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Abstract

Thermomechanical processing of crystalline materials induces microstructural evolution such as grain nu-
cleation and growth. In the numerical simulation of these processes, grain nucleation is generally treated
as an additional ad hoc step in which circular or spherical grains are added in regions where a critical
dislocation density, stress or strain are reached. In this paper, systematic finite element simulations are per-
formed showing that the Kobayashi-Warren-Carter (KWC) phase field model and its coupling with Cosserat
crystal plasticity predict spontaneous nucleation of new grains in single crystals in the presence of lattice
orientation/rotation gradients. The numerical analysis of the stability of gradients of lattice rotation and
dislocation-based stored energy indicates that a gradient of stored energy alone is not sufficient to trigger
grain formation. As an application, the KWC-Cosserat model is used to simulate the torsion and annealing
of a copper single crystal bar with a circular cross section. This mechanical loading produces a large, fairly
uniform axial rotation gradient which induces nucleation in the form of a stack of cylindrical grains. Plas-
tic strain gradients in cross-sections predicted by the 3D finite element simulation, are not strong enough
to compete with the longitudinal nucleation process, as confirmed by experimental observations from the
literature.

Keywords: Cosserat crystal plasticity, KWC phase field model, grain nucleation, recrystallization

1. Introduction

Thermomechanical processing of crystalline materials induces significant microstructural changes such
as recrystallization, a restoration process in which new dislocation-free grains are nucleated and grow upon
further annealing (Rollett et al., 2017). Although the growth of recrystallized grains is fairly well understood
and simulated, uncertainties remain to be resolved in order to properly model the nucleation stage of recrys-
tallization. The main mechanisms generally accepted by the scientific community include strain induced
boundary migration (SIBM) and subgrain coarsening, while a third, referred to as subgrain coalescence, is
still under debate (Doherty et al., 1997; Rios et al., 2005; Raabe, 2014; Rollett et al., 2017; Ferdinand Knip-
schildt, 2022). Strain induced boundary migration (Beck and Sperry, 1950) consists of a pre-existing high
angle grain boundary growing into a grain with a higher dislocation content. Subgrain coarsening (Beck,
1949; Cahn, 1950) describes the thermally assisted growth of a subgrain at the expense of its surrounding
neighbors. Subgrain coalescence is the rotation of two adjacent subgrains to align their lattices and form
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a larger subgrain with increased orientation difference with respect to the surrounding matrix. Recrystal-
lization occurs preferentially at sites of large orientation gradients, such as grain boundaries (GB) and triple
junctions, where lattice misorientation accumulates (Rollett et al., 2017). Large orientation gradients can
also result from heterogeneous deformation. For example, transition bands are bands of high lattice strain
that separate regions of different orientations in a grain that has split during deformation. Shear bands are
another example of preferential nucleation sites due to heterogeneous deformation. They consist of thin
regions of highly strained material associated with large stored energy and orientation gradients across the
band.

A wide variety of techniques have been developed to model recrystallization in full-field simulations,
including Monte-Carlo Potts (Anderson et al., 1984; Gao and Thompson, 1996; Raabe, 2000; Liu and Lusk,
2002; Mason et al., 2015), cellular automata (Hesselbarth and Göbel, 1991; Liu et al., 1996; Raabe, 1998;
Sitko et al., 2020), level sets (Bernacki et al., 2008; Scholtes et al., 2016; Sarrazola et al., 2020a,b) and
phase field models. In the latter approach, interfaces are represented as continuous and diffuse fields varying
across a narrow region. These models are thermodynamically consistent and sharp interface properties can
be recovered as a limit case (Elder et al., 2001). Within this paradigm, two main strategies have emerged:
one in which there is one phase field variable per grain (Chen and Yang, 1994; Steinbach and Pezzolla,
1999), and one in which there are only two independent phase field variables for the whole polycrystalline
microstructure (Kobayashi et al., 2000; Warren et al., 2003), referred to as the Kobayashi-Warren-Carter
(KWC) model. Initially, both approaches to phase field modeling of microstructure evolution were devel-
oped to capture grain growth due to grain boundary energy and curvature. As such, they do not incorporate
mechanical effects and therefore cannot account for microstructural changes induced by viscoplastic defor-
mation. However, by virtue of their thermodynamic formulation, phase field models can be easily extended
to multiphysics. Indeed, other physical contributions such as elastic strain or stored energy can be taken into
account by adding them to the free energy functional (Steinbach and Apel, 2006). Classically, phase field
(and level set) models are coupled with crystal plasticity in staggered schemes. The nucleation step is han-
dled by placing a circular/spherical nucleus at grain boundaries based on a critical strain, stress or dislocation
density criterion. This ad hoc step can be deterministic or probabilistic as in Li et al. (2020). Examples of
such coupling in the multiple phase field approach to simulate static and dynamic recrystallization can be
found in (Steinbach and Apel, 2006; Takaki et al., 2008a; Takaki and Tomita, 2010) with extension to 3D
by Chen et al. (2015); as for the KWC model, examples can be found in (Takaki et al., 2008b), (Abrivard
et al., 2012a,b) and more recently in (Luan et al., 2020). In addition to these staggered schemes, mono-
lithic algorithms have also been established to solve the coupled equations. In this context, two approaches
based on generalized continua have been proposed in (Admal et al., 2018; He and Admal, 2021a) and (Ask
et al., 2018a,b, 2019, 2020). They provide a unified and thermodynamically consistent way of modeling
microstructural changes accounting for concomitant deformation and grain boundary motion. The common
feature of these models is the identification of the lattice orientation gradient in the KWC free energy with
a generalized strain measure: the geometrically necessary dislocation density tensor (Nye, 1953) in (Admal
et al., 2018) and the Cosserat lattice curvature tensor in (Ask et al., 2018b).

The Cosserat continuum, also called micropolar in (Kafadar and Eringen, 1971), enriches the classi-
cal description by attaching to each material point a triad of orthogonal directors that can undergo rigid
body rotations. This theory incorporates information about the underlying microstructure and introduces the
torsion-curvature tensor as a deformation measure through the first gradient of Cosserat microrotation. As
explained by Nye (1953), the state of dislocations represented by the dislocation density tensor is closely
related to crystal lattice curvature, leading to the concept of geometrically necessary dislocations (Ashby,
1970) which accommodate plastic lattice bending and torsion. The link between the dislocation density ten-
sor and the Cosserat curvature was pointed out by Günther (1958) and Kröner (1963). A micropolar crystal
plasticity theory was developed by Forest et al. (1997, 2000). Extensions of this initial formulation have been
proposed to include dislocation densities in (Mayeur et al., 2011; Mayeur and McDowell, 2014) and has been
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combined with a gradient enhanced hardening law (Petryk and Stupkiewicz, 2016; Stupkiewicz and Petryk,
2016) by Rys et al. (2022). The application of Cosserat crystal plasticity to dynamic recrystallization has
been considered by Blesgen (2017) in combination with a level-set approach to describe grain boundary mo-
tion. Ad hoc nucleation, however, was treated as usual. Finally, a continuum description of grain boundaries
at the submicron scale has been proposed by Fressengeas et al. (2011); Taupin et al. (2013), which com-
bines translational plastic incompatibility (dislocations) and rotational plastic incompatibility (disclinations)
through the Cosserat moment of momentum balance. The KWC approach requires proper identification of
the grain boundary energy and mobility functions from experimental measurements or molecular dynamics
simulations as recently discussed by Ngenzi et al. (2021); Ngenzi and Queyreau (2023).

