a pos-
sible result for the symmetry breaking interaction over
graphene [49].

B. Macrocanonical ensemble

As we are working in the macrocanonical ensemble, we
add a term to the action of our field

Sµ =
∑
s=±

∫
k

µN̂ , (32)

where µ is the chemical potential and N̂ is the number
of particles operator. This term can be written in each
representation as

Sµ = µ
∑
s=±

∫
k

Ψ†
s(k)α

0Ψs(k)

= µ
∑
s=±

∫
k

Ψ̄s(k)γ
0Ψs(k). (33)

In order to compare between the different models of the
polarization operator, we are going to use three different
macrocanonical hamiltonians for graphene, the bi-spinor
expression from Eq. (16), where

S1 =
∑

s,η=±

∫
k

χη,†
s (k)

[
τ0(ℏω + µ)− Ĥη

s (k)
]
χη
s(k),(34)

Ĥη
s (k) = ℏvF [ηk1τ1 + k2τ2] + τ3∆

η
s , (35)

with mz = ∆η
s , the Dirac form of the Dirac Hamiltonian

(using Eq. (30)) as a bridge between the 2 formalisms

SD =
∑
s=±

∫
k

Ψ†
s(k)

[
ĤD

s (k)− α0µ
]
Ψs(k), (36)

and the covariant expression of the Dirac Hamiltonian
(using Eq. (31)) as

SW =
∑
s=±

∫
k

Ψ̄†
s(k)

[
ĤW

s (k)− γ0µ
]
Ψs(k). (37)

C. Effect of interactions

Electronic quasiparticles are subject to differ-
ent possible interactions: phonons, scattering cen-
ters, the unavoidable Coulomb interaction, external
fields, illumination, decoration (impurities) and so on
[4][53][54][2][29][55]. When the effects of interactions is

taking into account into the dynamics of the electronic
quasiparticles, the Hamiltonian is modified by the causal
self-energy Σ(ω, q) = ΣR(ω, q) + iΣI(ω, q) [10][29][55],
then the electronic spectrum is modified by the addition
of a real self-energy ΣR(ω, q) (whose effect is considered
here small and absorbed into the phenomenological con-
stants of the Hamiltonian) and an always non-negative
imaginary part ΣI(ω, q) (to respect thermodynamics),
which leads to a frequency-dependent finite dissipation
of the electronic quasiparticles [54][4][2]. Here we
argue that the electronic dissipation is a small non-zero
quantity and we assume that its effect on the electric
conductivity can be well approached with the finite life-
time approximation by a constant imaginary dissipation
rate Γ = τ−1 [4][56][55][57]. Taking into account that
the measured electrical conductivity of graphene is a
high but finite quantity (σ = 96 × 106 Sm−1 in[58]),
and that the dissipation time has been estimated to be
on the order of τ ∽ 6 × 10−13 s[4][53], we will take this
quantity in our study. Of course, in situations where
the effect of interactions in graphene is of paramount
relevance (beyond its non-zero nature), like in the study
of the electron-phonon interaction [29], the universal DC
conductivity of graphene when µ = 0 [10][11][12][59][60],
our interactions-naive phenomenological approach would
not be enough and a more detailed study of the effect of
interactions will be necessary.

D. Green function

For a general linear hamiltonian Ĥ(r), we have 2 dif-
ferent expressions of the same Green function. Defining
k̃0 = ℏω, the Green function fulfils

Ĥ(r)G0(r, s) = δ(r − s), (38)

then, in momentum space we have Ĥ(k)G0(k) = 1 and,

therefore G0(k) = Ĥ−1(k). For each one of the four-
spinor Hamiltonians, its inverse operator is

GD
0 (k) = Ĥ−1

D (k) =
1

αµKµ − α4m
=
αµKµ + α4m

KµKµ −m2
,(39)

GW
0 (k) = Ĥ−1

W (k) =
1

γµKµ − γ4m
=
γµKµ + γ4m

KµKµ −m2
,(40)

where we define Kµ = (ℏω + µ, ℏvF k1, ℏvF k2,mz) (see
tab. I), the Einstein summation convention is assumed
and

KµKµ −m2 =
∏
λ=±

[
ℏω + µ− ϵλk

]
=
∏
λ=±

[
ℏω − ξλk

]
,(41)

where

ϵλk = λ
√

(ℏvF k)2 +m2
z +m2. (42)

with k =
√
k21 + k22 (see tab. I). There is another equiv-

alent expression for a general linear hamiltonian of the
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form ℏωψ = k̃0ψ = Ĥψ in terms of the eigenvalues and
eigenfunctions of the Hamiltonian, starting again from

the equation of the Green function
(
k̃0 − Ĥ

)
G0(r, s) =

δ(r − s), from the eigenproblem

Ĥ
∣∣∣uλk〉 =

(
ϵλk − µ

) ∣∣∣uλk〉 = ξλk

∣∣∣uλk〉, (43)

note that the chemical potential µ has been absorbed in
Ĥ. The macrocanonical Green function in momentum
space is

G0(k) =
∑
λ

∣∣∣uλk〉〈uλk∣∣∣
k̃0 − ξλk

, (44)

which is a eigenvalue expansion of the Green function. In
our case, the Hamiltonian is diagonal in spin, therefore,
the Green functions are multiplied by δss′ .

E. Presence of an electromagnetic field

We introduce the coupling of the electronic quasipar-
ticles of the lattice to the electromagnetic field via the
Peierls substitution [49][61]

H =
∑
n∈Zd

∑
λ,λ′

|δj |<δ∑
j=1

ĉ†λ,Rn
tλ,λ′(δj)e

iqARn ·δj ĉλ′,Rn+δj
,(45)

where we have approached

exp

(
iq

∫ Rn+δj

Rn

A(r) · dr

)
≈ eiqARn ·δj . (46)

being q the electric charge of the quasi-particle described
by the Hamiltonian, for electronic excitations we have
q = −e. At linear order in Ak, the Hamiltonian in recip-
rocal space is

H =

∫
q

∫
p

∑
λ,λ′

ĉλ,†p+q

|δj |<δ∑
j=1

tλ,λ′(δj)e
i(p+qAq)·δj

 ĉλ′

p

=

∫
q

∫
p

∑
λ,λ′

ĉλ,†p+qĤ
λ,λ′

(p+ qAq) ĉ
λ′

p . (47)

It is clear that, at first order, the inclusion of the Peiers
substitution leads to a minimal coupling of the momen-
tum [49]. To study the electric conductivity, we need
an expression for the current, understood as the conju-
gated force of the potential vector. Then, expanding the
Hamiltonian at linear order in A, we obtain at linear
order

H = H0 +

∫
q

Jµ,−qA
µ
q = H0 +

∫
q

J∗
µ,qA

µ
q

≈ H0 +

∫
q

δĤ

δAµ
q
Aµ

q . (48)

Therefore, the second quantized current is defined as

J∗
µ,q =

δĤ

δAµ
q
=

∫
p

∑
λ,λ′

ĉλ,†p+qĴ
λ,λ′

µ (p) ĉλ
′

p , (49)

with the current operator given as

Ĵλ,λ′

µ (p) =
∂Ĥλ,λ′

(p+ qAq)

∂Aµ
q

∣∣∣∣∣
Aq→0

= q
∂Ĥλ,λ′

(p)

∂pµ

=
q

ℏ
∂Ĥλ,λ′

(k)

∂kµ
= qv̂µ, (50)

where we have used p = ℏk and v̂µ is the velocity opera-
tor of electronic quasiparticles. For electronic excitations,
we have q = −e.

III. EM RESPONSE OF GRAPHENE: THE
QFT-B MODEL CORRECTLY REGULARIZED IS

IDENTICAL TO THE KUBO MODEL

A. Constitutive relation of the electric conductivity

Starting from the microscopic Ohm law, the electronic
current is obtained as

Jµ(ω, q) = σµν(ω, q)E
ν(ω, q), (51)

where σµν(q) is the conductivity operator, q = (q̃0, q̃)
(see tab. I) and Eµ(ω, q) = −iωAµ(ω, q) is the electric
field in Coulomb Gauge. Note that we are working in
Coulomb Gauge, but we can restore Gauge invariance
at the end of the calculations by writing all final re-
sults in terms of explicitly Gauge-invariant quantities.
In appendix D, by using the Kubo formula [5] on the
microscopic Ohm law, the Luttinger formula is obtained
[62][63]

σµν(q) =
Πµν(ω, q)− lim

ω→0+
Πµν(ω, q)

−iω
=

Π̃µν(ω, q)

−iω
.(52)

where the polarization operator is defined as

Πµν(q) = Tr (Jµ(q)J
∗
ν (q)) , (53)

and

Π̃µν(q) = Πµν(q)− lim
ω→0

Πµν(q). (54)

In appendix D, Eq. (D16), we also derive

Jµ(ω, q) =
[
Πµν(ω, q)− lim

ω→0
Πµν(ω, q)

]
Aν(ω, q). (55)

Note that this subtraction, which we derived here sim-
ply from Ohm law and time causality, naturally im-
plies that there cannot exist electronic current when
Eν = 0, i.e., when always Jµ(ω = 0, q) = 0 even when
Aµ(ω = 0, q) ̸= 0 irrespectively of the functional and
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tensorial form of Πµν(ω, q). This is a strong physical
requirement, already discussed by V. Abrikosov in 1963
[64] and more recently in [28].
However, sometimes, a different transport relation is pro-
posed [8][9][21][33][42][43][46][65]

Jµ(ω, q) = Πµν(ω, q)A
ν(ω, q), (56)

This is a natural choice for the transport coefficient pro-
vided in Eq. (48). However, as written, this linear rela-
tion could possibly lead to non zero electric currents even
when the electric field is zero and to spurious dissipation-
less currents. This pathological result is present in the
QFT-b model as is developed and used in literature, and
that will be discussed in detail in section Sect. VII.

B. Polarization Operator

The Kubo formula for the polarization operator is

Πµν(q) = Tr (Jµ(q)J
∗
ν (q)) , (57)

which can be reduced to the bubble Feynman diagram as
[66][67]

Πµν(q) = i

∫
k

Tr
(
Gλ

0 (k)Ĵ
λ,λ′

µ (k)Gλ′

0 (k + q)Ĵλ′,λ
ν (k + q)

)
.(58)

Here we use the definition

∫
k

=

∫ ∞

−∞

dk̃0
2π

∫
k

(see tab. I),

Gλ
0 (k) =

〈
ĉλk ĉ

λ,†
k

〉
0

is the Green function of the un-

perturbed Hamiltonian of the system, and Ĵλ,λ′

µ (q) is
the current operator of electronic quasiparticles, defined
in Eq. (50). For a general linear hamiltonian of the

form ℏωψ = k̃0ψ = Ĥψ, the Green function fulfils(
k̃0δ

λ′,λ − Ĥλ′,λ
)
Gλ

0 (r, s) = δλ
′,λδ(r − s), and we have

the eigenproblem

Ĥλ′,λ
∣∣∣uλ〉 =

(
ϵλ

′
− µ

) ∣∣∣uλ′
〉
= ξλ

′
∣∣∣uλ′

〉
, (59)

note that the chemical potential µ has been absorbed in
Ĥ. The macrocanonical Green function in momentum
space is

Gλ
0 (k) =

∑
λ

∣∣∣uλk〉〈uλk∣∣∣
k̃0 − ξλk

. (60)

The use of a different (space-time covariant) form of the
Green function for the Dirac Hamiltonian leads to dif-
ferent representations of the same result discussed here
[9]. After introducing the Green function into the po-
larization operator, using that Tr (ABC) = Tr (BCA),
and applying the Matsubara formalism to carry out the
k0 integral for the fermionic case by using k̃0 = ℏωn =
2π
β

(
n+ 1

2

)
∀n ∈ Z, and q̃0 = iℏωm = i 2πβ

(
m+ 1

2

)
, we

obtain the following.

