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Abstract – Composite stepped repairs can achieve high strength recovery without the addition 

of bolts or fasteners to the structure. They are therefore a major issue in the field of aerospace 

composite structure damage repair. However, there is no standardized method to design this 

type of repairs. Many analytical, semi-analytical and finite element models were proposed 

throughout the years to predict the strength of stepped repairs, using various hypotheses and 

simplifications. The aim of this paper is to investigate the influence of modelling hypotheses 

on stress distribution and strength prediction of composite stepped repairs. Five simplified 

stepped joint models using macro-element (ME) modelling and finite element method (FE) are 

compared to a full 3D FE model of a stepped repaired panel. The influence of step length and 

adhesive fracture toughness was investigated to determine the field of validity of each model. 

Among FE models, it was shown that modelling the equivalent joint under 2D generalized plain 

strain gives a very close strength prediction to the 3D stepped repair model while saving 

computation time. Simplified macro-element models under bar or beam hypotheses are fairly 

close to the results of FE modelling, but the deviation between those and FE is sensitive to step 

length and adhesive fracture toughness. 

 

Keywords: composite material, FEM, macro-element, cohesive zone modelling, adhesive 

bonding, scarf repair 
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1 Introduction 

Composite materials have seen their use increased largely in aeronautical structures during the 

last decades. Nonetheless, those materials may experience damage during their service life that 

need to be addressed in order to restore the initial strength of the structure. One could cite 

impacts as a frequent source of damage to aeronautical composite parts. They can for example 

occur due to tool drop, ground collision, lightning strike or bird strike. As it is not economically 

sustainable always to replace the damaged parts, the ability to repair composite structures is a 

major concern. Additionally, since carbon fibre composite materials are difficult to recycle, the 

ecological impact of replacing an entire part is significant, making repairs also important for 

ecological reasons. Bonded flush repairs are a very efficient type of repair for composite 

structures, as they provide increased joint strength compared to doubler repairs, while keeping 

a smooth aerodynamic surface [1]. The two most common types of flush repairs are scarf repairs 

(i.e. adherends smoothly machined in a scarf shape) and stepped repairs (i.e. adherends 

machined in a stepped shape). They allow keeping a smooth external surface and do not require 

drilling and adding bolts, and subsequently adding mass and stress concentrations, to the 

original structure. However, there is no current standardized method to design a bonded joint, 

and the problem is even more complicated when it comes to scarf or stepped repairs because of 

the varying stiffness of the adherends along the bondline due to plies drop off. This is why, 

during the recent years, various modelling approaches were explored to design flush repairs. 

Because of the complexity of a full three-dimensional (3D) model of a flush repair, most of the 

literature is focused on the analysis of the equivalent joint, which is a 2D representation of the 

highest loaded section of the 3D repair (Figure 1). In the first place, analytical and semi-

analytical models coupled to simple criteria such as maximum or average stress were proposed 

[2]. Strain based criteria were then introduced to give better account for the non-linear 

behaviour of the adhesive material [3]. With the development of finite element (FE) and the 
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increase of available computing power, high fidelity 3D models are now more common [4]. 

Thanks to cohesive zone modelling (CZM) and continuum damage mechanics, it has become 

possible to compute the response of a flush repair until failure based on the fracture energy of 

the adhesive material and composite laminates. Among the papers that achieved strength 

prediction of flush repairs, many modelling approaches were proposed with various levels of 

geometrical simplification and types of elements. The main ones are: (i)1 layer of shell elements 

for the whole laminate [5], (ii) 1 shell element per ply [6] and (iii) 4 brick elements per ply [7, 

8]. The use of explicit solvers [8] is popular in flush repairs FE models because of convergence 

issues of implicit solvers when reaching brutal failure of the repair. Most studies achieve less 

than 10% deviation between predicted strength and experimental testing [9]. However, each 

study sticks to a given set of hypotheses when modelling flush repairs, making it difficult to 

assess the influence of modelling hypotheses on the predicted response of the structure. 

Although 3D FE modelling and CZM allow performing high-fidelity simulations, there is a 

need for less computation-intensive tools to design flush repairs. Following this trend, new 

studies on semi-analytical modelling of stepped joints [10] were released. Beyond all simplified 

models of flush repairs lies the question of knowing if the equivalent flush joint can be 

representative for the load-carrying capacity of a 3D repair. This question is a matter of 

discussion in the literature [11, 12], but latest papers are going towards the idea that the 

equivalent joint approach is valid. For instance, there is an agreement on the fact that the stress 

state in a flush joint is very close to the one in the highest loaded section of a flush repair [13]. 

A recent comparative study [14] on different levels of modelling of scarf repairs confirmed that 

the stress concentration factor in the most loaded section of a 3D scarf repair is close to the one 

in 2D scarf joints models. To the author’s knowledge, no studies have performed a comparison 

between strength predictions made by different flush repair modelling strategies. Hence, this 

paper attempts to fill this gap. It focuses on stepped repairs rather than scarf repairs, because an 



 

4 

 

industrial wet-layup repair is generally likely to be closer to a stepped configuration than a scarf 

configuration due to plies drop-off [15]. This paper investigates the influence of modelling 

hypotheses on the predicted behaviour of a stepped repair in terms of bondline stress and failure 

strength. Different models are compared, going from 1D stepped joint to full 3D stepped repair 

model, in order the determine to what extent a simplified stepped joint (Figure 1b) model can 

be representative for the behaviour of a stepped repaired panel (Figure 1a). 

 

 

2 Methodology  

2.1 Problem definition 

The idea is to propose a comparative study of six different semi-analytical and numerical 

models using macro-element (ME) modelling and Finite Element (FE) modelling:  

(i) ME 1D bar stepped joint (SJ1D bar);  

Figure 1: Schematic representation of a stepped repair loaded in tension with parameters, loading and axis 

system. (a) Stepped repair panel. (b) Equivalent stepped joint. 
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(ii) ME 1D beam stepped joint (SJ1D beam);  

(iii) FE plane strain stepped joint (SJ2D PS);  

(iv) FE generalized plane strain stepped joint (SJ2D GPS);  

(v) FE 3D stepped joint (SJ3D-shell);  

(vi) FE 3D stepped repair panel (SR3D-shell).  

The first five of them are different modelling approaches of the equivalent stepped joint to the 

most loaded section of the SR3D-shell model (Figure 1). Uniaxial tension loading is chosen for 

this study. A range of step length and adhesive fracture toughness is tested for each model to 

explore the field of validity of each model. Geometrical and material parameters need to be 

common to all models and hence are described first in this section, whereas implementation of 

semi-analytical and numerical models is described next.  

