

La caractérisation du lithium à la microsonde électronique par spectroscopie d'émission X

Philippe JONNARD

Laboratoire de Chimie Physique – Matière et Rayonnement Sorbonne Université – CNRS

Géosciences pour une Terre durable

Paris, France

Séminaire du 29 mars 2024

Après avoir présenter diverses techniques de caractérisation du lithium, l'analyse du lithium par spectroscopie d'émission X, telle qu'elle peut être faite à la microsonde électronique ou au microscope électronique à balayage sera développée. Pour cela, la nécessité de de comprendre la structure électronique des solides contenant du lithium sera d'abord démontrée. Puis après un bref retour sur les travaux depuis les années 1920 concernant la spectroscopie X du lithium, les différents spectromètres pouvant être mis en œuvre pour travailler dans le domaine spectral de l'émission Li Ka (énergie de photon aux environs de 50 eV) seront détaillés avant de présenter quelques exemples et résultats préliminaires.

Plan

- Comment mesurer / quantifier le lithium?
- Structure électronique transitions électroniques
- Histoire
- SpectroscopieS
- Conclusion remerciements

Téléchargement

Plan

- Comment mesurer / quantifier le lithium?
- Electron transition electronic structure
- History
- SpectroscopieS
- Conclusion remerciements

https://cqlmns.sciencesconf.org/ CQLMNS² en juin 2025 à Grenoble

Operando accelerating rate calorimetry **GD-OES FIB-SEM TOF-SIMS** XPS/AES ss-NMR Electron probe microanalysis Atom probe tomography HAADF-STFM Soft x-ray spectroscopy LIBS Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS **TEM-VEELS** Micro-LIBS

Operando accelerating rate calorimetry **GD-OES FIB-SEM TOF-SIMS XPS/AES** ss-NMR Electron probe microanalysis Atom probe tomography **HAADF-STEM** Soft x-ray spectroscopy

LIBS Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS Rayonnement **TEM-VEELS** Micro-LIBS visible ou X lons **Electrons Préparation Particules** Non destructif Destructif facile

Operando accelerating rate calorimetry LIBS **GD-OES FIB-SEM TOF-SIMS XPS/AES** ss-NMR Electron probe microanalysis Atom probe tomography HAADF-STEM Soft x-ray spectroscopy

Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS TEM-VEELS Micro-LIBS

Non destructif

Operando accelerating rate calorimetry **GD-OES FIB-SEM TOF-SIMS** XPS/AES ss-NMR Electron probe microanalysis Atom probe tomography HAADF-STEM Soft x-ray spectroscopy

LIBS Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS TEM-VEELS Micro-LIBS

Destructif

Operando accelerating rate calorimetry **GD-OES FIB-SEM TOF-SIMS XPS/AES** ss-NMR Electron probe microanalysis Atom probe tomography HAADF-STEM Soft x-ray spectroscopy

LIBS Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS TEM-VEELS Micro-LIBS

Préparation facile

Operando accelerating rate calorimetry **GD-OES FIB-SEM TOF-SIMS** XPS/AES ss-NMR Electron probe microanalysis Atom probe tomography HAADF-STEM Soft x-ray spectroscopy

LIBS Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS TEM-VEELS Micro-LIBS

lons

Operando accelerating rate calorimetry GD-OES **FIB-SEM TOF-SIMS** XPS/AES ss-NMR Electron probe microanalysis Atom probe tomography HAADF-STEM Soft x-ray spectroscopy

LIBS Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS TEM-VEELS Micro-LIBS **Rayonnement visible ou X**

Operando accelerating rate calorimetry **GD-OES FIB-SEM TOF-SIMS** XPS/AES ss-NMR Electron probe microanalysis Atom probe tomography HAADF-STEM Soft x-ray spectroscopy

LIBS Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS TEM-VEELS Micro-LIBS

Electrons

Operando accelerating rate calorimetry LIBS GD-OES **FIB-SEM TOF-SIMS** XPS/AES ss-NMR Electron probe microanalysis Atom probe tomography HAADF-STEM Soft x-ray spectroscopy

Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS TEM-VEELS Micro-LIBS

Destructif

Operando accelerating rate calorimetry **GD-OES FIB-SEM TOF-SIMS XPS/AES** ss-NMR Electron probe microanalysis Atom probe tomography HAADF-STEM Soft x-ray spectroscopy

Non destructif

Rapidité Portabilité LIBS Nuclear reaction analysis Nano-SIMS Energy dispersive spectroscopy EELS Rayonnement **TEM-VEELS** Micro-LIBS visible ou X lons **Electrons Préparation Particules** facile

Quantification

• La microsonde électronique

Spectroscopie d'émission X induite par électrons

- Electrons incidents
- Rayons X détectés
- Non destructif
- Préparation facile des échantillons
- Quantification
- ...

Plan

- Comment mesurer / quantifier le lithium?
- Structure électronique transitions électroniques
- Histoire
- SpectroscopieS
- Conclusion remerciements

- Lithium: numéro atomique Z = 3
- 2 électrons de coeur 1s, énergie de liaison environ 55 eV
- Transition depuis les états de la bande de valence vers le niveau 1s

Energie de liaison

Energie de liaison

- Lithium: numéro atomique Z = 3
- 2 électrons de coeur 1s, énergie de liaison environ 55 eV
- Transition depuis les états de la bande de valence vers le niveau 1s
- Electron de valence participe à la liaison chimique
- La forme et la position de la bande d'émission dependent de l'état chimique de l'atome de lithium qui émet
- Bien, si on veut étudier la structure électronique ou la chimie du lithium
- Pas si bien, si on veut quantifier, parce qu'on ne peut pas se baser sur un standard de position ou de hauteur de l'émission

La bande d'émission Li K α – sensibilité chimique

- Calcul des spectres d'émisison X
- I(v) $\propto v^3$ N(E) M(E)
 - v fréquence (E = hv)
 - N densité d'états
 - M élément de matrice
- Théorie de la fonctionnelle de la densité / WIEN2k

http://susi.theochem.tuwien.ac.at/

 Alignement des spectres: énergie de liaison Li 1s obtenue par XPS

K. Hassebi et al., X-Ray Spectrom. **52**, 330-336 (2023) <u>http://doi.org/10.1002/xrs.3329</u>

La bande d'émission Li K α – sensibilité chimique

La bande d'émission Li K α – difficile!

• Rendement de fluorescence 1. 6^{-4} J. Phys. Chem. Ref. Data 23, 339 (1994) La bande d'émission Li K α est intrinséquement peu intense

Coefficient / longueur (45°) d'atténuation CXRO, https://www.cxro.lbl.gov/
 @ 50 eV
 Li
 LiF
 465 000 cm⁻¹
 Li5 nm
 Li2O
 250 000 cm⁻¹
 27 nm

Même si les électrons peuvent ioniser un grand nombre d'atomes de Li, seul **un petit nombre d'atomes de Li**, **proche de la surface**, peut être détecté

Simulation Monte Carlo de la distribution en profondeur des ionisations

Quantification ?

https://montecarlomodeling.mcgill.ca/software/mcxray/authors.html

Question: "Comment est-il possible d'observer la bande d'émission Li K α ? Il n'y a pas d'electron 2p!"

- Cette assertion est valable pour un atome isolé (gaz) pas pour les solides
 La configuration électronique du lithium métallique n'est pas 1s² 2s¹
- Les calculs de structure de bande montrent que dans la bande de valence, la densité d'états est: $s^{0.52} p^{0.46} d^{0.02}$ pour un total de 1 électron de valence

- Handbook of the Band Structure of Elemental Solids
 D. A. Papaconstantopoulos, https://doi.org/10.1007/978-1-4419-8264-3
- Ab initio density functional theory (DFT) WIEN2k, <u>http://susi.theochem.tuwien.ac.at/</u>

Plan

- Comment mesurer / quantifier le lithium?
- Structure électronique transitions électroniques
- Histoire
- SpectroscopieS
- Conclusion remerciements

CHARACTERISTIC X-RAYS FROM LITHIUM

BY GERHARD K. ROLLEFSON

Abstract

Critical potentials for metallic lithium, determined photo-electrically.—A previously described method¹ has been used to determine radiation and ionization potentials of metallic lithium. The values obtained are 39.2, 43.07, and 46.0 volts as radiation potentials and 48.4 volts as the ionization potential. In terms of energy levels these are interpreted as corresponding to the differences $1_1 \rightarrow 2_1$, $1_1 \rightarrow 2_2$, $1_1 \rightarrow 3_1$, and $1_1 \rightarrow \infty$ respectively.