M =

∫ ∞

−∞

dk̃0
2π

1

k̃0 − ξλk

1

k̃0 + q̃0 − ξλ
′

k+q

=
1

β

Fermi∑
n∈Z

1

iℏωn − ξλk

1

iℏωn + iℏωm − ξλ
′

k+q

=
nF (ξ

λ
k)− nF (ξ

λ′

k+q)

iℏωm + ξλk − ξλ
′

k+q

, (61)

where the Fermi-Dirac distribution is

nF (ξ
λ
k) =

1

eβξ
λ
k + 1

=
1

eβ(ϵ
λ
k−µ) + 1

. (62)

Note that we have used nF (iℏωm + ξλ
′

k+q) = nF (ξ
λ′

k+q).
Using the definition of the electric current operator given
in Eq. (50), the Green function obtained in Eq. (60)
and the analytically expanded Matsubara sum given in
Eq. (61) to the whole upper complex plane by applying
the formal change iωm = ω ∈ C+ into the definition of
the polarization operator given in Eq. (58), we obtain

Πµν(q, µ, T ) = ie2
∑
λ,λ′

∫
ddk

(2π)d

〈
uλk

∣∣∣v̂µ∣∣∣uλ′

k+q

〉〈
uλ

′

k+q

∣∣∣v̂ν∣∣∣uλk〉
ℏω + ϵλk − ϵλ

′
k+q

[
nF (ξ

λ
k)− nF (ξ

λ′

k+q)
]
, (63)

where we have removed the trace operator because it is
only applied in the k-space and in the (λ, λ′)-bands space.

In order to connect with the conductivity obtained
from the Kubo formula, using that the Kubo formula
for the Ohm law imposes that lim

ω→0
Πµν(ω)Aν(ω) = 0 for

constant static Aν(ω) [20] (except for superconductors
[23][22]), we have to remove the effect of the ω → 0 limit

by using

1

ℏω +A
− lim

ω→0

1

ℏω +A
=

1

ℏω +A
− 1

A
=

−1

ℏω +A

ℏω
A
,(64)

−1

ℏω +A

1

A
=

1

ℏω

[
1

ℏω +A
− lim

ω→0

1

ℏω +A

]
, (65)

therefore, we obtain Π̃µν(q) = Πµν(q)− lim
ω→0

Πµν(q)
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Π̃µν(q, µ, T ) = ie2ℏω
∑
λ,λ′

∫
BZ

ddk

(2π)d

〈
uλk

∣∣∣v̂µ∣∣∣uλ′

k+q

〉〈
uλ

′

k+q

∣∣∣v̂ν∣∣∣uλk〉
ℏω + ϵλk − ϵλ

′
k+q

nF (ξ
λ
k)− nF (ξ

λ′

k+q)

ϵλk − ϵλ
′

k+q

, (66)

which resembles the Kubo formula for the linear conductivity, finally, using Eq. (99), we obtain the conductivity as
[34][68][31]

σµν(q,Γ, µ, T ) = −ie2ℏ
∑
λ,λ′

∫
BZ

ddk

(2π)d

〈
uλk

∣∣∣v̂µ∣∣∣uλ′

k+q

〉〈
uλ

′

k+q

∣∣∣v̂ν∣∣∣uλk〉
ℏω + ϵλk − ϵλ

′
k+q

nF (ξ
λ
k)− nF (ξ

λ′

k+q)

ϵλk − ϵλ
′

k+q

. (67)

Taking into account the effect of interactions into the dynamics of the electronic quasiparticles, the Hamiltonian
is modified by the self-energy Σ(ω, q) = ΣR(ω, q) + iΣI(ω, q), then, the electronic spectrum is modified by the
addition of a real self-energy ΣR(ω, q) (whose effect is considered small and absorbed into the phenomenological
constants of the Hamiltonian) and an imaginary part, which results in a frequency-dependent finite dissipation of
the electronic quasiparticles. Here we have argued in subsect. II C that the electronic dissipation is small and can be
well approached with the finite lifetime approximation by a constant imaginary dissipation rate Γλ = τ−1

λ , then, the

electronic quasienergies are modified as ϵλk → ϵλk + iℏΓλ and ϵλ
′

k+q → ϵλ
′,∗

k+q = ϵλ
′

k+q − iℏΓλ′
, therefore

σµν(q, µ, T ) = −ie2ℏ
∑
λ,λ′

∫
BZ

ddk

(2π)d

〈
uλk

∣∣∣v̂µ∣∣∣uλ′

k+q

〉〈
uλ

′

k+q

∣∣∣v̂ν∣∣∣uλk〉
ℏω + iℏ(Γλ + Γλ′) + ϵλk − ϵλ

′
k+q

nF (ξ
λ
k + iℏΓλ)− nF (ξ

λ′

k+q − iℏΓλ′
)

iℏ(Γλ + Γλ′) + ϵλk − ϵλ
′

k+q

, (68)

where also the electronic eigenvalues uλk are functions of ℏΓλ. Assuming that the dissipation ranges are small, at first

order approximation, by using Γ = Γλ + Γλ′
, we obtain the Kubo formula we are going to use

σµν(q, µ, T ) = −ie2ℏ
∑
λ,λ′

∫
BZ

ddk

(2π)d

〈
uλk

∣∣∣v̂µ∣∣∣uλ′

k+q

〉〈
uλ

′

k+q

∣∣∣v̂ν∣∣∣uλk〉
ℏ(ω + iΓ) + ϵλk − ϵλ

′
k+q

nF (ξ
λ
k)− nF (ξ

λ′

k+q)

ϵλk − ϵλ
′

k+q

, (69)

where any possible dependence of uλk on ℏΓλ has disappeared as well and the effect of the small electronic dissipation
is given by the phenomenological Γ > 0 in this approximation.

In Eq. (69), the dissipation rate is the inverse of the
mean lifetime of the electronic quasiparticle Γ = τ−1

[69][30][4]. It appears as the imaginary part of (ϵλk −
ϵλ

′

k+q), but it is not a bad approximation to consider
it as a constant, therefore, iΓ can be absorbed into a
now complex ω 7−→ q0 = (ω + iΓ) [57]. This formula
for the conductivity (Eq. (69)) derived from the Ran-
dom Phase Approximation is completely equivalent to
the Kubo formula, which has been derived elsewhere
[62][29][28][6][70][71][72][34][73][63][57]. In the following
section, we are going to relate the expressions for the con-
ductivity obtained in the different models we compare.

IV. TENSOR DECOMPOSITION

If we want to compare the results of QFT-b model [8]
with the results of the Kubo formula [6], we observe that
in the former the results for the non-local polarization
operator are written in terms of of the component Π00

and of the quantity Π = q2∥Πtr−q2zΠ00, while in the latter

the results for the non-local conductivity tensor σij were
written in terms of longitudinal (σL), transversal (σT ),

Hall (σH) and sinusoidal (σS) components as [32, 74, 75]

σij(q, µ, T ) =
q̃iq̃j
q̃2∥

σL(ω, q̃, µ, T )

+

(
δij −

q̃iq̃j
q̃2∥

)
σT (ω, q̃, µ, T )

+ϵijσH(ω, q̃, µ, T )

+
( q̃iq̃ℓϵℓj − ϵiℓq̃ℓq̃j

q̃2∥

)
σS(ω, q̃, µ, T ),(70)

where this is a sum over repeated indices. In general
σS ̸= 0, but for graphene it is zero, we show here the
complete analysis. Here, q =

(
q̃0, q̃∥

)
, q̃∥ = (q̃1, q̃2),

q̃2∥ =
√
q̃21 + q̃22 (see tab. I), δij is the Kronecker delta

function and ϵij is the 2D Levi-Civita symbol. However,
a relation between {σL, σT , σH , σS} and {σ00, σtr} can be
deduced from Eq. (70) by using the transversality con-
dition qµσ

µν(q) = 0, where qµ = (q0, q1, q2) = (ω, q1, q2)
(see tab. I) is the momentum of the quasiparticle, (inher-
ited from the transversality condition of the polarization
operator), that can be deduced from the application of
the continuity equation (∂µj

µ(xµ) = 0) for the charge
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3-current inside the material together with the Ohm law
for linear currents (jµ(q) = σµν(q)Eν(q)):

qµj
µ(q) = qµσ

µν(q)Eν(q) = 0 ⇒ qµσ
µν(q) = 0 ∀Eν .(71)

In all the text that follows, we use the metric tensor gµν =
diag {+1,−1,−1}. Separating the temporal component
of the 4-vectors, we get qµσ

µν(q) = q0σ
0ν(q)−qaσaν(q) =

0, therefore, we obtain

σ0ν(q) =
qaσ

aν(q)

q0
, (72)

Using Eq. (70), we obtain

σ01(q) =
q1σL(q) + q2(σH(q)− σS(q))

q0
,

σ02(q) =
q2σL(q)− q1(σH(q)− σS(q))

q0
.

(73)

Now we can use that the transversality condition is also
fulfilled for the second index of the conductivity tensor
σµν(q)qν = 0 as well, obtaining that

σµ0(q) =
σµa(q)qa

q0
, (74)

Using again Eq. (70), we obtain

σ10(q) =
q1σL(q)− q2(σH(q) + σS(q))

q0
,

σ20(q) =
q2σL(q) + q1(σH(q) + σS(q))

q0
.

(75)

Note that, in general, σµν is not symmetric because of σS
and of the purely antisymmetric term σH . From those
results, we can now derive the 00 component as

σ00(q) =
qaσ

a0(q)

q0
=
qaσ

ab(q)qb
q20

=
q2∥

q20
σL(q). (76)

Now we have derived the full form of the conductivity
tensor, we obtain the trace as

Tr (σ) = σtr = gµνσ
µν = −σT (q)− σL(q)

q2z
q20
. (77)

where qz = (ℏvF )−1
√
q20 − q̃2∥ (see tab. I). From the ex-

pressions for σ00 and σtr, we obtain that

σL(q) =
q20
q2∥
σ00(q),

σT (q) = −σtr −
q2z
q2∥
σ00(q).

(78)

As a conclusion, the conductivity and polarization ten-
sors can be decomposed into the sum of four components
[75][46] as

σµν = LµνσL + TµνσT +HµνσH + SµνσS , (79)

with

Lµν =

(
δµ0 −

q0qµ
q2z

)
q4z
q2∥q

2
0

(
δν0 −

q0qν
q2z

)
, (80)

Tµν = δ i
µ

(
δij −

qiqj
q2∥

)
δjν , (81)

Hµν = (−1)δ0µ+δ0ν ϵµνρ
qρ

q0
, (82)

Sµν =
q̄µq̄ρϵρν − ϵµρq̄ρq̄ν

q2∥
, (83)

where

q̄α = qα − q2z
q0
δ0α. (84)

So, now we can compare the results of [8] with the results
obtained in [6]

V. KUBO FORMULA FOR GRAPHENE

By using the Kubo formula (Eq. (69)), in [6], the au-
thors obtained the spatial part of the 2D-conductivity
tensor for the 2D Dirac cone given by Eq. (35) (see tab. I)

Ĥη
s (k) = ηk̃1τ1 + k̃2τ2 + τ3∆

η
s , (85)

where mz = ∆η
s . Depending of the indices s and η,

and of external and internal perturbations of the 2D
material, each mass-gap ∆η

s can take different values
[50][76][77][78][79], which are zero for suspended and un-
perturbed graphene sheets. The velocity vector operator
is v̂i = ∂ki

Ĥ = ℏvF (ητx, τy) and the eigenstates of the
Hamiltonian from Eq. (35) are

∣∣∣uλk〉 =
1√

2ϵλk(ϵ
λ
k +∆η

s)

 −(∆η
s + ϵλk)

k̃2 + iηk̃1

k̃
k̃

 ,(86)

with corresponding eigenenergies (compare with
Eq. (42))

ϵλk = λ

√
k̃2 + (∆η

s)2. (87)

If we compare with the Hamiltonian of graphene given
in Eq. (30), we see that we can factor this four-spinor
hamiltonian into the sum of two two-spinors hamiltoni-
ans, one from the second and third rows and columns,
and the other from the first and fourth, as indicated here

ĤD
s (k) =


k̃0 +m 0 0 k̃1 − ik̃2

0 k̃0 +m k̃1 + ik̃2 0

0 k̃1 − ik̃2 k̃0 −m 0

k̃1 + ik̃2 0 0 k̃0 −m

 .(88)

Then, the conductivity for each Dirac cone can be ob-
tained from the results of [6], and the full conductivity
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will be the sum of the contribution of the four cones
(two cones due to the factorization of Eq. (30) shown in
Eq. (88), each one counted two times because of the spin
degeneration gs = 2). The velocity-velocity correlators
are given in [6], and in Eq. (105). Those results are valid
for all frequencies ω ∈ C+, and we remind that they are
the conductivity per Dirac cone, to obtain the conduc-
tivity of Graphene, we must to sum the contribution of
each 4 Dirac cones, having into account their respective
(signed) Dirac masses by using

σp(q) =
∑
η=±

∑
s=±

σp(q,∆
η
s), (89)

for p = {L, T,H}, σS(q,∆η
s) = 0 for any Hamiltonian of

the form of Eq. (85). From the decomposition shown in

Eq. (88) of ĤD
s (k) into two 2-spinor Hamiltonians Ĥη

s (k)
of the form of Eq. (85) with Dirac masses ∆η

s = ηm (ro-
tate the 2-spinor Hamiltonian obtained from the first and
fourth rows and columns π/2 rads), the Chern number
of the studied model of graphene is

C =
∑
η=±

∑
s=±

sgn(ηm) = 0. (90)

Therefore, graphene with the induced mass studied here
is topologically trivial, and there is not any Hall conduc-
tivity (σH = 0).

