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Abstract

We apply a suite of different estimators to the QUIJOTE-PNG halo catalogs to find the best approach to constrain
Primordial non-Gaussianity (PNG) at nonlinear cosmological scales, up to = -k h0.5 Mpcmax

1. The set of
summary statistics considered in our analysis includes the power spectrum, bispectrum, halo mass function,
marked power spectrum, and marked modal bispectrum. Marked statistics are used here for the first time in the
context of the PNG study. We perform a Fisher analysis to estimate their cosmological information content,
showing substantial improvements when marked observables are added to the analysis. Starting from these
summaries, we train deep neural networks to perform likelihood-free inference of cosmological and PNG
parameters. We assess the performance of different subsets of summary statistics; in the case of fNL

equil, we find that
a combination of the power spectrum and a suitable marked power spectrum outperforms the combination of power
spectrum and bispectrum, the baseline statistics usually employed in PNG analysis. A minimal pipeline to analyze
the statistics we identified can be implemented either with our ML algorithm or via more traditional estimators, if
these are deemed more reliable.

Unified Astronomy Thesaurus concepts: N-body simulations (1083); Cosmological parameters from large-scale
structure (340); Non-Gaussianity (1116)

1. Introduction

Primordial non-Gaussianity (PNG) provides a potentially
powerful tool to discriminate between different early Universe
scenarios, and therefore its investigation plays an important
role in observational cosmology.

However, extracting PNG information is a task made
significantly difficult by the smallness of the expected signal,
which at low redshifts is several orders of magnitude below that
generated by nonlinear gravitational evolution of cosmological
perturbations. For this reason, most observational studies of
primordial non-Gaussian parameters have so far focused on
linear cosmological probes, such as the cosmic microwave
background (CMB; Planck Collaboration 2020), or the galaxy
power spectrum and bispectrum on large scales (G. Cabass
et al. 2022a, 2022b; G. D’Amico et al. 2022; M. S. Cagliari
et al. 2023; M. M. Ivanov et al. 2024).

While challenging, as we have just stressed, a large scale
structure (LSS) analysis at nonlinear scales could potentially be
very rewarding: most of the PNG constraining power comes in
fact from the cosmological perturbation bispectrum and a
simple mode counting argument suggests that large improve-
ments could be achieved in this regime, provided we are able to
at least partially clean the total non-Gaussianity signal from
late-time nonlinear contributions. In this work—which is
connected to a series of previous studies in the QUIJOTE-PNG
series (W. R. Coulton et al. 2023a; G. Jung et al. 2023a, 2023b)
—we investigate this possibility by performing a thorough
analysis of the dark matter halo field in N-body simulations
with PNG initial conditions, testing scales up to =kmax

-h0.5 Mpc 1.
The study of cosmological information at nonlinear scales, in a

more general context than just PNG analysis, is actually a research
line that has recently received considerable attention. The reason
for this growing interest is likely twofold. On the one hand, a large
amount of data from upcoming galaxy surveys is going to make
small scales observably accessible with high precision. On the
other hand, the past few years have seen significant methodolo-
gical developments in cosmological data analysis, like field-level
inference, whether it is performed using perturbative (F. Schm-
idt 2021; D. Baumann & D. Green 2022; G. Cabass et al. 2024) or
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Bayesian (J. Jasche & B. D. Wandelt 2013; A. Andrews et al.
2023) forward models, or via machine learning using simulations
(M. Ntampaka et al. 2019; D. Ribli et al. 2019; T. L. Makinen
et al. 2022; P. Villanueva-Domingo & F. Villaescusa-Nava-
rro 2022; N. S. M. de Santi et al. 2023; A. Roncoli et al. 2023;
H. Shao et al. 2023; P. Lemos et al. 2024). This kind of
simulation-based approach is also explored with data compressed
into suitable sets of summary statistics (J. Alsing et al. 2018, 2019;
N. Jeffrey et al. 2021; C. Hahn et al. 2023a, 2023b, 2023c, 2024;
M. Gatti et al. 2024; J. Hou et al. 2024; M. M. Ivanov et al. 2024;
B. Régaldo-Saint Blancard et al. 2024; B. Tucci & F. Schm-
idt 2024).

Here, we take the latter approach to the problem, first
compressing the data into a set of predetermined summary
statistics. While potentially leading to some loss of information
with respect to a full field-level analysis, this procedure
presents some advantages, as it is less computationally
demanding, potentially easier to implement when analyzing
actual data and, above all, it often leads to results that are more
amenable to a clear physical interpretation. The feature of
interpretability may also aid in separating effects due to
systematics from those due to the signal under study. Beyond
quantifying the amount of information on PNG contained in
different summary statistics computed from the halo density
field at late times, the main goal of our work is to determine a
suitable subset, which reaches the optimal compromise
between being informative and relatively easy to analyze.