Geometrical parameters of the stepped repair and its equivalent stepped joint are given in Table 

1. The repair is chosen to be centred on the panel for the 3D configuration. Step length varies 

in a range of 3 mm to 12 mm and each step is one-ply-deep. From an experimental point of 

view, machining one-ply-deep steps through the whole thickness of a composite laminate is 

challenging. A novel machining technique has been developed to perform in-situ stepped 

repairs. It uses water-jet abrasion instead of traditional hand abrasion, making the machining 

process faster and more reliable [16, 17]. In terms of equivalent scarf angle based on the ratio 

between total repair thickness and length, tested configurations go from 5.2° to 1.3° angles. 

This range is near the 3° angle used as a rule of thumb to design flush repairs. G939/M18, a 

carbon/epoxy woven laminate, is chosen as the reference material for both parent laminates and 

repair patch, with the same layup of [45, 0, 45, 0]s for both two. The thickness of each ply is 

0.24 mm, which therefore leads to a total thickness of the laminates of 1.92 mm. A matching 

layup is chosen for the repair, meaning that each ply of the repair patch matches the orientation 

of the ply of the parent structure it is placed against (Figure 2). In-plane elastic properties of 
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G939/M18 are given in Table 2. Out-of-plane Young modulus 𝐸33 and Poisson ratios 𝜈13 and 

𝜈23 are not needed because the analysis that are performed in the following sections rely on bar, 

beam, or shell (plane stress) models. They come from experimental testing of this material by 

DGA Aeronautical Systems and are in good agreement with available manufacturer data [18]. 

Adhesive material properties are given in Table 3. They are not the properties of any particular 

adhesive material because the idea is to explore a range of adhesive fracture toughness. 

Therefore, stiffness values, failure stresses and layer thickness are fixed at typical values of an 

epoxy adhesive with heated curing process. A range of 𝐺IIC from 0.25 kJ/m² to 8 kJ/m² is chosen 

to be explored, while keeping a constant ratio 𝐺IC = 𝐺IIC/2. A triangular traction-separation 

law shape is chosen for the behaviour of the adhesive (Figure 3) in terms of interface stress as 

function of displacement jump, with linear mixed-mode behaviour. Displacement jump 𝛿𝑖,𝑒 

(𝛿𝑖,𝑓) at initiation (propagation) are deduced from the other parameters to obtain a triangular 

law shape. As trapezoidal laws are more often used to model the behaviour of ductile adhesives, 
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a discussion on the influence of the law shapes on the results of this study is provided in section 

3.3.1. 

 

Table 1: Stepped repair geometrical parameters.  

Parameter (defined in Figure 1) Value 

Panel length 450 mm 

Panel width 300 mm 

Initial damage diameter 30 mm 

Outside of overlap length 50 mm 

Number of steps 7 

Step height 0.24 mm 

Step length {3,4,6,8,10,12} mm 
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Figure 3 : Cohesive behavior model with triangular traction separation law 
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Figure 2: Stepped joint with matching layup 
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Table 2 : Mechanical properties for composite lamina G939/M18 

 

 

 

 

 

 

Table 3: Mechanical properties for adhesive material 

 

 

 

 

 

 

 

 

No fracture parameters are provided for the composite material because composite failure is 

not modelled in this study. To design a stepped repair, one could begin by ensuring that the 

load-carrying capacity of the bonded-joint is higher that the strength of the material needing to 

be repaired, without considering the coupling between composite fracture and adhesive layer 

failure. Hence, this paper focuses on the strength prediction of the bonded joint as a simplified 

design approach and does not address composite failure. 

 

Property Symbol (units) Value 

Young modulus 𝐸11 = 𝐸22 (MPa)  60000 

Poisson ratio 𝜈12  0.05 

Shear modulus 𝐺12 (MPa)  4200 

 𝐺13 = 𝐺23 (MPa)  4000 

Property Symbol (units) Value 

Young Modulus 𝐸 (MPa)  2400 

Shear modulus 𝐺 (MPa)  800 

Mode II fracture toughness 𝐺IIC (kJ/m²)   {0.25, 0.5, 1, 2, 4} 

Mode I fracture toughness 𝐺IC(kJ/m²)    𝐺IIC /2  

Interface tensile strength 𝜎I
0  (MPa)  48 

Interface shear strength 𝜎II
0 (MPa)  40 

Adhesive layer thickness 𝑡𝑎 (mm)  0.12 
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2.2 Macro-element modelling 

2.2.1 ME presentation 

ME is a semi-analytical method that allows solving configurations of bonded joints with no 

closed-form solution available because of certain geometrical or material configurations. 

Especially, it handles non-linear behaviour of the adhesive, such as triangular traction-

separation law. It was therefore chosen as a 1D semi-analytical approach to be compared to FE 

modelling, as it is less computational-heavy than the latter and allows using CZM-like 

behaviour of the adhesive layer. A ME is a 4-node brick element, but it differs from a standard 

FE by integrating constitutive and local equilibrium equations of the adherends and the 

adhesive. It models the behaviour of a single overlap between two adherends. Two different 

types of ME are used in this study: 1D-bar elements with 1 degree of freedom at each node and 

1D-beam elements with 3 degrees of freedom at each node (Figure 4).  In the 1D-bar ME, the 

nodal displacement vector is: 

𝑈𝑒 =

(

 

𝑢1(0)

𝑢2(0)

𝑢1(Δ)

𝑢2(Δ))

  (1) 

where 𝑢𝑖 is the displacement of the neutral line of the adherend 𝑖. The nodal force vector is: 

𝐹𝑒 =

(

 

−𝑁1(0)

−𝑁2(0)

𝑁1(Δ)

𝑁2(Δ) )

  (2) 

where 𝑁𝑖 is the tension / compression internal force in adherend 𝑖. The formulation of a 1D-bar 

ME is detailed hereafter for the comfort of the reader: it is the simplest possible to obtain 

because each node has only one degree of freedom. The formulation of a 1D-beam ME can be 

obtained following the same principle [19], but  requires more work because of the three degrees 

of freedom at each node. For the purpose of this section, the axis system (x,y) is defined in 

(Figure 4) and different from the one defined in (Figure 1). 
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2.2.2 Elementary stiffness matrix of 1D bar ME 

A 1D-bar ME is obtained by writing the local equilibrium of a single lap-joint (Figure 5) under 

quasi-static loading and small displacements hypotheses. The adherends are supposed to be 

made of homogeneous linear elastic material and are modelled as bars. The adhesive layer is 

modelled as a shear spring foundation. These hypotheses cause the shear stress in the adhesive 

layer to be constant through the thickness, and the adherends to be loaded in pure tension. 