Due to the requirements of causality and realism, σµν
do not have poles for ω in the upper complex plane, and
Eq. (69) is valid for all complex-values frequency with
positive imaginary part simply promoting ω ∈ R as a
complex variable ω ∈ C+. In [6], it was proven that
the spatial components of the conductivity tensor σij can
be conveniently given by separating between longitudinal
σL, transverse σT , and Hall σH , contributions [6][32, 74,
75] (Eq. (70))

σij(q, µ, T ) =
q̃iq̃j
q̃2∥

σL(ω, q̃, µ, T )

+

(
δij −

q̃iq̃j
q̃2∥

)
σT (ω, q̃, µ, T )

+ϵijσH(ω, q̃, µ, T ), (91)

because σS(q,∆
η
s) = 0 for any Hamiltonian of the form of

Eq. (85). Here, q =
(
q̃0, q̃∥

)
, q̃∥ = (q̃1, q̃2), q̃

2
∥ =

√
q̃21 + q̃22

(see tab. I), δij is the Kronecker delta function and ϵij
is the 2D Levi-Civita symbol. This expression has been
generalized in Eq. (79) of Sect. IV for the complete con-
ductivity tensor σµν . The explicit analytical form of
those three functions for real and complex frequencies
in the zero temperature limit can be found in [6] and in
the appendix A. To obtain similar results for finite tem-
peratures, we should apply the Maldague formula [80][81]

σij(q, µ, T ) =

∫ ∞

−∞
dE

σij(q, E, 0)

4kBT cosh2
(

E−µ
2kBT

) , (92)

where σij(q, µ, 0) is the zero-temperature conductivity
result. This is the more general formula for the lin-
ear non-local conductivity based on the linearized tight-
binding model with a constant dissipation time parame-
ter τ = Γ−1, and it is completely equivalent to Eq. (69).
To go beyond this result, the full tight-binding model
of graphene should be used [82][59] instead of the lin-
ear approximation, a deep more detailed study of the
effects of the different interactions in electronic quasipar-
ticle spectrum [10][11][12][60] or more detailed ab-initio
models [83][84][59].

VI. LOCAL LIMIT OF THE KUBO
CONDUCTIVITY

There is an special case in the local limit (when we
apply the q∥ → 0 limit to the Kubo formula (69)) when
results valid for all temperatures can be obtained. The
local limit of the conductivities of one massive Dirac cone
are [6]

σxx(ω,0, µ, 0) = i
σ0
π

[
µ2 −∆2

|µ|
1

Ω
Θ (|µ| − |∆|)

+
∆2

MΩ
− Ω2 + 4∆2

2iΩ2
tan−1

(
iΩ

2M

)]
,

σxy(ω,0, µ, 0) =
2σ0
π

η∆

iΩ
tan−1

(
iΩ

2M

)
. (93)

σ0 = αc/4 is the universal conductivity of graphene

(α = e2

ℏc is the fine structure constant), Ω = ℏω + iℏΓ
andM = Max [|∆|, |µ|]. These results are per Dirac cone
and are consistent with those found by other researchers
[68][29][69][30][28][31][32][33][85][86][47][43][87][88][89].
The first term in σxx corresponds to intraband transi-
tions, and the last two terms correspond to interband
transitions. Note that, in the local limit q∥ = 0 one
obtains σxx(ω,0) = σyy(ω,0) = σL(ω,0) = σT (ω,0),
and σxy(ω,0) = −σyx(ω,0) = σH(ω,0).
This model not only serves to model the local con-

ductivity of graphene with mass, but also any other 2D
Dirac cones, like the surface states of a Three Dimen-
sional Topological Insulator [90] and Chern Insulators
[91]. By summing the contribution of several different
2D Dirac cones with ∆ ̸= 0, non-trivial topological states
with non-zero Chern number can be studied [79][91].
Here we are going to compare this result with the

Falkovsky model of massless graphene [31], we need to
obtain the ∆ → 0 limit of the sum of the contribution of
4 Dirac cones, then

σxx(ω, q∥ = 0, T = 0,∆ = 0) = σintra
xx (ω) + σinter

xx (ω),

σintra
xx (ω) =

αc

π

|µ|
−iΩ

,

σinter
xx (ω) =

αc

2π
tan−1

(
−iΩ

2|µ|

)
,

σxy(ω, q∥ = 0, T = 0,∆ = 0) = 0. (94)
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By applying the Maldague formula (Eq. (92)) to this re-
sult with ∆ = 0, in the non-dissipation limit for the in-
terband term and for finite temperatures, the well-known
result of Falkovsky [31][30] is obtained as

σF
xx(ω,Γ, T, µ) = σF,intra

xx (ω,Γ, T, µ) + σF,inter
xx (ω, 0, T, µ),

σF,intra
xx (ω,Γ, T, µ) =

1

πℏ
2iαckBT

ω + iΓ
ln

[
2 cosh

(
µ

2kBT

)]
,

σF,inter
xx (ω, 0, T, µ) =

αc

4
G

(∣∣∣∣ℏω2
∣∣∣∣) (95)

+ i
αc

4

4ℏω
π

∫ ∞

0

dξ

G(ξ)−G

(∣∣∣∣ℏω2
∣∣∣∣)

(ℏω)2 − 4ξ2
,

with

G (ϵ) =
sinh (βϵ)

cosh (βµ) + cosh (βϵ)
. (96)

We have the absolute value in the preceding formula
because we are handling also negative real frequencies,
while in [31] the result for only positive frequencies were
derived. The derivation of this result for real and imagi-
nary frequencies is given in the appendix B.

VII. ON THE QUANTUM FIELD THEORY
BASED MODEL FOR THE CONDUCTIVITY
AVAILABLE IN CURRENT LITERATURE

In literature exists another QFT-b model for the non-
local conductivity also based on the polarization operator
of a 2D + 1 Dirac Hamiltonian [8][9][21][33][42][43][46],
but different from the one we just derived in section
Sect. V. That model has been extensively used in the con-
text of Casimir effect, compared to experimental results
[8], and it has been proposed as intrinsically more fun-
damental than the Kubo one since based on ”first prin-
ciples” and being ”not phenomenological” like [18, 19].
This same model, due to a claimed coherence with the
Lifshitz theory has also been suggested as model to mod-
ify the well know dielectric function of metals itself [19].
In this section we show that that model, first does not in-
clude unavoidable losses coming from the inelastic inter-
actions of electronic quasiparticles with different objects
always present in real samples as phonons, scattering
centers, lattice dislocations and non-linear interactions
for example, as discussed in Subsect. II C. To add such
losses at this level of theory it is enough to simply intro-
duce a constant parameter Γ = τ−1 as the inverse of the
mean lifetime of the electron quasiparticle, which is an
experimentally measured quantity (See Subsect. II C). In
addition to that, that theory is also not physically cor-
rect and predicts nonphysical features like an intrinsic
Plasma behaviour that cannot be cured even by adding
losses. We explain the origin of that pathology and show
that a correct regularization of that model (as done in

Sect. III) make that QFT-b model exactly identical to
the Kubo model we derived in previous section Sect. V.
The starting point is the linear relationship given in
Eq. (56)

Jµ(ω, q) = Πµν(ω, q)A
ν(ω, q). (97)

To connect this result with the microscopic Ohm law

Jµ(ω, q) = σµν(q)E
ν(ω, q), (98)

where σµν(q) is the conductivity operator, and
Eµ(ω, q) = −iωAµ(ω, q) is the electric field, the re-
lation between Πµν(q) and σµν(q) is assumed to be
[65][92][93][94][95][96] [8] [21][19]

σµν(q) =
Πµν(q)

−iω
, (99)

with the Polarization operator defined in Eq. (58), but
using the covariant action and covariant Dirac Hamil-
tonian given in Eqs. (37) and Eq. (31). Note that,
contrary to the result obtained in Eq. (55) and in the
appendix Sect. D, there is no additional regularization
term lim

ω→0
Πµν(ω, q∥). Remarkably, we show that this

additional regularization term makes the results for the
transversal conductivity different from the results of the
Kubo formalism.
In this formalism, the Polarization operator is also de-

fined in Eq. (58), but using the covariant action and co-
variant Dirac Hamiltonian given in Eq. (37) and Eq. (31).
In addition to that, the main difference with the polar-
ization operator obtained in Eq. (66), is that, instead of
using the expression of the Green function as an expan-
sion on eigenfunctions given in Eq. (60), a covariant form
of the Green function of the Dirac Hamiltonian (Eq. (40),
see tab. I) is used instead

GW
0 (k) = Ĥ−1

W (k) =
1

γµKµ − γ4m
=
γµKµ + γ4m

KµKµ −m2
.(100)

This is the reason why apparently the results obtained
in [8][41][42][9][21][32][33][46][47] look completely differ-
ent to the ones obtained by the use of the Kubo formula.
Here we are going to show how the two formalisms are
related, and under what circumstances they provide sim-
ilar or different results for the conductivity for graphene
with a topologically trivial mass term.
By using the definition of the current operator

(Eq. (50)), we obtain that

Ĵµ(k) =
∂ĤW

s (kα − eAα(k))

∂Aµ(k)

= −e(γ0, vF γ1, vF γ2)

= − e
ℏ
(γ̃0, γ̃1, γ̃2). (101)

Inserting this result into Eq. (58), and using that the
Green function is diagonal in spin, we get

Πµν(q) = gs
e2

ℏ2
i

∫
k

Tr
(
GW
0 (k)γ̃µGW

0 (k + q)γ̃ν
)
, (102)
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where gs = 2 is the spin degeneration, e2 = αcℏ, and
γ̃µ = ℏ(γ0, vFγ) (see tab. I). After carrying out the trace,
one obtains Πµν(q) = igs

αc

ℏ

∫
k

Zµν(Kα, qα)

[KµKµ −m2] [SµSµ −m2]
, (103)

where Sµ = Kµ + Qµ (see tab. I), and Zµν(Kα, qα) is
obtained as [9]

Zµν(Kα, qα) = 4


k̃µs̃µ + k̃1s̃1 + k̃2s̃2 +m2 −vF (k̃µs̃1 + k̃1s̃µ) −vF (k̃µs̃2 + k̃2s̃µ)

−vF (k̃µs̃1 + k̃1s̃µ) v2F

(
k̃µs̃µ + k̃1s̃1 − k̃2s̃2 −m2

)
v2F (k̃1s̃2 + k̃2s̃1)

−vF (k̃µs̃2 + k̃2s̃µ) v2F (k̃1s̃2 + k̃2s̃1) v2F

(
k̃µs̃µ + k̃2s̃2 − k̃1s̃1 −m2

)
 ,(104)

where k̃µ = k̃0 + µ, s̃µ = s̃0 + µ, k̃i = ℏvF ki and s̃i = ℏvF si (see tab. I). From this result, it is easy to obtain [40][65]

Zµν(Kα, qα)

N(Kα, qα)
=
∑
λ,λ′


1 + k̃1s̃1+k̃2s̃2+m2

ϵλkϵ
λ′
s

vF

(
k̃1

ϵλk
+ s̃1

ϵλ′
s

)
vF

(
k̃2

ϵλk
+ s̃2

ϵλ′
s

)
vF

(
k̃1

ϵλk
+ s̃1

ϵλ′
s

)
v2F

[
1 + k̃1s̃1−k̃2s̃2−m2

ϵλkϵ
λ′
s

]
v2F

k̃1s̃2+k̃2s̃1
ϵλkϵ

λ′
s

vF

(
k̃2

ϵλk
+ s̃2

ϵλ′
s

)
v2F

k̃1s̃2+k̃2s̃1
ϵλkϵ

λ′
s

v2F

[
1 + k̃2s̃2−k̃1s̃1−m2

ϵλkϵ
λ′
s

]
 1

k̃0 + ξλk

1

s̃0 + ξλ′
s

= 2
∑
λ,λ′

〈
uλk

∣∣∣v̂µ∣∣∣uλ′

k+q

〉〈
uλ

′

k+q

∣∣∣v̂ν∣∣∣uλk〉[
k̃0 − ξλk

]
[s̃0 − ξλ′

s ]
, (105)

where N(Kα, qα) =
[
KµKµ −m2

] [
SµSµ −m2

]
is the

denominator of Eq. (103),
∣∣∣uλk〉 are the eigenfunctions

of the spinor Hamiltonian (35) with ∆ → m defined in
Eq. (86) and ξλk are their corresponding eigenvalues, de-
fined in Eq. (59) with Eq. (87). The product of velocity
correlators coincide with the ones obtained in [6], with
m instead of ∆, proving explicitly that, even if we start
from the covariant Hamiltonian, the Polarization opera-
tor (and, therefore, the conductivity) for graphene must
be the same as the one obtained with the expression of
the Green function as an expansion on eigenfunctions in
Eq. (60). However, from this expression we observe that
there is a difference between the results obtained from
the Kubo formula (Eq. (69)) and the results derived di-
rectly from Eq. (103). In the former we have regularized
the polarization in such a way that lim

ω→0
ΠµνAν = 0 is im-

posed, while in the latter there is not such regularization,
and it is related with Eq. (63) instead. As a consequence,
the results derived from Eq. (69) are regular for small fre-
quencies with a finite DC conductivity, while the results
derived directly from Eq. (103) without regularization
has an infinite DC conductivity coming from the infinite
dissipation time and from an spurious Plasma behavior
whose origin is an interband transition.