In previous works, we started pursuing this program by
considering different combinations of the halo power spectrum,
bispectrum, and halo mass function. Here, we start by
extending this analysis with the inclusion of additional
summaries, the marked power spectrum and marked bispec-
trum. These marked statistics provide a flexible and easy way
to measure weighted combinations of n-point correlation
functions and previous studies showed that they are able to
tightly constrain neutrino masses at nonlinear scales
(O. H. E. Philcox et al. 2020; E. Massara et al. 2021, 2023).
They are therefore a natural option to consider also in a PNG
analysis and we will indeed show in this paper that they can
provide a powerful tool to constrain PNG parameters.

Besides adding new summaries, the present work also
contains some significant methodological extensions of our
previous studies. In previous works (W. R. Coulton et al.
2023a; G. Jung et al. 2023a, 2023b), we used the Fisher matrix
formalism to provide figures of merit for the various statistics.
These were calculated, at fully nonlinear scales for a fiducial
cosmology, by numerically evaluating derivatives and covar-
iance matrices through Monte Carlo averaging of tens of
thousands of N-body realizations of the halo field. The Fisher
matrices—obtained following the algorithm by W. R. Coulton
& B. D. Wandelt (2023) based on score compression into a
minimal set of summaries—were also used to build and test
quadratic estimators, which are nearly optimal for parameter
values near the fiducial cosmology. One drawback of this
approach is that it makes the exploration of a wide range of
parameter values very computationally demanding, as it
requires the production of new sets of tens of thousands of
simulations, for many different choices of fiducial parameters.
We try in this work to overcome this limitation by using deep
neural networks (NN), trained on a suite of simulations whose
parameters are arranged in a Latin-hypercube, to map our
summaries directly into the final parameters, without having to

explicitly evaluate any covariance or make any assumption
about the likelihood function. We discuss a first application of
our pipeline, mainly aimed at a detailed comparison of many
NG statistics, in order to find their optimal combination in
terms of PNG sensitivity and simplicity of implementation.
This is a first step in the direction of future applications to PNG
parameter inference on real data from galaxy surveys, which
will require the use of realistic galaxy mocks.
The plan of the paper is as follows. In Section 2 we briefly

describe the QUIJOTE-PNG simulation suite that was used to
calculate the Fisher matrices, train the networks, and produce
the final forecasts. In Section 3 we introduce the summary
statistics considered in our analysis and discuss the methods
used to extract them from the data. In Section 4 we discuss the
implementation of the NNs and the metrics that we use to
assess their performance. In Section 5 we show our results,
which include Fisher forecasts and a comparison of different
data preprocessing methodologies, followed by NN results for
many different combinations of summaries. In Section 6 we
draw our final conclusions.

2. Simulations

The analyses presented in this paper are based on the
QUIJOTE (F. Villaescusa-Navarro et al. 2020) and QUIJOTE-
PNG (W. R. Coulton et al. 2023b) sets of simulations.
These are dark matter only N-body simulations of volume

1 h−3 Gpc3, containing 5123 particles each, and run using the
TreePM code GADGET-III from initial conditions generated at
z= 127 by the codes 2LPTIC (M. Crocce et al. 2006) and
2LPTPNG (R. Scoccimarro et al. 2012; W. R. Coulton et al.
2023b),15 for the simulations without and with PNG,
respectively. We focus on dark matter halos, which are
identified in each simulation by the standard friends-of-friends
algorithm (M. Davis et al. 1985) by setting the linking length
parameter to b= 0.2 and considering halos with more than 20
dark matter particles.
We mainly use a set of 1000 simulations with varying

amount of equilateral PNG, with [ ]Î -f 600, 600NL
equil and

varying cosmological parameters, where the parameters are
distributed in a Latin-hypercube (LH). We also work with the
15,000 QUIJOTE simulations at a fiducial cosmology compa-
tible with Planck CMB observations and without PNG and, to
compute Fisher forecasts and compressed statistics, we use
additional sets of 500 simulations, in which one parameter has
been slightly displaced with respect to its fiducial value. We
perform extra tests on the original QUIJOTE LH (2000
simulations with varying cosmological parameters and no
PNG) and an LH with fixed cosmological parameters and
varying local PNG, with [ ]Î -f 300, 300NL

local . The main
characteristics of all these simulations are given in Table 1. In
particular, the parameter uniform distributions within the
specified boundaries of the LH act as our chosen prior in the
moment network analysis. For a detailed description of the
three PNG shapes considered here, see Section 2 of
W. R. Coulton et al. (2023b).16 We release the local and
equilateral LH in complement to this work, which makes all
simulations used here publicly available.17

15 https://github.com/dsjamieson/2LPTPNG
16 The orthogonal shape we use is the orthogonal-LSS one, which does not
have a scale-dependent bias component.
17 https://quijote-simulations.readthedocs.io/en/latest/png.html
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3. Statistics

In this work, we test the performance of a variety of
summary statistics calculated on the QUIJOTE-PNG halo
catalogs in redshift space.