The aim of this work is to contribute to the mesoscopic and full-field simulation of the nucleation stage
of recrystallization in single crystals. We emphasize that we are not proposing a new model for recrys-
tallization, but rather demonstrate the capabilities of already existing frameworks, though combined with
some novel grain boundary constitutive laws, to simulate spontaneous nucleation in single crystals . We
will show through numerical simulations with the orientation phase field models (Kobayashi et al., 2000;
Ask et al., 2018b) that lattice curvature in single crystals can lead to grain nucleation to accommodate these
gradients. The process by which nucleation occurs in these cases is not related to SIBM or subgrain coars-
ening/coalescence but emerges as a consequence of the unstable development of strong lattice gradients
inside grains. To our knowledge, these potentialities of KWC and KWC-Cosserat approaches have not been
demonstrated in earlier contributions, although Admal et al. (2018) discussed subgrain nucleation due to
plastic distortion within the framework of KWC-strain gradient plasticity. They open new perspectives in
the simulation of recrystallization phenomena. No specific material is studied since non-dimensional equa-
tions and parameters are used but the ratio between parameters refer to copper at intermediate temperature,
which is the targeted material in (Ask et al., 2018b, 2020).

The structure of this paper is as follows. The framework of orientation phase field models and Cosserat
crystal plasticity is recalled in section 2. The stability of a uniform orientation gradient is studied by means
of KWC finite element simulations in section 3. The impact of mechanics on grain nucleation is discussed in
section 4 with special attention to skew-symmetric stresses building up inside diffuse grain boundaries. The
role of stored energy induced by plastic deformation in the KWC model is assessed in 5. The final section 6
of this paper is devoted to the simulation of grain nucleation during torsion and annealing of a single crystal
rod, as an application of the whole modeling and computational framework. The Appendix A is dedicated to
the identification procedure of the used model parameters for copper as the targeted material. The asymptotic
analysis of the KWC model performed by Lobkovsky and Warren (2001) is briefly recalled in Appendix B
and details of the three-dimensional finite element implementation of the KWC-Cosserat model are given in
Appendix C.

Notation

Vectors ai are denoted by a . Second order tensors Aij and fourth order tensors Aijkl are represented
by A∼ and A

≈
respectively. The third order Levi-Civita tensor ϵijk is written as ϵ∼. The simple contraction of

two vectors aibi and two tensors AikBkj is denoted by a · b and A∼ ·B∼ . Double contraction of two tensors
AijBij is written as A∼ : B∼ . The dyadic product Aij = aibj is indicated by a ⊗b . The notations a ⊗∇ and
∇ · a represent the gradient ∂ai/∂xj and divergence ∂ai/∂xi of a vector ai. The divergence of a second
order tensor ∂Aij/∂xj is denoted by A∼ · ∇. The symmetric and skew-symmetric parts of a second order
tensor are given by:

sym(A∼ ) =
1

2

(
A∼ +A∼

T
)
, skew(A∼ ) =

1

2

(
A∼ −A∼

T
)

(1)
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The axial vector associated with a skew-symmetric second order A∼
skew is

×
A = −1

2
ϵ∼ : A∼

skew, A∼
skew = −ϵ∼ ·

×
A (2)

The continuum mechanical framework and its finite element implementation are limited to small strains,
small rotations and curvatures, even though the finite deformation model formulation is available in (Ask
et al., 2019).

2. Orientation phase fields models for microstructure evolution

2.1. Kobayashi-Warren-Carter phase field model

The two-dimensional phase field model proposed by Kobayashi et al. (2000); Warren et al. (2003) is
based on two scalar order parameters: the crystal lattice orientation θ and the crystal order parameter ϕ. The
latter varies between zero for a fully disordered phase and one for a perfect crystal. The presence of grain
boundaries and defects such as dislocations locally contribute to lower the value of ϕ. The dimensionless
free energy F̄KWC of a body Ω̄ for the KWC model is given by

F̄KWC =
FKWC

f0Λ3
=

∫
Ω̄
ψ̄(∇̄θ, ϕ, ∇̄ϕ) + ϕĒdV̄ (3)

where Ē = E/f0 is the dimensionless stored energy, f0 [J/m3] is a scaling factor for the magnitude of the
free energy density and Λ [m] is a length scale, ∇̄ = Λ∇ is the dimensionless gradient. The last term in Eq.
(3) representing the stored energy contribution due to statistically stored dislocations, was introduced in the
original KWC potential by Abrivard et al. (2012a). An alternative formulation of the stored energy potential
in the context of KWC modeling can be found in (Takaki et al., 2008b). The dimensionless free energy
density ψ̄(∇̄θ, ϕ, ∇̄ϕ) is independent of the lattice orientation due to the frame invariance requirement, and
has the following form:

ψ̄(∇̄θ, ϕ, ∇̄ϕ) = ψ(∇θ, ϕ,∇ϕ)/f0 = f(ϕ) +
ᾱ2

2

∣∣∇̄ϕ∣∣2 + s̄g(ϕ)
∣∣∇̄θ∣∣+ ε̄2

2
h(ϕ)

∣∣∇̄θ∣∣2 (4)

where the model parameters ᾱ = α√
f0Λ

, s̄ = s
f0Λ

, ε̄ = ε√
f0Λ

are dimensionless. In addition to regular
quadratic terms with respect to the gradient of the phase field variables, the singular term |∇̄θ|, not dif-
ferentiable at 0, is required to localize grain boundaries of finite width. The term |∇̄θ|2 is needed for grain
boundary motion according to (Warren et al., 2003). The functions f, g, h are dimensionless by construction
and have the following form:

f(ϕ) =
1

2
(1− ϕ)2 (5)

g(ϕ) = ϕ2 or g(ϕ) = −2 (log(1− ϕ) + ϕ) (6)

h(ϕ) = ϕ2 (7)

Note that two forms of the function g(ϕ) are employed. Using g(ϕ) as a logarithmic function, the Read-
Shockley form of the grain boundary energy is recovered (Kobayashi et al., 2000). For ϕ = 1 the logarithmic
function g(ϕ) diverges, so that a regularization is needed for the numerical implementation of the model. This
is achieved by adding a small positive constant γg ≪ 1 to the argument of the logarithm.

A feature of the model is the presence of two interface widths, one for each phase field variable, as
sketched in Fig. 1. The interface widths ℓϕ and ℓθ of the phase fields ϕ and θ depend in a non-trivial way on
the parameters ᾱ, s̄, and ε̄. With the usual parameters used in the literature, lϕ can be almost one order of

4



magnitude larger than lθ. In the matched asymptotics analysis performed by Lobkovsky and Warren (2001),
the interface width ℓθ is defined as the region of non-zero orientation gradient in a bicrystal. Rather than
adopting the usual definition ℓϕ = 2ᾱ, we have chosen to take ℓθ and ℓϕ as the distance between two points
corresponding to 10% of the maximum value of the phase field gradients, in a simple one-dimensional case:

ℓθ = 2x̄ | x̄ > 0 & |∇̄θ|(x̄) = 0.1max(|∇̄θ|) (8)

ℓϕ = 2x̄ | x̄ > 0 & |∇̄ϕ|(x̄) = 0.1max(|∇̄ϕ|) (9)

This definition has the advantage to better account for the large tails of the exponential profiles of the phase
field, as shown in Fig. 1. The interface widths also depend on the misorientation angle, as shown in Fig. 2.
At the mesoscale of a few micrometres, a typical interface width ℓθ can be selected down to a few hundred
nanometers to remain in acceptable computational time. The difference between the interface widths can
be mitigated somewhat by changing the magnitude of the contributions in the free energy density. This can
be achieved by using the Modica-Mortola potential f(ϕ) = (1 − ϕ)2/ᾱ, as in (Giga et al., 2023). A finite
element simulation using such a formulation of the KWC free energy was performed for a grain boundary
energy comparable to that of the regular KWC model, and the resulting interface widths are plotted as well
in Fig. 2 for a misorientation ∆θ = 0.4. It can be seen that the ratio ℓϕ/ℓθ decreases from approximately 6
in the classical formulation to 4 in this modified version of the free energy.
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Fig. 1. Definition of the lengths ℓϕ and ℓθ characterizing the width of the grain boundary zone.