Applying the Matsubara formalism directly to the ex-
pression of Eq. (103) using Eq. (104) instead of Eq. (105),
we obtain the expression for the polarization operator
shown in [9]. The detailed calculations are shown in the

Appendix C, and results in (see tab. I)

Πµν(q) = igse
2ℏ2

∫
k

[1−Nµ(ϵk)]

×
∑
λ=±

Zµν(ϵ
λ
k,k, q0, q)

2ϵk
(
(q̃0 + ϵλk)

2 − ϵ2s
) , (106)

where we have defined, using Eq. (96)

Nµ(ϵ) =
∑
η=±

nF (ϵ+ ηµ) = 1−G(ϵ). (107)

Following the notation of [9], the Polarization operator
given in Eq. (103) can be written as

Πµν(q) = Πµν
0 (q) + ∆TΠ

µν(q), (108)

by construction, Πµν
0 (q) is independent of temperature

and of the chemical potential µ [9], it can be understood
as the interband contribution with µ = kBT = 0 eV.
Note that Πµν

0 (q), as shown in Eq. (106), has an ultra-
violet divergence, which can be removed with a Pauli-
Villars subtraction scheme [32], solved by a 1/N ex-
pansion [75, 97] or solving the regular integral given in
Eq. (63) [37][6][65]. The regularized Πµν

0 (q) will only
coincide with the regular result obtained from Eq. (66)
using Eq. (69) and the relation between Polarization and
conductivity show in Eq. (99) [6] if the regularization
term derived from the Kubo formula in Eq. (D16) of ap-
pendix D does not contribute to the end result. We will
observe in what follows that this is not always the case.
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In the appendix C, we derive the expressions for the
longitudinal and transversal parts of the polarization op-
erator derived from Eq. (106). The longitudinal polar-
ization is obtained as

ΠL(q) = −2igs
αc

ℏ
q̃20
q̃2∥

∫
k

1

2ϵk
[1−Nµ(ϵk)]

×
∑
λ=±

[
1 +

M00(q̃0, k̃∥, q̃∥)

Q(q̃0, k̃∥, q̃∥) + 2k̃∥ · q̃∥

]
, (109)

with q̃2z = q̃20 − q̃2∥ (see tab. I)

M00(q̃0, k̃∥, q̃∥) = −q̃2z + 4q̃0ϵ
λ
k + 4ϵ2k, (110)

Q(q̃0, k̃∥, q̃∥) = −q̃2z − 2q̃0ϵ
λ
k, (111)

while the transversal polarization is

ΠT (q) = 2igs
αc

ℏ
q̃20
q̃2∥

∫
k

1

2ϵk
[1−Nµ(ϵk)]

×
∑
λ=±

1 + M00(q̃0, k̃∥, q̃∥)− 4
q̃2∥
q̃20

(
k̃2∥ + q̃0ϵ

λ
k

)
Q(q̃0, k̃∥, q̃∥) + 2k̃∥ · q̃∥

 ,(112)
Using the parameters q̃z =

√
q̃20 − q̃2∥ and δ = 2m

−iq̃z
for

any complex frequency ω ∈ C+ (q̃0 = ℏ(ω + iΓ)), and

Ψ(x) = 2

[
x+

(
1− x2

)
tan−1

(
1

x

)]
, (113)

the regularization of Πµν
0 (q) in Eq. (109) and Eq. (112)

lead to [8][9][21][92]

Π
(0)
L (q) = −gsi

αc

8πℏ
q̃20
q̃z

Ψ(δ), (114)

Π
(0)
T (q) = −gsi

αc

8πℏ
q̃zΨ(δ). (115)

In the particular case of imaginary frequencies, we have

q̃0 = iℏξ = iΞ, q̃z = i
√

Ξ2 + q̃2∥ = iθ̃z = E, γ = Ξ
θ̃z

and

δ = 2m
θ̃z

(see tab. I), and it is show in the appendix that

the integrals can be reduced to

Π
(0)
L (q) = gs

αc

8πℏ
Ξ2

θ̃z
Ψ(δ), (116)

∆TΠL(q) = gs
αc

2πℏ
θ̃z
q̃2∥

∫ ∞

δ

duNµ

(
θ̃z
u

2

)
×

[
1− Re

[
1− u2 − 2iγu√

1− u2 − 2iγu+ (1− γ2)δ2

]]
, (117)

Π
(0)
T (q) = gs

αc

8πℏ
θ̃zΨ(δ), (118)

∆TΠT (q) = −gs
αc

2πℏ
Ξ2

q̃2∥
θ̃z

∫ ∞

δ

duNµ

(
θ̃z
u

2

)
×

[
1− Re

[ (
1 + iγ−1u

)2
+
(
γ−2 − 1

)
δ2√

1− u2 − 2iγu+ (1− γ2)δ2

]]
. (119)

These results coincide with the results published in
[8][9][21][92][94] in their appropriate limits.

A. Differences with Kubo formula

With this result, we obtain that ΠL(q) obtained from
this QFT-b model is consistent with the conductivity ob-
tained from the non-local Kubo formula, however, ΠT (q)
is not because lim

ω→0
ΠT (ω, q) ̸= 0, therefore it must be

correctly regularized to avoid nonphysical results.

Having into account that Π
(0)
T (q) corresponds to the

µ = kBT = 0 eV case, it corresponds to the interband
conductivity. Therefore, the real part of this conductivity
must be zero when ℏΓ → 0 (an electron in the valence
band has to jump to a hole place in the conduction band
to conduct; therefore, a finite gap exists as long as valence
and conduction bands do not tough). In [6] was found
that the interband conductivity can be writen as

lim
ℏΓ→0

Re [σT (q)] = f(q)Θ
(
ℏω −

√
4m2 + q̃2∥

)
, (120)

this functional form is needed to obtain the correct con-
vergence with the local limit. However, from the expres-
sion published in [9], we find that

σQFT−b
T,0 (ω, q̃∥) =

αc

4π

√
q̃2∥ − ℏ2ω2

−iℏω
Φ

 2∆√
q̃2∥ − ℏ2ω2

(121)
diverges at small frequencies as

σQFT−b
T,0 (ω, q̃∥) =

αc

4π

q̃∥

−iℏω
Φ

(
2∆

q̃∥

)
+O [ℏω] . (122)

with q̃∥ = ℏvF q∥. Note that σQFT−b
T,0 (ω, q̃∥) behaves

as a Plasma model without conduction electrons or
holes. This result of the QFT-b theory would implies
a dissipation-less electric current which is clearly not ac-
ceptable in normal materials. This is an explicit example
of the need to regularize the polarization operator in such
a way to fulfil the condition imposed by Gauge invariance
lim
ω→0

Πµν(q)Aν(ω, q) = 0 ∀Aν(0, q). Therefore, we keep

the µ = 0 interband transversal conductivity derived in
[6] as the correct conductivity σT,0 term, given by

σT,0(q) =
αc

4π

1

ℏξ

[
θ̃zΨ(δ)− q̃∥Ψ(x)

]
, (123)

with θ̃z =
√

(ℏξ)2 + q̃2∥, δ =
2∆
θ̃z

and x = 2∆
q̃∥

(see tab. I).

Note that this expression corresponds to the explicit elim-
ination of the ω → 0 limit to the Polarization operator
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lim
ω→0

Πµν(ω)Aν(ω) = 0 for constant static Aν(0) [20] [22].

This is the difference between using the non-regularized
expression of the Polarization operator given in Eq. (63)
and the regularized used given in Eq. (66). In Fig. 1 can
be observed, for real (ℏω) and imaginary (ℏω = iℏξ) fre-
quencies the divergence of Eq. (121) and the convergence
of Eq. (123) to the local limit given in Eq. (93). For
imaginary frequencies (Fig. 1a) and for the imaginary
part of the conductivity for real frequencies (Fig. 1c),
the appearance of the Plasma-like peak is evident, for
the real part of the conductivity at real frequencies, the
Plasma-like peak is a Dirac delta and cannot be observed
in the figure (Fig. 1b). It is interesting to note that, when
q̃∥ → 0, the divergence disappear.
Here it is clearly seen the importance the regularization

term lim
ω→0

Πµν(ω, q) has. In the QFT-b models, the lack

of regularization at zero frequency opens the possibil-
ity of obtain spurious non-physical Plasma conductivities
without dissipation (Γ = 0) in graphene, note that this
result is not cured even if dissipation (Γ > 0) is artificially
added to the model. This fact actually happens for the

transversal conductivity σQFT−b
T,0 (ξ, q̃∥) in Eq. (121), the

longitudinal conductivity is saved from this divergence
because it scales with ω2 (See Eq. (78)), however, the

term σQFT−b
00 should be regularized as well to avoid any

equivalent non-physical behavior of the charge density of
the system. It is worth noting that, in the local limit,
this divergence disappears, so none of the models stud-
ied here have this non-physical dissipation-less Plasma
current in their corresponding local limit. Finally, the
non-local Kubo model, by construction, do not have this
divergence.
The appearance of this dissipation-less current associated
to the constitutive equation given in Eq. (56)

Jµ(ω, q) = Πµν(ω, q)A
ν(ω, q), (124)

resemble to the well-known London equation [23]

ji(ω, q) =
−nse2

m
Ai(ω, q). (125)

London equation also predicts the Plasma model for the
electronic conductivity without losses, but the Gauge in-
variance is explicitly broken. This breaking of Gauge in-
variance indicated the need of an additional microscopic
theory of superconductivity that would restore the Gauge
invariance of the theory, the BCS theory [24][98][25][22].
A detailed study of the Gauge invariance of the Kubo
and QFT-b models will be published in the future [99].
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Figure 1. (Color online) Double logarithmic plots of the real part of the transversal conductivity σT (in units of the universal
conductivity of graphene σ0 = αc

4
) as a function of the imaginary frequency ℏω = iℏξ in panel (a), the real part for real frequency

ℏω in panel (b) and the imaginary part for real frequencies in (c), for the case with kBT = µ = 0, ∆ = 2 eV, q̃∥ = 1 eV and

dissipation rate ℏΓ = 10−3 eV. The thick black curve is the non-local conductivity derived from the Kubo formula, given in
this limit by Eq. (123), the red curve is the non-local conductivity σQFT−b

T,0 (ω, q̃∥) show in Eq. (121), the yellow curve is the local
conductivity show in Eq. (93) and the green curve is the ℏξ → 0 divergence of Eq. (121), given in Eq. (122). The dashed curves
in panel (c) represent the positive imaginary parts of the conductivity, while the full curves represent the negative values.

VIII. NUMERICAL COMPARISON

In the following figures, we compare the longitudinal
and transversal conductivities derived from the 3 models
we have studied here. We compared for different tem-
peratures T , chemical potentials µ, mass gaps ∆ and
momentum q̃, the longitudinal (Fig. 2) and transversal
conductivities (Fig. 3) derived from the three different
models studied here. The local limit (q̃∥ = 0) at T = 0 K
and T = 300 K are represented by the thick black and the

yellow dashed curves respectively. The non-local conduc-
tivities derived from the Kubo formula with q̃∥ ̸= 0 eV

and ℏΓ = 10−3 eV at T = 0 K and T = 300 K are repre-
sented by the thick red and the blue dashed curves respec-
tively. The non-local conductivity derived from the QFT-
b model with q̃∥ ̸= 0 eV at T = 0 K and T = 300 K are
represented by the dashed brown and thick green curve
respectively. We study the non-locality for q̃∥ = 10−2 eV
and for q̃∥ = 1 eV.