First, we consider the two- and three-point correlation
functions of the halo density field in Fourier space δ(k), namely
the power spectrum and bispectrum. We use the same
estimation pipeline as in G. Jung et al. (2023a, 2023b). The
halo power spectrum is estimated up to = -k h0.5 Mpcmax

1,
using bins of size kf (fundamental mode of the grid) and
considering halos of mass above = ´M M h3.2 10min

13 .
The halo bispectrum is computed up to the same nonlinear
scales, using a modal estimator (J. R. Fergusson et al.
2010, 2012a, 2012b; M. M. Schmittfull et al. 2013). It simply
consists on fitting well-chosen templates to the data, and it has
been shown to be extremely efficient to compress the LSS
bispectrum (J. Byun et al. 2021; J. Byun & E. Krause 2023;
G. Jung et al. 2023a), with respect to a standard binned
approach. Only a relatively small number of modes, typically
less than 100, based on polynomial and tree-level matter
bispectrum functions, are necessary to contain the full
bispectral information up to = -k h0.5 Mpcmax

1.
Second, we study the marked (halo) power spectrum and

bispectrum. These marked statistics are computed using the
same pipeline as the standard power spectrum and bispectrum
above, with an extra initial step of weighting the density field.
For this weighting operation, we use the mark of M. White
(2016),

⎡
⎣⎢

⎤
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( )
( )

( )d
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d d
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+ +
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where δR(x) is the local density field, computed by smoothing
the density field with a top-hat filter at scale R. The two other
parameters, δs and p, can be chosen to modify the impact of
δR(x) on the mark (sensitivity and enhancement of low/high
density regions). As shown in E. Massara et al. (2021, 2023),
measuring the power spectrum of such marked density field
gives access to new cosmological information with respect to
the power spectrum of the standard field, which comes in fact
from higher order statistics. Here, we go one step further and
also consider the bispectrum of the marked field. Due to the
larger computational time required to estimate (marked)
bispectra than their power spectrum counterparts, we restrict
our analysis to the four different marks defined by the following
choice of parameters, R= [30, 25, 20, 30] h−1 Mpc, p= [1, 1, 1, 1]
and δs= [0.10, 0.25, 0.50, 0.50], and which were identified in
E. Massara et al. (2023) as giving the most stringent constraints
on cosmological parameters from galaxy catalogs constructed
from the QUIJOTE N-body simulations. To construct the density

fields of the QUIJOTE-PNG simulations, and to compute the
corresponding marks, we use the PYLIANS318 library.
Note that the results presented in this paper use only the

monopole of these different summary statistics, as we have
verified that including the quadrupole of the standard and
marked power spectra has only a negligible impact on
constraints when considering jointly several of these
observables.
Finally, we also include the halo mass function (HMF) in our

analyses, as it was shown to contain significant information
about PNG in G. Jung et al. (2023b). Here, the HMF is
computed using 13 logarithmic mass bins between approxi-
mately 4.0× 1013 and 4.6× 1015Me/h.
Beyond these different summary statistics that will constitute

our baseline analysis in Section 5, we also use compressed
combinations of them calculated with

⎜ ⎟
⎛
⎝

⎞
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˜ ¯ ( ¯ ) ( )
q
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¶
¶

--

*
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s
C s ss , 2i
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1

where s is a chosen set of summary statistics of expected mean
s̄ and covariance C, and the subscript * denotes quantities
evaluated at a chosen fiducial cosmology. This expression
results in one compressed mode s̃i per parameter of interest θi
and has been shown to be optimal (A. F. Heavens et al. 2000;
J. Alsing & B. Wandelt 2018), i.e., preserving the full
information about θ, if the summary statistics follow a
Gaussian distribution where only the mean depends on
parameters.
In what follows, covariances and derivatives are evaluated at

the QUIJOTE fiducial cosmology (see Table 1). We use the set
of 15,000 fiducial simulations, applying the Hartlap correction
factor (J. Hartlap et al. 2007) to obtain unbiased estimates of
the inverse covariances, and the couples of 500 displaced
simulations to compute derivatives by finite difference.

4. Methods

4.1. Moment Network

As a way to quickly explore different summary statistics
combinations while also covering a wide range of parameters,
we train fully connected NNs to perform likelihood-free
inference on different summary statistics, using the moment
network methodology (N. Jeffrey & B. D. Wandelt 2020).
These NNs will output two numbers, q̂ and ŝ for each target
parameter θ; the first being the mean and the second being the
standard deviation of the marginalized posterior. To do so, we

Table 1
Parameters of the QUIJOTE and QUIJOTE-PNG Halo Catalogs Used in This Work

Nsims σ8 Ωm Ωb ns h fNL
local fNL

equil fNL
ortho

Fiducial 15000 0.834 0.3175 0.049 0.9624 0.6711 0 0 0
Displaced 500 ±0.015 ±0.01 ±0.002 ±0.02 ±0.02 ±100 ±100 ±100

