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ABSTRACT

Multi-object spectroscopic galaxy surveys typically make use of photometric and colour criteria to select their targets. That is not the case of
Euclid, which will use the NISP slitless spectrograph to record spectra for every source over its field of view. Slitless spectroscopy has the
advantage of avoiding defining a priori a specific galaxy sample, but at the price of making the selection function harder to quantify. In its Wide
Survey, Euclid was designed to build robust statistical samples of emission-line galaxies with fluxes brighter than 2 × 10−16 erg s−1 cm−2, using
the Hα-[N ii] complex to measure redshifts within the range [0.9, 1.8]. Given the expected signal-to-noise ratio of NISP spectra, at such faint
fluxes a significant contamination by incorrectly measured redshifts is expected, either due to misidentification of other emission lines, or to noise
fluctuations mistaken as such, with the consequence of reducing the purity of the final samples. This can be significantly ameliorated by exploiting
the extensive Euclid photometric information to identify emission-line galaxies over the redshift range of interest. Beyond classical multi-band
selections in colour space, machine learning techniques provide novel tools to perform this task. Here, we compare and quantify the performance of
six such classification algorithms in achieving this goal. We consider the case when only the Euclid photometric and morphological measurements
are used, and when these are supplemented by the extensive set of ancillary ground-based photometric data, which are part of the overall Euclid
scientific strategy to perform lensing tomography. The classifiers are trained and tested on two mock galaxy samples, the EL-COSMOS and Euclid
Flagship2 catalogues. The best performance is obtained from either a dense neural network or a support vector classifier, with comparable results
in terms of the adopted metrics. When training on Euclid on-board photometry alone, these are able to remove 87% of the sources that are fainter
than the nominal flux limit or lie outside the 0.9 < z < 1.8 redshift range, a figure that increases to 97% when ground-based photometry is included.
These results show how by using the photometric information available to Euclid it will be possible to efficiently identify and discard spurious
interlopers, allowing us to build robust spectroscopic samples for cosmological investigations.

Key words. methods: data analysis – methods: statistical – techniques: photometric – surveys – galaxies: distances and redshifts

1. Introduction

The ESA Euclid mission will carry out an imaging and spec-
troscopic survey over one-third of the sky (Laureijs et al. 2011;

? This paper is published on behalf of the Euclid Consortium.
?? Corresponding author; marina.cagliari@unimi.it

Euclid Collaboration 2024d). The imaging channel will enable
measurements of cosmic shear providing a tomographic view of
the matter distribution, while the spectroscopic redshift survey
will map the large-scale structure in three dimensions. Jointly,
the two probes will yield unprecedented constraints on the cos-
mological model (Euclid Collaboration 2020a).

Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This article is published in open access under the Subscribe to Open model. Subscribe to A&A to support open access publication.

A166, page 1 of 19

https://doi.org/10.1051/0004-6361/202449970
https://www.aanda.org
http://orcid.org/0000-0002-2912-9233
http://orcid.org/0000-0001-8264-5192
http://orcid.org/0000-0002-3915-2015
http://orcid.org/0000-0003-3278-4607
http://orcid.org/0000-0003-2083-7564
http://orcid.org/0000-0002-0644-5727
http://orcid.org/0000-0002-9136-8876
http://orcid.org/0009-0003-6065-1585
http://orcid.org/0000-0002-5027-1939
mailto: marina.cagliari@unimi.it
https://www.edpsciences.org
https://creativecommons.org/licenses/by/4.0
https://www.aanda.org/subscribe-to-open-faqs
mailto:subscribers@edpsciences.org


Cagliari, M. S., et al.: A&A, 689, A166 (2024)

The Euclid near-infrared spectrograph and photometer
(NISP; Maciaszek et al. 2022; Euclid Collaboration 2024c)
has three broadband filters for imaging, YE, JE, and HE
(Euclid Collaboration 2022b) and a set of grisms for spec-
troscopy, while the visual instrument (VIS; Cropper et al. 2016;
Euclid Collaboration 2024b) images through a single broad pass
band, IE, spanning the range [530, 920] nm, with high spa-
tial resolution of 0.1 arcsec/pixel. Jointly, these two instru-
ments will carry out the Euclid Wide and Deep Surveys
(Euclid Collaboration 2022a). The NISP instrument operates as
a slitless spectrograph to record the dispersed light of all sources
in the field of view to a nominal emission-line flux limit of
2 × 10−16 erg s−1 cm−2, which corresponds to a 3.5σ detection
of a 0.5 arcsec diameter source in the Wide survey as designed.
The use of slitless spectroscopy makes the spectroscopic survey
highly efficient, since individual sources do not need to be tar-
geted. On the other hand, reliable redshift measurements will
only be secured for a fraction of the galaxies that are detected
photometrically. The spectroscopy in the Wide Survey will be
sensitive to continuum emission only from the most luminous
galaxies, and the redshift estimation will be based primarily
on the detection of emission lines (Euclid Collaboration 2023).
The Wide Survey will be complemented by the Deep Survey,
which will reach 2 magnitudes deeper in flux over an area
of 50 deg2 split over three separate fields. In the Deep Survey
blue grism ([926, 1366] nm) observations will complement those
with the standard red grism ([1206, 1892] nm). Both the grisms
have a dispersion of 13 Å/pixel. With greater sensitivity and an
extended wavelength range, the Deep Survey will be used to con-
struct a reference galaxy sample with secure spectroscopic red-
shift measurements, to characterise the selection function and
redshift error distribution of the Wide Survey.

Due to the nature of slitless spectroscopy, the construction
of the target sample is different for Euclid compared to surveys
performed with slit or fibre multi-object spectrographs. In these
surveys, the spectroscopic targets are selected prior to spectro-
scopic observations using photometric selection criteria made
from imaging. The catalogue of pre-selected targets is usually
referred to as the parent sample. Conversely, Euclid will measure
a spectrum for every source in its field of view without targeting.
The design of the Euclid spectroscopic survey poses a particu-
lar challenge for sample selection: bright emission-line galaxies
for which the redshift can be measured make up a small frac-
tion of all photometrically detected sources and this sample is
not known beforehand.

We can illustrate our expectations of the Euclid spectro-
scopic sample using the Flagship2 mock galaxy catalogue
(Euclid Collaboration 2024a), which was calibrated against the
Hα luminosity function model 3 of Pozzetti et al. (2016). The
mock catalogue contains approximately 2 × 105 galaxies/deg2

to the magnitude limit HE < 24. Out of this sample, only 2%
are in the redshift range 0.9 < z < 1.8 and have Hα emission-
line flux greater than 2 × 10−16 erg s−1 cm−2. The majority of the
photometrically detected sources with HE < 24 will leave no
signal on the spectrograph, either because they are too faint in
continuum emission or because they do not have a detectable
emission line in the wavelength range of the red grism. When
targeting galaxies at the low signal-to-noise limit, spurious noise
features can be mistaken for emission lines leading to incor-
rect redshift measurements. Current end-to-end tests of the data
reduction pipeline suggest that the spurious detection rate is even
higher than the naive prediction based on Gaussian noise statis-
tics due to artefacts from spectral contamination. If not appro-
priately treated, such incorrect redshifts in the galaxy catalogue

degrade the cosmological constraints derived from the two-point
correlation function or power spectrum galaxy clustering statis-
tics (Addison et al. 2019).

In principle, when selecting the sample for analysis all avail-
able information should be used to minimise the fraction of
spurious measurements, while at the same time maximising the
number density of the sample or another figure of merit. How-
ever, the benefits of including additional constraints in the sam-
ple selection criteria must be carefully weighed against potential
systematic biases. In the case of Euclid, including additional
information from ground-based photometry modifies the selec-
tion function of the survey and could couple the sample with
unwanted systematic effects that arise from observations made
through the Earth’s atmosphere (see e.g. Ross et al. 2011, for a
quantitative discussion of the impact of angular systematics on
the measured clustering). The trade off of adding ground-based
information will clearly also depend on the scientific analysis
being considered. With slitless spectroscopy, since every galaxy
in the field is observed in any case, we will have the important
advantage of being able to test a posteriori the impact of any
chosen selection on the measured clustering, and evaluate the
robustness of the results.

Our aim with this work is to investigate photometric classi-
fication criteria that are sensitive to both redshift and emission-
line flux in order to identify the sources that are likely to give
successful spectroscopic redshift measurements in the Wide Sur-
vey. This strategy is similar to the methods used in ground-based
spectroscopic surveys that make use of magnitude and colour
selections to build the target sample for spectroscopy. For exam-
ple, colour selections were applied to build the Sloan Digital Sky
Survey Luminous Red Galaxy sample (Eisenstein et al. 2001)
and the VIMOS Public Extragalactic Redshift Survey (VIPERS;
Guzzo et al. 2014). A sample of emission-line galaxies was tar-
geted by the Extended Baryon Oscillation Spectroscopic Sur-
vey (eBOSS) using a colour selection (Comparat et al. 2016),
and a similar approach was adopted for the emission-line galaxy
sample targeted by the Dark Energy Spectroscopic Instrument
(DESI; Raichoor et al. 2023).