As can be observed in Fig. 2, the results for the non-
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local longitudinal conductivities derived from the Kubo
formula and from the QFT-b model almost coincide. Ac-
tually, if we artificially add the (non-existant) dissipation
rate ℏΓ to the QFT-b model, the two curves would al-
most superimpose, with any difference explained by the
use of different regularizations of the integrals. This fact
remarks the contribution the electronic quasi-particle dis-
sipation has in the conductivity, mainly for frequencies
|ω| ≲ Γ.

As can be observed in Figs. 3, the results for the non-
local transversal conductivities derived from the Kubo
formula and from the QFT-b model are very different.
The main problem here is that an spurious asymptote
proportional to (ℏξ)−1 appears for very small imagi-
nary frequencies. This difference is explained because

σQFT−b
T (q) is not regularized as imposed by the Kubo

formula to fulfil lim
ω→0

Πµν(ω)Aν(ω) = 0.

IX. CONCLUSIONS

In this article we have shown a detailed derivation
of the polarization Πµν and conductivity σµν tensor for
graphene close to the Dirac point in the continuous limit.
We have used the Kubo formula [6] (σK), a Quantum
Field Theory based (QFT-b) model (which approaches
the electronic quasiparticles as (2+ 1)D Dirac electrons)
[9] (σQFT−b) and a local model [31] (σF ).

The more general result is obtained with the Kubo for-
mula σK . This result is valid for any complex frequency
(with positive imaginary part) ω ∈ C+, constant dissipa-
tion rate Γ, chemical potential µ and Dirac mass m as
a closed analytical formula at zero Temperature T . The
non-zero temperature results can be obtained after an
integration by using the Maldague formula (Eq. (92)).

We obtain that the local limit of σK is actually σF

if we make m = 0 and the dissipation of the interband
conductivity exactly zero.

We have derived the polarization (and, therefore, the
conductivity) as in the QFT-b model, we obtain again the
results published elsewhere, and we find that the longi-
tudinal conductivity derived from the Kubo formula and
from the QFT-b model almost coincide, with any dif-
ference explained by the different regularization strate-
gies used. However, there is not such a coincidence
with the transversal conductivity. The main difference
comes from the regularization of the polarization opera-

tor used. In the case of the Kubo formula, the expres-
sion of the polarization operator is regularized by im-
posing lim

ω→0
Πµν(ω)Aν(ω) = 0 for all Aν(ω), as shown

in Eq. (D16) of Appendix D. By the contrary, in the
derivation of the QFT-b model, as the assumed con-
stitutive relation (Eq. (56)) does not impose any reg-
ularization term, the Longitudinal conductivity derived
from the QFT-b model only coincides with the result
derived from the Kubo formula because the regulariza-
tion term accidentally cancels out in this case, this is
not the case of the Transversal conductivity, for which
the QFT-b result fulfils lim

ω→0
ΠT (ω) ̸= 0. As a conse-

quence, a transversal Plasma conductivity is obtained in
the QFT-b model, that would implies a dissipation-less
electric current which is clearly not acceptable in normal
materials.
We have shown that the use of the Ohm law as the con-
stitutive relation between the electric current Jµ and the
electric field Eν (Eq. (51)) instead of the assumed lin-
ear relationship of the electric current with the potential
vector Aν (Eq. (56)) in the Kubo formula leads to differ-
ent models for the electric conductivity of 2D materials
described by the Dirac Hamiltonian, like graphene. This
difference can be traced out to a regularization term that
must be applied to the conductivity tensor. Once this
regularization term is taken into account, the Kubo and
QFT-b model exactly coincide for all parameters of the
model.
This result can affect to the prediction of the Casimir

effect with graphene.
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Appendix A: Non-local Kubo conductivity expressions

The analytical formulas for the non-local conductivities of 2D Dirac cones have been derived in [6] from Eq. (69).
Those formulas are naturally divided into two parts, one independent of the chemical potential µ and another term
for which the chemical potential is accounted for. Namely, σp(q) = σp,0(q) + Θ(|µ| − |∆|)σp,1(q), where Θ is the
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Figure 2. (Color online) Double logarithmic plots of the longitudinal conductivity σL(iℏξ) (in units of the universal conductivity
of graphene σ0 = αc

4
) as a function of the imaginary frequency ℏω = iℏξ. The thick black and the yellow dashed curves are the

local conductivity (q̃∥ = 0) at T = 0 K and T = 300 K respectively. The thick red and the blue dashed curves are the non-local

conductivities derived from the Kubo formula with q̃∥ ̸= 0, ℏΓ = 10−3 eV at T = 0 K and T = 300 K respectively. The
thick green and brown dashed curves are the non-local conductivity derived from the QFT-b model with q̃ ̸= 0 at T = 300 K
and T = 0 K respectively, finally, the thin gray line is the universal conductivity of graphene with σ(iℏξ) = σ0 = αc

4
. In

a) {µ,∆, q̃∥} = {0, 0, 10−2} eV, in b) {µ,∆, q̃∥} = {0, 0.2, 10−2} eV, in c) {µ,∆, q̃∥} = {0.25, 0, 10−2} eV, in d) {µ,∆, q̃∥} =

{0.25, 0.2, 10−2} eV, in e) {µ,∆, q̃∥} = {0, 0, 1} eV, in f) {µ,∆, q̃∥} = {0, 0.2, 1} eV, in g) {µ,∆, q̃∥} = {0.25, 0, 1} eV, and in
h) {µ,∆, q̃∥} = {0.25, 0.2, 1} eV.
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Figure 3. (Color online) Double logarithmic plots of the transversal conductivity σT (iℏξ) (in units of the universal conductivity
of graphene σ0 = αc

4
) as a function of the imaginary frequency ℏω = iℏξ. The thick black and the yellow dashed curves are the

local conductivity (q̃∥ = 0) at T = 0 K and T = 300 K respectively. The thick red and the blue dashed curves are the non-local

conductivities derived from the Kubo formula with q̃∥ ̸= 0, ℏΓ = 10−3 eV at T = 0 K and T = 300 K respectively. The
thick green and brown dashed curves are the non-local conductivity derived from the QFT-b model with q̃∥ ̸= 0 at T = 300 K
and T = 0 K respectively, finally, the thin gray line is the universal conductivity of graphene with σ(iℏξ) = σ0 = αc

4
. In

a) {µ,∆, q̃∥} = {0, 0, 10−2} eV, in b) {µ,∆, q̃∥} = {0, 0.2, 10−2} eV, in c) {µ,∆, q̃∥} = {0.25, 0, 10−2} eV, in d) {µ,∆, q̃∥} =

{0.25, 0.2, 10−2} eV, in e) {µ,∆, q̃∥} = {0, 0, 1} eV, in f) {µ,∆, q̃∥} = {0, 0.2, 1} eV, in g) {µ,∆, q̃∥} = {0.25, 0, 1} eV, and in
h) {µ,∆, q̃∥} = {0.25, 0.2, 1} eV.

Heaviside step function and p = {L, T,H}. Using the parameters θ̃z =
√
q̃2∥ − q̃20 , γ = Ξ

θ̃z
, δ = 2|∆|

θ̃z
, and

Ψ(x) = 2

[
x+

(
1− x2

)
tan−1

(
1

x

)]
, (A1)
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σL,0(q) =
σ0
2π

−iq̃0

θ̃2z

[
2|∆|+ θ̃2z − 4∆2

θ̃z
tan−1

(
θ̃z
2|∆|

)]
=
σ0
4π

−iq̃0

θ̃z
Ψ(δ), (A2)

σL,1(q) =
σ0
2π

−iq̃0
q̃2∥

[
4(|µ| − |∆|) + 1

2θ̃z

(
F1 +

(
R2 − q̃2∥

)
F2

)
+
q̃∥

q20
Θ
(
q̃2∥ − 4

(
µ2 −∆2

))
F3

]
, (A3)

σT,0(q) =
σ0
2π

1

−iq̃0

[
θ̃2z − 4∆2

θ̃z
tan−1

(
θ̃z
2|∆|

)
−
q̃2∥ − 4∆2

q̃∥
tan−1

(
q̃∥

2|∆|

)]
=
σ0
4π

1

−iq̃0

[
θ̃zΨ(δ)− q̃∥Ψ(x)

]
, (A4)

σT,1(q) =
σ0
2π

i

q0

[
4
q̃20
q̃2∥

4(|µ| − |∆|) + 2|∆| − 1

2θ̃z

(
θ̃2z
q̃2∥

F1 +
(
θ̃2z − 4∆2

)
F2

)

+
1

q̃∥

(
F4Θ

(
q̃2∥ − 4

(
µ2 −∆2

))
+ F5Θ

(
4
(
µ2 −∆2

)
− q̃2∥

))]
, (A5)

σH,0(q) =
2σ0
π

η∆

θ̃z
tan−1

(
θ̃z
2|∆|

)
, (A6)

σH,1(q) = −σ0
π

η∆

θ̃z

[
tan−1

(
q̃0 − 2|∆|√

R2 − (q̃0 − 2|∆|)2

)
− tan−1

(
q̃0 − 2|µ|√

R2 − (q̃0 − 2|µ|)2

)

+i log

(
q̃0 + 2|µ|+

√
(q̃0 + 2|µ|)2 −R2

q̃0 + 2|∆|+
√

(q̃0 + 2|∆|)2 −R2

)]
, (A7)

where σ0 = αc
4 = e2

4ℏ , q̃0 = ℏΩ = ℏω + iℏΓ (Γ = τ−1 accounts for the relaxation time), q̃∥ = ℏvF q, θ̃z =
√
q̃2∥ − q̃20 ,

R = q̃∥

√
1 + 4(|∆|/θ̃z)2, δ = 2∆

θ̃z
and x = 2∆

q̃∥
. It is important to note that only the modulus of the mass gaps enter

into the expressions for σL and σT , while σH has an additional dependency on the sign of the gaps through the
combination η∆η

s . The auxiliary functions {Fn}5n=1 depend on q0, µ, |∆|, q̃∥, and R, and are the following

F1 = (q̃0 − 2|µ|)
√
R2 − (q̃0 − 2|µ|)2 − (q̃0 − 2|∆|)

√
R2 − (q̃0 − 2|∆|)2

+i(q̃0 + 2|µ|)
√
(q̃0 + 2|µ|)2 −R2 − i(q̃0 + 2|∆|)

√
(q̃0 + 2|∆|)2 −R2, (A8)

F2 = tan−1

(
q̃0 − 2|∆|√

R2 − (q̃0 − 2|∆|)2

)
− tan−1

(
q̃0 − 2|µ|√

R2 − (q̃0 − 2|µ|)2

)
−i log

(
q̃0 + 2|∆|+

√
(q̃0 + 2|∆|)2 −R2

)
+ i log

(
q̃0 + 2|µ|+

√
(q̃0 + 2|µ|)2 −R2

)
, (A9)

F3 = 2µ
(√

q̃2∥ − 4 (µ2 −∆2) + i
√
4 (µ2 −∆2)− q̃2∥

)
+
(
4∆2 − q̃2∥

) [
i log(2|∆|+ iq̃∥)− i log

(
2|µ|+

√
4 (µ2 −∆2)− q̃2∥

) ]
+
(
4∆2 − q̃2∥

)[
tan−1

(
2|µ|√

q̃2∥−4(µ2−∆2)

)
− tan−1

(
2|∆|
q̃∥

) ]
, (A10)

F4 = −2|µ|
√
q̃2∥ − 4 (µ2 −∆2) +

(
q̃2∥ − 4∆2

)tan−1

 2|µ|√
q̃2∥ − 4(µ2 −∆2)

− tan−1

(
2|∆|
q̃∥

) , (A11)

F5 =
(
q̃2∥ − 4∆2

)[π
2
− tan−1

(
2|∆|
q̃∥

)]
. (A12)

Those results are valid for all frequencies ω ∈ C+, and we remind that they are the conductivity per Dirac cone, to
obtain the conductivity of Graphene, we must to sum the contribution of each 4 Dirac cones, having into account
their respective (signed) Dirac masses by using

σp(q) =
∑
η=±

∑
s=±

σp(q,∆
η
s). (A13)
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Finally, note that if we are interest on the σ00 term of the conductivity tensor, instead of Eq. (76), we have to use

σ00(q) =
q2∥

q20

[
σL(q)− lim

q0→0
σL(q)

]
, (A14)

to avoid the appearance of any possible spurious term in the ω → 0 limit.