LH fNL
local 1000 0.834 0.3175 0.049 0.9624 0.6711 [−300, 300] 0 0

LH fNL
equil 1000 [0.6, 1.0] [0.1, 0.5] 0.049 [0.8, 1.2] [0.5, 0.9] 0 [−600, 600] 0

LH QUIJOTE 2000 [0.6, 1.0] [0.1, 0.5] [0.03, 0.07] [0.8, 1.2] [0.5, 0.9] 0 0 0

18 https://github.com/franciscovillaescusa/Pylians3
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use the loss from, e.g., F. Villaescusa-Navarro et al. (2022)
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where ˆq qD º -i j i j i j, , , . The logarithms have been introduced
to make both terms on the RHS of the same order of
magnitude. Using this loss, it is guaranteed that the output of
the network represents the first two moments of the posterior
without making assumptions about its shape. Further details
about the NNs architecture and training are provided in
Appendix A.

4.2. Evaluating Performance

In our analysis, we consider several indicators to monitor the
quality of the moment predictions.

First of all, for each parameter we calculate the coefficient of
determination
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where i runs over simulations in the test set, θi is the input (true)
parameter for the ith simulation, q̄ is the average of the true
parameter over the entire test set and ˆ ( )q xi is the posterior mean
estimate, extracted from the ith simulation. We notice that
R2= 1 if the true parameters are exactly recovered, whereas
R2= 0 if the average value is always used as a prediction. Let
us also stress that, despite the symbol used, R2 can be negative
if the estimator performs worse than just using the average
value.

The coefficient of determination informs us of the quality of
the posterior mean estimates, while a different metric needs to
be used to monitor the second moment. Separately for each

parameter again, we also calculate the coefficient
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where ˆ ( )s xi is the standard deviation prediction based on the ith
simulation statistics, and N is the number of simulations in the
considered set. This estimator is used to characterize the
accuracy of the errors: the closer to 1, the more calibrated they
are. For each trained network, we calculate χ2 using the
simulations in the validation set and discard all those where
|χ2− 1|> 0.5. Instead, all the instances of χ2 shown below are
calculated using the simulations in the test set.

5. Results

5.1. Fisher Forecasts

We start by evaluating the information content of the
different statistics presented in Section 3 by considering the
fiducial parameter values summarized in Table 1 and adopting
the Fisher matrix formalism.
We use the combined Fisher estimator of W. R. Coulton &

B. D. Wandelt (2023) to obtain unbiased results with the
limited number of simulations at our disposal. For the details of
the implementation, we refer the reader to G. Jung et al.
(2023b), where we already applied this method to the same
halo power spectra, bispectra, and HMF.
In Figure 1 we compare the 1σ Fisher error bars on

cosmological parameters and PNG amplitudes for different
combinations of summary statistics. An important result is that
adding the marked power spectrum information to a standard
power spectrum and bispectrum analysis improves the
constraints on all parameters, except fNL

local. This effect is the
strongest for PNG of the equilateral and orthogonal types (more
than 20% decrease), as well as σ8 (close to 40%). A further
gain is possible by including the marked bispectrum as well,
where we even see a 10% improvement on fNL

local, almost 50%
for σ8 and Ωm, and close to 40% on fNL

equil and fNL
ortho.

Complementary analyses, including a study of the numerical

Figure 1. The 1σ Fisher error bars from different combinations of summary statistics measured in the QUIJOTE halo catalogs at z = 0, after marginalizing over Mmin.
From left to right we consider the local, equilateral, or orthogonal PNG shapes jointly with cosmological parameters. The dark blue line corresponds to power
spectrum + bispectrum (P0 + B) constraints, the green line to power spectrum + marked power spectrum (P0 +MP0), both are combined to obtain the light blue
lines (P0 + B + MP0), and finally the red lines also include the marked bispectrum (P0 + B +MP0 +MB). The bold values are the largest 1σ Fisher error bars
obtained for each parameter, used as normalization for the others. Marked statistics contain new information with respect to their standard counterparts on all
parameters, which is significant for fNL

equil, fNL
ortho, σ8, and Ωm.
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stability of our results, 2D marginalized constraints, and Fisher
forecasts focusing only on cosmological parameters are given
in Appendix B.

In G. Jung et al. (2023b), it was shown that the HMF can also
bring the same order of improvement on several parameters,
especially fNL

equil. In Figure 2, we verify that these improvements
are in fact mostly independent from each other as the HMF and
marked statistics bring complementary information.