Assuming relaxational dynamics for both phase fields, the evolution equations of the phase fields are
given by

η̄ϕϕ̇ =

(
∂ψ̄

∂∇̄ϕ

)
· ∇̄ − ∂ψ̄

∂ϕ
= ᾱ2∇̄2ϕ− f,ϕ − s̄g,ϕ|∇̄θ| −

ε̄2

2
h,ϕ|∇̄θ|2 − Ē (10)

P η̄θϕ
2θ̇ =

(
∂ψ̄

∂∇̄θ

)
· ∇̄ − ∂ψ̄

∂θ
= ∇̄ ·

(
ε̄2h∇̄θ + s̄g

∇̄θ
|∇̄θ|

)
(11)

with ẏ = ∂y/∂t̄, t̄ = t/τ0 where τ0 is a time scale. P is a dimensionless inverse mobility function assumed
to depend on ϕ and/or ∇̄θ and η̄ϕ, η̄θ are constant kinetic factors. The choice P = 1 results in a spatially
uniform mobility. Alternatively, the function P can be different in the bulk of the grain and in the diffuse
grain boundary region to avoid simultaneous shrinkage and rotation during curvature driven migration by
depending on ∇̄θ:

P = 1 or P (∇̄θ) = 1 +

(
µ̄p
ε̄

− 1

)
exp

(
−βpε̄|∇̄θ|

)
(12)
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Fig. 2. Interface widths ℓϕ and ℓθ as functions of misorientation ∆θ. The interface widths correspond to the distance between two
points of 10% of the maximum of the phase field gradient. The additional star and diamond correspond to interface widths computed
with a modified KWC free energy functional inspired from Giga et al. (2023).

A microforce formalism á la Gurtin (1996) provides a variational framework that allows to recover the
evolution equations for the phase fields. For this purpose, internal microforces and microstress vectors
π̄ϕ, π̄θ, ξ̄ ϕ

, ξ̄
θ

are associated with ϕ, θ, ∇̄ϕ and ∇̄θ respectively. The application of the principle of virtual
power gives the following balance equations in the body Ω̄ and boundary conditions on ∂Ω̄, here written in
the absence of external and surface or volume densities of microforces:

ξ̄
ϕ
· ∇̄+ π̄stoϕ + π̄disϕ = 0 in Ω̄ (13)

ξ̄
θ
· ∇̄+ π̄stoθ + π̄disθ = 0 in Ω̄ (14)

ξ̄ϕ · n = 0, ξ̄θ · n = 0 on ∂Ω̄ (15)

with

ξ̄
ϕ
=

∂ψ

∂∇̄ϕ
, ξ̄

θ
=

∂ψ

∂∇̄θ
(16)

π̄stoϕ = −∂ψ
∂ϕ

, π̄disϕ = −η̄ϕϕ̇ (17)

π̄stoθ = −∂ψ
∂θ
, π̄disθ = −ϕ2P η̄θθ̇ (18)

so that the evolution equations (10)-(11) are retrieved.
An additional evolution equation for the stored energy must be added to account for recovery in the wake
of the moving grain boundary. Following Abrivard et al. (2012a) the time evolution of the stored energy is
given by:

˙̄E =

{
−CDĒ tanh(C̄A|∇̄θ|2)ϕ̇, ϕ̇ > 0

0, ϕ̇ ≤ 0
(19)

where CD and C̄A are constants settling the amplitude and rate of recovery. The singular term 1/|∇̄θ| in Eq.
(11) requires regularization in the numerical treatment. In (Warren et al., 2003) this is achieved by replacing
the term |∇̄θ| in the free energy by a quadratic potential for orientation gradients below a numerical threshold
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1/γ̄:

|∇̄θ| ∼ Aγ(|∇̄θ|) =


γ̄

2
|∇̄θ|2 for 0 ≤ |∇̄θ| ≤ 1/γ̄

|∇̄θ| − 1

2γ̄
for |∇̄θ| > 1/γ̄

(20)

The KWC model does not take mechanics into account and is therefore not sufficient in itself to model
phenomena such as microstructural changes due to strain localization. The model developed by Ask et al.
(2018b) proposes a unified framework based on continuum thermodynamics and consistently combines the
KWC model with the Cosserat crystal plasticity theory of Forest et al. (1997).

2.2. Cosserat crystal plasticity
In a Cosserat continuum, a triad of non-deformable and orthonormal directors is attached to each material

point. The medium is therefore endowed with the displacement vector u and the independent microrotation
axial vector θ . In contrast to the KWC model of the previous section, the Cosserat model is formulated in
the 3D case involving rotations represented by 3D axial vectors. The proposed model is formulated within
the framework of small rotations, small strains and small curvatures. A small rotation is represented by an
axial vector whose components can be interpreted as rotation angles with respect to the corresponding axes.
Such an interpretation is wrong for finite rotations, for which indeed various alternative representations are
available, such as quaternions or full rotation tensors. Within the framework of small rotations adopted in
this paper, these representations are equivalent and the gradient of the axial vector coincides with the gradient
of the rotation angles. At small deformation, rotation and curvature, the Cosserat microrotation tensor R∼ is
given by

R∼ = I∼ − ϵ∼ · θ (21)

where I∼ is the second order identity tensor and ϵ∼ is the Levi-Civita permutation tensor. Within this frame-
work, the deformation measures are the generally non-symmetric Cosserat deformation and curvature (or
wryness) tensors e∼ and κ∼, respectively:

e∼ = u ⊗∇+ ϵ∼ · θ (22)

κ∼ = θ ⊗∇ (23)

The stress measures power-conjugate to the deformation rates are the force-stress tensor σ∼ and the couple-
stress tensor m∼ , which are also generally non-symmetric. They must satisfy the balance of momentum and
balance of moment of momentum, recalled here in the static case and in the absence of volume forces and
moments:

σ∼ · ∇ = 0 (24)

m∼ · ∇ − ϵ∼ : σ∼ = 0 (25)

Equation (25) is similar to the KWC evolution equation for θ given by equation (11) where the term inside
the brackets on the right hand side can be interpreted as a couple stress tensor m∼ .

The total strain tensor is additively decomposed into elastic and plastic contributions:

e∼ = e∼
e + e∼

p (26)

The decomposition of the curvature tensor into plastic and elastic parts is considered for small and finite
deformations respectively in Forest (1998); Forest et al. (1997) but it is assumed to be purely elastic in the
present work for simplicity.
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The classical free energy potential of a Cosserat continuum is based on quadratic contributions for both
the strain and curvature tensors:

ψ(e∼
e,κ∼) =

1

2
e∼
e : E

≈
: e∼

e +
1

2
κ∼ : E

≈
κ : κ∼ (27)

where E
≈

and E
≈
κ are fourth order tensors of elastic moduli. Extensions to rank-one and combined rank-one

and quadratic contributions of the curvature tensor in the free energy have been considered by Forest and
Ghiglione (2023).

In the isotropic case the constitutive equations are

σ∼ = λTr (e∼
e)I∼ + 2µsym(e∼

e) + 2µcskew(e∼
e) (28)

m∼ = αTr (κ)I∼ + 2βsym(κ∼) + 2γskew(κ∼) (29)

where µ, λ are the Lamé coefficients and the parameters α, β, γ are the torsion-bending stiffnesses. The
coupling modulus µc acts as a penalty parameter, forcing the Cosserat micro-rotation to follow the lattice
rotation ω∼

e according to (Ask et al., 2018b):

ω∼
e = skew(e∼

e)− ϵ∼ · θ (30)

By setting a sufficiently high µc, the skew-symmetric part of the elastic strain almost vanishes and the
Cosserat micro-rotation becomes equal to the lattice rotation. The lattice curvature is then related to the
dislocation density tensor α∼ by the following equation due to Nye (1953):

α∼ ∼ κ∼
T − Tr (κ∼)I∼ (31)

The Cosserat curvature can therefore be interpreted as an approximate measure of the dislocation density
tensor.