As a generalisation of the conventional colour cuts that
are made in a two-dimensional colour-colour plane, we apply
machine learning-based classification algorithms. These algo-
rithms are well suited to optimising classification tasks in a high-
dimensional parameter space. Thus, we expect them to outper-
form simple selection rules.

An option that is immediately available for such a use are
photometric redshifts. Euclid will construct an unprecedented
photometric redshift catalogue from the combination of ground-
based and Euclid photometric bands. However, as we discuss,
photometric redshifts alone do not solve the problem. Even if
photometric redshifts allow us to select a sample of galaxies at
the target redshift range, additional criteria on galaxy physical
properties, such as the star formation rate, will still be needed to
identify the population with bright emission lines (see Sect. 4.4).

A schematic representation of the Euclid spectroscopic sam-
ple selection pipeline is shown in Fig. 1. A complete description
of the data flow can be found in Euclid Collaboration (2024d). A
redshift measurement will be performed for all sources detected
in photometry, and will be accompanied by an assessment of
its confidence level, as well as the measurements of spectral
features including emission-line fluxes. Sources that do not
have a significant detection in spectroscopy should be assigned
a low measurement confidence. Additionally, Euclid will pro-
duce photometric catalogues based on the IE-, YE-, JE-, and
HE-band images, which will be augmented with ground-based
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Fig. 1. Schematic description of the spectroscopic sample selection pipeline. The flowchart shows where a photometric target selection would
be inserted in the spectroscopic selection pipeline. The photometric classifier performance is quantified by its precision and recall (defined in
Sect. 2.1), while the final spectroscopic sample is characterised by the redshift purity and sample completeness. In this work, we use mock
catalogues for the Euclid Wide and Deep surveys (see Sect. 3).

measurements (u, g, r, i, z) needed particularly for photometric
redshift estimation (Stanford et al. 2021).

The photometric classification that we discuss enters as a
second input to spectroscopic sample selection. The final clas-
sifier will be trained on the Deep Field catalogues, which is
expected to give robust redshift measurements for the popula-
tion of emission-line target galaxies measured in the Wide Sur-
vey. The classifier will be applied to the photometric data of
the Euclid Wide Survey, and its results combined with the spec-
troscopic measurements to build the final selected sample. This
can be characterised in terms of its ‘redshift purity’ and ‘sam-
ple completeness’. Any photometric criterion will necessarily
reduce the number density of the sample; however, if emission-
line galaxy targets can be identified from the photometry, this
will increase the fraction of correctly measured redshifts and
improve the purity.

We use the terms sample completeness and redshift purity to
characterise the quality of the Euclid spectroscopic samples. We
define completeness with respect to the Hα emission-line galaxy
sample that exists in the Universe, which we call the true tar-
gets1. These are defined by a set of intrinsic properties, including
angular position, redshift, size, and flux, that do not depend on
the measurement process. Once the observations are made, we
construct the sample catalogue which contains the set of mea-
sured properties, signal-to-noise estimates, and quality flags for
the detected sources. The completeness,

C =
NTrue Targets & Sample & Correct−z

NTrue Targets
, (1)

tells us the fraction of the true targets that have a correct redshift
measurement and make it into the sample for analysis. On the
other hand, the redshift purity,

P =
NSample & Correct−z

NSample
, (2)

1 This definition differs from that typically used in ground-based multi-
object spectroscopic surveys that define completeness with respect
to a known target sample constructed from photometric catalogues.
Since the detection in Euclid spectroscopy will depend primarily on
the signal-to-noise ratio of the emission lines, the sample with spec-
troscopic redshifts will not be representative of a simple photometric
selection.

tells us the fraction of the sample that has a correct redshift mea-
surement. The redshift purity only refers to the sample selected
for analysis and does not depend on other intrinsic properties of
the galaxies besides redshift2.

In this paper, we focus on the photometric classification,
which is one step of the selection process illustrated in Fig. 1,
and study its performance with mock catalogues for the Euclid
Wide and Deep surveys. We consider the potential gain from
the photometric classification in terms of its precision and recall
(defined in Sect. 2.1), which will impact the final purity and com-
pleteness of the spectroscopic redshift sample. The photometric
selection reduces the size of the sample in the numerator of com-
pleteness (Eq. (1)) and thus leads to a lower value of complete-
ness. However, it acts on both the numerator and denominator of
purity (Eq. (2)), and so is a way to potentially boost the purity.
The propagation of the photometric classification to the spec-
troscopic sample selection and the computation of purity and
sample completeness requires full end-to-end simulations of the
Euclid reduction pipeline. In Sect. 5, we present results from pre-
liminary simulations based on the Euclid spectroscopic pipeline,
leaving a more detailed investigation to follow-up work.

The paper is organised as follows. In Sect. 2 we present the
different algorithms we tested and introduce the metrics we used
to quantify the classifier performance. In Sect. 3 we discuss the
mock catalogues, the noise model we apply to the photometry,
and give the target definition. The results of the different analyses
are presented in Sect. 4 and discussed in Sect. 4.4. In Sect. 5 we
discuss how the photometric selection affects the spectroscopic
sample. We conclude in Sect. 6.

2. Classification algorithms

In this study, we use a set of machine learning algorithms specif-
ically designed for classification. In this section, we give a gen-
eral introduction to the algorithms we used and to the metrics we
chose to quantify their performance. A classifier is an algorithm
that outputs the probability of an object of being an element of
a given class, or group. For the purpose of this work, which is
to identify target galaxies (see Eq. (12)) from their photometric

2 We do not consider the sample purity, which can include other crite-
ria such as flux, since our main objective is to select galaxies with good
redshift measurements for the galaxy clustering analysis.
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properties, we use a binary classifier. In this case, the algorithm
simply outputs the probability p of the object being a target, and
1 − p is the probability of it being a non-target. The classifier
includes a galaxy in the sample of selected target if p > pthresh,
where pthresh is a threshold probability value. How the threshold
is chosen is discussed in Sect. 2.1.

In this work, we tested six different machine learning
classifiers. The first three are self-organising maps (SOMs;
Kohonen 1982, 1990), dense neural networks (NNs; LeCun et al.
2015) and support vector machine classifiers (SVCs; Boser et al.
1992). The other three are voting classifiers based on decision
trees: the random forest (RF; Breiman 2001), the adaptive boost-
ing classifier, or AdaBoost (ADA; Freund & Schapire 1995), and
the extremely randomised tree classifier, or extra-tree classifier
(ETC; Geurts et al. 2006). These specific algorithms were cho-
sen for our tests as they are known to perform well in classifica-
tion tasks and are able to identify non-linear boundaries between
classes.

2.1. Classification metrics

To compare the results from different classifiers, we adopt three
metrics defined from their ‘confusion matrix’ (Tharwat 2020).
The elements of the confusion matrix of a binary classifier are
the counts of true positives (NTP), true negatives (NTN), false pos-
itives (NFP), and false negatives (NFN). Our chosen metrics are
the ‘precision’, ‘recall’, and ‘false positive rate’ (FPR), defined
respectively as

precision =
NTP

NTP + NFP
, (3)

recall =
NTP

NTP + NFN
, (4)

FPR =
NFP

NFP + NTN
· (5)

The precision is the fraction of the selected sample that are true
targets (i.e. it quantifies the level of contamination due to incor-
rectly classified sources). The recall, also known as ‘true positive
rate’, is the fraction of true targets that are identified correctly (as
NTP + NFN corresponds to the total number of targets). The false
positive rate, or ‘fall-out’, is the fraction of non-targets that are
mislabelled as targets and enter the selected sample as interlop-
ers. The complement of the false positive rate is the ‘true nega-
tive rate’,

TNR =
NTN

NFP + NTN
= 1 − FPR, (6)

which characterises the fraction of non-targets that are correctly
removed from the sample.