The local equilibrium of each adherends is: 

Figure 4: Macro-elements degree of freedom and nodal 

forces. (a) bonded-bar ME. (b) bonded-beam ME. 
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𝑑𝑁𝑖
𝑑𝑥

= (−1)𝑖𝑏𝑇    𝑖 = 1,2 (3) 

where 𝑏 is the width of the joint and 𝑇 the shear stress in the adhesive layer. Modelling 

adherends as bars implies that transverse shear deformation of the adherends is neglected. 

Moreover, adherends are homogeneous. Their constitutive equations are then:  

𝑁𝑖 = 𝐴𝑖
𝑑𝑢𝑖
𝑑𝑥

⇔
𝑑𝑢𝑖
𝑑𝑥
 =
𝑁𝑖
𝐴𝑖
    𝑖 = 1,2 (4) 

where 𝐴𝑖 = 𝑏𝑒𝑖𝐸𝑖 is the membrane stiffness, 𝑒𝑖 the thickness and 𝐸𝑖 the Young’s modulus of 

the adherend 𝑖. 

Under small displacements hypothesis, the constitutive relationship of the adhesive layer is 

written: 

𝑇 = 𝐺
𝑢2 − 𝑢1
𝑡𝑎

=
𝐺

𝑡𝑎
Δ𝑢 (5) 

where Δ𝑢 is the relative longitudinal displacement of the adherends, 𝑡𝑎 the adhesive layer 

thickness and 𝐺 the adhesive shear modulus. 

By writing the derivative of (1) and combining it with (2) and (3), the differential system is 

obtained: 

Figure 5: Local equilibrium of a single lap joint 

N1(x+dx) N1(x) 

N2(x+dx) N2(x) 

Tbdx 

dx 
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{
 
 

 
 𝑑

2𝑢1
𝑑𝑥2

= −
1

𝑒1𝐸1

𝐺

𝑡𝑎
Δ𝑢

𝑑2𝑢2
𝑑𝑥2

= −
1

𝑒2𝐸2

𝐺

𝑡𝑎
Δ𝑢

⇔ 

{
 
 

 
 𝑑2Δ𝑢

𝑑𝑥2
=
𝐺

𝑡𝑎
(
1

𝑒1𝐸1
+

1

𝑒2𝐸2
) Δ𝑢 = 𝜂

2Δ𝑢

𝑑2(𝑢1 + 𝑢2)

𝑑𝑥2
= −

𝐺

𝑡𝑎
(
1

𝑒1𝐸1
+

1

𝑒2𝐸2
) Δ𝑢 = −𝜒𝜂

2Δ𝑢 = −𝜒
𝑑2Δ𝑢
𝑑𝑥2

 (6) 

where: 

𝜂2 =
𝐺

𝑡𝑎
(
1

𝑒1𝐸1
+

1

𝑒2𝐸2
) (7) 

𝜉 =
𝑒2𝐸2
𝑒1𝐸1

 (8) 

𝜒 =
𝜉 − 1

𝜉 + 1
 (9) 

𝜂 governs the solution of the equations and 𝜒 and 𝜉 are adimensional terms relative to the 

unbalance between the adherends stiffnesses. Solving the differential system brings the 

displacements: 

(
𝑢1
𝑢2
) =

1

2
(
1 𝑥 −(1 + 𝜒)𝑒−𝜂𝑥 −(1 + 𝜒)𝑒𝜂𝑥

1 𝑥 (1 − 𝜒)𝑒−𝜂𝑥 (1 − 𝜒)𝑒𝜂𝑥
) 𝐶 (10) 

𝐶 = (

𝑐1
𝑐2
𝑐3
𝑐4

)  (11) 

where the 𝑐𝑖 are four integration constants. The aim is then to determine the stiffness matrix 𝐾𝑒 

that links the displacement vector 𝑈𝑒 to the nodal force vector 𝐹𝑒 such that 𝐹𝑒 = 𝐾𝑒𝑈𝑒. Using 

the constitutive relationships in equations (3) and (4), two coupling matrices 𝐿𝑒 and 𝐷𝑒
−1 are 

obtained by writing 𝐶 = 𝐷𝑒
−1𝑈𝑒 and 𝐹𝑒 = 𝐿𝑒𝐶 (Appendix A). The elementary stiffness matrix 

is then written: 

𝐾𝑒 = 𝐿𝑒𝐷𝑒
−1 =

1

1 + 𝜉

𝐴2
Δ

(

 
 
 
 
 
 

𝜂Δ

tanh𝜂Δ
+
1

𝜉
1 −

𝜂Δ

tanh 𝜂Δ
−

𝜂Δ

sinh 𝜂Δ
−
1

𝜉

𝜂Δ

sinh 𝜂Δ
− 1

1 −
𝜂Δ

tanh 𝜂Δ

𝜂Δ

tanh𝜂Δ
+ 𝜉

𝜂Δ

sinh 𝜂Δ
− 1 −

𝜂Δ

sinh 𝜂Δ
− 𝜉

−
𝜂Δ

sinh 𝜂Δ
−
1

𝜉

𝜂Δ

sinh 𝜂Δ
− 1

𝜂Δ

tanh𝜂Δ
+
1

𝜉
1 −

𝜂Δ

tanh 𝜂Δ
𝜂Δ

sinh 𝜂Δ
− 1 −

𝜂Δ

sinh 𝜂Δ
− 𝜉 1 −

𝜂Δ

tanh𝜂Δ

𝜂Δ

tanh 𝜂Δ
+ 𝜉

)

 
 
 
 
 
 

 (12) 
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where Δ is the length of the bonded-bar ME (Figure 4). 

 

2.2.3 Stepped joint modelling 

This paper introduces a novel approach to model a stepped joint using the ME modelling. A 

stepped joint can be seen as succession of single-lap joints with adherends of different 

stiffnesses and the same adhesive layer. Hence, this new modelling approach involved using a 

series of bonded ME for each step (Figure 6). Bonded-bar ME were used in the SJ1D bar model, 

and bonded-beam ME in the SJ1D beam model. The portions of the stepped joint that are 

outside of the overlap area were modelled by bar or beam elements respectively. 