Another interesting result shown in Figure 1 is that, in the
case of equilateral PNG, a combination of the marked power
spectrum and power spectrum performs slightly better than the
standard power spectrum and bispectrum analysis. This is not
the case for the other two shapes, noting, however, that the
results are much better than they would be in a power-
spectrum-only analysis (see, for example, the comparisons in
G. Jung et al. 2023a), except for fNL

local itself where the
constraint comes from the usual scale-dependent bias term of
the power spectrum. This is a good indication that the marked
power spectrum is a good alternative to the bispectrum in the
search of PNG due to its simplicity of estimation with respect
to the bispectrum. A comprehensive analysis should leverage
both methods as they provide statistically independent valida-
tion of each other’s result, and ultimately combine the two as,
admittedly, the joint analysis can provide bounds a few ×10%
tighter than either one for most of the parameters.

In these analyses, we use jointly the four sets of marked
statistics, defined by parameters {R, p, δs} given in Section 3.
However, a large part of the improvement obtained by
including marked statistics is already present when considering
only one choice of mark, with a small dependence of the mark
defining parameters. For example, the one with the smallest
smoothing scale (R= 20, p= 1, δs= 0.5) gives results as good
as those of the three others combined, only slightly below
(error bars a few percent larger at most) the case where the four
marks are used jointly. This is why in many analyses below,
where keeping the number of summary statistics as low as
possible is important, we will focus on this specific choice of
mark. Note also that in principle, it should be possible to
improve the constraints even further by optimizing the
parameters of the mark, for example, by exploring a wide
range of them at the power spectrum level, before estimating
the more computationally demanding bispectrum. By

comparison to other analyses based on marked power spectrum
(E. Massara et al. 2021, 2023), we do not expect any significant
difference with the results reported here.

5.2. Neural Network Performance

As mentioned earlier, the main goal of this work is comparing
and combining the various summary statistics described in
Section 3, over a wide parameter range, by relying on a
likelihood-free inference approach based on NNs. The next few
sections are devoted to illustrate our analysis in detail and to
discuss several tests aimed at its validation and interpretation.
Our main results are summarized in Figures 3 and 4. The

former shows the accuracy of the mean parameter estimates as
measured by the R2 metric and the quality of the their
uncertainty calibrations via the χ2 metric, measured on the test
set. The latter shows the comparison of the standard deviation
estimated in the fiducial via Fisher forecast and using the
moment network. As pointed out in Section 4.1, lower R2 will
correspond to larger standard deviations for a fixed χ2, this
being one if the uncertainties are estimated correctly.
Since some of the summary statistics are strongly correlated,

and the training set we have at hand is limited in size, it is not
surprising to sometimes see drops in accuracy in Figure 3 as
more observables are added to the analysis. A larger number of
input features usually requires bigger NN models, which in turn
would require a larger training set. If the features one adds are
highly informative, the accuracy of the model can still improve.
If the new features are highly correlated with the ones already
present, the amount of relevant information added may not
counterbalance the worse training, and the net result is a drop in
accuracy. The same applies to the standard deviations shown in
Figure 4, which in some instances increase when more
summary statistics are added. Moreover, to correctly interpret
the results in Figures 3 and 4, we have to keep in consideration
the prior we have imposed. Specifically, the combination of
power spectrum and bispectrum is known to be informative
about fNL

equil, but the associated standard deviation, analyzing a
volume of 1 h−3 Gpc3, is larger than the chosen prior.19

Figure 2. Same as Figure 1, adding the information of the HMF to every combination of summary statistics, confirming that improvements coming from the HMF or
marked statistics have different origins.

19 This is in fact qualitatively consistent with the analysis of BOSS data (e.g.,
G. Cabass et al. 2022a), which has a larger volume than the one
considered here.
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Therefore, the estimates are prior dominated, and always
compatible with =f 0NL

equil , as determined by the network.
In the next three sections, we discuss two different ways of

preprocessing the data used as input of the NNs identified by
different markers in Figure 3 (i.e., extracting the summary
statistics that are used as-is or after the compression step in
Equation (2)), we comment on the comparison between the
Fisher bounds and the NN predictions for the fiducial
cosmology shown in Figure 4, and we benchmark the
performance of different combinations of summary statistics.

5.2.1. Data Preprocessing

We compare two different approaches to data preprocessing.
Namely, in one case we directly feed the summary statistics to

the networks, whereas in the other we adopt a precompression
step. In principle, as discussed in J. Alsing et al. (2019),
compressing the data decreases the amount of noise while
preserving most of the information. Therefore, the NNs trained
on the compressed statistic should require a comparatively
smaller training set to reach the same accuracy as one naively
trained on all the data. However, for the case of fNL

equil—one of
the main parameters in our analysis—this leads to under-
whelming results.
This is shown in Figure 3, where we compare the network

trained on the uncompressed summary statistics and the
network trained on the compressed statistics. To explain why
the compression hinders the training, we have to remember that
it is meant to be performed with the maximum likelihood
parameters to be optimal, or iteratively until the maximum

Figure 3. Accuracy of the five fNL
equil LH parameter predictions using power spectrum (P0), marked power spectrum (MP0), bispectrum (B), marked bispectrum (MB),

and halo mass function (HMF), each column referring to a specific combination. The input of the NNs are the summary statistics either used as-is (purple cross
markers) or compressed (light blue plus markers).