2.3. KWC-Cosserat model

In this section we briefly recall the coupled KWC-Cosserat model proposed by Ask et al. (2018a,b, 2020).
This model is valid for small strains, rotations and curvatures and only considers the Read-Shockley part of
the grain boundary energy-misoriation curve. It is therefore limited to relatively low angle grain boundaries.
In contrast to the original KWC model, and in the same way as in the Cosserat model presented in the
previous section, the coupled model is introduced in the full 3D case where the orientation is represented by
the small axial vector θ . This formulation couples the KWC phase field model to Cosserat mechanics via
the following free energy potential:

ψ̄(ϕ, ∇̄ϕ,θ ⊗ ∇̄, e∼
e, ρα) = ψ(ϕ,∇ϕ,θ ⊗∇, e∼

e, ρα)/f0 (32)

= f(ϕ) +
ᾱ2

2

∣∣∇̄ϕ∣∣2 + s̄g(ϕ)∥θ ⊗ ∇̄∥+ ε̄2

2
h(ϕ)∥θ ⊗ ∇̄∥2︸ ︷︷ ︸

KWC GB energy

+
1

2
sym(e∼

e) : Ē
≈

s
: sym(e∼

e) + 2µ̄cskew(e∼
e) : skew(e∼

e)︸ ︷︷ ︸
Cosserat strain energy

+ ψ̄ρ(ϕ, ρ
α)︸ ︷︷ ︸

SSD accumulation

(33)

where the total elastic strain tensor has been split into two parts. The tensor E
≈
s is the classical tensor of the

elastic moduli acting on the symmetric elastic strain tensor, whereas µ̄c takes care of the skew-symmetric
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deformation contribution. The stored energy potential, which takes into account the accumulation of statis-
tically stored dislocations (SSD) is given by

ψ̄ρ(ϕ, ρ
α) =

1

2
ϕµ̄b̄2

N∑
α=1

N∑
β=1

hαβ ρ̄β (34)

where µ, b, ρα, hαβ are respectively the shear modulus, the Burgers vector, the dislocation density of the slip
system α and the slip system interaction matrix.

In this coupled formulation, the balance equations in the absence of external forces are then given by

∇̄ · ξ̄
ϕ
+ π̄stoϕ + π̄disϕ = 0 in Ω̄ (35)

σ̄∼ · ∇̄ = 0 in Ω̄ (36)

m̄∼ · ∇̄+ 2
×
σ̄ = 0 in Ω̄ (37)

The field equations are complemented by Neumann boundary conditions setting the values of the generalized
fluxes ξ̄

ϕ
· n , σ̄∼ · n , m̄∼ · n on ∂Ω̄.

The various stress measures satisfy the following constitutive equations, after derivation of the free en-
ergy potential (33):

sym(σ̄∼) = Ē
≈

s
: ε∼

e (38)

×
σ̄ = 2µ̄c

×
e e (39)

m̄∼ =

[
s̄g(ϕ)

1

∥θ ⊗ ∇̄∥
+ ε̄2h(ϕ)

]
θ ⊗ ∇̄ (40)

ξ̄
ϕ
= ᾱ2∇̄ϕ (41)

The inelastic strain rate given by the following Eq. (42) is assumed to have contributions from crystal
plasticity in the bulk of the grain and viscoelastic/viscoplastic relaxation of the skew-symmetric stresses at
the grain boundary in response to lattice reorientation:

ė∼
p =

N∑
α=1

γ̇ ℓ α ⊗ n α

︸ ︷︷ ︸
Crystal plasticity

in the bulk of the grain

− ϵ∼ · θ̇ ⋆

︸ ︷︷ ︸
Relaxation of skew-symmetric

stress at the GB

(42)

where ℓ α and n α are the slip direction and normal to the slip plane for the slip system α. The additional
contribution to the classical crystal plasticity part is indeed necessary since during grain boundary migration,
local lattice reorientation will occur inside the grain boundary and give rise to skew symmetric stresses, as
shown by Eq. (39) combined with Eq. (30). This change of lattice orientation reference for a zero-stress
state is represented by the axial vector θ ⋆, a grain boundary contribution to the skew symmetric part of the
plastic deformation e∼

p. In other words, in the bulk of the grain, lattice rotation is only due to elastic/plastic
deformation, whereas in the grain boundary an orientation change is prompted by the evolution of θ ⋆,
the orientation reference with zero skew-symmetric stress. This inelastic mechanism is associated with a
relaxation equation whose driving force is the skew-symmetric stress. This constitutive equation is described
in detail in section 4, where it is also shown that without this grain boundary relaxation, grain boundary
motion would be hindered. Note that the quantities that appear in the constitutive laws and are defined in
the crystal frame, such as the slip direction and normal to the slip plane in Eq. (42), are rotated based on
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the rotation matrix associated with θ . This means that the crystal orientation is updated at each material
point/integration point.

The slip rate γ̇ in Eq. (42) is given by the power law function:

γ̇ =

N∑
α=1

〈
|τ̄α| − R̄α

K̄

〉n

sign(τ̄α), τ̄α = σ̄∼ : ℓ α ⊗ n α, R̄α = τ̄0 + χµ̄b̄

√√√√ N∑
β=1

hαβ ρ̄β (43)

where ⟨•⟩ = max(0, •), K̄, n are viscoplasticity parameters, and χ ∼ 0.3 is a coefficient. The resolved shear
stress is denoted by τ̄α and the critical resolved shear stress by R̄α. The evolution of the SSD density follows
a Kocks-Mecking law modified to account for static recovery in the wake of a moving grain boundary (Ask
et al., 2020):

˙̄ρ α =



1

b̄

 1

Kr

√∑
β

ρ̄β − 2d̄ρ̄α

 |γ̇α|ρ̄αCD tanh
(
C̄A|θ ⊗ ∇̄|

)
ϕ̇, ϕ̇ > 0

1

b̄

 1

Kr

√∑
β

ρ̄β − 2d̄ρ̄α

 |γ̇α|, ϕ̇ ≤ 0

(44)

As a consequence of the introduction of the reference orientation θ ⋆ in Eq. (42) and of the presence of
the penalty modulus µ̄c, the skew-symmetric part of the elastic strain tensor is now given by

×
e e =

×
ω e − θ − θ ⋆ ≃ 0 ⇒ ×

ω e ≃ θ + θ ⋆ (45)

As the Cosserat microrotation is associated with the lattice orientation, it is generally non-zero in the initial
state. Thus, the reference configuration can be stress-free by setting proper initial conditions for the θ ⋆-field:

θ ⋆(t = 0) = −θ (t = 0) (46)

The inelastic grain boundary behavior is therefore necessary to accommodate an initial orientation distribu-
tion with a stress-free state. It can be seen as a reference orientation state of the grain, whose evolution law
ensures that it is inherited to a region swept by a migrating grain boundary.

The finite element implementation of the presented models is based on the weak formulation of the
balance laws. The discretization and resolution methods are described in the references (Abrivard et al.,
2012a; Ask et al., 2018b) while details on the extension to the original 3D framework are given in Appendix
C. The implicit finite element solver Z–set is used (Besson and Foerch, 1997; Z-set, 2022). Global resolution
is carried out using a Newton-Raphson method and the nonlinear constitutive laws are time-integrated by
means of a Runge-Kutta method with automatic time stepping, as described in (Besson et al., 2009).