As shown is section 2.2.2, 1D-bar MEs only allow longitudinal displacement of the adherends. 

Hence, the SJ1D model is a numerical implementation of a classical shear-lag model, with CZM 

behaviour of the adhesive layer. 1D-beam MEs use an Euler-Bernoulli beam behaviour with 

membrane-flexion coupling to deal with the laminate nature of the adherends [19]. Because 

each step has a different number of plies on each side of the adhesive layer, the membrane and 

flexion stiffness of each one had to be computed individually. However, this involves a 

discontinuity in material properties and a neutral fibre offset when going from one step to 

Figure 6 : Macro-element modelling of a stepped joint and boundary conditions 

Neutral fiber 
offset 
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another. Kinematic constraints had to be added to link each step to the next one to deal with it. 

(Figure 7).  

A reduction matrix 𝑅 was written to remove one of both nodes attached together in the structural 

stiffness matrix, which becomes 𝐾𝑟 = 𝑅𝐾𝑒𝑅
𝑡. When using 1D-bar MEs, there was no need to 

consider the neutral fibre offset between each step because there is not out of plane degrees of 

freedom. Therefore, each step was attached to the next one by writing: 

{
𝑢𝐴 = 𝑢𝐶
𝑢𝐵 = 𝑢𝐷

 (13) 

The reduction matrix was then written: 

(
𝑢𝐴
𝑢𝐵
) = 𝑅(

𝑢𝐴
𝑢𝐵
𝑢𝐶
𝑢𝐷

) ⇔ 𝑅 = (
0 0 1 0
0 0 0 1

) (14) 

When using 1D-beam MEs, the neutral fibre offset had to be taken in account when attaching 

the ME together. Rotations were supposed to be equal at the junctions of two steps: 

{
𝜃𝐴 = 𝜃𝐶
𝜃𝐵 = 𝜃𝐷

 (15) 

Figure 7: Neutral fibre offset between two steps 
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which is a reasonable assumption under Euler-Bernoulli kinematics. Out of plane displacements 

were supposed to be equal as well:  

{
𝑣𝐴 = 𝑣𝐶
𝑣𝐵 = 𝑣𝐷

 (16) 

It leads to say that the peel stress is continuous at the junction of two steps due to the peeling 

stiffness of the adhesive being constant. The kinematic constraints binding axial displacement 

were written to keep a continuous shear stress 𝑇𝑘 at the junction of two steps 𝑘 and 𝑘 + 1: 

𝑇𝑘+1 = 𝑇𝑘  ⇔ (𝑢𝐵 − 𝑢𝐴 − ℎ𝐴𝜃𝐴 − ℎ𝐵𝜃𝐵) = (𝑢𝐷 − 𝑢𝐶 − ℎ𝐷𝜃𝐷 − ℎ𝐶𝜃𝐶) (17) 

Then, using the neutral line offset ℎ𝐶𝐴 (Figure 7) the kinematic conditions were obtained: 

{
𝑢𝐴 = 𝑢𝐶 − ℎ𝐶𝐴𝜃𝐶
𝑢𝐵 = 𝑢𝐷 − ℎ𝐵𝐷𝜃𝐷

 (18) 

The reduction matrix was then written:  

(

  
 

𝑢𝐴
𝑢𝐵
𝑣𝐴
𝑣𝐵
𝜃𝐴
𝜃𝐵)

  
 
= 𝑅

(

 
 
 
 
 
 
 
 
 

𝑢𝐴
𝑢𝐵
𝑢𝐶
𝑢𝐷
𝑣𝐴
𝑣𝐵
𝑣𝐶
𝑣𝐷
𝜃𝐴
𝜃𝐵
𝜃𝐶
𝜃𝐷)

 
 
 
 
 
 
 
 
 

⇔ 𝑅 =

(

 
 
 

0 0 1 0 0 0 0 0 0 0 −ℎ𝐶𝐴 0
0 0 0 1 0 0 0 0 0 0 0 −ℎ𝐵𝐷
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 )

 
 
 
 (19) 

Each step can be linked to the next one using the reduction matrix 𝑅, and the whole stepped-

joint was obtained this way. Loading was then progressively applied in form of an imposed 

displacement at one end (Figure 6). 

 

2.2.4 Non-linear computation management 

Adherends properties were computed for each step based on classical laminated theory with 

properties defined in Table 2. Adhesive layer properties given in Table 3 were used in SJ1D 

bar and SJ1D beam models with a triangular traction-separation law shape (Figure 3), initial 
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interface stiffnesses 𝑘I = 𝐸/𝑡𝑎 and 𝑘II = 𝐺/𝑡𝑎, and linear mixed-mode behaviour. The use of 

cohesive law is a particular case of nonlinear behaviour, because a nonlinear computation is 

required to predict the current damage state. The nonlinear algorithm used is detailed in [20]. 

Nevertheless, a very brief overview is provided hereafter to explain the principle of the 

resolution. 

The algorithm is based on the Newton-Raphson method. It uses the secant stiffness matrix with 

an update at each iteration. The imposed displacements are applied linearly as function of the 

numerical time by increments of 0.05 mm. The secant matrix update consists in updating the 

adhesive interface stiffnesses 𝑘I and 𝑘II according to the value of the damage parameter 𝐷. 

The triangular mixed-mode law used a quadratic stress initiation criterion: 

(
⟨𝜎𝑛⟩

𝜎I
0 )

2

+ (
⟨𝜎𝑠⟩

𝜎II
0 )

2

= 1 (20) 

 where 𝜎𝑛 (𝜎𝑠) is interface normal (shear) stress. The evolution law is based on linear 

interaction between each mode: 

𝐺I
𝐺IC

+
𝐺II
𝐺IIC

= 1 (21) 

All the details on mixed-mode propagation law can be found in [20]. The classical assumption 

that its projections on pure mode are triangular was made. Because each ME has one damage 

parameter associated with each pair of nodes, the highest of both values is assigned to the ME 

to compute its material law at the next iteration. Finally, the secant matrix is updated using 

interface stiffness (1 − 𝐷)𝑘𝑖 instead of 𝑘𝑖, where 𝑖 ∈ {I, II}. 