Ka lines of light elements.—The radiation potential at 43.07 volts corresponds to the Ka line of lithium. This value is used to extend the Moseley curve for the Ka lines, and the values for the other light elements are obtained by interpolation. The wave-lengths in angstrom units given for these elements are: Li, 286.5; Be, 132.8; B, 74.4; C, 49.0; N, 33.2; O, 24.4; F, 18.6; Ne, 14.8.

Phys. Rev. 25, 740 (1925)

THE SOFT X-RAY SPECTROSCOPY OF THE SOLID STATE

By H. W. B. SKINNER H. H. Wills Physical Laboratory, University of Bristol

Rep. Prog. Phys. 5, 257 (1938)

Histoire

Li		H.Bross	Phys.Condens.Mat.17,55(1973)	M.Elango	VURP74,p.390	LixSi	
X.Zhou	Mat.Res.Lett.11,239(2023)	A.J.McAllister	JPCRD2,411(1973)	LiF	-	X.Zhou	Mat.Res.Lett.11,239(2023)
H.Lin	ASS569,151040(2021)	E.T.Arakawa	PRB8,4075(1973)	P.Hovington	Scanning38,571(2016)	Y.Domi ACSAppl.	EnergyMat.3,8619(2020)
K.Mukai	J.Phys.Chem.C124,9256(2020)	R.S.Crisp	Phil.Mag.25,167(1972)	H. Takahashi	IOPConf.Ser.109,012017(2016)	N.Aoki	ChemElectroChem3,959(2016)
HW.Lin	ACSOmega5,2081(2020)	D.J.Fabian	Rep.Prog.Phys.34,601(1972)	R.Rinaldi	MM21,1053(2015)	LiSialloy	
M.Aoki	Chem.Lett.49,91(2020)	D.Fabian Crit.Rev.S	o1.StateSci.2,255(1971)	H.Takahashi	Microsc.Anal.S4(2014)	H.Lin	ASS569,151040(2021)
A.Lyalin J.Electrocl	hem.Soc.166,A5362(2019)	R.E.Borland	J.Phys.F1,237(1971)	S.Fukushima	MM14S2,1286(2008)	HW.Lin	ACSOmega5,2081(2020)
H.Lin	APL112,073903(2018)	G.A.Rooke	NBSSpec.Pub.323,287(1971)	S.Fukushima	MM12S2,872(2006)	H.Lin	APL112,073903(2018)
A.I.Erko	Erko-EMAS2017	T.Sagawa	J.Phys.32,C4-186(1971)	K.L.Tsang	PRB35,8374(1987)	LiTaO3	
P.Hovington	Scanning38,571(2016)	F.K.Allotey	SSC9,91(1971)	T.A.Callcott	RSI57,2680(1986)	S.Fukushima	MM14S2,1286(2008)
H.Takahashi	IOPConf.Ser.109,012017(2016)	G.AusmanJr.	PR183,687(1969)	K.Tsutsumi	ISXRPAS775(1981)	S.Fukushima	MM12S2,872(2006)
N.AokiChem	ElectroChem3,959(2016)	A.J.McAlister	PR186,595(1969)	O.Aita	PRB23,5676(1981)	AlCuLi	
R.Rinaldi	MM21,1053(2015)	O.Aita	JPSJ27,164(1969)	K.Tsutsumi	X80,p.775	C.M.MacRae	MM24,325(2018)
A.Hafner	Opt.Exp.23,29479(2015)	D.E.Bedo	Phys.Rev.109,35(1968)	E.T.Arakawa	PRL36,333(1976)	AlLi	
M.Terauchi	TEMCharacNanomat331(2014)	M.J.Stott	SXRBS,p.283(1968)	E.T.Arakawa	Phys.Fenn.9S1,192(1974)	A.Kerr	JPCM7,5405(1995)
H.Takahashi	Microsc.Anal.S4(2014)	T.Sagawa	SXRBS,p.29(1968)	A.A.Maiste	JETPLett.18,97(1973)	AlxLil-x	
M.Terauchi	JEOLHandbookSXES(2014)	F.K.Allotey	Phys.Rev.157,467(1967)	M.Elango	VURP74,p.390	S.Rudinsky	MM26,741(2020)
M.Terauchi	MM.20,692(2014)	D.A.Goodings	Proc.Phys.Soc.86,75(1965)	LiFSA/Py13-FSA		W.Franz	Z.Naturforsch.A42,1385(1987)
M.Terauchi	MM18S2,938(2012)	D.H.Tomboulian	JQRST2,649(1962)	X.Zhou	Mat.Res.Lett.11,239(2023)	T.A.Callcott	Proc.SPIE0447,61(1984)
M.Terauchi	JeolNews47,23(2012)	T.Sagawa	SRRITU45,232(1961)	Y.Domi ACSAppl.	.Mat.Interf.11,2950(2019)	J.A.Tagle	PRB22,2716(1980)