Figure 4. Standard deviation predictions for the models in Figure 3 applied to the fiducial simulations, and the corresponding 1σ Fisher constraints. The color scale
gives the ratio of each error with respect to its equivalent computed by using only the power spectrum and bispectrum, highlighting the improvements for almost every
parameter with the other combinations of summary statistics. Note that the parameter ranges defining the Latin-hypercube is included as prior to the Fisher
calculations.
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likelihood is reached. Instead, we just calculate it once at the
fiducial (near the central values of the ranges of parameters
covered in the different LHs). In the case of the fNL

equil LH,
where five different parameters are varied, none of the
simulation has an input set close to the the fiducial, making
the compression substantially suboptimal every time.

We will come back to the subject of data compression in
Appendix C, where we will apply the same pipeline to different
data sets, to glean some information about how many
simulations are needed to properly train the network.

5.2.2. Comparison with Fisher Bounds

Besides looking at R2 and χ2, which are quantities calculated
from the test set of the Latin-hypercubes (see Section 4.2),
another useful test consists in comparing directly the standard
deviations predicted by the NNs applied to the 15,000 fiducial
simulations with the Fisher bounds. The corresponding results
are shown in Figure 4. An apparent feature is that, even for the
best performing NN, the standard deviations are larger than the
Cramer–Rao bound. This means our estimates are somewhat
conservative while at the same time the fact we are consistent
with this bound provides a validation test of the NN training
methodology. In order to correctly interpret this result, we need
to remember that the NN is aimed at building reliable estimates
on the whole Latin-hypercube and not at minimizing the errors
for a specific set of parameters. Adding the fact that we have a
relatively limited set of simulations at our disposal to train the
network (see also the discussion in the next section), the
observed suboptimality is to be expected. We discuss this
aspect in Appendix C, and a detailed analysis of the
convergence with more simulations will need to be carried
out in the future. For example, in the slightly different setup of
B. Tucci & F. Schmidt (2024), numerical convergence is
reached with ∼104 simulations.

The same also holds when NNs are trained on the
compressed statistics. We already discussed how for para-
meters away from the fiducial, the compression is lossy. As in
each simulation multiple parameters, if not all, are displaced
from the fiducial, the NN learns to estimate the parameters and
their standard deviations from the lossy statistic. This is
combined with the fact that, due to the regularization applied in
the training, the NN has to produce a smooth function of the

target parameters. Thus, even when exposed to the compressed
statistic calculated in the fiducial, the estimated error bars do
not saturate the Cramer–Rao bound. In Figure 5, we see how
the standard deviations depend on the input parameter, but do
not drop in size when close to the fiducial. We use Ωm and the
P0 and MP0, as this combination has a high R2 and as such the
errors are not driven by the prior.

5.3. Best Combination of Observables

In our analysis, we take for granted the use of the power
spectrum (P0), which is relevant to constrain the standard
cosmological parameters and to assess which other single
summary statistic can be added to it to improve constraints on
fNL

equil. While we show the combination P0+B in Figures 3 and
4 as reference, we find that the marked power spectrum
outperforms the bispectrum, when both are complemented with
P0. In particular, the mark R= 20, p= 1, δs= 0.5 dominates
the others (the figures show the analysis performed with that
single marker). These findings are supported by both the Fisher
forecasts and the NN analysis.
Adding the bispectrum, alone or with the marked bispec-

trum, to the analysis of the power spectrum and marked power
spectrum shrink the Cramer–Rao bounds, but is quite
inconsequential on the NN analysis. This is due to the strong
correlation between the two sets of statistics.
Until now we refrained from discussing the inclusion of the

HMF, as observationally speaking it may pose additional
problems compared to the spectra. However, adding the HMF
to any other combination of observables significantly improves
both the accuracy and precision of our constraints. In fact, out
of all possible combinations of observables, P0+MP0+HMF
is the best performing one; while according to the Fisher
forecast an extra ∼25% can be gained adding standard and
marked bispectra.
In Figure 6, we show the fNL

equil prediction drawn by the NN
trained on P0, MP0, and HMF applied to the test set of the
fNL

equil LH. Notice that the results are still bounded by the prior.
This explains the trend of the bias as a function of the true
value of fNL

equil. The scatter in the standard deviations is much
more sizeable for fNL

equil than for Ωm (see Figure 5). However,
this effect is due to the value of the other cosmological

Figure 5. Predictions of Ωm of the best performing network trained on the compression of the P0 and MP0 statistics, and applied to the test set of the fNL
equil LH. Left

panel: comparison of the true and predicted values of Ωm. The lines span the predicted 1σ about the predicted value. Center panel: predicted standard deviations as a
function of the true parameter value. The mean standard deviation is also shown, compared with the root mean squared errors (RMSE) of the mean predictions. Right
panel: bias of the mean prediction in units of the predicted standard deviations.
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parameters in each simulation, the strongest correlation being
with Ωm (correlation coefficient of 0.84).

