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Abstract
This work proposes a method to solve the diffusion equation with a matrix-valued unknown. A

maximum principle can be proved for this equation and the solution is expected to be positive definite-
valued if the initial data is also positive definite-valued. Reproducing such a positivity principle at the
discrete level for a deformed mesh is a challenge. The method we present satisfies this property, is
consistent and conservative in a sense we make precise.
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1 Introduction
In this work, we focus on the diffusion equation for a matrix-valued variable:

∀(k, l) ∈ [1,m]2, ∂tEk,l − κ∆Ek,l = 0, (1)

where the unknown E = (Ek,l(t,x))1≤k,l≤m is a symmetric matrix of size m ∈ N∗. The computational
domain Ω is a cube of Rd, where d is the space dimension.
The diffusion coefficient κ is positive. For simplicity, we assume periodic boundary conditions for (1), together
with a suitable initial condition

E(0,x) = E0(x), (2)

where E0(x) is a symmetric matrix depending on the space variable x. It is well known that Equation (1)
is well-posed (see [RB17] for instance). Moreover, we have a maximum principle:

Proposition 1.1 (Maximum principle for a matrix-valued solution). Assume that E0(x) is positive definite
for all (t,x) ∈ R+×Ω, and that κ > 0. Consider a solution E(t,x) to (1)-(2). Then, for all (t,x) ∈ R+×Ω,
E(t,x) is positive definite.

Proof. Equation (1) being linear, we have, for any ξ ∈ Rm\{0}:

∂t〈Eξ, ξ〉 − κ∆ (〈Eξ, ξ〉) = 0.

Therefore, if E(t = 0,x) is positive definite for all x ∈ Ω, the maximum principle for the scalar diffusion
equation (see [Eva10] for instance) implies that 〈E(t,x)ξ, ξ〉 > 0 for any t ≥ 0, any x ∈ Ω and any ξ ∈
Rm\{0}. This gives the desired result.

The present work proposes a numerical method that discretises Equation (1) while satisfying Proposition 1.1
at the discrete level.
Another important property for the applications we have in mind is conservation. Indeed, if Ω = Rd or if
periodic boundary conditions are imposed then a simple integration of (1) over the computation domain
gives:

d

dt

∫
Ω
E(t,x)dx = 0. (3)

Our aim is thus to derive a consistent scheme for (1), that satisfies both Proposition 1.1 and (3) on deformed
meshes. As we will see, we are only able to reproduce (3) for diagonal entries. We explain below why this
is nevertheless a good point, both from a physical and a numerical viewpoint.

Equation (1) appears naturally in the simulation of mixing-induced turbulent flows (see for instance [BCD+21]
and the references therein). Such a phenomenon is important for instance in the development of hydrody-
namical instabilities in inertial confinement fusion experiments [MP20].

2



In such models, the tensor E may be either the Reynolds stress tensor or a correlation tensor. In both
cases, the original equation satisfied by E actually includes transport and possibly reaction terms. However,
dealing with such additional terms is already well documented: the upwind scheme is consistent, positivity
preserving and conservative [EGH10], and many high-order extensions have been proposed that satisfy these
properties [CDL11, HL14, ZS16].
In contrast, the diffusion part of the equation is more challenging. Since the turbulence model is usually
coupled with Lagrangian or ALE hydrodynamics, we need the scheme to be valid on deformed meshes. In
such a situation, a standard two-point flux scheme is positivity-preserving, but is not consistent [EGG+14],
except on cartesian grids. Several strategies have been developed to design consistent finite volume schemes
on deformed meshes, see for instance [Ker81, Per81, CVV99, DEGH10, Her00, BLS05, BBL09, EGH10,
AEK+07, BM07], among other works. Unfortunately, all these schemes are non-positive on deformed meshes.
Several works have addressed the question of positivity. The first we know of are those of J. Droniou and
Ch. Le Potier (see for instance [LP09, DLP11]), based on ideas of [BM05]. It has been followed by many
others [SYY09, SY16, YSGN22, LSSV07, LSV10, GW15, GYWH20, ZSW17]. All these schemes have the
nice properties of being consistent, conservative, and positive. This comes at the price of making the scheme
nonlinear.