These metrics change as functions of the probability thresh-
old chosen for the classifier, i.e. the probability value pthresh
above which an object is classified as a target. This is a hyper-
parameter of the model, which we set to maximise a chosen
metric. In a binary classification, a training set is said to be ‘bal-
anced’ when it is evenly split between targets and non-targets,
and pthresh ∼ 0.5. When the training set contains a much larger
number of targets than non-targets, or vice versa, it is called
‘unbalanced’, and we refer to this case as an ‘unbalanced clas-
sification’. In general, in unbalanced classifications the optimal
probability threshold is very different from 0.5. Precision and
recall can be computed as a function of pthresh and plotted against
each other, as shown in the example of Fig. 2. Such a plot is very
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Fig. 2. Relationship between precision and recall of a classifier. The
lines are colour-coded as a function of the classification probability
threshold. The solid and dotted lines show the behaviour of two classi-
fiers for illustration. The classifier represented by the solid line performs
better than that represented by the dotted line since it gives higher pre-
cision and recall.

informative for the photometric selection task that is the scope
of our work. In Fig. 2 we present two possible behaviours of
this curve. The solid line is an almost ideal classifier that has
high precision also when the recall is high, while the dotted
curve corresponds to a classifier with worse performance. Since
the photometric criteria make up only one step of the spectro-
scopic sample selection process (see Fig. 1), we want to keep
the recall of the photometric classification as high as possible. In
other words, we want to get a resulting sample as complete as
possible, discarding the minimum number of true targets. Thus,
we choose a specific value for the recall and, from this relation,
derive the corresponding precision yielded by the algorithm. We
use the precision at 95% recall as our benchmark value. A sim-
ilar plot can be produced in terms of redshift purity and sample
completeness. The shape of this curve will depend on the chosen
probability threshold, and consequently the recall, of the photo-
metric classification. In Sect. 5 we justify the choice of the 95%
recall value and present results for the redshift purity and sample
completeness.

Finally, we use the false positive rate as the main metric
to compare algorithms trained with different input features (see
Sect. 4.4). The false positive rate helps to visualise the fraction
of misidentified objects in terms of redshift or emission-line flux
and shows the source of the contaminants.

2.2. Self-organising map

Self-organising maps (Kohonen 1982, 1990) use unsupervised
learning to project a high-dimensional feature space onto a
lower-dimensional one, usually a two-dimensional space, as the
name map suggests. We build a 55 × 55 map trained for 60
epochs, where an epoch corresponds to an iteration of the algo-
rithm during which the entire training set is processed. To train
the self-organising map, in addition to the photometric features
used as inputs for all the other methods, we also add the tar-
get label (see Sect. 3). Using the label in the training makes the
target region in the map more compact. The importance of the
label with respect to the photometric features is controlled by
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Fig. 3. Schematic representation of the neural network architecture used for classification. Values pass from the input to the output along the
connected edges; each node represents a linear combination of the inputs and the application of a non-linear activation function. The value at the
output represents the binary classification probability between 0 and 1. The number of input neurons varies for the different configurations (4 for
Euclid-only, and 8 after adding ground-based photometry; see Sect. 4). For visualisation, the number of neurons in each hidden layer has been
divided by 4.

a weight, wSOM, which is a number between 0 and 1, and is a
hyper-parameter of the self-organising map model. Then, to test
the algorithm performance we projected new data onto the self-
organising map using only their photometric information. The
use of the target labels during the algorithm training makes the
self-organising map presented here more similar to a supervised
learning algorithm. Finally, the probability of an object of being
a target is defined by the target fraction in the cell it has been pro-
jected onto. The self-organising maps were implemented using
SOMPY (Moosavi et al. 2014).

2.3. Neural network

Neural networks are by far the most popular supervised learn-
ing algorithms. They can be described as a sequence of layers;
when the inputs are processed by a layer they first undergo a
linear transformation and then a nonlinear function is applied to
them. During the learning process, the neural network updates
the coefficients, usually called weights, of the linear transforma-
tion of each layer in order to fit the target function y = f (x) that
relates the inputs x, to the labels y. This structure enables neu-
ral networks to potentially fit any function of the input features
(LeCun et al. 2015).

Our neural network architecture was optimised for the prob-
lem at hand. Figure 3 shows a schematic representation of the
neural network. The input layer is followed by a first block that
consists of a dense layer with 32 neurons and a batch normalisa-
tion layer (Ioffe & Szegedy 2015). Then, a second block which
consists of a dense layer with 64 neurons and an alpha dropout
layer (Klambauer et al. 2017) with rate 0.05 is repeated four
times. Finally, the first block is repeated before the output layer,
which consists of 1 neuron. The activation function of all the
layers except for the output is a scaled exponential linear unit
(SELU; Klambauer et al. 2017). The last layer, as it has to out-
put a probability, has a sigmoid activation function. Since the
ratio between positive and negative examples is very low, we
opted for a sigmoid focal cross-entropy loss function (Lin et al.
2017),

FL(p) = −α (1 − p)γ ln(p), (7)

where α and γ are two hyper-parameters of the model. We use
α = 0.6 and γ = 4. We implemented the neural network in the
TensorFlow2 framework (Abadi et al. 2015).

2.4. Support vector machine classifier

Support vector classifiers (Boser et al. 1992) partition the feature
space by applying a kernel transformation to map curved bound-
aries into planes and finding the maximum-margin hyperplane
that separates the classes. It is important to note that for our
training we weight differently the target and non-target exam-
ples. This weighting is necessary in the case of imbalanced
classes. Alternatively, one could select a balanced subsample
of the original training set. However, such a solution would
greatly reduce the size of the training sample. Our approach uses
the support vector classifier implementation of scikit-learn
(Pedregosa et al. 2011), which has an inbuilt functionality to bal-
ance the sample via weighting.

We adopt the scikit-learn default kernel, which is the
radial basis function kernel (RBF),

K(x, x′) = exp
(
−γ ‖x − x′‖2

)
, (8)

where ‖x − x′‖2 is the Euclidean squared distance and γ is the
hyper-parameter that controls the dimension of the region of
influence of the training point.

2.5. Decision tree-based classifiers

The last three classifiers are voting or ensemble classifiers. In
general, a voting classifier is an algorithm that combines the out-
put of different base classifiers through a vote, which can be
weighted or not. In this work we used classifiers based on the
same base algorithm, the decision tree. These classifiers differ in
how they split the data set to train the trees, how they build the
trees, and how they combine together their probability outputs.

A decision tree is a supervised machine learning model that
approximates a function with a series of simple decision rules
(see Hastie et al. 2001, Chap. 9). Decision trees have the advan-
tages that they can be easily visualised, have high explainability,
and require very little data preparation; however, they can easily
over-fit the training sample making their output and final struc-
ture dependent on the training set. These issues can be reduced
by combining the results of different trees (e.g. Bauer & Kohavi
1999).

The first of these voting classifiers are random forests. Ran-
dom forests (Breiman 2001) are an ensemble of decision trees
each one trained with a subsample of the training set. This sub-
sample is a bootstrap sample, which means its elements are
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randomly selected with replacement from the complete training
set. The final output of the random forest for the classification
task is a majority voting between all the decision trees of the
forest. Random forests very efficiently reduce the over-fitting of
single decision trees. To take into account the class imbalance
of the sample we weigh the two class examples by the inverse
of their frequency. The weights are computed for each bootstrap
subsample.

The second ensemble classifier is a discrete adaptive boost-
ing classifier (Freund & Schapire 1995). Differently from the
random forest, adaptive boosting classifiers can use different
base classifiers. In this work, we limited the analysis to adap-
tive boosting classifiers based on decision trees with weighted
data to balance the sample examples. Adaptive booster classi-
fiers combine the results of subsequently trained base learners
with a weighted majority vote. At each step of the training a
new learner is built from the training set, which is re-weighted
to reduce the importance of data that have been correctly classi-
fied in the previous steps.

Finally, the last algorithm we use is the extra-tree classifier.
Extra-tree classifiers are ensemble classifiers based on decision
trees (Geurts et al. 2006). An extra-tree classifier is composed
of a group of decision trees, which are trained with bootstrap
subsamples of the training set, as in random forest training. The
difference between a random forest and an extra-tree classifier
lies in how the decision rules of the trees are selected. In random
forests, the splits of the tree nodes are deterministic and depend
on the selection algorithm; in extra-tree classifiers, instead, they
are randomly drawn and the final rule is chosen as the best-
performing one among them. This helps in reducing even more
the variance of the method. All three voting classifiers are imple-
mented in scikit-learn, and the function to weigh the data to
balance them is part of their built-in functionalities.

3. Benchmark data

3.1. Mock galaxy catalogues

We used two catalogues to benchmark the selection algorithms:
the EL-COSMOS catalogue and the Euclid Flagship2 mock
galaxy catalogue. These catalogues include broadband photome-
try, emission-line fluxes and morphological properties. We made
use of the Euclid photometric bands IE (from VIS), YE, JE,
and HE (from NISP; Euclid Collaboration 2022b), with depths
listed in Table 1. Additionally, photometric data from multi-
ple ground-based surveys will be included in Euclid analyses
to extend the wavelength coverage to the optical with u, g, r,
i, and z bands and obtain reliable photometric redshifts that are
key for Euclid weak lensing science. These include the Vera C.
Rubin Observatory Legacy Survey of Space and Time (LSST,
LSST Science Collaboration 2009), the Dark Energy Survey
(DES, Flaugher 2005), and the Ultraviolet Near Infrared Optical
Northern Survey (UNIONS)3. In order to benchmark the pho-
tometric selection in this work, we used the ugriz filters and
UNIONS survey depths, which are listed in Table 1. Hereafter,
we refer to the photometry of the four Euclid filters as Euclid
photometry, and to the photometric data from the five optical
filters as ground-based photometry. The photometry does not
include the effect of Milky Way extinction.