Appendix B: Local Kubo conductivity expressions

There is an special case in the local limit (when we apply the q∥ → 0 limit to the Kubo formula (69)) when results
valid for all temperatures can be obtained. The local limit of the conductivities of a massive Dirac cone are

σxx(ω,0, µ,∆) = i
σ0
π

[
µ2 −∆2

|µ|
1

Ω
Θ (|µ| − |∆|) + ∆2

MΩ
− Ω2 + 4∆2

2iΩ2
tan−1

(
iΩ

2M

)]
,

σxy(ω,0, µ,∆) =
2σ0
π

η∆

iΩ
tan−1

(
iΩ

2M

)
, (B1)

where Ω = ℏω + iℏΓ, Γ = τ−1 and M = Max [|∆|, |µ|]. These results are per Dirac cone and they are consistent
with the ones found by other researchers [28][31][32][33][47][87][88][89]. The first term in σxx corresponds to intra-
band transitions, and the last two terms to inter-band transitions. Note that, in the local limit q∥ → 0 one obtains
σxx(ω, 0) = σyy(ω, 0) = σL(ω, 0) = σT (ω, 0), and σxy(ω, 0) = −σyx(ω, 0) = σH(ω, 0).
From those results, we obtain the conductivity at zero temperature of a Dirac cone with ∆ = 0 mass gap as

σxx(ω, q∥ = 0, T = 0,∆ = 0) = σintra
xx (ω) + σinter

xx (ω),

σintra
xx (ω) =

αc

π

|µ|
−iΩ

,

σinter
xx (ω) =

αc

2π
tan−1

(
−iΩ

2|µ|

)
,

σxy(ω, q∥ = 0, T = 0,∆ = 0) = 0. (B2)

From this result with ∆ = 0, in the non-dissipation limit for the interband term and for finite temperatures, by
using the Maldague formula, the well-known result of Falkovsky is obtained as

σF
xx(ω,Γ, T, µ) = σF,intra

xx (ω,Γ, T, µ) + σF,inter
xx (ω, 0, T, µ),

σF,intra
xx (ω,Γ, T, µ) =

1

πℏ
2iαckBT

ω + iΓ
ln

[
2 cosh

(
µ

2kBT

)]
,

σF,inter
xx (ω,Γ, T, µ) =

αc

4
G

(∣∣∣∣ℏω2
∣∣∣∣)+ i

αc

4

4ℏω
π

∫ ∞

0

dξ

G(ξ)−G

(∣∣∣∣ℏω2
∣∣∣∣)

(ℏω)2 − 4ξ2
. (B3)

with

G (ϵ) = nF (−ϵ+ µ)− nF (+ϵ+ µ) =
sinh (βϵ)

cosh (βµ) + cosh (βϵ)
. (B4)

The intraband term is obtained by the use of the Maldague formula (Eq. (92)) for Eq. (94), as

σintra
xx (ω, T ) =

αc

π

1

−iΩ

2

β
ln

[
2 cosh

(
βµ

2

)]
=
αc

πℏ
2ikBT

ω + iΓ
ln

[
2 cosh

(
µ

2kBT

)]
. (B5)

To derive the local interband conductivity at finite temperatures, we first need to apply the zeroth dissipation limit
τ → ∞ (Γ → 0) of the real part ω ∈ R of the interband conductivity of graphene, as

lim
τ→∞

Re
[
σinter
xx (ω)

]
= lim

τ→∞

αc

2π
tan−1

(
−iΩ

2|µ|

)
=
αc

4

[
Θ(ℏω − 2|µ|) + Θ (−ℏω − 2|µ|)

]
, (B6)

which coincides with the result shown in [31] in the T → 0 limit for ω > 0. Note that Re
[
σinter
xx (−ω)

]
= +Re

[
σinter
xx (ω)

]
is an even function in ω.
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Applying the Maldague formula (Eq. (92)) to Eq. (94), we obtain

Re
[
σinter
xx (ω, µ, T )

]
= G

(∣∣∣∣ℏω2
∣∣∣∣) =

αc

4

(
1

eβ(µ−| ℏω
2 |) + 1

− 1

eβ(µ+| ℏω
2 |) + 1

)
=
αc

4

sinh
(
β|ℏω2 |

)
cosh (βµ) + cosh

(
β|ℏω2 |

) .(B7)
We have the absolute value in the formula above because we are handling also negative real frequencies, while in
[31] the result for only positive frequencies where derived. Applying a regularized version of the Kramers-Krönig
relationships that avoids the use of the principal part of a function, that read as [100][101][102]:

σR(x) =
2

π

∫ ∞

0

dω
ωσI(ω)− xσI(x)

ω2 − x2
,

σI(x) =
2

π
x

∫ ∞

0

dω
σR(x)− σR(ω)

ω2 − x2
, (B8)

it is immediate that

Im
[
σinter(ω, T )

]
=

4ℏω
π

∫ ∞

0

dξ

G(ξ)−G

(∣∣∣∣ℏω2
∣∣∣∣)

(ℏω)2 − 4ξ2
, (B9)

which coincides with the imaginary part of the interband term of Falkovsky [103].

Finally, by using the Kramers-Krönig relation to find the real part of the conductivity at imaginary frequencies
ω = iξ [71]

Re [σp,0(iξ)] =
2

π

∫ ∞

0

dω
ξ

ω2 + ξ2
Re [σp,0(ω)] =

2

π

∫ ∞

0

dω
ω

ω2 + ξ2
Im [σp,0(ω)] , (B10)

we obtain the interband conductivity for imaginary frequencies as [15]

σinter
F (iℏξ) =

2

π

∫ ∞

0

dω
ℏξ

(ℏω)2 + (ℏξ)2
G

(
ℏω
2

)
. (B11)

Note that this result is completely equivalent to the use of the Maldague formula to σinter
xx given in Eq. (B2), and by

making the substitution ξ → ξ+Γ, we can automatically add the constant dissipation to this interband conductivity.

Appendix C: Derivation of the Polarization and conductivity from the QFT-b model previously used in
literature

In this appendix we will show how to derive the results for the polarization operator given in [8][21][9] presented in
section VII from Eq. (102).

Πµν(q) = igs
αc

ℏ

∫
k

Zµν(Kα, qα)

[KµKµ −m2] [SµSµ −m2]
, (C1)

We are going to use the following notation: Sµ = Kµ + qµ, Kµ = (k̃0 + µ, k̃∥) = (iℏωn + µ, ℏvFk∥), qµ = (q̃0, q̃∥) =
(iℏωm, ℏvFq∥) (see tab. I), Zµν(Kα, qα) is given in Eq. (104).

We apply the Matsubara formalism directly to the expression of Eq. (C1) to obtain the expression shown in [9].

Remembering that, for fermions we have k̃0 = iℏωn = i 2πβ
(
n+ 1

2

)
∀n ∈ Z and q̃0 = iℏωm = i 2πβ

(
m+ 1

2

)
∀m ∈ Z, we
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obtain

ℏΠµν(q)

igsαc
=

∫ ∞

−∞

dk̃0
2π

Zµν(k̃0 + µ, k̃∥, q̃0, q̃∥)

[KµKµ −m2] [SµSµ −m2]

=

∫ ∞

−∞

dk̃0
2π

Zµν(k̃0 + µ, k̃∥, q̃0, q̃∥)[
(k̃0 + µ)2 − ϵ2k

] [
(k̃0 + q̃0 + µ)2 − ϵ2k+q

]
=

1

β

Fermi∑
n∈Z

Zµν(iℏωn + µ, k̃∥, iℏωm, q̃∥)

[(iℏωn + µ)2 − ϵ2k] [(iℏωn + iℏωm + µ)2 − ϵ2s]

=

[
Zµν(−iℏωm − ϵs, k̃∥, iℏωm, q̃∥)

2ϵs ((iℏωm + ϵs)2 − ϵ2k)
+
Zµν(−ϵk, k̃∥, iℏωm, q̃∥)

2ϵk((iℏωm − ϵk)2 − ϵ2s)

]

−
∑
λ=±

nF (ϵs − λµ)Zµν(−iℏωm + ϵλs , k̃∥, iℏωm, q̃∥)

2ϵs ((iℏωm − ϵλs)
2 − ϵ2k)

−
∑
λ=±

nF (ϵk − λµ)Zµν(ϵ
λ
k, k̃∥, iℏωm, q̃∥)

2ϵk
(
(iℏωm + ϵλk)

2 − ϵ2s
) , (C2)

where we have used that nF (−iℏωm + ϵk − λµ) = nF (ϵk − λµ) and s∥ = k∥ + q∥ (see tab. I). Next, we analytically
expand the Matsubara sum given in Eq. (C2) to the whole upper complex plane by applying the formal change
iωm = ω ∈ C+ into the definition of the polarization operator given in Eq. (C1), using q̃0 = ℏω, we get

ℏΠµν(q)

igsαc
=

[
Zµν(−q̃0 − ϵs, k̃∥, q̃0, q̃∥)

2ϵs ((q̃0 + ϵs)2 − ϵ2k)
+
Zµν(−ϵk, k̃∥, q̃0, q̃∥)

2ϵk((q̃0 − ϵk)2 − ϵ2s)

]

−
∑
λ=±

nF (ϵs − λµ)Zµν(−q̃0 + ϵλs , k̃∥, q̃0, q̃∥)

2ϵs ((q̃0 − ϵλs)
2 − ϵ2k)

−
∑
λ=±

nF (ϵk − λµ)Zµν(ϵ
λ
k, k̃∥, q̃0, q̃∥)

2ϵk
(
(q̃0 + ϵλk)

2 − ϵ2s
) . (C3)

The term in brackets corresponds to the integrand of the T = 0 limit, while the second and third terms correspond
to the correction due to the temperature. Therefore, following the notation of [9], the Polarization operator given in
Eq. (C1) can be written as

Πµν(q) = Πµν
0 (q) + ∆TΠ

µν(q), (C4)

by construction, Πµν
0 (q) is independent of temperature and of the chemical potential µ [9], therefore, it corresponds to

the interband conductivity with µ = kBT = 0 eV. On the other hand, to simplify ∆TΠ
µν(q), we apply the change of

variables k∥ → −(k∥+q∥), we also make use of the symmetry of the relation of dispersion ϵk = ϵ−k and we transform
the dummy variable λ→ −λ to the first summand of ∆TΠ

µν(q) to obtain∫
BZ

d2k∥

(2π)2

∑
λ=±

nF (ϵs − λµ)Zµν(−q̃0 + ϵλs , k̃∥, q̃0, q̃∥)

2ϵs ((q̃0 − ϵλs)
2 − ϵ2k)

=

∫
k

∑
λ=±

nF (ϵ−k + λµ)Zµν(−q̃0 − ϵλ−k,−s̃∥, q̃0, q̃∥)

2ϵ−k

(
(q̃0 + ϵλ−k)

2 − ϵ2−s

)
=

∫
k

∑
λ=±

nF (ϵk + λµ)Zµν(−ϵλk − q̃0,−s̃∥, q̃0, q̃∥)

2ϵk
(
(q̃0 + ϵλk)

2 − ϵ2s
)

=

∫
k

∑
λ=±

nF (ϵk + λµ)Zµν(ϵ
λ
k, k̃∥, q̃0, q̃∥)

2ϵk
(
(q̃0 + ϵλk)

2 − ϵ2s
) . (C5)

where we have used that

Zµν(−ϵλk − q̃0,−k̃∥ − q̃∥, q̃0, q̃∥) = Zµν(ϵ
λ
k, k̃∥, q̃0, q̃∥). (C6)

Joining all together, and using

Nµ(ϵ) =
∑
η=±

nF (ϵ+ ηµ), (C7)

which is Eq. (107) of the main text, we simplify ∆TΠ
µν
0 (q) into

∆TΠ
µν
0 (q) = −igs

αc

ℏ

∫
k

Nµ(ϵk)
∑
λ=±

Zµν(ϵ
λ
k, k̃∥, q̃0, q̃∥)

2ϵk
(
(q̃0 + ϵλk)

2 − ϵ2s
) . (C8)
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The same change of variables k → −(k + q) can be applied to the first summand of Πµν
0 (q), obtaining∫

k

Zµν(−q̃0 − ϵs, k̃∥, q̃0, q̃∥)

2ϵs ((q̃0 + ϵs)2 − ϵ2k)
=

∫
k

Zµν(−q̃0 − ϵ−k,−s̃∥, q̃0, q̃∥)

2ϵ−k

(
(q̃0 + ϵ−k)2 − ϵ2−s

)
=

∫
k

Zµν(−ϵk − q̃0,−k̃∥ − q̃∥, q̃0, q̃∥)