M.Terauchi	J.ElectronMicrosc.61,1(2012)	R.S.Crisp	Phil.Mag.6,365(1961)	K.Yamaguchi Chem	ElectroChem4,3257(2017)	T.A.Calcott	App1.Opt.19,4035(1980)
M.Terauchi	MM16S2,1308(2010)	R.S.Crisp	Phil.Mag.5,525(1960)	LiH		Al/Li	
S.Fukushima	MM14S2,1286(2008)	L.Jacob	J.Sci.Instrum.37,460(1960)	P.Hovington	Scanning38,571(2016)	J.A.Tagle	PRB22,2716(1980)
T.Ogiwara	Microchim Acta161,451(2008)	J.A.Catterall	Phil.Mag.4,1164(1959)	K.Tsutsumi	ISXRPAS775(1981)	T.A.Calcott	App1.Opt.19,4035(1980)
R.S.Crisp	JPCM3,5761(1991)	L.E.Bedo	Phys.Rev.109,35(1959)	K.Tsutsumi	X80,p.775	R.S.Crisp	Phil.Mag.5,1205(1960)
W.Franz	Z.Naturforsch.A42,1385(1987)	D.H.Tomboulian	Phys.Rev.109,35(1958)	Li-kerosene		Battery	
R.S.Crisp	J.Phys.F13,1317(1983)	P.Fisher	OpticaActa5,31(1958)	P.Fisher	OpticaActa5,31(1958)	H.Takahashi	IOPConf.Ser.109,012017(2016)
R.S.Crisp	J.Phys.F12,1529(1982)	J.A.Catterall	Phil.Mag.3,1424(1958)	LixMg1-x		Graphite paper	
R.S.Crisp	ISXRPAS625(1981)	B.Schiff Proc.Phys.	.Soc.LondonA67,2(1954)	S.S.Rajput	SSC90,339(1994)	LiH.Yang	J.Energ.Chem.71,392(2022)
G.M.Stocks	ISXRPAS619(1981)	R.H.Parmenter	Phys.Rev.86,552(1952)	R.S.Crisp	J.Phys.F13,1317(1983)	MgxLil-x	
K.Tsutsumi	ISXRPAS775(1981)	Y.Cauchois	Cauchois(1948)	R.S.Crisp	ISXRPAS625(1981)	R.S.Crisp	JPCM3,5761(1991)
R.S.Crisp	J.Phys.F11,L219(1981)	H.W.B.Skinner	PTRSLA239,95(1940)	G.M.Stocks	ISXRPAS619(1981)	R.S.Crisp	J.Phys.F13,1317(1983)
O.Aita	PRB23,5676(1981)	H.W.B.Skinner	Rep.Prog.Phys.5,257(1938)	J.A.Tagle	PRB22,2716(1980)	R.S.Crisp	J.Phys.F12,1529(1982)
R.S.Crisp	J.Phys.F10,511(1980)			T.A.Calcott	App1.Opt.19,4035(1980)	J.A.Tagle	PRB22,2716(1980)
J.A.Tagle	PRB22,2716(1980)	Li+ ion		Li(Mg)		T.A.Calcott	App1.Opt.19,4035(1980)
T.A.Calcott	App1.Opt.19,4035(1980)	M.Elango	VURP74,p.390	T.A.Callcott	Proc.SPIE0447,61(1984)	R.S.Crisp	X80,p.625
K.Tsutsumi	X80,p.775	LixAll-x		Li3N		G.M.Stocks	X80,p.619
R.S.Crisp	X80,p.625	H.Takahashi	IOPConf.Ser.109,012017(2016)	P.Hovington	Scanning38,571(2016)	R.S.Crisp	Phil.Mag.5,1205(1960)
G.M.Stocks	X80,p.619	H.Takahashi	Microsc.Anal.S4(2014)	LiNbO3		J.A.Catterall	Phil.Mag.4,1164(1959)
B.K.Agarwal	XRSAIp.322(1979)	Li/Al		S.Fukushima	MM14S2,1286(2008)	Mg/Li	
E.N.Mgbenu	PSSB88,805(1978)	J.A.Tagle	PRB22,2716(1980)	S.Fukushima	MM12S2,872(2006)	J.A.Tagle	PRB22,2716(1980)
T.A.Callcott	JJAP17-2,149(1978)	LiBr		Li2O		R.S.Crisp	Phil.Mag.5,1205(1960)
T.A.Callcott	PRL38,442(1977)	K.E.Miyano	PRB49,5929(1994)	K.Mukai	J.Phys.Chem.C124,9256(2020)	Si(Li)	
CO.Almbladh	SSC22,339(1977)	E.T.Arakawa	PRL36,333(1976)	Li2O2		M.Aoki	Chem.Lett.49,91(2020)
T.A.Callcott	PRB16,5185(1977)	M.Elango	VURP74,p.390	K.Mukai	J.Phys.Chem.C124,9256(2020)		
CO.Almbladh	PRB16,4343(1977)	LiCl		Lioxydized			
G.D.Mahan	PKB11,4814(1975)	P.Hovington	Scanning38,571(2016)	M.Terauchi	J.ElectronMicrosc.61,1(2012)		
A.J.McAllister	NBSSpecialpub369(1974)	K.E.Miyano	PKB49,5929(1994)	LI2S			
G.D.Mahan	VURP/4,p.635	E.T.Arakawa	PRL36,333(1976)	P.Hovington	Scanning38,571(2016)		