The resolution of Euclid NISP spectroscopic observations is
not sufficient to separate Hα from its neighbouring [N ii] λ6549
and [N ii] λ6584 companions. As such, Euclid will measure the

3 https://www.skysurvey.cc/aboutus/

Table 1. Point source magnitude limits at depth (S/N)lim = 10 and effec-
tive wavelengths for ugriz, and for IE, YE, JE, and HE.

Band mlim,10σ λeff [nm]

u 23.5 375.1
g 24.4 474.1
r 24.1 537.7
i 23.5 676.6
z 23.3 803.5
IE 24.6 687.0
YE 23.0 1068.9
JE 23.0 1342.3
HE 23.0 1741.1

Notes. The 10σ point source depth values in AB magnitude adopted for
the Euclid filters (IE, YE, JE, and HE) and for the ground-based filters
(LSST ugriz system).

combined flux of this triplet of emission lines, which we shall
use here and indicate for brevity as

fHα+[N ii] = fHα + f[N ii]λ6549 + f[N ii]λ6584. (9)

We refer to the triplet as the ‘Hα complex’.
We also investigated the benefit of adding morphological

information to the target classification. The two mock galaxy
catalogues we use here include morphological model parame-
ters including disk ellipticity, bulge scale, disk scale, and bulge-
to-disk ratio; however, since these properties will not be, in gen-
eral, directly measured from the data, we used them to derive
the observable half-light radius, rhalf , and axial ratio, e. To do
this, we ran GALSIM (Rowe et al. 2015) using the morphological
parameters for each mock galaxy to generate a simulated image
of the galaxy as it would be observed by VIS, from which we
estimated the half-light radius and axial ratio. We carried out
this procedure only for the Flagship2 catalogue.

We used only galaxies in the mock catalogue, without
accounting for the possibility that stars or active galactic nuclei
may be misclassified in real data and enter the sample. Contam-
ination from faint stars, in particular, can potentially reduce the
purity of the galaxy sample. The severity of such contamina-
tion depends on the performance of the star-galaxy classifica-
tion, which is a separate step of the Euclid data analysis and
whose impact is beyond the scope of this work.

3.1.1. EL-COSMOS

The EL-COSMOS catalogue is an extension of the COSMOS
2020 photometric catalogue (Weaver et al. 2021). The COS-
MOS catalogue is a multi-band data set assembled in the Hub-
ble Space Telescope COSMOS field over the past fifteen years
(Scoville et al. 2007). The catalogue was extended as described
in Saito et al. (2020) with synthetic photometry and emission-
line fluxes. To assign the fluxes of the emission lines the authors
combined spectral energy fits of the stellar continuum, which
correlates with the intrinsic emission line fluxes, with a careful
modelling of dust attenuation as a function of redshift. We used
an update to the emission-line catalogue produced for the Euclid
Consortium (Euclid Collaboration, in prep.). It contains about
2 × 105 galaxies and 2000 active galactic nuclei. This catalogue
also contains stars observed in the COSMOS field, which, as
explained, we do not consider.
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3.1.2. Euclid Flagship

The Euclid Flagship2 mock galaxy catalogue (Euclid
Collaboration 2024a) is based on the Flagship2 N-body
simulation, the large reference simulations built by the Euclid
Consortium. Galaxies were added to the simulation using an
extended halo occupation distribution model. The Flagship2
galaxy mock catalogue represents an improvement with respect
to the previous version in terms of modelling of the galaxy prop-
erties. The catalogue contains photometric and spectroscopic
information, morphological parameters, along with lensing
properties. The morphological parameters are correlated with
the galaxy properties to reproduce observed trends in galaxy
size. For our work, we selected a subsample of ∼2 × 105 objects
that contains a number of galaxies comparable to EL-COSMOS.
We note that Flagship2 does not contain active galactic nuclei,
while EL-COSMOS contains about 2000 of them.

An additional step must be taken to compute the total flux
of the Hα complex for Flagship2 mock galaxies. The catalogue
gives the flux of Hα and of the [N ii] λ6584 line only. Assuming
a relative 1:3 ratio for the [N ii] doublet, we estimated the total
flux as

fHα+[N ii] = fHα +
4
3

f[N ii]λ6584. (10)

The emission-line fluxes in Flagship2 were calibrated against
the Hα luminosity function model 3 of Pozzetti et al. (2016). We
used the line and broadband fluxes with internal dust attenua-
tion applied. From Flagship2 we used both Euclid and ground-
based photometric data, as well as the morphological parameters
derived as discussed earlier.

The Flagship2 catalogue also provides photometric red-
shift estimates, hereafter photo-zs, obtained with state-of-the-
art algorithms using both Euclid and ground-based photometry
(Euclid Collaboration 2020b). In order to allow the computa-
tions of photo-zs for billions of Euclid sources, a two-stage
approach has been adopted. First, Phosphoros, a template-
fitting code (Paltani et al., in prep.), is used to compute the red-
shift probability distribution functions on a sample of galaxies
selected from reference fields that benefit from very deep obser-
vations in a large number of photometric bands (e.g. COSMOS;
Weaver et al. 2021). The k-nearest neighbour photometric red-
shift algorithm (Tanaka et al. 2018) is then used to estimate the
posterior distributions of redshift for sources in the Euclid Wide
Survey. This procedure was replicated in the Flagship2 mock
galaxy catalogue. In this work we used the first mode of the pos-
terior redshift distribution as the photo-z estimate. We used the
photo-z to select galaxies within the redshift range of interest and
compare the metrics with the results from the trained classifiers.

3.2. Noise model

The errors on the broadband photometric measurements
were simulated assuming background-limited observations
(Euclid Collaboration 2021) such that the standard deviation on
the measurement is

σ f =
flim

(S/N)lim
, (11)

where flim is the flux at the specified signal-to-noise limit
(S/N)lim. In Table 1 we show the AB magnitude limits, mlim, cor-
responding to flim for (S/N)lim = 104. The observed fluxes were

4 The magnitude limits for UNIONS in Table 1 were computed from
the 5σ limits available at https://www.skysurvey.cc/survey/

then extracted from a Gaussian distribution with the true galaxy
flux, f , as mean, and variance given by σ f . In order to be able
to reproduce the results, we constructed observed catalogues for
both EL-COSMOS and Flagship2, which contain realisations of
the flux errors produced following the recipe described above.

The driving idea in the application of our selection procedure
to the real Euclid data is that the training set will be constructed
from the higher signal-to-noise data of the Euclid Deep Fields,
which will have high completeness and purity at the depth of the
Wide Survey. In order to build a training set that matches the
noise properties in the Wide Survey, the photometry from the
Deep Fields will have to be either measured in Wide-like stacks
or degraded appropriately to match the noise level of the Wide
Survey. In this work, we assume the same Wide-like noise level
for the train and test data.

3.3. Sample selection and pre-processing

For our analysis, we selected from the EL-COSMOS and Flag-
ship2 catalogues two subsamples limited to HE < 24 (which
corresponds to a 4σ point-source detection limit). In addition, as
mentioned earlier, the resulting Flagship2 catalogue was further
sparsely sampled in order to match the same number of objects
of EL-COSMOS. Each catalogue was then split into three sub-
sets, for training, validation, and testing, containing respectively
75%, 15%, and 10% of the total parent catalogue. The valida-
tion set is needed only for the training of the neural network; for
the other algorithms we could use 90% of the total sample as
the training set. However, for the sake of a fair comparison, we
opted to use the same training and test sets for all methods, by
discarding the validation set objects when not needed.

The galaxies we aim to select with the photometric selection
have, on top of the HE < 24 cut,{

0.9 < z < 1.8
fHα+[N ii] > 2 × 10−16 erg s−1 cm−2 , (12)

where z and fHα+[N ii] are the true redshift and emission line flux
of the galaxies. The objects satisfying this selection are what
we call ‘target’ galaxies. The HE < 24 limit does not affect
the sample of targets in the Flagship2 or EL-COSMOS cata-
logues as there are no galaxies that meet the redshift and line
flux criteria in Eq. (12) at fainter HE flux. In the real data anal-
ysis, the true redshift and emission line flux would correspond
to the Deep Field measurements. In terms of the classifier train-
ing, we assign a label 1 to the target galaxies and a label 0 to the
remaining objects, hereafter non-targets. It should be noted that
the Hα + [N ii] flux criterion in the target definition is specified
to select galaxies with bright emission lines that are likely to
give successful spectroscopic redshift measurements. We show
that this target definition does not impose a sharp flux cut in the
measured sample; galaxies just below the flux limit still have a
high probability of being selected and of giving a correct red-
shift measurement. Moreover, these galaxies will also contribute
to the redshift purity metric.