6. Conclusion

In this work we systematically and quantitatively test and
rank a variety of summary statistics, power spectrum,
bispectrum, their marked counterparts, and the halo mass
function, to plan how to optimally analyze LSS data to measure
primordial non-Gaussianity.

We achieve this with two complementary approaches. Our
Fisher forecast extends the analysis of G. Jung et al. (2023b),
by adding marked observables for the first time in the PNG
context. These forecasts are interesting as they show us the
optimal errors we could achieve. While extra care has been
taken to ensure numerical stability, using an additional data
compression step, the results are bound by the choice of
fiducial cosmology used to produce the simulations and rely on
the assumption of Gaussian likelihood; a limitation that also
applies to the quasi-maximum likelihood estimators that can be
built with the same pipeline. These shortcomings are covered
by using NNs trained on Latin-hypercubes to perform
simulation-based inference. They allow us to construct like-
lihood-free estimators for each summary statistic combination
from a relatively low number of simulations (here, an order of
magnitude less than the number needed for fully converged
Fisher forecast). Moreover, these estimators are reliable on a
wide range of parameter values, thus freeing us from the choice
of a specific fiducial cosmology.

We choose to use a standard moment network to estimate the
marginalized posterior means and standard deviations, and we
tested how using the raw summary statistics is a better choice
than their score compression, due to computational limitation—
the compression would require a new batch of simulations in
many points, if not each, of the Latin-hypercube.

From the physical point of view, our main finding is that
marked statistics show a great potential for the search of PNG
in upcoming LSS data. Both the marked power spectrum and
marked bispectrum helps to break degeneracies between PNG
amplitudes and cosmological parameters, which are present at
the standard power spectrum and bispectrum level, and thus
decrease significantly Fisher error bars on all parameters. In
addition, the marked power spectrum sets a tight constraint on
fNL

equil, which outperforms the bispectrum when either is used in
conjunction with the power spectrum—we confirm this finding

with the analysis of the Latin-hypercube. The same conclusions
apply when the halo mass function information is added to the
different combinations of summary statistics.
Using the moment network method, we predict ( )s =fNL

equil

280 from the power spectrum and marked power spectrum
measured up to = -k h0.5 Mpcmax

1 in a volume of 1 h−3 Gpc3,
and ( )s =f 214NL

equil adding the halo mass function. If we
naively scale the moment network errors with the square root of
the volume, we obtain ( )s =f 36NL

equil and 28 on a volume of
60 h−3 Gpc3.
This work allowed us to set the structure of an analysis

pipeline. It will be useful to repeat it on simulations that include
visible tracers of the dark matter halos to appropriately train the
moment network, which will open up the possibility of
analyzing available data.
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Appendix A
Neural Network Architecture and Training

The architecture of our NNs consists of a set of fully
connected layers. The input layer is followed by a normal-
ization layer and a variable number of hidden layers, all with
the same number of nodes. The output layer concatenates two
sets of variables described in a moment. We use an ELU
activation function (D.-A. Clevert et al. 2015) in all layers
beside the output and apply a dropout (N. Srivastava et al.
2014) to each hidden layer of the network. To further regularize
the network, we also use weight decay (I. Loshchilov &
F. Hutter 2017) and stop the training if the validation loss does
not decrease for 300 epochs, after which the best weights are
restored. As the target parameters are the mean and standard
deviation of each parameter posterior, and the latter is a strictly
positive quantity, the output layer combines linear activation
functions for the means and ELU+1 for the standard
deviations. Weights are initialized according to the prescription

Figure 6. Predictions of fNL
equil of the best performing network trained on P0, MP0, and HMF and applied to the test set of the fNL

equil LH. The color scale in the middle
panel corresponds to the true value of Ωm, which is the cosmological parameter most correlated to the fNL

equil standard deviation. See Figure 5 for more details.
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in K. He et al. (2015). The training is performed by the Adam
optimizer (D. P. Kingma & J. Ba 2014), with a cyclical
learning rate (L. N. Smith 2015). The value of various
hyperparameters is set through Bayesian optimization
(T. O’Malley et al. 2019) within some parameter range, which
we verify a posteriori to be wide enough: the number of hidden
layers (in [1, 8]), the number of their nodes (in [8, 2048]), the
dropout rate (in [0.3, 0.7]), the weight decay rate (in [10−5,
10−3], with logarithmic sampling), and the base learning rate
(in [10−6, 10−2], with logarithmic sampling).

Appendix B
Complementary Fisher Analyses

B.1. Fisher Contours

To illustrate further the gain of information obtained using
marked statistics, we show in Figure 7 the joint 1σ and 2σ
Fisher constraints on cosmological and PNG parameters. This
confirms the complementarity of the marked power spectrum
and bispectrum, which do not have the same parameter
degeneracies.