 

2.3 Finite element analysis 

2.3.1 Geometry and properties 

Four FE models developed with ABAQUS/Standard were used to test different levels of 

numerical modelling: SJ2D plane strain, SJ2D GPS, SJ3D-shell and SR3D-shell. The implicit 
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solver with full Newton Raphson scheme was chosen as it is able to handle CZM nonlinear 

behaviour and while being faster than the explicit solver for such models. SJ2D PS, SJ2D GPS 

and SJ3D-shell models use the stepped joint geometry (Figure 1 b), whereas SR3D-shell used 

the stepped repair configuration (Figure 1 a). Axis system (X,Y,Z) and boundary conditions are 

also defined in Figure 1. The X-axis was aligned the direction of the load, the Y-axis was 

oriented through the width of the models and the Z-axis through the thickness of the laminates. 

Geometrical parameter values are given in Table 1. 

The same element types and properties were used in the four models. Each composite ply was 

modelled by one layer of continuum shell elements, which are eight-nodes-elements using a 

shell formulation and therefore plane stress state, with reduced integration scheme. Linear 

elastic behaviour with properties described in Table 2 were used for the adherends of the 

stepped joint, and for the parent plate and repair patch of the stepped repair. Adhesive layers 

were modelled by one layer of brick cohesive elements. Kinematic constraints were used to 

enforce the continuity of displacement between the adherends and the adhesive layers. Mixed-

mode traction separation behaviour was used in the cohesive elements of the adhesive layers, 

with properties given in Table 3. A triangular law shape was used (Figure 2) with stiffnesses 

𝑘I = 𝐸/𝑡𝑎 in mode I and 𝑘II = 𝐺/𝑡𝑎. The mixed mode law was defined using quadratic stress 

initiation criterion (eq. 20) and linear energetic evolution law (eq. 21), to ensure that the FE 

models use the same cohesive laws as the ME models. The influence of the propagation 

criterion used is discussed is subsection 3.3.1. 

 

2.3.2 Mesh and boundary conditions 

Three different meshes were created (Figure 8): 

The first mesh was for both the SJ2D PS and SJ2D GPS models. It was created in 3D space 

with of only one layer of elements in the width, and an arbitrary width value of 1 mm was used. 
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To create a plane strain state, a boundary condition imposing a transverse displacement UY = 

0 was applied on both side faces of the 2D plane strain model. 2D elements were not used 

because ABAQUS does not allow the input of 45° plies properties whose in-plane global axis 

Poisson’s ratio is 0.75. The stepped joint was fully clamped on one end, while applying the load 

in form of an imposed displacement UX on the other end until disbonding. The SJ2D GPS 

model was identical to the 2D plane strain mode in every way, expect that a transverse 

displacement UY = 0 was imposed one only of the side faces while a constant transverse 

displacement UY was enforced on the whole other side face. It was achieved by constraining 

all the nodes on the second face to follow to UY displacement of the first node of the first step 

in the one of the adherends. It should be noted that the choice of the reference node does not 

matter here, thus it could have been any other node on the constrained face. 

The SJ3D-shell model was identical to the SJ2D models except it had a width of 20 mm to be 

representative for a test coupon and 20 elements through the width. The side edges remained 

free, and load was applied identically: one edge clamped, and one loaded with an imposed 

displacement UX. 

The SR3D-shell model was the only one to include the parent plate and the circular patch in the 

middle. Thanks to the symmetries of the problem, preserved by the stacking sequence only 

containing (0/90°) and (+45°/-45°) woven plies, only a quarter of the complete stepped repaired 

panel was modelled. A number of 30 elements were used along the quadrant. A zero 

displacement condition was imposed orthogonally to the plans of symmetry. The load was also 

applied in form of an imposed displacement UX until patch disbonding. 

A coarse element length of 1 mm was used outside the bonded area, in order to save 

computation time. A finer element size, determined thanks to a mesh study, needed to be used 

in the bonded joint area. 
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2.4 Convergence study 

A mesh study was carried out on each of the six models presented in this study. Because the 

process zone length in the adhesive layer decreases when the adhesive fracture energy 

decreases, a more brittle adhesive material requires a finer mesh if adhesive stiffness and 

maximum interface stress remain unchanged. Hence, this mesh study was performed with the 

smallest energy in the parameters range 𝐺IIC = 0.25 kJ/m², and with the shortest step length 

Figure 8 : Meshes used in FE models. 

3D Stepped joint (full width) 

3D Stepped repair (quarter plate) 

2D Stepped joint in plane strain or GPS (1 element in the width) 

symmetry plans 
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considered, which is 3 mm. Bonded joint strength was chosen as the convergence criterion for 

the mesh study. 

Under an element length of 0.2 mm, there was very little effect of mesh density on joint strength 

in FE models (Figure 9). The same was true for ME models under an element length of 0.1 mm. 

Finally, element size of 0.1 mm was retained for both ME and FE models. Even though 0.2 mm 

could have been sufficient for FE models, a minimum of three elements in the length of the 

process zone is needed to ensure good modelling of crack propagation in the adhesive layer 

[21]. Having enough elements in the process zone allows to compute a stable growth of the 

process zone and propagation of debonding.  Because typical process zone observed was about 

0.3mm long, the choice of an element size 0.1 mm seemed more appropriate. 

 

3 Results and discussion 

3.1 Stress analysis 

Shear stress along the bondline computed by the two ME models and the four FE models were 

compared (Figure 10). To do so, the same force flow of 100 N/mm was applied to all models 

Figure 9: ME and FE mesh study. P is the strength of the joint for the current mesh density, 

and P100 the strength of the joint computed with a mesh density of 100 elements per mm. 
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and the shear stress was then extracted along the bondline. In the SJ3D-shell model, the shear 

stress was extracted both from the middle and the edge of the specimen to capture edge effects. 

In the SR3D-shell model, the shear stress was extracted from the section of the repair aligned 

with the direction of the load because this section is supposed to be the most loaded one. The 

shape of the shear stress distribution with series of stress peaks is typical of stepped joints 

because they behave like a series of single-lap-joints. All stress distributions were symmetrical 

about the middle of the joint expect in the SR3D-shell model. It was not surprising because this 

model was the only one not to be symmetrical due to the length outside the joint being higher 

on the parent plate side than on the repair patch side. 