2ϵk ((q̃0 + ϵk)2 − ϵ2s)

=

∫
k

Zµν(ϵk, k̃∥, q̃0, q̃∥)

2ϵk ((q̃0 + ϵk)2 − ϵ2s)
, (C9)

where we have use the symmetry shown in Eq. (C6), then we have

Πµν
0 (q) = igs

αc

ℏ

∫
k

[
Zµν(−q̃0 − ϵs, k̃∥, q̃0, q̃∥)

2ϵs ((q̃0 + ϵs)2 − ϵ2k)
+
Zµν(−ϵk, k̃∥, q̃0, q̃∥)

2ϵk((q̃0 − ϵk)2 − ϵ2s)

]

= igs
αc

ℏ

∫
k

[
Zµν(ϵk, k̃∥, q̃0, q̃∥)

2ϵk ((q̃0 + ϵk)2 − ϵ2s)
+
Zµν(−ϵk, k̃∥, q̃0, q̃∥)

2ϵk((q̃0 − ϵk)2 − ϵ2s)

]

= igs
αc

ℏ

∫
k

∑
λ=±

Zµν(ϵ
λ
k, k̃∥, q̃0, q̃∥)

2ϵk
(
(q̃0 + ϵλk)

2 − ϵ2s
) . (C10)

Finally, the full polarization operator can be written as

Πµν(q) = igs
αc

ℏ

∫
k

[1−Nµ(ϵk)]
∑
λ=±

Zµν(ϵ
λ
k, k̃∥, q̃0, q̃∥)

2ϵk
(
(q̃0 + ϵλk)

2 − ϵ2s
) , (C11)

which is the result shown in Eq. (106). In addition to that, from Eq. (104), it can be seen that the spatial part of the
Polarization operator can be split as [6]

Zij(k, q) = v2F

[
ZL(k, q)

q̃iq̃j
q̃2∥

+ ZT (k, q)

(
δij −

q̃iq̃j
q̃2∥

)
+ SijZS(k, q)

]
, (C12)

with

Z00(k, q) = 4
[
k̃0s̃0 + k̃2∥ + k̃∥q̃∥ cos(φ) +m2

]
,

ZT (k, q) = 4
[
k̃0s̃0 −

(
k̃∥q̃∥ cos(φ) + k̃2∥ cos(2φ)−m2

)]
,

ZL(k, q) = 4
[
k̃0s̃0 +

(
k̃∥q̃∥ cos(φ) + k̃2∥ cos(2φ)−m2

)]
,

ZS(k, q) = 4
[
k̃∥q̃∥ sin(φ) + k̃2∥ sin(2φ)

]
, (C13)

where k̃0 = ϵλk, s̃0 = k̃0 + q̃0, k̃∥ = ℏvF k∥ and q̃∥ = ℏvF q∥ (see tab. I). Note that there is no Hall term because this
model is topologically trivial (C = 0). It is immediate to see that ΠS(k, q) = 0. Then, each term of the polarization
operator can be written, using p = {00, L, T} as

Πp(q) = −i2gs
αc

ℏ

∫
k

1

2ϵk
[1−Nµ(ϵk)]

∑
λ=±

[
1 +

Mp(q̃0, k̃∥, q̃∥)

Q(q̃0, k̃∥, q̃∥) + 2k̃∥ · q̃∥

]
, (C14)

where

Q(q̃0, k̃∥, q̃∥) = −q̃2z − 2q̃0ϵ
λ
k, (C15)

Mp(q̃0, k̃∥, q̃∥) =
1

2
Zp(ϵ

λ
k, k̃∥, q̃0, q̃∥)−Q(q̃0, k̃∥, q̃∥)− 2k̃∥ · q̃∥, (C16)

with q̃2z = q̃20 − q̃2∥ (see tab. I). In particular, we obtain

M00(q̃0, k̃∥, q̃∥) = −q̃2z + 4q̃0ϵ
λ
k + 4ϵ2k, (C17)

ML(q̃0, k̃∥, q̃∥) = −q̃2z + 4q̃0ϵ
λ
k + 4k̃2∥ cos

2(φ), (C18)

MT (q̃0, k̃∥, q̃∥) = −q̃2z + 4q̃0ϵ
λ
k + 4k̃2∥ sin

2(φ)− 4k̃∥q̃∥ cos(φ), (C19)

note that M00(q̃0, k̃∥, q̃∥) is not a function of φ, so we can write M00(q̃0, k̃∥, q̃∥) instead.
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1. Temporal Polarization

For the case Πµν(q) = Π00(q), and for imaginary frequencies q̃0 = iΞ = iℏξ, we can transform Eq. (C14) into

Π00(q) = −2igs
αc

ℏ

∫ kM

0

dk∥

2π

k∥

2ϵk
[1−Nµ(ϵk)]

∑
λ=±

∫ 2π

0

dφ

2π

[
1 +

M00(iΞ, k̃∥, q̃∥)

Q(iΞ, k̃∥, q̃∥) + 2k̃∥ · q̃∥

]
, (C20)

where k̃∥ = ℏvFk∥, q̃∥ = ℏvFq∥ (see tab. I) and kM plays the role of an upper cut-off in frequencies, and

Q(iΞ, k̃∥, q̃∥) = Ξ2 + q̃2∥ − 2iΞϵλk,

M00(iΞ, k̃∥, q̃∥) = −Ξ2 − q̃2∥ + 4iΞϵλk + 4ϵ2k. (C21)

By using k̃∥ · q̃∥ = k̃∥ · q̃∥ cos(φ) with k̃∥ = ℏvF k∥ and q̃∥ = ℏvF q∥, the angular integral can be carried out as∫ 2π

0

dφ

2π

1

Q+ a cos(φ)
=

1√
Q2 − a2

, (C22)

Therefore, Π00(q) can be written as

Π00(q) = −2igs
αc

ℏ

∫ kM

0

dk∥

2π

k∥

2ϵk
[1−Nµ(ϵk)]

[
2 +

∑
λ=±

M00(iλΞ, k̃∥, q̃∥)

N(iλΞ, k̃∥, q̃∥)

]
. (C23)

with

Q(iλΞ, k̃∥, q̃∥) = Ξ2 + q̃2∥ − 2iλΞϵk,

M00(iλΞ, k̃∥, q̃∥) = −Ξ2 − q̃2∥ + 4iλΞϵk + 4ϵ2k,

N(iλΞ, k̃∥, q̃∥) =

√[
Q(iλΞ, k̃∥, q̃∥)

]2
− (2k̃∥q̃∥)2. (C24)

Note that the ratio can be equivalently represented as

∑
λ=±

M00(iλΞ, k̃∥, q̃∥)

N(iλΞ, k̃∥, q̃∥)
= 2Re

[
M00(iΞ, k̃∥, q̃∥)

N(iΞ, k̃∥, q̃∥)

]
, (C25)

therefore, we obtain

Π00(q) = −2igs
αc

ℏ

∫ kM

0

dk∥

2π

k∥

ϵk
[1−Nµ(ϵk)]

[
1 + Re

[
M00(iΞ, k̃∥, q̃∥)

N(iΞ, k̃∥, q̃∥)

]]
, (C26)

The next step is to change the integration variable from k∥ to ϵ =
√
(ℏvF k∥)2 +m2, therefore, we get

Π00(q) = −2igs
αc

ℏ

∫ ϵM

m

dϵ

2πℏ2v2F
[1−Nµ(ϵ)]

1 + Re

 −Ξ2 − q̃2∥ + 4iΞϵ+ 4ϵ2√[
Ξ2 + q̃2∥ − 2iΞϵ

]2
− (2q̃∥)2(ϵ2 −m2)


 , (C27)

It is followed by the change of variable into a non-dimensional energy u, using θ̃z =
√
Ξ2 + q̃2∥ (see tab. I), we apply

the change of variable ϵ = θ̃z
u
2 , obtaining

Π00(q) = −i2gs
αc

ℏ

∫ 2ϵM
θ̃z

2m
θ̃z

θ̃zdu

4πℏ2v2F

[
1−Nµ

(
θ̃z
u

2

)]1 + Re

 −θ̃2z + 2iΞθ̃zu+ θ̃2zu
2√[

θ̃2z − iΞθ̃zu
]2

− (θ̃2z − Ξ2)(θ̃2zu
2 − 4m2)


 ,(C28)
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Taking a common factor of θ̃z > 0, defining the nondimensional parameters γ = Ξ
θ̃z

and δ = 2m
θ̃z

, and applying the

limit ϵM → ∞ we obtain

Π00(q) = −i
gsαc

2πℏ
θ̃z

ℏ2v2F

∫ ∞

δ

du
[
1−Nµ

(
θ̃z
u

2

)][
1− Re

[
1− u2 − 2iγu√

1− u2 − 2iγu+ (1− γ2)δ2

]]
, (C29)

With this result, we obtain that Π00(q) obtained from the QFT-b model is equivalent to the polarization operator
obtained from the non-local Kubo formula.

2. Longitudinal Polarization

Using the relation between the Longitudinal and Temporal terms of the Polarization operator derived from the
transversality condition

ΠL(q) =
q20
q2∥

Π00(q), (C30)

the Longitudinal Polarization can be obtained in terms of Π00(q) as

ΠL(q) = −2igs
αc

ℏ
q̃20
q̃2∥

∫
k

1

2ϵk
[1−Nµ(ϵk)]

∑
λ=±

[
1 +

M00(q̃0, k̃∥, q̃∥)

Q(q̃0, k̃∥, q̃∥) + 2k̃ · q̃

]
, (C31)

where we have used that q̃∥ = ℏvF q∥ and q̃0 = ℏq0 (see tab. I). This is Eq. (109) shown in Sect. VII. From this relation,
by using the definitions ofM00 andML given in Eq. (C17) and Eq. (C18) respectively, we obtain the following equality

(q̃z =
√
q̃20 − q̃2∥)

∫
k

1

2ϵk
[1−Nµ(ϵk)]

∑
λ=±

4k̃2∥ cos
2(φ)

Q(q̃0, k̃∥, q̃∥) + 2k̃∥ · q̃∥

=

∫
k

1

2ϵk
[1−Nµ(ϵk)]

∑
λ=±

[
q̃2z
q̃2∥

(
1 +

−q̃2z + 4q̃0ϵ
λ
k

Q(q̃0, k̃∥, q̃∥) + 2k̃∥ · q̃∥

)
+
q̃20
q̃2∥

4ϵ2k
Q(q̃0, k̃∥, q̃∥) + 2k̃∥ · q̃∥

]
, (C32)

that will be used to simplify other terms of the Polarization operator. Eq. (C32) is easily checked for imaginary
frequencies after an integration over the angular variable φ and, therefore, it is valid for all complex frequencies by
analytical continuation.