The percentage of galaxies entering the target sample within
the full HE < 24 catalogues is very low: ∼8% for EL-COSMOS
and ∼3% for Flagship2. The difference between the two cata-
logues is consistent with the current uncertainty in the Hα lumi-
nosity function at z > 1. The low target fractions of the two cat-
alogues make the classification task extremely unbalanced. The
solutions adopted for each classifier were discussed in Sect. 2
and span from weighting schemes to specific loss functions.

Finally, all input training parameters, which consist of the
galaxy magnitudes and colours, were pre-processed via standard
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Fig. 4. Optimised colour selection in the (IE − HE) vs. HE colour-magnitude plane for EL-COSMOS and Flagship2. The blue dashed lines
correspond to the non-target distribution and the solid red lines to the target distribution. The contours contain 99%, 50%, and 25% of the samples.
The dotted black segments represent an optimised colour cut in this plane corresponding to a recall value of ∼95%.

Table 2. Recall (%) and precision (%) for different HE cuts.

EL-COSMOS Flagship2
HE cut Recall Precision Recall Precision

22.84 95 13.8 – –
22.06 – – 95 8.9
21.0 20.2 11.3 47.6 10.0
22.0 63.1 16.3 93.3 9.1
23.0 97.1 12.7 100 4.8
24.0 100 7.8 100 2.6
Colour cut 95 14.3 95 9.9

Notes. Precision and recall for EL-COSMOS and Flagship2 at different
HE magnitude limits. The first two rows correspond to the HE cut that
gives 95% recall respectively for EL-COSMOS and Flagship2.

scaling,

X =
x − x̄
σx

, (13)

where x̄ is the mean value of input feature x over the training
sample, and σx its standard deviation. After this normalisation,
the sample has zero mean and unit standard deviation, which
makes the training of the algorithms more efficient, typically
leading to better results.

4. Results and discussion

4.1. Benchmark selections

Before discussing the performance of the machine learning
algorithms we present the results from simple classifiers based
on magnitude and colour with Euclid photometry. These tests
provide a benchmark for the machine learning classifiers. We
focused on the (IE−HE) versus HE plane, which shows the largest
displacement between targets and non-targets (see Figs. 4 and
A.1). The distributions are seen to be most separated in HE mag-
nitude. The use of HE is expected to be particularly suited to
capture information on the Hα flux, as it covers the [1.5, 2.0] µm
band, which encompasses the Hα complex for 1.3 . z . 2. In

addition, the (IE − HE) colour is sensitive to redshift, since it
spans the 4000 Å break at z > 1.

We thus began by considering magnitude-limited samples in
HE. Table 2 gives the resulting recall and precision metrics for
HE cuts ranging from 21 to 24 magnitudes. For the Flagship2 cat-
alogue, all targets have HE < 23 giving 100% recall at that limit,
while for EL-COSMOS, 100% recall is reached at HE < 24.
This difference in the distribution of target galaxies in the two
catalogues can be attributed to different Hα luminosity func-
tions. The emission line fluxes that we use from the Flagship2
catalogue reproduce model 3 of Pozzetti et al. (2016), while EL-
COSMOS contains a higher count of Hα emitters.

Next, we considered a selection in the (IE − HE) versus the
HE plane. The colour-magnitude selection reads as follows,

(IE − HE) < a (HE − b) AND HE < HE
cut. (14)

We searched for a selection with the form of Eq. (14) that max-
imises the purity while giving recall ∼95%, which we chose as
the reference value for comparing the algorithms (see Sects. 2.1
and 5). The best colour cut for EL-COSMOS has slope a =
−2.36, pivot b = 23.60, and HE

cut = 22.85. For Flagship2 the
slope is a = −1.90, b = 14.74, and HE

cut = 22.13.
Figure 4 shows the targets (solid red) and non-target (dashed

blue) distributions in the colour-magnitude plane of interest for
EL-COSMOS (left panel) and Flagship2 (right panel). The dot-
ted black line corresponds to the colour-magnitude cut. The two
panels show the difference in the target distributions of EL-
COSMOS and Flagship2. Flagship2 does not have any targets
with HE > 23, in contrast, EL-COSMOS targets reach the mag-
nitude limit of the sample. For this reason we allow the HE cut
to adapt to the training data. We report the precision of the opti-
mised colour cuts in the bottom row of Table 2.

From Table 2, we see that all selections give a higher pre-
cision for EL-COSMOS than Flagship2. This can be under-
stood since the fraction of targets is higher in EL-COSMOS than
in Flagship2. The colour cut gives a marginal improvement in
purity (0.5–1) over the HE cut. We next show the results from
machine learning classifiers, which make full use of the high-
dimensional parameter space to optimise the selection.
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Fig. 5. Precision vs. recall performance of the different classifiers, using Euclid photometry alone for the training. The two panels correspond to
the two test catalogues as indicated. The vertical solid line gives our reference recall value of 95%.

Table 3. Precision values (%) at 95% recall for the different classifiers.

SOM NN SVC RF ADA ETC

Euclid EL-COSMOS 13.9 17.5 17.3 16.4 12.9 16.7
Flagship2 12.7 16.0 18.0 15.5 10.4 16.9

Flagship2 morphology 9.6 17.6 16.8 15.3 11.0 14.7
Euclid + EL-COSMOS ground 20.7 34.3 34.3 31.5 29.1 28.0

Flagship2 ground 26.1 47.9 43.5 39.3 39.7 35.6

Notes. The two top rows give the results for training using Euclid photometry only, while morphological data and ground-based photometry,
respectively, are used in the bottom rows. The relative uncertainty on all values is ∼6%, estimated from multiple realisations of the training and
test sets.

4.2. Using Euclid data only

We first discuss the results obtained training the classifiers
using only Euclid photometry, comparing the two catalogues
EL-COSMOS and Flagship2. The input features for each object
were the same for both catalogues, namely its HE magnitude and
near-infrared colours, (IE − YE), (YE − JE), (JE − HE).

Figure 5 shows the precision-recall curves produced by the
six different classifiers using respectively EL-COSMOS (left
panel) and Flagship2 (right panel). We remark that for an ideal
classifier the plot would show a close-to-flat precision around
unity (see Fig. 2), followed by a sharp drop at the highest pos-
sible recall value. To provide a reference baseline, in Fig. 5 we
also present (dotted magenta line) the curve one obtains when
simply selecting HE < HE

limit magnitude-limited samples. The
curve was computed by smoothly varying HE

limit between 20.0
and 24.0 (see Table 2). The vertical black line corresponds to
95% recall, as reported in Table 3.

Comparing the two panels, the first evident difference is
the larger variance in performance over the whole recall range
shown by the different algorithms in the case of the Flagship2
sample. Conversely, the classifiers trained with EL-COSMOS
show a sharper drop in precision at small recall values. In
both cases, the magnitude-limited selection is (not unexpectedly)
worse than the machine learning classifiers, but in the case of
EL-COSMOS the resulting performance becomes comparable to
that of the worse-performing classifiers at 95% recall.

Overall, Fig. 5 and Table 3 show similar performance when
training with either Flagship2 or EL-COSMOS, with the former
showing a larger variance at the recall threshold. Such an agree-

ment is an encouraging indication of the robustness of the gen-
eral conclusions that can be drawn from these results. In both
cases, the best-performing algorithms are the neural network, the
support vector classifier, and the extra-tree classifier. The ran-
dom forest follows shortly behind, indicating that the bootstrap
resampling used in the decision tree training is especially effi-
cient for this task. Last comes the self-organising map, which
is not optimised for this kind of task, and the adaptive boosting
classifier.

The effect of complementing Euclid infrared photometry
with morphological information described by the galaxy half-
light radius and axial ratio values can be seen in Fig. 6. The
plot shows no large improvement and some classifiers perform
worse. We also observe an even larger variance between the
different classifiers, especially at low recall values. The best-
performing one is still the neural network, followed by the
support vector classifier, the random forest, and the extra-tree
classifier. Again, the adaptive boosting classifier and the self-
organising map fare poorly. A more detailed discussion is left
for Sect. 4.4.

4.3. Adding ground-based photometry

When we combined Euclid and ground-based photometry we
substituted the IE band with the five ground-based filters, ugriz.
In this case, the input features of the classifiers were the follow-
ing seven colour combinations (u − g), (g − r), (r − i), (i − z),
(z − YE), (YE − JE), and (JE − HE). In addition, we also used HE
as the last input feature.
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Fig. 6. Same as Fig. 5, but now adding morphological information in
terms of half-light radius and axial ratio values.