The ME SJ1D bar model had the lowest peak stresses and highest minimum stress. This flatter 

distribution was caused by stiffer adherends compared to the other models, which is reasonable 

because of the bar model does not allow bending and shear deformation of the adherends. The 

ME SJ1D beam model gave a better approximation of the bondline stresses. It was in good 

Figure 10: ME and FE shear stress distribution along the bondline 
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agreement with FE at the two ends of the joints, but it underestimated the stress peaks in the 

middle, showing that it is still stiffer that FE models. Among FE models, a significant 

discrepancy was noted between SJ2D plane strain model and the other ones. It is because the 

plane strain state applied to composite woven laminates leads to a large increase of stiffness of 

the laminates due to the restriction of Poisson’s effect. There was no clear deviation between 

the stresses extracted from the middle and the edge of the SJ3D-shell model, showing that there 

are negligible free-edge effects on the shear stress distribution. The SJ2D GPS was the closest 

to the SJ3D-shell and SR3D-shell models in terms of shear stress. This is in agreement with the 

result that was already established for scarf joints and scarf repairs in the literature [14]. The 

deviations between the presented models remained the same no matter the step length. 

The analysis of the effect of step length on the shear stress distribution brought the classical 

result of the shear-lag approach [22], namely that maximum shear stress decreases when step 

length increases until a minimum is reached (Figure 11). No further decrease of peak shear 

stress was found beyond a step length of 8 mm. The deviations between the ME and FE models 

remained the same on the whole range of tested step length. 

Figure 11: Effect of step length on maximum adhesive shear strain 
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3.2 Failure analysis 

3.2.1 Damage scenario 

Damage initiation location and propagation scenario was tracked in the FE models. Because of 

the shear stress peaks at the ends of the steps, several step end reached the maximum adhesive 

stress in early stages of the loading. Nonetheless, due to the fracture energy needed to propagate 

the crack in the adhesive layer, failure did not happen as soon as a region of the adhesive layer 

reached the maximum allowable stress. The sensitivity analysis revealed two different failure 

scenarios depending on the step length and the adhesive fracture energy (Figure 12). In both 

cases, reaching maximum load was followed by complete disbonding of the joint. 

The first scenario was failure of the adhesive layer by reaching maximum adhesive strain, or 

fragile failure. It happened when steps were long enough to allow the process zone reaching its 

maximum length in the most loaded area of the stepped joint, which is equivalent to reaching 

maximum adhesive strain. The crack that initiated at this point immediately propagated to the 

Fully softened step 

Figure 12: Damage propagation scenarios in the FE SJ3D-shell GPS model. Loading is 95% of failure 

load. SDEG is the scalar stiffness degradation coefficient of the interface. 

Propagation onset 
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whole step, leading to disbonding of the other steps and ultimately to total adhesive layer 

failure. 

The second scenario was failure of the adhesive layer by softening of a whole step, or ductile 

failure. It happened when steps were short enough for two process zones to meet each other 

before reaching their maximum length, leading to complete loss of stiffness of one of the steps 

before reaching the adhesive maximum strain. At this point, the stepped joint reached an 

instability point causing subsequently failure of the entire adhesive layer. Reaching failure by 

softening of a whole step means that the load-carrying capacity of the stepped joint could have 

been theoretically increased until reaching failure by maximum adhesive strain. The location of 

disbonding initiation depended on the failure scenario. Due to the symmetrical nature of the 

stepped joints, damage would initiate and propagate simultaneously in a symmetrical pattern 

about the middle of the joint. 

In case of fragile failure, the SJ2D GPS and SJ3D-shell model agreed on the damage initiation 

location. They both predicted it between the first and the second step. However, the SJ2D PS 

model predicted it at the beginning of the first step in the fragile configuration. It shows that 

the plane strain hypothesis does not only influence the stress distribution on the joint, but also 

the damage scenario, making that model not consistent with the others. The SR3D-shell model 

predicted the disbonding to begin between the first and the second step as well, but the 3D 

effects in that fragile scenario caused it not to propagate from the highest loaded section of the 

repair. Instead, the crack started to propagate in the area located at a 30° angle respectively to 

the direction of the load (Figure 13).  

In case of ductile failure, the four FE models agreed on the damage scenario. Failure happened 

by full softening of the centre step of the repair. Edges effects in the SJ3D-shell model caused 

crack propagation along the coupon edges (Figure 14). Finally, the SJ2D GPS model was the 



 

25 

 

one which was the most consistent with the S3RD model in terms of damage propagation 

scenario no matter the step length or adhesive fracture toughness.  

The same types damage propagation scenarios were observed in ME models, with fragile or 

ductile failure depending on adhesive properties and step length. 

 

3.2.2 Strength prediction 

The results of each model were then compared in terms of predicted load-carrying capacity of 

the bonded joint (Figure 15). 

Among FE models, the trend of the deviation between the four different models remained the 

same no matter the adhesive fracture toughness and step length: 

Figure 13 : Damage propagation scenario in the FE SR3D-shell model. 

load axis 

Figure 14 : Damage propagation scenario in the FE SJ3D-shell model. 

Disbonding propagation near edges 
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- The SR3D-shell model was the one with the highest predicted strength. This is 

reasonable because the circular patch allows load bypass around the most loaded area 

of the repair. 

- The SJ3D-shell model was the FE model with the lowest predicted strength. This is 

related to edges effects provoking crack propagation on the edges of the stepped joint 

(section 3.2.1), leading to anticipated failure of the joint in this model. It is interesting 

to remind that those edge effects did not appear in the stress analysis. 

- The SJ2D PS predicted strength was greater than the SJ3D-shell strength and lower than 

SJ2D GPS strength. For most of the considered step lengths, there was a larger deviation 

between the SJ2D PS and SJ2D GPS models when the adhesive is fragile. This is 

explained by the inconsistency between the failure scenarios of the SJ2D PS model and 

the SJ2D GPS model, as explained in section 3.2.1, paragraph 4.  

- The SJ2D GPS model was the closest to the SR3D-shell in any case, capturing 

accurately the trend of its strength / step length curve and strength / 𝐺IIC curve. (Figure 

15). The only case where the deviation between those two models exceeded 5% was 

with a step length of 12 mm and 𝐺IIC = 0.25 kJ/m².  

ME models globally underestimated the joint strength compared to FE models even though they 

had lower stress peaks. This was quite surprising but could be explained by the fact that they 

neglected shear deformation of the adherends, which tend to increase process zones length and 

decrease predicted strength. The SJ1D beam model was more conservative than SJ1D bar 

model. This is consistent with the fact that the SJ1D beam model includes peels effect and 

predicts higher stress peaks than the SJ1D model (section 3.1.). The deviation trend between 

FE and ME models remained fairly the same for all the step lengths and adhesive fracture 

toughness tested, except in the case of steps shorter than 4 mm and brittle adhesive material 

with 𝐺IIC ≤ 0.5 kJ/m². In that case, the deviation was reversed and the SJ1D bar and beam 
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models became more conservative than FE models. Indeed, brittle adhesive material properties 

decrease process zone length, and short steps increase stress peaks. It makes that configuration 

close to a purely fragile situation, where failure is driven by maximum stress only. Given that 

ME models tend to underestimate shear stress compared to FE models, it explains why ME 

predicted lower strength than FE with those parameters.  