The above-mentioned works deal with scalar-valued unknowns only, and have never been adapted to matrix-
valued problems of the type (1), so far as we know. In order to design such a scheme, we are going to use
as a starting point any of the above positivity-preserving schemes, and apply it to each diagonal term of the
matrix E. Then, we apply the scheme to each unknown of the form

Ek,k + El,l + 2Ek,l, 1 ≤ k, l,≤ m,

which is positive since the matrix E is positive-definite. This allows to compute the off-diagonal term Ek,l in
a consistent way. However, this does not ensure positivity of the matrix E, so we apply a limitation procedure
to recover this property. As we will see, this method is consistent, positive, and conservative for the diagonal
terms. This is a good point as, for instance, when E is a Reynolds stress tensor, it is fundamental for the
scheme to be conservative for the turbulent kinetic energy, that is, the trace of E.
We emphasize that our methodology is also valid for the anisotropic diffusion equation with a source term.
In fact it can be applied to any linear equation which admits a positivity principle. Besides, it can be applied
in any space dimension d ∈ N∗. We choose here to set d = 2 for simplicity.
It should be also noted that the above strategy applies to any positive scalar scheme. Here, we choose to
use the scheme defined in [BHL23], inspired from ideas of [BD06, BD03], and [BDF12a, FBD11] (see also
[Fra12, Chapitre 6]).

The present article is organized as follows: in Section 2, we set the notations. In Section 3 we explain our
method in detail and prove that it is positive in the sense of symmetric matrices. We present a numerical
result in Section 4 that confirms the properties of the scheme.

2 Notations
We present here the notations that we use in the rest of the paper:

• T a mesh,

• J the number of cells,

• in the following, Ωj is a cell, j < J is its index and we write j ∈ T ,

• xj is its center,

• Vj is its volume,

•
∑

j∈T is the sum over all the cells of the mesh,

• ∆x is the maximum edge length.
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We denote by f : RJ → RJ a scalar numerical scheme that is consistent in L∞-norm with orders q in time
and q′ in space ; that is to say, for any scalar-valued smooth function u satisfying:

∂tu− κ∆u = 0, (4)

we have, for any cell j:

uj(tn+1)−
(
Un+1)

j
= O(∆tq + ∆xq′

), Un+1 = f
(

(uj(tn))j∈T

)
, (5)

and where uj(tn) is the exact value of the solution in cell j, which may be given by:

uj(tn) = 1
Vj

∫
Ωj

u(tn,x)dx. (6)

More precisely, we have:

max
j∈T

∣∣∣uj(tn+1)−
(
Un+1)

j

∣∣∣ ≤ C(∆tq + ∆xq′
), (7)

where the constant C > 0 may depend on the derivatives of u. The choice of the L∞-norm is explained in
Section 3.1. Moreover, we assume that the scheme f is positive (possibly under some stability condition):
for any g ∈ RJ ,

if: ∀1 ≤ j ≤ J, gj > 0, then: ∀1 ≤ j ≤ J, [f(g)]j > 0. (8)

3 Method
We denote by:

• En = (En
k,l)1≤k,l≤m the value of the unknown at iteration n ∈ N,

•
(
En

k,l

)
j
the value of the (k, l) coefficient of the unknown at iteration n and in cell j,

• En
k,l =

((
En

k,l

)
j

)
j∈T
∈ RJ the vector of the values of the (k, l) coefficient.

We first compute the diagonal terms using the scheme f :

∀k ≤ m, En+1
k,k = f(En

k,k). (9)

Then we compute a first approximation of the off diagonal terms using:

∀k ≤ m, ∀l 6= k, Ẽk,l = 1
2

(
f(En

k,k + 2En
k,l + En

l,l)− En+1
l,l − En+1

k,k

)
. (10)

We choose to use Formula (10) instead of directly computing Ẽk,l = f(En
k,l) for the following reason. The

diffusion scheme f may be defined only for positive data. Besides, the matrix (En
k,l)1≤k,l≤m being positive,

the quantity En
k,k + 2En

k,l + En
l,l is positive. In addition, using Assumption (5), the quantity Ẽk,l computed

with (10) may be proved to be a consistent approximation of Ek,l(tn+1).

Let j be the index of a cell of the mesh T . We define the matrix En+1/2
j by:

E
n+1/2
j =



(
En+1

1,1
)

j

(
Ẽ1,2

)
j

. . .
(
Ẽ1,m

)
j(

Ẽ1,2
)

j

. . . . . .
...

... . . . . . .
(
Ẽm−1,m

)
j(

Ẽ1,m

)
j

. . .
(
Ẽm−1,m

)
j

(
En+1

m,m

)
j

 . (11)
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There is no reason so far for this matrix (11) to be positive definite. To recover this condition, we locally
modify the off diagonal terms. We already know that the diagonal terms of the matrix (11) are positive:

∀k ≤ m,
(
En+1

k,k

)
j
> 0. (12)

Let λ ∈ [0, 1], we define:

Ẽj(λ) =



(
En+1

1,1
)

j
λ
(
Ẽ1,2

)
j

. . . λ
(
Ẽ1,m

)
j

λ
(
Ẽ1,2

)
j

. . . . . .
...

... . . . . . . λ
(
Ẽm−1,m

)
j

λ
(
Ẽ1,m

)
j

. . . λ
(
Ẽm−1,m

)
j

(
En+1

m,m

)
j

 .