Figure 7 shows how the diagnostic plots change when com-
bining Euclid and ground-based photometry. We immediately
see from Fig. 7 how the ground-based data improves the overall
performance, yielding curves that are much closer to the ideal
shape (see Fig. 2). In the case of Flagship2 we also mark (green
dot) the precision (∼5.5%) and recall (∼92.4%) values recovered
when using photometric redshifts to simply isolate targets with
0.9 ≤ zphoto ≤ 1.8, with no extra information to constrain the
desired Hα line flux. We note that the photometric redshift selec-
tion does not reach the 95% recall value. We also considered
photometric redshift selections with various HE magnitude lim-
its, shown by the magenta dotted line. In Appendix B we present
a preliminary test that combines the photometric and the redshift
information in the training of a neural network.

The improvement in performance appears to be larger when
estimated using Flagship2 than with EL-COSMOS with a differ-
ence of ∼10% in precision for all algorithms. The reason for this
can be related to the colour distribution of the targets. In the EL-
COSMOS catalogue, the distribution functions of magnitudes
and colours for targets show more variance than in Flagship2
where the targets are more localised on colour space. When
Euclid-only photometry is used, the information is not sufficient
for tightly constraining the target region in the parameter space,
thus producing similar results from the two catalogues. However,
when ground-based photometry is added, in the Flagship2 case
it becomes easier to isolate the targets. These differences may be
due to the recipes used for assigning spectral energy distributions
and synthetic emission lines in the two catalogues.

The relative ranking of the different classifiers derived from
the two catalogues is the same. The worst performing algorithm
at the recall threshold is the self-organising map, which shows
a steeper drop in precision than the others (see Table 3). The
remaining algorithms have precision values >35% for Flagship2,
with the neural network reaching almost 50%. For EL-COSMOS
at the recall threshold the values of the precision are always
>25%, peaking at ∼34% for both the neural network and the
support vector classifiers.

4.4. Comparison of the results

In this section, we focus on the results based on the Flagship2
training and discuss the results obtained with the three configu-

rations. We then focus on the best-performing classifier, the neu-
ral network, and discuss in more detail the three cases. We also
show a comparison with a simpler redshift-only selection based
on Euclid photometric redshifts.

Figures 5, 6, and 7, together with Table 3, provide a direct
quantitative comparison of the three training configurations:
the best performance is obtained by the combined Euclid and
ground-based photometry. For Flagship2, this more than dou-
bles the precision at the recall threshold with respect to the other
two configurations, a clear benefit of the extra information on
lower redshift objects provided by the optical bands (see discus-
sion in the following). The addition of morphological informa-
tion through the half-light radius and ellipticity, conversely, does
not introduce any significant improvement: the neural network
and the adaptive boosting classifier show only a minimal gain,
while all others worsen their performance.

The half-light radius, in particular, does show a trend as a
function of redshift, but this relation has a large scatter and weak
correlation coefficient. It is possible that other morphological
measures that we did not consider, such as the Sérsic index,
will be more sensitive to galaxy type and have a greater impor-
tance for classification; however, we reserve this investigation
for future work. When fed uninformative features, the classifi-
cation algorithms will tend to ignore them. The majority of the
tested classifiers have, in fact, built-in mechanisms to ignore a
feature. Specifically, the neural network would reduce, during
the training, the weight of the specific feature that appears to be
uninformative, while the decision tree-based classifier would not
introduce decision rules based on it. Similarly, the support vec-
tor classifier would only produce boundaries orthogonal to an
uninformative feature. The same cannot be said about a standard
self-organising map: in this case, the effect of an uninformative
feature is to spread the classification targets over a larger number
of cells, thus reducing the sensitivity.

In order to understand which features are most relevant for
classification, which is known as the ‘saliency’ in the machine
learning literature, in Fig. 8 we show the mean gradients of the
network outputs with respect to the input features. We see that
the most important feature turns out to be the HE magnitude,
followed by the ground-based colours. The dependence on the
optical colours and in particular on (IE−YE) in the Euclid photom-
etry configuration has two main reasons. First, the optical bands
retain low-redshift information (see following discussion); sec-
ond, the correlation between the IE and fHα+[N ii] is even stronger
than the correlation of the emission line flux and HE. The network
uses (IE −YE) to extract IE from the pivot magnitude HE and infer
this correlation. Lastly, as expected, the morphological parame-
ters are the least important inputs for the neural network.

Having identified the HE magnitude as the most informa-
tive feature, we can gain additional intuition about the classifiers
by comparing the number counts N(HE) of the true targets to
those of the samples recovered by the neural network. These are
shown in Fig. 9. The green histogram gives the number counts
for the true targets, i.e. the reference distribution we are trying to
reproduce with the classifier. Notably, the counts go to zero for
HE > 22.5, hence there are no target galaxies fainter than this
magnitude. This explains the rapid gain in precision one obtains
by simply cutting the full sample (here shown by the orange
histogram) at brighter and brighter values of HE (see Table 2).
Looking at the other histograms, we see that the application of
the neural network effectively cuts the distribution down to the
correct HE. When using only Euclid bands (blue histogram), this
leaves an excess of sources, which are either outside the red-
shift range or below the chosen Hα + [N ii] flux limit, which
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Fig. 7. Precision vs. recall curves for the analyses with Euclid photometry and ground-based photometry. Left: Results for EL-COSMOS. Right:
Results for Flagship2. The dotted magenta line represents the photo-z selection for a range of HE magnitude limits. The green marker indicates the
photo-z selection with HE < 24.
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Fig. 8. Mean gradients of the neural network output as a function of
the input for the three training configurations. In blue, orange, and pur-
ple are respectively plotted the mean gradients of the neural networks
trained with Euclid photometry, Euclid photometry and morphology,
and Euclid and ground-based photometry. All gradients have been nor-
malised to that corresponding to the Euclid HE magnitude.

are significantly reduced by adding the ground-based informa-
tion (magenta dashed histogram). Note also how a selection over
the target redshift range [0.9, 1.8] using photometric redshifts
clearly does not effectively cut on the HE magnitude, leaving a
large population of faint objects. Nevertheless, we note that this
discussion is specific to Flagship2. In the case of EL-COSMOS,
also galaxies fainter than HE ' 22.5 are part of the target sample
(see Fig. 4 and Table 2).

4.5. False positives

We can use the false positive rate (see Sect. 2.1) to interpret
the origin of misclassified galaxies as a function of redshift and
emission-line flux. In the top panel of Fig. 10 this quantity is
plotted as a function of redshift. As in the previous section, we
consider here the Flagship2 catalogue and the neural network
classifier. The sample produced using Euclid photometry alone
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E
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photo-z
True targets
Flagship2

Fig. 9. HE-band number counts for samples built from the Flagship2 cat-
alogue. The samples selected with the neural network classifier, using
Euclid photometry only or combined with ground-based photometry are
shown, respectively, by the blue solid and magenta dashed histograms.
As indicated by the legend, the red dotted histogram corresponds to
a sample selected in redshift only, using Euclid photometric redshifts.
The counts for the full Flagship2 catalogue and the true target sam-
ple are also shown for reference, by the orange and green histograms.
The distribution of the true targets (green histogram) dies off at magni-
tudes fainter than HE ' 22.5. The targets in the EL-COSMOS catalogue
extend to fainter flux.

shows an excess of false positives at z < 1. This explicitly shows
the inability with only the Euclid bands to properly exclude low-
redshift galaxies, as well as some with flux below the flux limit.
The addition of ground-based photometry effectively cures this,
removing all galaxies at z < 0.9, leaving only a fraction of
misidentified objects fainter than 2 × 10−16 erg s−1 cm−2 inside
the target redshift range. It is interesting to note that the Euclid-
only and the Euclid plus ground curves become indistinguish-
able at z & 1.4. This is consistent with the redshift at which the
4000 Å break enters the YE band (at 9600 Å) and indicates that
in this range the combination of IE and YE, JE, and HE provides,
in general, sufficient spectral leverage to break degeneracies
to both capture the correct redshift and identify emission-line
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targets. As also shown, a photometric redshift selection is effec-
tive at removing low-redshift galaxies, but keeps in the sample
all the low-flux galaxies (as is expected, since we are selecting
on redshift alone).

In Fig. 10 bottom panel, instead, we plot the false positive
rate as a function of fHα+[N ii]. In this case, the peak and discon-
tinuity evident at the flux limit, 2 × 10−16 erg s−1 cm−2, is due to
sources just below the flux limit, which enter the sample as false
positives. Above the flux limit, instead, false positives arise from
galaxies that are outside the redshift range. For this reason, the
photo-z selection gives the lowest false positive rate, followed
by the Euclid and ground-based classification. This does not tell
the full story, however. The photo-z selection includes a num-
ber of false positives entering the sample at low fluxes, which
are the cause of the very low precision shown by this selection.
The classifier trained with ground-based photometry provides
the best solution by balancing the two conditions of removing
objects below the line flux limit and outside the redshift range.