3. Stability of an orientation gradient for the Kobayashi-Warren-Carter model

The stability of a prescribed lattice orientation gradient is investigated for the KWC model by means of
quasi-1D finite element simulations. In this section, the stored energy Ē due to SSDs is zero in the crystal.
Numerical experiments are carried out, in which the time evolution of the phase fields and key indicators are
studied. The calculations are performed on a domain of total length 2L̄ = 20 with one element in the height
and 400 rectangular quadratic elements with reduced integration (8 nodes and 4 Gauss points) in the length.

The parameters used throughout are given in table 1 and correspond to pure copper at around 200 ◦C. The
identification of these material parameters is detailed in Appendix A but a summary of the delicate procedure
is given here. The parameters ᾱ, s̄ are obtained by fitting the grain boundary energy-misorientation curve
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on that of a ⟨100⟩ Cu tilt boundary (Wolf, 1990). The parameter ε̄ controls the grain boundary width and is
chosen in order that the grain boundary spans over a few finite element meshes to avoid pinning due to the
discretization. With these parameters, the interface widths are typically ℓϕ ∼ 1.6 and ℓθ ∼ 0.3 µm (taking
the normalizing distance Λ = 1 µm). The parameters µ̄p and βp must be large enough to distinguish between
the behavior in the bulk of the grain and at the grain boundary. Once these parameters are set, numerical
experiments of stored energy driven migration are performed to determine the mobility coefficients η̄ϕ and
η̄θ. The resulting grain boundary mobility is then compared with the data measured by Vandermeer et al.
(1997) to obtain a rough estimate of the temperature. The parameters γ and γg are appropriate regularization
values for the rank one curvature term in the free energy density and logarithmic function g(ϕ) respectively.

Parameter ᾱ s̄ ε̄ η̄ϕ η̄θ µ̄p βp γ̄ γg

Value 0.31 0.75 1 10 0.1 106 102 104 10−4

Tab. 1. Model parameters used in the simulations with the KWC model.

3.1. Uniform orientation gradient

The first configuration considered is that of a spatially uniform initial orientation gradient in a single
crystal. These initial conditions (IC) are summarized in the equation (47) with ∆θ = 0.3. Note that the initial
uniform field ϕ = 1 is not in equilibrium in the orientation gradient field. Dirichlet boundary conditions (BC)
are imposed on the left and right boundaries of the domain for both ϕ and θ (equation (48)). This type of
boundary condition for θ enforces the presence of a lattice orientation gradient from the left to the right.
Multiple point constraints are also enforced at the top and bottom edges to ensure periodicity along the
vertical direction (quasi-1D simulation).

IC:

{
θ(t̄ = 0, x̄) = ∆θ x̄+L̄

2L̄

ϕ(t̄ = 0, x̄) = 1
(47)

BC:

{
θ(t̄, x̄ = −L̄) = 0, θ(t̄, x̄ = L̄) = ∆θ

ϕ(t̄, x̄ = −L̄) = ϕ(t̄, x̄ = L̄) = 1
(48)

The profiles of ϕ and θ are plotted at different times in Fig. 3. First, as can be seen in Fig. 3a, the crystal
order field reaches its equilibrium value around t̄ = 100 and grain boundaries begin to form near the left and
right boundaries. At t̄ = 350, fluctuations of the order and orientation fields are observed in the linear central
zone. These fluctuations reveal the unstable character of the linear orientation distribution. Next, the linear
profile of the lattice orientation splits into a series of piece-wise constant regions that can be interpreted as
subgrains with low angle grain boundaries. Initially, the distance between the neighboring grain boundaries
is smaller than ℓϕ. Consequently, the exponential tails of the phase field profiles of neighboring grains
interact strongly and the subgrains merge to form grains with larger misorientations (Fig. 3c). The process
evolves toward well separated grains will larger misorientations (Fig. 3d). The interfaces considered here
are flat so that the observed migration of low angle grain boundaries is not due to GB curvature nor stored
energy. The coalescence results from the overlap of the diffuse grain boundary regions of neighboring newly
formed grains. Thus, the interface width ℓϕ imposes a constraint on the maximum number of grains N that
can be nucleated along the initial single crystal of total length 2L̄: N < 2L̄/ℓϕ.
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10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.00

0.05

0.10

0.15

0.20

0.25

0.30

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.70

0.75

0.80

0.85

0.90

0.95

1.00

(b) t̄ = 350
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(c) t̄ = 600
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(d) t̄ = 10000

Fig. 3. Snapshots at different times t̄ of the θ (left) and ϕ (right) profiles for a single crystal subjected to an initial uniform orientation
gradient. The initial conditions are indicated by thin dashed lines.
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To assess the existence of a threshold of orientation gradient to trigger nucleation in the KWC model,
simulations were performed with different magnitudes of the orientation gradient ∆θ ∈ {0.01, 0.3, 0.6}.
As can be seen in Fig. 4, it appears that (sub)grains are nucleated even for very low orientation gradients.
Furthermore, as expected from the analysis in (Lobkovsky and Warren, 2001), the misorientation between
grains as well as the minimum value of ϕ are found to depend on the value of the initial orientation gradient.
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Fig. 4. Profiles of θ (left) and ϕ (right) at t̄ = 10000 for single crystals starting from initial homogeneous orientation gradients of
different magnitudes.

3.2. Sinusoidal perturbation of the initial orientation gradient

The initial condition on the orientation field is now modified by adding a sinusoidal perturbation of
spatial period λ̄ and amplitude A:

IC:

θ(t̄ = 0, x̄) = ∆θ
x̄+ L̄

2L̄
+A sin

(
2π

λ̄
x̄

)
ϕ(t̄ = 0, x̄) = 1

(49)

Figure 5 shows the profiles of ϕ and θ for two values of the perturbation spatial period. It can be seen that the
fluctuations of θ are captured by ϕ and the number of grains initially nucleated depends on λ̄. However, the
resulting microstructure exhibits overlapping diffuse grain boundaries that tend to coalesce. As in section
3.1 the width of the diffuse grain boundary zone for ϕ therefore sets a maximum value for the final number
of grains.
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(a) λ̄ = 10
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Fig. 5. Profiles of θ (left) and ϕ (right) for a single crystal starting from an initial orientation gradient with a sinusoidal perturbation
of spatial period (a) λ̄ = 10, (b) λ̄ = 1 and amplitude A = 0.01.

3.3. Nucleation statistics

A study of the time evolution of the microstructure was carried out by following the evolution of indica-
tors for t̄ ∈ [0, 107] with data acquisition every 1000 increment of t̄. At each time steps, we have collected
the sets of values of (i) ϕ at the cusps defining the very center of the grain (sub-)boundaries, noted min(ϕ);
(ii) misorientation defined as the amplitude of the local jump of θ, noted ∆θ; (iii) the number and (iv) the size
of the grains defined by the segments in the θ profiles where ∇̄θ is below 10−4. The average, the minimum
and the maximum in these sets are plotted in Fig. 6 with solid, blue and red lines respectively. The gray
filling spans the interval [average ± standard deviation] for the considered quantity at time t̄. Grains are
defined as regions with uniform orientations. From Fig. 6a and 6b it is clear that the single crystal is rapidly
fragmented into a large number of very small grains which then merge to form fewer and larger grains until
only a bicrystal remains as t̄ → ∞. This phenomenon is due to the Dirichlet boundary conditions which
force the existence of a lattice orientation gradient. However, if zero flux boundary conditions were imposed
for θ, the final state would be a single crystal, as this is the configuration with the lowest total energy due
to the absence of interfaces. In Fig. 6c the minimum value of ϕ decreases globally as grains are merging,
increasing the misorientation as seen in Fig. 6d. The peaks in the maximum value of min(ϕ) (blue curve) are
associated with these mergers: when two grains merge, the misorientation between them decreases, resulting
in less deep ϕ cusps. As an example, a low angle GB between grain 2 and 3, starting from the left, can be
observed in Fig. 3d (left). It is bound to vanish after sufficient time due to the interaction between the diffuse
grain boundaries: as visible on the profile of ϕ there is no plateau, which is indicative of interacting fields.
The configuration will therefore evolve towards a more stable one that comprises only three grains. Fig. 6a
shows that the tricrystal is stable for a long time but is not the “final” configuration: with the KWC model,
the final configuration is either a bicrystal or a single crystal, depending on the boundary conditions chosen
for θ. If Dirichlet BC are applied, as done in the present example of Fig. 3d, then the final microstructure
will be a bicrystal whose misorientation depends on the value of the BC. On the other hand, if zero flux BC
are enforced the final configuration will be a single crystal. However, the plateaus of Fig. 6a indicate that
grain distributions can be stable over long periods after the initial transient regime.