For imaginary frequencies q̃0 = iℏξ = iΞ, we have

ΠL(q) = −gs
αc

2πℏ
θ̃z

Ξ2

q̃2∥

∫ ∞

δ

du
[
1−Nµ

(
θ̃z
u

2

)][
1− Re

[
1− u2 − 2iγu√

1− u2 − 2iγu+ (1− γ2)δ2

]]
, (C33)

Once Π
(0)
L (q) is regularized following [9][21], we have

ΠL(q) =
gsαc

8πℏ
Ξ2

θ̃z
Ψ(δ) + gs

αc

2πℏ
Ξ2

q̃2∥
θ̃z

∫ ∞

δ

duNµ

(
θ̃z
u

2

)[
1− Re

[
1− u2 − 2iγu√

1− u2 − 2iγu+ (1− γ2)δ2

]]
, (C34)

Those are Eq. (116) and Eq. (117) in Sect. VII. The equivalent conductivity is (σQFT−b
L (iξ) = iΠL(iξ)/(iξ) = ΠL(iξ)/ξ)

σQFT−b
L (q) =

gsαc

8π
γΨ(δ) + gs

αc

2π

Ξ

q̃2∥
θ̃z

∫ ∞

δ

duNµ

(
θ̃z
u

2

)[
1− Re

[
1− u2 − 2iγu√

1− u2 − 2iγu+ (1− γ2)δ2

]]
. (C35)
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3. Transversal Polarization

By using Eq. (C32) in Eq. (C14) with Eq. (C19), the Transversal Polarization term can be simplified as

ΠT (q) = 2igs
αc

ℏ
q̃20
q̃2∥

∫
k

1

2ϵk
[1−Nµ(ϵk)]

∑
λ=±

1 + M00(q̃0, k̃∥, q̃∥)− 4
q̃2∥
q20

(
k̃2∥ + q̃0ϵ

λ
k

)
Q(q̃0, k̃∥, q̃∥) + 2k̃∥ · q̃∥

 . (C36)

Here we study the special case of imaginary frequencies q̃0 = iℏξ = iΞ, in polar coordinates

ΠT (q) = gs
αc

ℏ
−Ξ2

q̃2∥

∫ kM

0

dk∥

2π

k∥

ϵk
[1−Nµ(ϵk)]

∫ 2π

0

dφ

2π

∑
λ=±

1 + M00(iΞ, k̃∥, q̃∥) + 4
q̃2∥
Ξ2

(
k̃2∥ + iλΞϵk

)
Q(iΞ, k̃∥, q̃∥) + 2k̃∥q̃∥ cos(φ)

 . (C37)

The integral in φ can be carried our using Eq. (C22)∫ 2π

0

dφ

2π

1

Q+ a cos(φ)
=

1√
Q2 − a2

. (C38)

Therefore, ΠT (q) can be written as

ΠT (q) = gs
αc

ℏ
−Ξ2

q̃2∥

∫ kM

0

dk∥

2π

k∥

ϵk
[1−Nµ(ϵk)]

∑
λ=±

1 + M00(iλΞ, k̃∥, q̃∥) + 4
q̃2∥
Ξ2

(
k̃2∥ + iλΞϵk

)
√[

Q(iλΞ, k̃∥, q̃∥)
]2

− (2k̃∥q̃∥)2

 . (C39)

Similarly to what was done in Eq. (C25), using t λ2 = 1, the ratio can be equivalently represented as

∑
λ=±

MT (iλΞ, k̃∥, q̃∥)

N(iλΞ, k̃∥, q̃∥)
= 2Re

[
MT (iΞ, k̃∥, q̃∥)

N(iΞ, k̃∥, q̃∥)

]
, (C40)

therefore, we obtain

ΠT (q) = gs
αc

ℏ
−Ξ2

q̃2∥

∫ kM

0

dk∥

2π

k∥

ϵk
[1−Nµ(ϵk)]

2 + 2Re

M00(iΞ, k̃∥, q̃∥) + 4
q̃2∥
Ξ2

(
k̃2∥ + iΞϵk

)
√[

Q(iΞ, k̃∥, q̃∥)
]2

− (2k̃∥q̃∥)2


 . (C41)

Now we apply the change of coordinates ϵ =
√

(ℏvF k∥)2 +m2

ΠT (q) = 2gs
αc

ℏ
−Ξ2

q̃2∥

∫ ϵM

m

dϵ

2π
[1−Nµ(ϵ)]

1 + Re

−Ξ2 − q̃2∥ + 4iΞϵ+ 4ϵ2 + 4
q̃2∥
Ξ2

(
ϵ2 −m2 + iΞϵ

)√(
Ξ2 + q̃2∥ − 2iΞϵ

)2
− 4(ϵ2 −m2)q̃2∥


 . (C42)

It is followed by the change of variable into a non-dimensional energy, using θ̃z =
√
Ξ2 + q̃2∥ (and, therefore, q̃2∥ =

θ̃2z − Ξ2), we apply the change of variable ϵ = θ̃z
u
2 , obtaining

ΠT (q) = 2gs
αc

ℏ
−Ξ2

q̃2∥

∫ 2ϵM
θ̃z

2m
θ̃z

du

2π

θ̃z
2

[
1−Nµ(θ̃z

u

2
)
]1 + Re

−θ̃2z + 2iΞθ̃zu+ θ̃2zu
2 + 4

(
θ̃2
z

Ξ2 − 1
)(

θ̃2z
u2

4 −m2 + iΞθ̃z
u
2

)
√(

θ̃2z − iΞθ̃zu
)2

− (θ̃2zu
2 − 4m2)(θ̃2z − Ξ2)


 .(C43)

Using the definitions δ = 2m
θ̃z

and γ = Ξ
θ̃z
, we can simplify this integral into

ΠT (q) = 2gs
αc

ℏ
−Ξ2

q̃2∥

∫ 2ϵM
θ̃z

δ

du

2π

θ̃z
2

[
1−Nµ(θ̃z

u

2
)
]1 + Re

−1 + 2iγu+ u2 +
(
γ−2 − 1

) (
u2 − δ2 + 2iγu

)√
(1− iγu)

2 − (u2 − δ2)(1− γ2)

 .(C44)
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This integral can be further simplified, and the cut-off can be eliminated to obtain

ΠT (q) =
gsαc

2πℏ
Ξ2

q̃2∥
θ̃z

∫ ∞

δ

du
[
1−Nµ(θ̃z

u

2
)
] [

1 + Re

[ (
1 + iγ−1u

)2
+ (γ−2 − 1)δ2√

1− 2iγu− u2 + (1− γ2)δ2

]]
. (C45)

Once Π
(0)
T (q) is regularized following [9][21], we have

ΠT (q) =
gsαc

8πℏ
θ̃zΨ(δ)− gs

αc

2πℏ
Ξ2

q̃2∥
θ̃z

∫ ∞

δ

duNµ

(
θ̃z
u

2

)[
1 + Re

[ (
1 + iγ−1u

)2
+ (γ−2 − 1)δ2√

1− 2iγu− u2 + (1− γ2)δ2

]]
. (C46)

Those are Eq. (118) and Eq. (119) in Sect. VII. The equivalent transversal conductivity is (σQFT−b
T (iξ) =

iΠT (iξ)/(iξ) = ΠT (iξ)/ξ)

σT (q) =
gsαc

8π
γ−1Ψ(δ)− gs

αc

2π

Ξ

q̃2∥
θ̃z

∫ ∞

δ

duNµ

(
θ̃z
u

2

)[
1 + Re

[ (
1 + iγ−1u

)2
+ (γ−2 − 1)δ2√

1− 2iγu− u2 + (1− γ2)δ2

]]
. (C47)

4. Polarization Trace

The trace of the polarization operator can be written in terms of the longitudinal and transversal polarization terms
(see Eq. (77)) as

Πtr(q) = −ΠT (q)−
q2z
q2∥

Π00(q), (C48)

a result derived from the transversality condition. Using Eqs. (C31) and (C36), we obtain

Πtr(q) = −igs
αc

ℏ

∫
k

1

2ϵk
[1−Nµ(ϵk))]

∑
λ=±

[
1 +

q̃20 − q̃2∥ + 4∆2

Q(q̃0, k̃∥, q̃∥) + 2k̃∥ · q̃∥

]
. (C49)

In imaginary frequencies, after with the same procedure as the one used to obtain Π00, we get

Πtr(q) = −igs
αc

ℏ
θ̃z

2πℏ2v2F

∫ ∞

δ

du
[
1−Nµ

(
θ̃z
u

2

)] ∑
λ=±

[
1 + Re

[
δ2 − 1√

1− u2 − 2iλγu+ (1− γ2)δ2

]]
. (C50)

Appendix D: Derivation of the conductivity from the Kubo formula

In this appendix, starting from the Ohm Law Jµ = σµνE
ν (compare with Eq. (51)), we are going to derive the

expression of the conductivity from the Kubo formula [5], where the switching starts at t→ −∞ to avoid the transitory
to the new (non-equilibrium) steady state

σµν(t, q) =

∫ t

−∞
dτΠµν(τ, q) =

∫ t

−∞
dτTr

(
ρ̂β
[
Jµ(τ, q), J

∗
µ(0, q)

])
, (D1)

where the Polarization operator, instead of be given by Eq. (53), is equivalently defined in real time as ([A,B] is the
commutator between A and B)

Πµν(τ, q) = Tr
(
ρ̂β
[
Jµ(τ, q), J

∗
µ(0, q)

])
, (D2)

and as a consequence we have

∂tσµν(t, q) = Πµν(t, q). (D3)

We start from the (causal) microscopic Ohm law in the position space.

Jµ(t,x) =

∫ t

−∞
dτ

∫
ddyσµν(t− τ,x− y)Eν(τ,y). (D4)
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Applying a Fourier transform in the position’s coordinates, using the convolution theorem, and substituting Eν(τ, q) =
−∂τAν(τ, q) (we are using the Coulomb Gauge in these calculations, as usual) we get

Jµ(t, q) = −
∫ t

−∞
dτσµν(t− τ, q)∂τA

ν(τ, q). (D5)

Here we apply an integration by parts in time

Jµ(t, q) = −
[
σµν(t− τ, q)Aν(τ, q)

]t
−∞

+ (−1)2
∫ t

−∞
dτ
[
∂τσµν(t− τ, q)

]
Aν(τ, q). (D6)

Using Eq. (D3) and that the integral of the derivative is the initial function, we obtain

Jµ(t, q) = −
[
Aν(τ, q)

∫ τ

−∞
dτ1∂τ1σµν(t− τ1, q)

]t
−∞

+

∫ t

−∞
dτΠµν(t− τ, q)Aν(τ, q). (D7)

We can cancel out the boundary t→ −∞ integral term

Jµ(t, q) = −
[
Aν(t, q)

∫ t

−∞
dτ1Πµν(t− τ1, q)− 0

]
+

∫ t

−∞
dτΠµν(t− τ, q)Aν(τ, q), (D8)

and this result can be simplified into

Jµ(t, q) = −
∫ t

−∞
dτΠµν(t− τ, q)Aν(t, q) +

∫ t

−∞
dτΠµν(t− τ, q)Aν(τ, q), (D9)

Jµ(t, q) =

∫ t

−∞
dτΠµν(t− τ, q)

[
Aν(τ, q)−Aν(t, q)

]
. (D10)

Note that this result is already different from the linear relation between the electric conductivity and the potential
vector proposed in Eq. (56) that can be written as a function of time as

Jµ(t, q) =

∫ t

−∞
dτΠµν(t− τ)Aν(τ, q). (D11)

We can write the integral as a kernel proportional to the retarded Aν(τ, q) by using∫ t

−∞
dτΠµν(t− τ, q)Aν(t, q) =

∫ t

−∞
dτ1Πµν(t− τ1, q)A

ν(t, q)

=

∫ t

−∞
dτ1Πµν(t− τ1, q)

∫ t

−∞
dτAν(t, q)δ(τ − t)

=

∫ t

−∞
dτ

∫ t

−∞
dτ1Πµν(t− τ1, q)A

ν(t, q)δ(τ − t)

=

∫ t

−∞
dτδ(τ − t)

(∫ τ

−∞
dτ1Πµν(τ − τ1, q)

)
Aν(τ, q). (D12)

Introducing Eq. (D12) in Eq. (D10), we have

Jµ(t, q) =

∫ t

−∞
dτ

[
Πµν(t− τ, q)− δ(τ − t)

(∫ τ

−∞
dτ1Πµν(τ − τ1, q)

)]
Aν(τ, q). (D13)

In temporal frequency space, using

Πµν(ω, q) =

∫ ∞

−∞
dτ1e

−iωτ1Θ(τ − τ1)Πµν(τ − τ1, q) =

∫ τ

−∞
dτ1e

−iωτ1Πµν(τ − τ1, q), (D14)
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we obtain the relation

Jµ(ω, q) =

[
Πµν(ω, q)−

(∫ τ

−∞
dτ1Πµν(τ − τ1, q)

)]
Aν(ω, q), (D15)

Jµ(ω, q) =
[
Πµν(ω, q)− lim

ω→0
Πµν(ω, q)

]
Aν(ω, q) ̸= Πµν(q)A

ν(ω, q). (D16)

This is a result in contradiction with the usual assumed relation provided in Eq. (56). Finally, using the microscopic
Ohm law in temporal frequency space, we have from Eq. (D5)

Jµ(ω, q) = σµν(ω, q)(−iω)Aν(ω, q). (D17)

Then we can compare Eq. (D16) and Eq. (D17) to obtain the so-called Luttinger formula [62][63]

σµν(ω, q) =
Πµν(ω, q)− lim

ω→0
Πµν(ω, q)

−iω
. (D18)

So we conclude that, assuming the microscopic Ohm law given in Eq. (D4), and the relation between the conductivity
σµν and the Polarization operator Πµν derived from the Kubo formula given in Eq. (D1), the Fourier transform of the
conductivity tensor is given by Eq. (D18). Therefore, we conclude that the correct conductivity should be obtained
from Eq. (D18). Note that this subtraction, that we derived here simply from Ohm law and time causality, naturally
implies that it cannot exist stationary current in absence of electric field, i.e. that always Jµ(ω = 0, q) = 0 even when
Aµ(ω = 0, q) ̸= 0. This is a strong physical requirement, already discussed by A.A. Abrikosov in 1963 [64] and more
recently in [28].
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