We choose λj ≥ 0 such that Ẽj(λj) is positive definite. More precisely, En+1 is given by:

En+1
j = Ẽj(λ∗j ), λ∗j = sup

{
λ ∈ [0, 1] |Ẽj(λ) is positive definite

}
. (13)

The quantity λ∗j is well defined because:

0 ∈
{
λ ∈ [0, 1] |Ẽj(λ) is positive definite

}
.

thanks to Equation (12). We also have the following result.

Proposition 3.1. Under Assumption (8), the matrix Ẽj(λ) is positive definite for any λ ∈ [0, λ∗j [.

Proof. Owing to Assumption (8), we know that the diagonal matrix Ẽj(0) is positive definite. Moreover, we
have, any λ ∈ [0, λ∗j [:

Ẽj(λ) =
(

1− λ

λ∗j

)
︸ ︷︷ ︸

>0

Ẽj(0)︸ ︷︷ ︸
positive definite

+ λ

λ∗j
Ẽj(λ∗j )︸ ︷︷ ︸

non-negative

,

thus Ẽj(λ) is positive definite.

However, if λ∗j < 1, then the matrix Ẽj(λ∗j ) is only non-negative. We overcome this difficulty by choosing:
En+1

j = Ẽj(λ∗j − δ) with δ = 10−12. In practice, λ∗j is computed using a bisection algorithm. We emphasize
that the computation of λ∗j is local and that it requires only the quantities in the cell j. That is why the
(λ∗j ) can be easily computed in parallel.

Remark 1. The principle of the truncation (13) is to use the fact that the set
(Xk,l)k<l ∈ Rm(m−1)/2 |



(
En+1

1,1
)

j
X1,2 . . . X1,m

X1,2
. . . . . .

...
...

. . . . . . Xm−1,m

X1,m . . . Xm−1,m

(
En+1

m,m

)
j

 is positive definite


is convex and contains 0. The idea originates from the Minkowski functional (or gauge function, see [Bou87]
for instance).
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3.1 Properties
Proposition 3.2 (Consistency of the method). We assume that the scheme f is consistent in L∞ norm
with the diffusion equation with order q in time and q′ in space (Assumptions (4) (5)). Then the scheme (9)
(10) (13) is also consistent in L∞ norm with the same orders:

E(tn+1)− En+1 = O(∆tq + ∆xq′
)

Proof. Using (4) (5), we easily have, for any cell j:

Ẽj(1) = Ej(tn+1) +O(∆tq + ∆xq′
). (14)

The scheme f being consistent in L∞ norm (Assumption (7)), we can write more precisely:

max
j∈T

∥∥Ẽj(1)− Ej(tn+1)
∥∥ ≤ C(∆tq + ∆xq′

), (15)

and the constant C may depend on the derivatives of the exact solution E(t,x) but not on ∆t nor on ∆x.
Moreover, Ej(tn+1) is positive definite for any j ∈ T , hence Ẽj(1) is also positive definite for ∆tq + ∆xq′

small enough. Therefore λ∗j = 1 for all j and:

En+1 = Ẽ(1) = E(tn+1) +O(∆tq + ∆xq′
).

The scheme f is said to be conservative if for all g ∈ RJ :∑
j∈T

Vj [f(g)]j =
∑
j∈T

Vjgj . (16)

Proposition 3.3 (Conservation). If the scheme f is conservative (see Equation (16) ) then the diagonal
coefficients are conserved.

Proof. Using (9) and (16), we easily have:

∀k ≤ m,
∑
j∈T

Vj

(
En+1

k,k

)
j

=
∑
j∈T

Vj

(
En

k,k

)
j
.

Remark 2. A priori, the extra-diagonal coefficients are not conserved. Indeed, using (10) (13), we have,
for k ≤ m and l 6= k : ∑

j∈T
Vj

(
En+1

k,l

)
j

=
∑
j∈T

Vj

(
Ẽn

k,l

)
j

=
∑
j∈T

Vjλ
∗
j

(
En

k,l

)
j
.

A priori λ∗j 6= 1, therefore:

∀k ≤ m, ∀l 6= k,
∑
j∈T

Vj

(
En+1

k,l

)
j
6=
∑
j∈T

Vj

(
En

k,l

)
j
.

3.2 A finite volume scheme for the scalar diffusion equation
In this Section we present the scheme we use to discretise the scalar diffusion equation:

∂tu− κ∆u = 0. (17)

We use the second order finite volume scheme from [BHL23] with θ = 1/2. The scheme is non-linear,
conservative, explicit and second order consistent in space and first order in time. It also preserves the
positivity of the numerical solution under a following parabolic CFL condition: ∆t ≤ C∆x2/κ, where
C > 0 is a constant that depends on the connectivity of the mesh.
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Figure 1: Random mesh (left) and Kershaw type mesh (right) of size 20× 20.