In the case of an initial uniform gradient of θ with a sine perturbation with period λ̄ = 1 and λ̄ → ∞
(no perturbation), the time evolution of the total energy, computed numerically by integrating the free energy
density over the whole domain, is also shown in Fig. 7. This confirms that the nucleation and merger
processes due to orientation gradients lead to a global decrease in the total energy of the system. This is
expected since the evolution equations of the KWC model are based on a minimization of the total energy.
This also explains why, between t̄ = 6× 105 and t̄ = 1.5× 106, the tri-crystal slowly reorients towards the
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more energetically favorable bicrystal. Note that energy of the final state corresponds to the grain boundary
energy calculated with the matched asymptotics analysis of Lobkovsky and Warren (2001) that is briefly
recalled in Appendix B.
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Fig. 6. Time evolution of the number of grains (top left), dimensionless grain size (top right) as well as minimum value of ϕ (bottom
left) and misorientation ∆θ (bottom right) for a single crystal with initial homogeneous orientation gradient with the KWC model.
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Fig. 7. Time evolution of the total dimensionless energy for a single crystal starting from a uniform orientation gradient perturbed
by a sine with period λ̄. The horizontal dashed line corresponds to the grain boundary energy of a bicrystal computed with the
asymptotic analysis of Lobkovsky and Warren (2001).

4. Influence of mechanics on the stability of an orientation gradient

In this section, the previous stability problem is reconsidered to evaluate the effect of mechanics on
the grain boundary formation. In the Cosserat-phase field model, stresses can develop in the diffuse grain
boundary zones. Different formulations of the relaxation function are considered, namely a viscoelastic
Maxwell model and a viscoplastic Norton law with threshold. These are illustrated in Fig. 8. The alternative
Kelvin-Voigt model used in Ask et al. (2018b), also shown in Fig. 8, is not discussed in this paper. Finite
element simulations are performed with the parameters given in table 2 on a regular two-dimensional domain
of total length 2L̄ = 10 with one element in height and 200 elements in length. This represents half of the
region studied in the previous section, with the same element size, for saving computation time. Rectangular
elements with quadratic shape functions with reduced integration are used. Only the viscoelastic and vis-
coplastic behavior of grain boundaries is considered in this section, which means that no dislocation slip is
activated in the stability analysis. The material strip is not mechanically loaded, meaning that the prescribed
mean stress is zero and that internal stresses can develop in the grain boundary regions.

(a) Viscoelastic Kelvin-Voigt model used in
Ask et al. (2018b,a).

(b) Viscoelastic Maxwell model used in Ask
et al. (2020) and this work.

(c) Viscoplastic Norton model with threshold
introduced in this work.

Fig. 8. Rheological models for relaxation of the skew-symmetric stresses in the diffuse grain boundaries.

Parameter Ēe ν ᾱ s̄ ε̄ η̄ϕ η̄⋆ µ̄p βp γ̄ γg

Value 56 000 0.3 0.31 0.75 1 10 1 106 103 104 10−4

Tab. 2. Model parameters used in the simulations with the coupled model, in the absence of crystal plasticity.
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4.1. Maxwell rheological model for the relaxation of the skew-symmetric stress
The first viscoelastic law considered is that of a Maxwell rheological model according to Ask et al.

(2020). The evolution of the reference orientation is then given by

θ̇
⋆
=

1

η̄⋆P (∇̄θ)
×
σ̄ = −×̇

e e + ω̇ e − θ̇ (50)

where η̄⋆ is a constant viscosity parameter and P (∇̄θ) is the same function as in Eq. (12). Inserting Eq. (50)
into the momentum balance (37) gives the following evolution for θ :

η̄⋆P (∇̄θ)
[
×̇
e e − ×̇

ω e + θ̇

]
=

(
s̄g

θ ⊗ ∇̄
∥θ ⊗ ∇̄∥

+
ε̄2

2
h∥θ ⊗ ∇̄∥

)
· ∇̄ (51)

The main difference from the original KWC evolution equation (11) is the addition of the relative rotation

rate
×̇
e e− ×̇

ω e emerging from the mechanical coupling. Alternatively, a Kelvin-Voigt relaxation law has been
used as in (Ask et al., 2018b). Note that, similarly to Ask et al. (2020) and unlike (Warren et al., 2003; Ask
et al., 2018b), it was decided not to include the phenomenological coupling term ϕ2 multiplying P (∇̄θ), as
it appeared to significantly increase the computational cost in the coupled model.

The following initial and boundary conditions are used to evaluate the effect of relaxation of the skew
symmetric stress during grain boundary formation:

IC:

{
ϕ(t̄ = 0, x̄) = 1

θ(t̄ = 0, x̄) = ∆θ
2 (tanh(15x̄) + 1)

(52)

BC:


ϕ(t̄, x̄ = −L̄) = ϕ(t̄, x̄ = L̄) = 1

θ(t̄, x̄ = −L̄) = 0, θ(t̄, x̄ = L̄) = ∆θ

ūx = ūy = 0 at the bottom left corner
ūy = 0 at the top right corner

(53)

with ∆θ = 0.3. Multiple point constraints are also imposed on the top and bottom edges to ensure the
periodicity of ϕ, θ, ūx, ūy along the vertical direction. The objective is to analyze the build-up and relaxation
of stresses in the diffuse GB zone during the formation of a grain boundary. The out-of-equilibrium initial
conditions lead to instantaneous build-up of stresses in the GB region which then relax according to the
viscoelastic law for θ⋆. The results of the simulation are shown in Fig. 9, which shows the element-averaged

profiles of sym(σ̄∼)12 and
×
σ̄ = skew(σ̄∼)12 at different times during the grain boundary formation. The

stresses sym(σ̄∼)12 and skew(σ̄∼)12 are clearly mirror images of each other with respect to the line ȳ = 0 and
the profiles are also antisymmetric with respect to x̄ = 0. The stresses vanish in the region where |∇̄θ| ≠ 0,
as expected from the localization function P (∇̄θ). Numerical residual stresses of the order of 10−2 are
present after full relaxation.