Complementarily, it is also interesting to look at the true neg-
ative rate (Eq. (6)) of the whole selected sample, which gives an
insight into the fraction of non-targets removed from the sample.
When we select galaxies using Euclid photometry only, the true
negative rate is 87%; the combination with ground-based data
increases this metric up to 97%. Conversely, the true negative
rate of the photo-z selection is 59%. Again, the better perfor-
mance of the classifiers in comparison to the photo-z selection
reflects the fact that the latter does not make a selection in the
emission-line limiting flux.

Finally, the machine learning algorithms identify regions in
the full colour-magnitude space with a higher density of targets.
In the case of the classifier trained on Euclid photometry, this
is a four-dimensional space. In Appendix C we present slices
through the four-dimensional probability maps constructed from
each classifier, showing how the selection depends on colour.
It is interesting to visualise the boundaries constructed by each
classifier. There is no visible separation between target and non-
target galaxies in the colour planes and the classification algo-
rithms define complex boundaries in the four-dimensional space.
The support vector classifier and the neural network produce par-
ticularly smooth boundaries, while the self-organising map and
tree-based classifiers do not. The irregular boundary is an indica-
tion that the classifier is over-fitting the training set and will not
generalise well. In addition, we verified that the 5% of the targets
that we lose by imposing the 95% recall value are uniformly dis-
tributed in colour and are not part of any particular object class.
We note that the lost targets are mainly faint objects.

5. Purity and completeness

The final purity of the spectroscopic sample will depend on the
combination of the photometric information with the selection
criteria applied to the spectroscopic measurements, as described
by the flow diagram of Fig. 1. To provide a concrete, yet prelim-
inary, example, we would like to quantify here the improvement
in the final redshift purity and sample completeness produced
by our photometric selection process. This work is based on
a set of simulated spectra that were processed by the Euclid
spectroscopic measurement pipeline (the SPE processing func-
tion). Although the simulated data were not yet fully realis-
tic, they are nevertheless very useful for understanding how
a machine learning-based photometric classification can aid in
the sample selection. Also, the simulated spectra were built
from the EL-COSMOS sample described in Sect. 3.1.1, which
helps in making this test self-consistent. Two-dimensional spec-
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Fig. 10. False positive rate as functions of redshift and fHα+[N ii] for Flag-
ship2. The plot allows us to identify the origin of non-targets that enter
the selected samples. The solid blue, dashed orange, and dotted pur-
ple curves, respectively, correspond to the neural networks trained with
Euclid photometry, Euclid plus morphological data, and Euclid plus
ground-based photometry. The dash-dotted red line is the false posi-
tive rate of the photo-z selection. Top: False positive rate as a function
of z. The green shaded area marks the target redshift range. Bottom:
False positive rate as a function of fHα+[N ii]. The green shaded area cor-
responds to the Hα limiting flux. There is a peak in the false positive
rate just below the flux limit used to define the target sample, although
we note that these galaxies can still give correct redshift measurements.

tral images were generated using the FastSpec code based on
the spectral energy distribution and morphological parameters
of the galaxies. These images were convolved with the NISP
instrumental point spread function and realistic noise was added
according to the detector model. Multiple exposures were simu-
lated for each source and stacked with one to four exposures.
One-dimensional spectra were extracted from the images and
input to the Euclid spectroscopic measurement processing func-
tion to measure the redshift and spectral features. The simula-
tion pipeline does not include artefacts on the NISP detector
such as cosmic ray hits, straylight, and persistence signals (see
Euclid Collaboration 2024c). The pipeline also does not simu-
late the superposition of spectra on the detector from multiple
sources.
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Fig. 11. Redshift purity and sample completeness as a function of
spectroscopic reliability threshold. The solid blue, dashed red, dotted
green, and dash-dotted orange lines respectively correspond to a selec-
tion using only SPE reliability, SPE reliability combined with a photo-
metric classification based on Euclid data, with the classification that
uses Euclid and ground-based photometry, with the HE magnitude limit
selection, and with the colour selection in the (IE −HE)-HE plane. In all
cases the recall of the photometric classification is set to 95%.

The spectroscopic measurement pipeline carries out a like-
lihood analysis using spectral templates to estimate the redshift
(Jamal et al. 2018). It produces a probability distribution func-
tion of the redshift that is typically sharply peaked with a few
primary redshift solutions. For the purposes of this work, the
reliability of the solution is quantified by the integral of the prob-
ability density within a window around the peak. A value close to
1 is consistent with a single peak, while a broad density function
with multiple peaks results in a lower value indicative of a poor
measurement. We vary the threshold in this reliability value to
select spectroscopic samples and build the relationship between
redshift purity and completeness, as shown by the SPE solid blue
line in Fig. 11.

In the following discussion we focus on the results from the
neural network classifier applied to the simulated spectroscopic
sample. The purity and completeness values should be taken as
indicative of the general trends and not as accurate forecasts of
the pipeline performance. The values depend on the specific dis-
tribution of simulated sources and instrumental configuration.
The target sample is defined as described in Sect. 3.3, using the
total flux of the Hα and N ii complex.

Figure 11 shows how redshift purity versus sample com-
pleteness plot improves when we complemented the pure spec-
troscopic reliability cut selection (blue solid line) with increasing
information provided by the photometric neural network classi-
fier for the two configurations using Euclid-only or Euclid and
ground-based photometry. The curve corresponding to the HE
magnitude-limit selection that gives 95% recall (see Table 2)
is also plotted together with the curve corresponding to the
colour selection presented in Sect. 4.1. These two curves visu-
ally overlap, but the colour cut curve (dash-dot-dotted purple
line) is marginally higher than the simple magnitude cut curve
(dash-dotted orange line). The figure shows that in the range
between 40% and 60% completeness, the photometric classi-
fication improves the redshift purity. For example, at a fixed
value of 45% sample completeness, the classification based on
Euclid-only bands improves the purity by ∼20%, when we add
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Fig. 12. Spectroscopic redshift purity and completeness with the addi-
tion of the photometric classification. Top: Curves are colour-coded as
a function of the recall of the photometric classification. The spectro-
scopic reliability threshold varies along each curve, while varying the
threshold on the photometric classification probability shifts the curve.
The purity improves as recall increases, reaching a maximum for recall
∼95% and declining after. For better visualisation, the first lines are
labelled with the corresponding recall value. At recall values above 95%
the curves are tightly packed. The solid black line corresponds to 100%
recall, while the dashed line to 95% recall, the value we chose to bench-
mark our results. Bottom: Redshift purity as a function of the recall of
the photometric classification, fixing the value of sample completeness
to 45%.

ground-based photometry the improvement rises to ∼45%. The
simple HE magnitude limit selection, at that same completeness
value, gives an improvement of a few per cent only (.10%), evi-
dencing the importance of exploiting all available photometric
information.

To examine the effect of the photometric classification in
more detail, in the top panel of Fig. 12 we show the redshift
purity and sample completeness as a function of the reliability
threshold imposed on the spectroscopic redshift measurement.
The photometric classification has its own threshold parame-
ter on the classification probability, which when combined with
the spectroscopic selection, produces a family of curves. We
label these curves based on their recall values. The bottom panel
shows the dependence of redshift purity on the photometric
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selection recall, when the completeness is fixed to 45%. As we
see, a recall value of 95% approximately maximises the purity-
completeness curve, which justifies the choice made in Sect. 2.1.

The main conclusion from this exercise is that the impact of
properly elaborated photometric information on the final purity
and completeness of the Euclid spectroscopic sample is very
significant, with a major improvement especially when ground-
based visible bands are included. The precise gain, however, will
depend on the galaxy distribution, the survey configuration and
the instrument model.

6. Conclusions

We have investigated the benefits of combining photometric
information with the spectroscopic measurement criteria for
selecting Euclid spectroscopic samples. Euclid spectroscopy
will give estimates of the galaxy redshifts, fluxes of the emis-
sion lines, and confidence intervals. However, since emission-
line galaxies make up only a small fraction of the photometric
sample, measurement noise can reduce the redshift purity and
completeness of the sample and degrade the figure of merit for
the galaxy clustering probe. The addition of photometric criteria
in the selection can allow us to improve the purity of the sample
by identifying sources that are likely to be bright emission-line
galaxies at the target redshift.

To this end, we compared a set of machine learning clas-
sification algorithms with the aim of photometrically select-
ing emission-line target galaxies that are likely to give good
redshift measurements in the Euclid Wide Survey. We used
two catalogues to benchmark the classification performance,
EL-COSMOS and Flagship2. Both catalogues have Euclid and
ground-based simulated photometry. We produced noisy reali-
sations of the catalogues assuming background-limited obser-
vations. The two catalogues yield similar results when using
as input Euclid-only photometry, but when this is combined
with ground-based data, the results using Flagship2 outperform
those with EL-COSMOS. This is related to the differences in
the Hα luminosity function and colour distribution of the two
catalogues. In addition to these two configurations (Euclid-only
and Euclid plus ground) we also considered adding morpholog-
ical information (half-light radius and the axial ratio). We find
that in general, while the addition of ground-based data strongly
improves the precision (doubling it in the case of Flagship2),
including morphological information (at least in the form pro-
vided here) gives negligible improvement.