The sensitivity analysis showed as expected that the strength of the joint increases when the 

step length or adhesive fracture toughness increases (Figure 15). Joint strength / GIIC curves 

(Figure 15 a-b-c) show that the deviation between all models remains consistent when GII 

changes, expect in the case of 3 mm steps and low fracture energy already mentioned. It 

demonstrates that simplified models of a stepped repair are robust against a change of adhesive 

material properties.  

The strength / step length curves with 𝐺IIC = 1 kJ/m² (Figure 15 e) show that joint strength 

reached a plateau for long steps, beyond which an increase of step length brings no further 

increase of joint strength. This strength plateau appears when the steps are longer than the 

process zones. It makes the behaviour of a stepped joint comparable to of a single or double lap 

joint. Indeed, Hart-Smith [23] showed that when the joint is longer than a critical length 

depending on 𝐺IIC, there is no further increase in joint strength. This is related to the change of 

failure mode between what we call fragile failure and ductile failure of the joint in this paper. 

Moreover, the dispersion in predicted strength between the tested models increases largely 

when transition from one failure scenario to the other. The same plateau effect was expected 

for fragile adhesives, but the strength/step length curves with 𝐺IIC = 0.25 kJ/m² (Figure 15 d) 

show that ME SJ1D models reached a strength plateau for steps longer than 6 mm whereas the 

joint strength predicted by SR3D-shell and SJ2D GPS kept on increasing until a step length of 

12 mm. The strength/step length curves with 𝐺IIC = 4 kJ/m² (Figure 15 f) shows that no plateau 
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is reached, meaning that typical step lengths are not sufficient to achieve the maximum potential 

joint strength that could be reached with a ductile adhesive material.  

To give a better picture of the deviations between all the tested models, the mean absolute 

deviation in terms of strength was computed between each of them and the SR3D-shell, which 

was chosen to be the reference (Table 4). Again, the SJ2D GPS clearly stands out as the closest 

to the SR3D-shell model for repair strength prediction.  

 

Table 4 : Mean absolute deviation between strength predicted by stepped joint models and FE 

3D stepped repair model 

Model 
Mean abs. deviation vs 

SR3D-shell 
Maximum abs. deviation vs SR3D-shell 

SJ1D bar 8.6% 20.1% 

SJ1D beam 11.1% 23.2% 

SJ2D PS 5.5% 11.1% 

SJ2D GPS 2.7% 7.8% 

SJ3D-shell 8.7% 19.3% 
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Figure 15: Comparison between strength predicted by ME and FE models. In graphs (a), (b) 

and (c) GIIc is in logarithmic scale in abscissa and step length is fixed. In graphs (d), (e) and 

(f) step length is in linear scale in abscissa and GIIc is fixed. 

(a) (d) 

(e) 

(f) 

(b) 

(c) 
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3.3 Discussion on results sensitivity to cohesive law parameters 

3.3.1 Mixed-mode propagation law 

In the main part of this study, a linear energetic criterion was used for the mixed-mode 

propagation behaviour of the cohesive elements (Eq. 21). This criterion is not the only one to 

be used to model adhesive behaviour. To do so we can cite other criteria, such as quadratic 

energetic criterion: 

(
𝐺I
𝐺IC
)
2

+ (
𝐺II
𝐺IIC

)
2

= 1 (22) 

or Benzeggagh-Kenane (BK) criterion: 

𝐺C = 𝐺IC + (𝐺IIC − 𝐺IC) (
𝐺II

𝐺I + 𝐺II
)
𝜂

(23) 

To assess the robustness of the parametric study that was performed, the influence of the choice 

this criterion was tested using the SJ2D-GPS model. Stepped joint strength calculation were 

performed in the exact same way as before with the quadratic energy criterion and the BK 

criterion, for a step length of 8 mm, and a range of 𝐺IIC between 0.25 and 4 kJ/m². The results 

are presented in Figure 16. It appears that the choice of the mixed-mode propagation law has 

only very little influence on the results. This is understanble as main point of a stepped joint 

geometry compared to a single-lap joint for example is to minimize the peeling effects. As a 

consequence, 𝐺C ends up being very close to 𝐺IIC no matter the criterion used. It can be noted 

that there is slightly more influence of the criterion when the adhesive is more brittle, but it 

remains barely noticeable. 
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3.3.2 CZM law shape 

In this study, CZM laws used for the adhesive had a triangular shape, with constant damage 

initiation stresses 𝜎I
0 and 𝜎II

0, interfaces stiffness 𝑘I and 𝑘II, and constant ratio 𝐺IIC/𝐺IC = 2. 

The only variable parameter of the cohesive law was 𝐺IIC and it was used to drive the ductility 

of the adhesive. However, the use of trapezoidal law shapes is sometimes preferred to triangular 

law shapes to model the behaviour of ductile adhesives materials. Therefore, a discussion on 

the influence of the law shape on the strength prediction of a stepped joint, in the case of ductile 

adhesive, is provided hereafter. To do so, two trapezoidal law shapes TPZ-1 and TPZ-2 were 

tested to compare to results obtained in term of predicted strength of the stepping joint against 

the reference value previously obtained with the triangular law and 𝐺IIC = 4 kJ/m² and a step 

length of 8 mm. 

The definition of TPZ-1 and TPZ-2 laws is presented for pure mode II (Figure 17). The same 

is done in pure mode I with 𝐺IIC/𝐺IC = 2. TPZ-1 was defined to match the interface stiffness 

Figure 16: Comparison of the predicted joint strength for Benzeggagh-

Kenane and power law propagation criteria 
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and damage initiation stress of the triangular law. The softening slope was chosen to be equal 

to the one in the case of the triangular law with 𝐺IIC = 1 kJ/m² and end displacement of 

adjusted to keep 𝐺IIC = 4 kJ/m². TPZ-2 was defined using the same interface stiffness and 

softening slope, but this time the end displacement was kept equal to the one of the reference 

triangular law, and the maximum stress was adjusted to match 𝐺IIC = 4 kJ/m². All the 

properties are summed up in table 4. 