Figure 7. The constraining power of the halo power spectrum (P0), bispectrum (B), marked power spectrum (MP0), and marked bispectrum (MB) at z = 0, and
determined from the QUIJOTE halo catalogs for = -k h0.5 Mpcmax

1, on cosmological parameters and PNG amplitudes, after marginalizing over Mmin.
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B.2. Convergence with the Number of Simulations

We verify the numerical stability of the Fisher constraints we
report in Section 5.1 by using subsets of the available
simulations to compute both covariances and derivatives. In

Figure 8, we show that our results are indeed stable, as the
constraints would be the same (at the percent level) when using
less than half of the full set.

Figure 8. Stability of the Fisher 1σ error bars under variations of the number of simulations used to compute derivatives (top row) or covariances (bottom row). The
analysis includes a combination of every summary statistic considered in this work (power spectrum, bispectrum, marked power spectrum, and marked bispectrum) in
the left panels, with the addition of the HMF on the right. All error bars are normalized to their values computed with the full set of simulations.
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B.3. Fisher Forecast without PNG

As shown in Section 5.1, the marked power spectrum and
marked bispectrum are powerful observables to study PNG.
Here, we verify that they also help in a standard cosmological
parameter analysis, as illustrated in Figure 9. While using the
power spectrum jointly with bispectrum or marked bispectrum
yields similar results, the combination of these three statistics
improves the constraints by around 20% for all parameters.
Moreover, adding the marked bispectrum helps to disentangle
σ8 and Ωm even further, making the Cramer–Rao bounds of
these two parameters around 50% smaller than in the standard
analysis.

This confirms that marked observables in general, and
particularly the marked bispectrum, are interesting observables
for the extraction of cosmological information on nonlinear
scales.

Appendix C
Small Training Sample Stability

In this appendix, we investigate the convergence of our
results with the size of the training sets. We mentioned in
Section 5.2 how the compression (if it can be performed
correctly) may help to overcome the limits of a small training
data set. However, this is not the case for our specific fNL

equil

analysis, in which we are limited by the currently available
number of simulations and by the choice of parameters
needed to produce the Latin-hypercube in our multidimen-
sional parameter space; the same practical issues are present
in the vanilla ΛCDM LH. Therefore, for the specific purpose
of investigating convergence, we choose to study our set of
simulations with varying fNL

local LH. In this case, only one
parameter is varied, while leaving all the others fixed at
fiducial values. The size of the model (in terms of number of
layers and number of nodes per layer) required to fit the data
is thus much smaller than in the case of the fNL

equil and of the
vanilla ΛCDM LH sets. Thus, the complexity of the output is
lower and the number of training simulations required for the
compressed statistics to reach convergence is correspond-
ingly smaller. Even the modest number contained in the
PNG-LHs is now sufficient. In Figure 10 we show as an
example the R2 and χ2 values of two sets of NNs trained on
the power spectrum and bispectrum, for a variety of number
of simulations in the training set Ntr. Only in this case, we do
not remove the models that have a high χ2, as it is the matter
of the current discussion, but rather take the best model
according to the validation loss. We can see how, without
compression, R2 increases throughout the tested range (from

=N 100tr to =N 600tr ), whereas using the compressed
statistic, a couple of hundreds of simulations are enough to
give the best achievable estimate with these observables. For
both the compressed and uncompressed statistic, more
simulations are required to accurately estimate the error than
to estimate the parameter, as shown in the χ2 panel, and in
Figure 11. However, even in this case, the compressed
statistic outperforms the uncompressed statistic when few
simulations are at hand. In either case, the training would
benefit from a larger training set.
Despite the fact that the compression leads to unsatisfactory

results in the analysis of the vanilla LH, since this case contains
twice as many simulations as the fNL

equil LH, it is still interesting
to see how the training progresses and the results progressively
improve when using a larger and larger training set, as shown
in Figure 12. For completeness, in Figure 13 we also show how
this applies to the fNL

equil estimate.

Figure 9. The 1σ Fisher error bars on several cosmological parameters
from different combinations of summary statistics measured up to =kmax

-h0.5 Mpc 1 in the QUIJOTE halo catalogs at z = 0, after marginalizing over
Mmin. More details can be found in Figure 1.
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Figure 10. Accuracy of the fNL
local prediction as a function of the number of simulations used to train the model. Compressing the data before training the model

simplifies the procedure, which needs comparatively less simulations.

Figure 11. Error associated to the fNL
local prediction as a function of the number of simulations used to train the model. See caption of Figure 10.

Figure 12. Accuracy of the five vanilla LH parameter predictions analyzing either the power spectrum or the compressed power spectrum, as a function of the training
sample size. Notice that the x axis is not uniformly spaced.
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