The purity of the final spectroscopic sample will depend on
the combination of the photometric classification with further
selection criteria based on the properties of the spectroscopic
data (see diagram in Fig. 1). To investigate this requires full
end-to-end simulations of the spectroscopic reduction pipeline.
We presented a preliminary exercise to assess the relative gain
when the spectroscopic data are complemented by the photo-
metric selection discussed here. This will be expanded in future
work. We showed that in the range between 40% and 60% com-
pleteness the purity is boosted by ∼20% when using Euclid-only
bands, and between 40% and 100% when including ground-
based photometry. We consider this a remarkable indication.

The introduction of ground-based data significantly
improves the purity of the sample, but in the practical applica-
tion can also bring additional nuisance in the form of systematic
errors. The ground-based photometry will come from multiple
surveys and so will not be fully homogeneous. It will also suffer
from additional selection effects correlated with the observing
conditions that can propagate as systematic errors to the galaxy
clustering measurements and cosmological constraints. Thus,

the gains in purity from incorporating ground-based data must
be carefully weighed against the potential of adding systematic
errors, also considering the specific requirements of the science
analysis to be carried out. We foresee that ground-based data
may be used in analyses where a higher level of purity is desired,
such as for studying the galaxy halo occupation distribution or
galaxy evolution as a function of environment.

Photometric redshifts can also play a key role in sample
selection. We used the Euclid photometric redshift estimates to
select galaxies in the target redshift range and compared the
performance of such a selection to that of the colour-based
machine learning classifiers. Figure 10 shows that the photo-
z selection is very efficient for redshift classification, espe-
cially to remove low-redshift interlopers, but is not effective
in identifying emission-line galaxies. The photo-z selection has
the highest fraction of false positives from faint galaxies with
fHα+[N ii] < 2 × 10−16 erg s−1 cm−2, but the lowest for bright ones
with fHα+[N ii] > 2 × 10−16 erg s−1 cm−2, which means that it
makes a better redshift selection than the algorithms presented
in this work. Photometric redshifts could be used with addi-
tional constraints from spectral energy distribution fits to identify
bright emission-line galaxy targets. In particular, the Euclid pho-
tometric redshift pipeline will output estimates of galaxy phys-
ical properties including the star formation rate and dust atten-
uation, which will allow us to select emission-line galaxy sam-
ples. We expect that a classifier developed based on photomet-
ric redshifts and estimates of physical properties from spectral
energy distribution fitting would perform similarly to the pure
colour and magnitude-based classifiers that we tested, since the
underlying photometric information is the same. Analogously,
we expect a classifier trained to make a selection in redshift alone
to perform similarly to the photo-z selection. Alternative classi-
fiers that use the estimates of galaxy physical properties from the
Euclid photometric redshift pipeline for sample selection will be
investigated in a future work.

It is important to note that in this study some of the com-
plications that will be present in real Euclid data were not con-
sidered. First, we assume an ideal training set, which is fully
representative of the Wide Survey data. In the actual Euclid
Wide Survey, the training set will come from the Deep Fields,
which will total ∼50 deg2. Shallow and full-depth photometric
measurements will be available for the Euclid photometry in the
Deep Fields; however, we will only have the full-depth measure-
ments for the ground-based photometry. As they are currently
trained, the machine learning algorithms learn to classify the tar-
gets at a given noise level and it is not necessarily true that they
will be able to generalise their results when trained and tested on
samples with different noise levels. Therefore, if ground-based
photometry is used, it will be necessary to degrade the measure-
ments to match the noise level in the Wide Survey. Since the
ground-based photometry will come from multiple surveys, this
operation will not be simple, and residual variations in homo-
geneity in the noise can lead to systematic variations in the clas-
sifier performance.

Moreover, the effective emission-line flux limit will vary
across the Wide Survey due to foreground emission including
zodiacal light and scattered stellar light (Euclid Collaboration
2022a). In this study, we used a fixed flux limit to build the
training set of emission-line galaxies. In practice, this does not
impose a sharp flux cut in the measured sample. However, when
developing a classifier on real data, we will be able to use the
Deep Survey to define the training set as the set of galaxies that
are correctly measured by the Euclid pipeline, without imposing
any specific constraints on their physical properties. It will also
be possible to construct a classifier that accounts for variations
in the noise level across the Wide Survey to optimise the sample.
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Finally, a further complication that must be considered is
contamination from stars in the galaxy catalogue that can impact
the purity. The photometric classifier can be trained to maximise
the precision in the presence of stars. This work will require us to
incorporate a star-galaxy classifier, which is based both on size
and photometric colours. Here, the morphological measurements
will be important.

In the next stage of this work, we will consider the full set
of spectroscopic and photometric selection criteria in order to
compute the redshift purity, sample completeness and ultimately
cosmologically relevant figures of merit. This requires running
the spectroscopic reduction pipeline on mock data in order to
produce end-to-end simulations. Such simulations will allow us
to optimise the sample selection criteria, possibly with the use
of machine learning classifiers. With Euclid observations begin-
ning in fall 2023, we will be able to further tune the selection
based on the actual telescope performance and ultimately con-
struct the spectroscopic galaxy sample that will be used to test
the cosmological model.
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Appendix A: Colour-magnitude projection planes

We present in Fig. A.1 the colour-colour and colour-magnitude
distributions for targets and non-targets in the Flagship2 cat-
alogue for three different combinations. The contours contain
99%, 50%, and 25% of the samples. There is a nearly complete
overlap of the targets and non-targets in the colours.
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Fig. A.1. Target and non-target distributions in colour-colour and
colour-magnitudes planes for the Flagship2 catalogue. The contours
contain 99%, 50%, and 25% of the samples.

Appendix B: Photo-z as input variables

As an additional test, we trained a neural network with Flag-
ship2 data in the Euclid plus ground-based configuration with
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Fig. B.1. Comparison of the precision vs recall curves of two neural
networks trained with and without photo-zs as an input feature. The two
neural networks were trained with Euclid and ground-based photome-
try, but in the case of the solid blue line the algorithm takes the photo-z
of the galaxy as an additional feature. The solid vertical line corresponds
to 95% recall.

the additional information of the measured photo-z. In principle,
the neural network can extrapolate the redshift from the photo-
metric information. However, by directly providing the photo-z
we may facilitate the selection process as the network will be
able to put more attention on the emission line flux.

The precision at 95% recall is 47.9% in the case without
photo-z, as reported in Table 3. When we add the photo-z of the
galaxy as an input feature the precision rises to 50.1%. Neverthe-
less, the addition of the photo-z to the input information makes
the classifier dependent on the complex process used to produce
the photo-zs, including the training sets, spectral energy distribu-
tion models, and algorithms used. We postpone to a future work
the detailed study of these dependencies and the performance on
realistic data.

Appendix C: Selection probability maps

Figure C.1 gives a visualisation of the selection probability for
each classifier in planes through the parameter space. We show
the results from the Flagship2 catalogue for the case when classi-
fiers were trained with Euclid photometry alone. Each row shows
the colour-colour and colour-magnitude plots for a given algo-
rithm. The parameter space is four-dimensional, and the two-
dimensional planes were made by fixing two of the parameters
to their median values.

One notices that the different classifiers identify a similar
region of maximum probability for a given pair of features. The
shape and the gradients of these regions, however, vary for each
algorithm. This is due to the differences in the selection algo-
rithms and possible projection effects when the boundaries are
represented on the planes. In the case of the single classifiers
(top three rows: self-organising map, neural network, and sup-
port vector classifier) they are compact and well-defined, unlike
the cases of voting classifiers based on decision trees (bottom
three rows). Also, the contours and gradients are less smooth
for the self-organising map than for the neural network and the
support vector classifier. The probability gradient of the support
vector classifier is very steep, especially in comparison to the
neural network.
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Fig. C.1. Probability maps in colour-colour and colour-magnitude planes, for the six classifiers tested in this paper, trained using Flagship2 Euclid
photometry only. The thick white contour marks the probability threshold that gives 95% recall.

The probability maps for the voting classifiers (bottom three
rows) show orthogonal contours. This is due to the common base
classifier of these algorithms, the decision tree, which tends to
produce decision rules orthogonal to one another. At the same
time, the three algorithms have very different probability con-
tours. These differences are related to the batch selection rule

used to train the decision trees (see Sect. 2). We expect that
the algorithms that give a classification model with irregular and
steep contours (such as the self-organising map) or stepped con-
tours (such as the decision trees) will be prone to over-fitting and
will show poorer performance than algorithms that give smooth
probability contours.
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