Table 4: Trapezoidal CZM parameters for laws TPZ-1, TPZ-2 and the reference triangle law 

 

Property Symbol (units) 

TPZ-1 TPZ-2 Triangle 

Mode 

I 
Mode II Mode I Mode II Mode I Mode II 

Interface stiffness 𝑘𝑖  (MPa/mm) 20000 6667 20000 6667 20000 6667 

Fracture 

toughness 
𝐺iC (kJ/m²) 2 4 2 4 2 4 

Initiation stress 𝜎I
0  (MPa) 48 40 23.5 21.4 48 40 

Softening onset 𝛿i
1 (mm) 0.018 0.081 0.074 0.176 - - 

End displacement 𝛿I
𝑓
 (mm) 0.072 0.125 0.1 0.2 0.1 0.2 

Figure 17 : Pure mode II representation of the triangular and trapezoidal law shapes used 
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For mixed-mode behaviour (Figure 18), damage initiation stress is defined using quadratic 

stress criterion (Eq. 20), damage propagation energy is defined using linear energetic criterion 

(Eq. 21), and the softening onset is defined using the following criterion:  

(
𝛿I,m
1

𝛿I
1 )

2

+ (
𝛿II,m
1

𝛿II
1 )

2

= 1 

Where 𝛿I
1 (𝑖 = I, II) is the relative displacement at initiation of stress softening in each pure 

mode, and 𝛿I,m
1  (𝑖 = I, II) are the corresponding mixed-mode displacement. 

The results are the following: TPZ-1 law brings an increase of 6% in term of predicted strength 

of the stepped joint, while TPZ-2 brought a decrease of 5% in terms of predicted strength of the 

stepped joint for a step length of 8 mm (Figure 19). These results are understandable because 

the initial triangular law is framed by the two trapezoidal law we proposed. As seen in section 

3.2.1, the final failure happens when the stepped joint reaches an instable state, which is driven 

by the length of the process zones when the adhesive is ductile. The shape of the CZM laws 

influences the process zones lengths, this explains why the final strength of the joint is affected 

by the law shape. Therefore, it can be concluded that the use of a trapezoidal law affects slightly 

the results compared to a triangular law shape, but the deviation depends on the trapezoidal law 

Figure 18: Trapezoidal cohesive law, in pure and mixed mode 
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parameters. Given that the triangular laws results lies between the results given by the two 

trapezoidal laws tested, with constant initiation stress and constant end-displacement, it is 

reasonable to say that a triangular law was suitable to model the behaviour of a ductile adhesive 

material is the study. 

 

 

4 Conclusions 

The results of a 3D FE stepped repair model were compared to five simplified stepped joint 

models in terms bondline stress and failure strength. Different degrees of simplification, going 

from 3D FE modelling to 1D macro-element modelling were proposed. Non-linear simulations 

were done with all bonded zones modelled by cohesive behaviour. 

A stress analysis highlighted that there is very little deviation between the bondline stress in FE 

models. It confirmed that the stress state in a simplified stepped joint model is close to the one 

in the most loaded area of a stepped repair. However, ME models significantly underestimated 

bondline stress compared to FE models. Failure scenarios and predicted strength of each model 

Figure 19: Comparison between the predicted strength of a stepped joint  with 

different CZM laws. Step length is 8mm and GIIc = 4 N/mm. 
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were then compared on a large range of step lengths and adhesive fracture toughness. All 

simplified models were conservative respectively to the 3D stepped repair model. 2D stepped 

joint FE modelling under plane strain hypothesis modified the composite plies stiffness, which 

led this model to predict failure scenarios in disagreement with the other models tested. The use 

of generalized plane strain state seems to be the best option to model a 2D stepped joint 

representative for the behaviour of a 3D stepped repair: it is consistent with the full 3D model 

in terms of failure scenario, has less than 3% average absolute deviation compared to the latter, 

and saves significant computing time. 3D stepped joint modelling induced edges effects that 

lead to anticipated failure in this model. Therefore, it makes sense using 3D modelling to assess 

the strength of a stepped joint coupon, but it does not in the case if it is used to study the strength 

of a stepped repair.  

Macro-element modelling of a stepped joint is unexpectedly conservative most of the time 

compared to FE models, expect for short step length and fragile adhesive. The beam model is 

even more conservative than the bar model. There is up to 20% deviation between ME models 

and FE in the case of fragile adhesive and long steps. This shows that ME could be suitable for 

strength prediction of stepped repair, but one can say that their area of validity is restricted to 

ductile enough adhesives. 

This work could be pursued by running more simulations with various stacking sequences or 

with different types of composite materials, and by performing experimental testing of stepped 

joints, stepped-repaired coupons and stepped repaired panels. 
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7 Appendix A: Coupling matrix of 1D bar ME 

In order to determine the stiffness matrix 𝐾𝑒 that links the displacement vector 𝑈𝑒 to the nodal 

force vector 𝐹𝑒 such that 𝐹𝑒 = 𝐾𝑒𝑈𝑒, two coupling matrices 𝐿𝑒 and 𝐷𝑒
−1 are obtained using the 

constitutive relationships in equations (1) and (2) : 

 

𝐶 = 𝐷𝑒
−1𝑈𝑒 ⇔ (

𝑐1
𝑐2
𝑐3
𝑐4

) =

(

 
 
 
 
 

1 − 𝜒 1 + 𝜒 0 0

−
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−
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2 sinh 𝜂Δ
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2 sinh 𝜂Δ
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𝐹𝑒 = 𝐿𝑒𝐶 ⇔

(

 

−𝑁1(0)

−𝑁2(0)

𝑁1(Δ)
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 =
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2
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0 −𝐴1 −𝜂(1 + 𝜒)𝐴1 𝜂(1 + 𝜒)𝐴1
0 −𝐴2 𝜂(1 − 𝜒)𝐴2 −𝜂(1 − 𝜒)𝐴2
0 𝐴1 𝜂(1 + 𝜒)𝑒−𝜂Δ𝐴1 −𝜂(1 + 𝜒)𝑒𝜂Δ𝐴1
0 𝐴2 −𝜂(1 − 𝜒)𝑒−𝜂Δ𝐴2 𝜂(1 − 𝜒)𝑒𝜂Δ𝐴2 )

 
 
𝐶  

where Δ is the length of the bonded zone. 

 