Plan

- Comment mesurer / quantifier le lithium?
- Structure électronique transitions électroniques
- Histoire
- SpectroscopieS
- Conclusion remerciements

Différentes spectroscopies

- Spectrométrie à selection d'énergie (EDS)
 - EDS bolomètre
 - EDS silicon drift detector, Si(Li)
- Spectrométrie à dispersion de longueur d'onde (WDS)
 - WDS cristal
 - WDS réseau

WDS – Spectromètre à cristaux

• La bande d'émission du Li est vers E = 50 eV Cela correspond à une longueur d'onde λ = 25 nm

• Un spectrometer à cristaux fonctionne selon la loi de Bragg **n** λ = 2d sin θ d distance inter-reticulaire θ Angle de Bragg (par rapport à la surface)

 λ / 2d < 1 est requis, donc d > 12.5 nm

Il n'est pas possible de trouver des cristaux avec des distances interréticulaires si grandes

WDS – Spectromètre à cristaux

• Il est possible d'utiliser des **pseudo-cristaux**!

Multicouches faites d'une alternance périodique de couches minces

La période peut être ajustée au domaine spectrale et à la plage angulaire du spectromètre

• [Be (12.5 nm) / Si (2 nm) / Al (14.5 nm)]x20 / Si substrat

Période de l'empilement d = 29 nm

Collaboration avec Institute of Physics of Microstructure, Russian Academy of Sciences, Nizhny Novgorod, Russia

Appl. Sci. **11**, 6385 (2021) <u>https://doi.org/10.3390/app11146385</u>

WDS – Spectromètre à cristaux – Be/Si/Al

- Mesures de réflectivité au synchrotron (Elettra)
- Gamme angulaire des microsondes
- Haute réflectance 0.3
- Bande passante réduite conduisant à une résolution spectrale autour de 3-4 eV
- Réjection du rayonnement aux grands orders de diffraction l(n=1) = 80 x l(n=2)

WDS – Spectromètre à cristaux

Problèmes avec les fenêtres!