The existence of internal stresses in the grain boundary region is a physically relevant feature due to
strong elastic strains induced by change of atomic order. Such nanoscale residual stresses can be computed
by molecular dynamics but also continuum theories. Interestingly, the profile of sym(σ̄∼)12 resembles that
of the elasto-plastic theory of dislocation and disclination fields by Taupin et al. (2013), as shown in Fig.
10, probably because they both share the same generalized balance equation for the moment of momentum
and associated couple stress tensor. It can be seen that they show similar trends, such as sharp variation in
a narrow region and anti-symmetric profile. However, a major difference is that in the nanoscale model of
Taupin et al. (2013) a residual stress still remains within the grain boundary at equilibrium, whereas in the
micron-scale model of Ask et al. (2020) relaxed grain boundaries are assumed to be stress-free and only
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Fig. 9. Relaxation of the element averaged symmetric shear stress component σ̄sym
12 (in red on the left) and skew-symmetric shear

stress
×
σ̄ (in blue on the right) for the KWC-Cosserat model with Maxwell type relaxation during grain boundary formation. The

vertical dashed lines mark the region where |∇̄θ| ̸= 0.

transient stresses are observed. Nevertheless, these residual stresses can play some role in the GB formation
and migration. That is why a viscoplastic formulation of the GB behavior including a threshold is introduced
in the next section.
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Fig. 10. Superimposed stress and rotation profiles for a grain boundary according to Taupin et al. (2013) (left) and using the KWC-
Cosserat model of Ask et al. (2020) (right).

4.2. Introduction of a threshold: residual skew-symmetric stresses

The second relaxation law considered in this paper is based on a Norton formulation with threshold,
which gives the following evolution for θ̇

⋆
:

θ̇
⋆
=

1

η̄⋆P (θ ⊗ ∇̄)

〈
|
×
σ̄| − σ̄c
K̄c

〉nc ×
σ̄

|
×
σ̄|

(54)

where σ̄c is the stress threshold for relaxation and K̄c, nc are viscoplasticity type parameters. In the follow-
ing, the two-dimensional case is considered with K̄c = nc = 1, so that

θ̇⋆ =
1

η̄⋆P (∇̄θ)

〈
|
×
σ̄| − σ̄c

〉
sgn(

×
σ̄) (55)

The influence of the value of the stress threshold σ̄c on the profiles of ϕ and θ during grain boundary for-
mation is shown in Fig. 11. As σ̄c → 0 the behavior of the Maxwell relaxation model is recovered and the
profiles are identical to the original KWC model. However, increasing the threshold leads to a delay in the
development of the equilibrium profiles.
The effect of the threshold on the stress profile of skew(σ̄∼)12 is illustrated in Fig. 12. Fluctuations of stresses
are observed in the GB zone at the initial stage due to the strong out-of-equilibrium initial conditions. At
the point of maximum relaxation (t̄ = 1000), all stresses above the threshold have decreased to the value of
σ̄c, forming plateau-like regions. The stresses below this value are not relaxed, which explains why some
oscillations below σ̄c still remain. The introduction of a viscoplastic GB law with threshold enables therefore
the existence of residual stresses in the GB region.
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Fig. 11. Influence of the magnitude of the critical skew-symmetric stress in the KWC-Cosserat model with Norton law with threshold
on the profiles of ϕ and θ at t̄ = 200 during grain boundary formation.
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Fig. 12. Relaxation of the skew-symmetric stress for the KWC-Cosserat model with Norton relaxation law with threshold during
grain boundary formation.

4.3. Grain nucleation in the KWC-Cosserat medium in the absence of crystal plasticity

The stability analysis of section 3.2 is revisited by including mechanical aspects in the problem, in
particular the effect of skew-symmetric stresses. The nucleation behavior of the KWC-Cosserat model is
assessed here for a single crystal subjected to a uniform orientation gradient. A first simulation is run with
the KWC model to determine the equilibrium profile of ϕ with respect to the initial orientation field by
imposing a linear θ. The obtained fields then serve as initial conditions in subsequent computations in order
to limit oscillations caused by too far from equilibrium initial conditions. Then the stability of a uniform
orientation gradient is investigated again by adding elastic and viscoelastic/viscoplastic effects in the grain
boundaries with Young’s modulus Ee = 130 GPa and Poisson’s ratio ν = 0.3. For the Maxwell relaxation
law, no significant differences are observed with regards to the original KWC model, as shown in Fig. 13a.
When a Norton relaxation model with threshold is chosen, the existence of the yield stress can substantially
delay grain boundary nucleation as shown in Fig.13b. For example, for a value of σ̄c = 0.5 or σ̄c = 0.25 the
nucleation process is still in its early stages at t̄ = 1000 as the profiles in the central zone away from the left
and right boundaries of the domain are the same as the initial conditions. In comparison, lower values of the
threshold, such as σ̄c = 0.05, allow nucleation to occur at the same t̄. As expected, for σ̄c → 0 the behavior
is similar to the KWC model. The introduction of residual stresses can therefore delay or even impede the
GB formation and migration.

When using the coupled model, the final microstructure will depend on the presence of residual stresses:
when total stress relaxation is allowed (i.e without a threshold) the expected stable configuration as t̄→ ∞ is
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either a single crystal or a bicrystal, possibly after (unrealistically) long time depending on the configuration.
However, when there is a threshold that only allows partial stress relaxation, the presence of residual stresses
will delay or even prevent further microstructure evolution. To this end, the threshold must initially be low
enough to allow nucleation to occur within a reasonable time, and the “locking” of certain configurations
becomes possible.
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Fig. 13. Profiles of ϕ (left) and θ (right) at t̄ = 1000 for a single crystal with a uniform initial orientation gradient for the KWC-
Cosserat model with Maxwell relaxation law (top) and Norton law with threshold (bottom).
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5. Gradient of stored energy

Elastic energy can be stored by dislocations in the absence of orientation gradient as a result of plasticity
induced dislocation multiplication and accumulation (SSDs), see Abrivard et al. (2012b). A Gradient of
stored energy Ē is known to promote GB migration. In this section, we first study the influence of mechanics
on the stored energy driven migration of a flat interface and then investigate the stability of such a gradient in
the KWC-Cosserat medium. In the latter study, the initial crystal orientation is assumed to be homogeneous.
Simultaneous gradients of orientation and stored energy Ē are then considered. The parameters given in
table 2 are used in all the simulations with CD = 100 and C̄A = 1 to account for full recovery behind the
moving grain boundary.

5.1. Stored energy driven grain boundary migration in a 1D bicrystal

The energy coming from the accumulation of SSD provides an important driving force for grain boundary
migration and recrystallization. Stored energy Ē was introduced in the KWC model by Abrivard et al.
(2012a) where it was shown that the order parameter is modified by the presence of stored energy and
reaches the following value at equilibrium:

ϕeq = 1− Ē (56)

Simulations of stored energy driven migration are performed in a bicrystal by prescribing an initial hetero-
geneous stored energy distribution: Ē = 0.01 on the left side of the grain boundary and Ē = 0.1 on its right
side. A first preliminary computation is performed with the KWC model to find the equilibrium profiles of
ϕ and θ. In a second time, the symmetric and skew-symmetric stresses are relaxed by the KWC-Cosserat
model with the Maxwell GB model. The resulting ϕ, θ and Ē fields then serve as initial conditions for
the simulation of stored energy-driven migration in a bicrystal. Figure 14 shows ϕ and θ at t̄ = 400 for
the original KWC model and the two versions of the KWC-Cosserat model presented above. Comparing the
KWC-Cosserat model with Maxwell’s relaxation law and the original KWC model, the differences in the ob-
served kinetics are due to the dissimilar evolution equations for θ, Eq. (11) and (51). For the KWC-Cosserat
model with threshold, increasing the magnitude of σ̄c slows down the grain boundary motion and can even
pin it if it is high enough. Pinning of the grain boundary is observed here for σ̄c = 0.5 but this property will
depend in general on the ratio between the values of the stored energy jump and GB yielding threshold.
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Fig. 14. Comparison of the KWC and KWC-Cosserat model with different GB relaxation laws for the stored energy driven migration
of a flat interface. The profiles of ϕ (on the left) and θ (on the right) are plotted at t̄ = 400.
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5.2. Stability of an SSD density gradient

Similar to section 3, the effect of a constant SSD-based stored energy gradient on nucleation is studied
with the original KWC model. For that purpose, a linear profile of slope ∆Ē is prescribed in a single crystal
with uniform lattice orientation. Zero flux boundary conditions are applied for both ϕ and θ. As shown in Fig.
15, no grain has been formed and ϕ simply follows equation (56) away from the domain boundaries where
the boundary conditions impose ∇̄ϕ · n = 0, n being the outward normal vector. The lattice orientation
remains uniform and equal to its initial value, meaning that a decrease in the crystal order due to the presence
of defects (here the SSD) does not lead to a lattice reorientation.
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Fig. 15. Profiles of ϕ (left) and Ē (right) for a single crystal starting from uniform gradients of stored energy of different magnitudes.
The orientation θ is uniform and equal to 0. The simulations are performed with the KWC model.