Remark 3. We use this scheme here, but our strategy applies to any consistent and positive scheme. In
particular those from [LP09, LMS14, YSGN22, SY16, SYY09, AN21, WPL+22, NSL22, BL16, BHLP23]
would fit in the present framework.

4 Numerical results
In this Section, we propose a numerical example so as to compare our method with correction (9) (10) (13)
and the method without correction (9) (10). We choose κ = 1/3. The computational domain is Ω = [0, 2]2.
The exact solution reads as:

E = RT

u1 0 0
0 u1 0
0 0 u2

R, R =

1 0 0
0 a b
0 −b a

 , b =
√

1− a2.

where a = 0.4 and u1, u2 are solution of (17) with κ = 1/3. They are given by:

u1(t,x) = 3
4π(t+ t0) exp

(
−3‖x− x0‖2

4(t+ t0)

)
+ ε, x0 = (1, 1), t0 = 0.01.

and:

u2(t, x, y) = 1− ε
2

(
erf
(
x− 0.4√

4t
√

3
)
− erf

(
x− 0.6√

4t
√

3
))

+ ε,

The matrix R is a rotation matrix and ε = 10−15. Periodic boundary conditions are imposed (u1 is almost
constant on the boundary of the domain, while u2 is constant on the x = 0 and x = 2 boundaries and does
not depend on the y variable). The final time is T = 0.03. We perform convergence analysis on cartesian
meshes, random meshes and Kershaw type meshes, see Figure 1. The time step is given by ∆t = ∆x2

for cartesian and random meshes. We had to choose a smaller constant on Kershaw type meshes, namely
∆t = ∆x2/100, because of the strong deformation of the meshes.

We use the Sylvester criterion S to check that the matrices are positive definite (see Appendix 5). Tables 1
show the number of cells N− where the solution is not positive definite and the minimum of the Sylvester
criterion S for the scheme without correction (9) (10). Figure 2 shows that the scheme with correction (9)
(10) (13) is indeed second order accurate as expected. We noticed that the value of λ∗ (defined in (13))
varies significantly with the geometry. We observed the following values for the meshes of sizes 160 × 160.
For the cartesian mesh, it is always equal to 1. For the random mesh, it may decrease up to 0.9. For the
Kershaw type mesh it can be of order 10−2. We emphasize that this does not create consistency issues.

Eventually, we tested our method with the diffusion scheme from [BDF12b]. This scheme being linear,
the step (10) is equivalent to directly iterating every coefficient. We present in Table 2 the results without
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Nx N− min
5 1 −1× 10−13

10 0 1× 10−45

20 16 −4××10−23

40 20 −3× 10−27

80 0 4× 10−33

160 0 9× 10−33

Nx N− min
5 4 −0.002
10 3 −9× 10−6

20 21 −3× 10−23

40 19 −6× 10−20

80 0 3× 10−33

160 0 8× 10−33

Nx N− min
5 4 −9× 10−6

10 10 −0.003
20 60 −0.0008
40 236 −6× 10−5

80 532 −3× 10−10

160 94 −8× 10−14

Table 1: Values of N− and minimum values of S on cartesian (left), random (center) and Kershaw type
meshes (right) for the scheme without correction (9) (10).

Figure 2: L∞ errors at t = 0.03 for for the scheme with correction (9) (10) (13) on cartesian, random type
meshes and Kershaw type meshes.

correction. This scheme is not positive so we can not use the correction step (13) here. We see that the
method does produces negative values.

5 Appendix: The Sylvester criterion for positive definite matrices
Let A ∈ Rm×m be symmetric and 1 ≤ l ≤ m. The lth leading principal minor Ml(A) is defined by:
Ml(A) = det

(
(Ak,k′)k,k′≤l

)
. We also define: S(A) = minl≤mMl(A). Note that S is a continuous mapping.

Theorem 5.1 (Sylvester condition). Let A ∈ Rm×m be symmetric. Then A is positive definite if and only
if: S(A) > 0.

Proof. The proof can be found in [HJ85], Theorem 7.2.5.

Nx N− min
5 0 8× 10−37

10 0 1× 10−45

20 0 1× 10−45

40 0 3× 10−42

80 0 8× 10−33

160 0 1× 10−32

Nx N− min
5 7 −0.1
10 1 −0.0007
20 0 1× 10−45

40 0 4× 10−42

80 0 9× 10−33

160 0 1× 10−32

Nx N− min
5 4 −0.02
10 26 −0.7
20 68 −1
40 440 −0.2
80 1088 −0.004
160 1418 −0.0007

Table 2: Values of N− and minimum values of S on cartesian (left), random (center) and Kershaw type
meshes (right) for the P1 diffusion scheme [BDF12b].
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