- (1) entre l'échantillon et le spectromètre
- (2) à l'entrée du compteur à flux gazeux
- Transmission du **polypropylene**, **1 μm**, **@ 50 eV** Transmission du **Si3N4**, **50 nm**, **@ 50 eV**

CXRO, https://www.cxro.lbl.gov/

= 1,5 10⁻⁴ = 0,27

Microsc. Microanal. 21, 1645 (2015)

WDS – Spectromètre à cristaux

Quasi-cristal AlLiCu

5 kV, 200 nA

Multicouche fournie par CAMECA

Thèse P. Schweizer, CEA Marcoule (E. Brackx)

WDS – Spectromètre à réseau

- Les spectromètres à réseau sont adaptés au domaine X ultra-mou
- Les spectromètres à réseau fonctionnent selon la loi des réseaux
- $n \lambda = d (sin\alpha sin\beta)$

d période du réseau α et β angles d'incidence et de détection (par rapport à la normale au réseau)

Exemple:

 $d = 10^{-6} m (1000 lines/mm)$ $\alpha = 85^{\circ}$ $\beta = 80^{\circ}$

n = 1

 $\lambda = 11 \text{ nm} (113 \text{ eV})$

WDS – Spectromètre à réseau

• Les réseaux périodiques nécessitent de balayer angulairement

- Utilisation de réseaux à pas variable(VLS)
 Spectromètre à champ plan
 Longueurs d'onde focalisées sur une ligne
- Detecteur linéaire ou camera CCD
 Pas besoin de balayage

Proc. SPIE 4146, 163 (2000)

WDS – Spectromètre à réseau – RZP

- Lentille de Fresnel
- Fresnel zone plates

- Spectromètre à zone de Fresnel en réflexion
- Seule une partie de la RZP est utilisée comme réseau à pas variable

WDS – Spectromètre à réseau – RZP

• Spectromètre OK pour le domaine spectral du lithium!

• Spectres Li K

WDS – Spectromètre à réseau – RZP

Quasi-cystal AlLiCu

Plan

- Comment mesurer / quantifier le lithium?
- Structure électronique transitions électroniques
- Histoire
- SpectroscopieS
- Conclusion remerciements

Conclusion

- Des multicouches et fenêtres performantes sont disponibles pour effecteur de la spectroscopie avec une resolution modérée dans le domaine Li K
- Des spectromètres performants sont disponibles pour effectuer de la spectroscopie à haute resolution spectrale; le meilleur est à venir!
- Cependant, la spectroscopie du lithium est difficile :
 - Faible intensités
 - Faible nombre d'atomes émetteurs ou détectés
 - Interferences avec les émissions diffractées aux orders supérieurs
 - Emission provenant de la surface (oxydation, contamination)
 - Composés de lithium sensibles au faisceau d'électrons (migration, dommages, oxydation, ...)
 - Manque de spectres de référence

Conclusion

• Il faudra oublier la manière "standard" de faire de la quantification pour travailler sur le lithium

- Travailler avec les intensités intégrées
- Nouveaux modèles de quantification?
- Tenir compte de la structure électronique

Remerciements

- ANR "Spectroscopie et quantification du lithium par microanalyse X"
- LCPMR
 - K. Le Guen
 - K. Hassebi
 - W. Aid
 - R. Benbalagh
 - R. Vacheresse
 - V. Ilakovac
- Sorbonne Université
 - N. Rividi
 - M. Fialin
 - A. Verlaguet
 - G. Godard
 - B. Dubacq

- CEA Marcoule
 - E. Brackx
 - P. Schweizer
- CEA Saclay
 - M.-C. Lépy
 - Y. Ménesguen
- **McGill University**, Canada
 - R. Gauvin
 - N. Brodusch
- P IPM-RAS, Russia
 - N. Chkhalo
 - V. Polkonikov
 - R. Pleshkov

spectroscopy and quantification of lithium by xray microanalysis

- Nano Optics Berlin
- Greateyes