5.3. Stability of superimposed SSD and GND density gradients

Now combining uniform initial gradients of both orientation and stored energy, the former triggers grain
nucleation whereas the latter provides a driving force for grain boundary motion. Figure 16 shows such
simulations with the KWC model comparing the influence of the magnitude of the stored energy gradient
on the resulting microstructure. During the early stages of nucleation, when grain boundaries are not well
resolved, the stored energy influences the dynamics of the fluctuations. Therefore the subsequent merging
of neighboring grains is different from the previous calculations without stored energy, as illustrated by the
difference in the profiles of ϕ in Fig. 16a at t̄ = 51. At a later stage, when the grain boundaries are better
established, merger of neighboring grains is promoted by the grain boundary motion induced by the stored
energy. Such a phenomenon can be seen in Figs. 16c-16b, where the grain boundaries at x̄ = −2.8 and
x̄ = −1.1 at t̄ = 51 have merged. The fact that migration occurred in part due to stored energy is evident
in the stored energy profile of Fig. 16b, as a decrease in stored energy indicates recovery in the wake of the
moving grain boundary. These figures also show stored energy driven migration without grain coalescence,
as the grain boundary located at x̄ = 1.6 has moved to the boundary of the domain at t̄ = 2001.
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Fig. 16. Profiles of ϕ (top), Ē (middle) and θ (bottom) for a single crystal starting from uniform initial gradients of stored energy
and orientation. The simulations are performed with the KWC model and are plotted at t̄ = 51 on the left and t̄ = 2001 on the
right.
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6. Grain nucleation during torsion of a single crystal rod

The KWC-Cosserat approach to grain nucleation and GB migration is now applied to a 3D structural
problem for which orientation and SSD density gradients will be naturally induced by crystal plasticity in an
initially homogeneous single crystal. The torsion of a cylindrical bar with circular cross-section made of a
copper single crystal is computed by the finite element method. A 3D simulation framework is required by
the anisotropy of the problem. Longitudinal rotation gradients are induced by torsion. Strain gradients are
expected from the center to the outer surface of the bar. In addition, the cubic symmetry of the FCC crystal
leads to gradients of plastic slip along the circumference of each cross-section as demonstrated numerically
and experimentally by Nouailhas and Cailletaud (1995). This is due to the varying resolved shear stress on
each slip system along the circumference. Torsion of elastic-plastic Cosserat bars was recently considered in
the isotropic case by Ghiglione and Forest (2022), in the case of strain gradient crystal plasticity by Scherer
et al. (2020) and Phalke et al. (2021) where various crystal orientation effects on crystal hardening were
investigated. Torsion of a single crystal bar with square cross-section was performed using Cosserat crystal
plasticity at finite strains by Blesgen (2015). The present simulations of KWC-Cosserat single crystal bars
are the first of this kind. They are performed to show whether the gradients produced by torsion in a single
crystal are sufficient to trigger GB formation and grain nucleation.

6.1. Problem setting

As shown in the above sections, the ability of the KWC model to handle grain nucleation in the presence
of orientation gradients is naturally inherited in the coupled model. So far, these gradients were prescribed
as initial conditions. In contrast, in this section the orientation gradients are produced through mechani-
cal loading. Indeed we will show through numerical examples that the torsion of a single crystal rod with
circular cross-section leads to a uniform orientation gradient along the axis of the cylinder. The compu-
tation is made of two loading sequences: first, a torsional loading is applied in order to generate plastic
deformation and orientation gradients, then the deformation is held constant to let the microstructure evolve
and simulate in that way annealing of the bar. The structure considered here is a cylinder with circular
cross-section of radius R̄ = 1 and length L̄ = 20. Torsion is applied about the [111] direction coincid-
ing with the cylinder axis z. Under these conditions, only the 3 slip systems in the plane (111) are active:
[101̄](111), [11̄0](111), [011̄](111). All slip systems have an initial SSD density of ρ̄0 = ρ0/Λ = 0.1. This
initial dislocation density sets the initial critical resolved shear stress since the friction stress τ̄0 was fixed to
zero. The mesh is made of 25 920 hexahedral elements with quadratic shape functions, i.e. 20 node-bricks.
Full integration is used with 27 Gauss points in each element, resulting in 109 169 nodes and 699 840 Gauss
points. Since each node is endowed with 7 degrees of freedom, namely displacements ūx, ūy, ūz , micro-
rotation θx, θy, θz and order parameter ϕ, the size of the problem to be solved at each time step is 764 183
DOFs. The computation took 53 days on 24 Intel Xeon CPUs, requiring 112 GB of memory. The long com-
putation time associated with very small time steps required by the strongly nonlinear KWC-Cosserat model
explains while recent attempts have been made to implement more efficient solvers by Blesgen (2015); He
and Admal (2021b). The initial conditions are uniform ϕ = 1 and θ = 0 . Dirichlet boundary conditions
are imposed on ūx, ūy, ūz corresponding to a rigid rotation of the top/bottom surfaces of ±ϑ around the
z axis. Dirichlet boundary conditions θz = ±ϑ are also imposed on the top/bottom surfaces. Neumann
conditionsmxz = myz = 0 are applied at the top/bottom as well. On the whole surface Neumann conditions
are imposed for the order parameter ϕ such that ξ

ϕ
· n = 0, where n is the exterior normal. Finally, the

lateral surfaces of the cylinder are free of all mechanical forces (zero traction and surface couples). After
torsional loading at the prescribed angle ϑ the deformation is maintained according to table 3 to simulate
annealing. The simulation was performed with the KWC-Cosserat model with Maxwell relaxation law in the
GB region and parameters are given in table 4. They correspond to pure copper at about 200◦C where only
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self hardening is enabled (hij = δij). However, isotropic elasticity (E = 130 GPa, ν = 0.3) was adopted
for simplicity. For more details about the choice of parameters, see Appendix A.

t̄ 0 1 730

Prescribed rotation ϑ 0 15◦ 15◦

Tab. 3. Loading table for torsional loading

Parameter Ēe ν K̄ n Kr d̄ χ τ̄0 b̄ µ̄ h1 h2 h3

Value 56 000 0.3 4.35 10 10 1× 10−3 0.3 0 0.2556× 10−3 21 750 1 0 0

Parameter ᾱ s̄ ε̄ η̄ϕ η̄⋆ µ̄p βp CD C̄A γ̄ γg

Value 0.31 0.75 1 10 0.1 106 102 100 1 104 10−4

Tab. 4. Model parameters used in the simulation of a single crystal bar under torsional loading.

6.2. Results

After deformation, tangential, radial and longitudinal rotation gradients are generated as shown in Fig.
17. In this figure the curvature tensor is computed in cylindrical coordinates and magnitude of the radial,
tangential and longitudinal components are given by |κ̄∼ · e r|, |κ̄∼ · e θ| and |κ̄∼ · e z| respectively. The six-
fold symmetry of the curvature and plastic deformation patterns is due to crystal symmetry of the (111) slip
plane and associated slip systems. The gradient along the vertical direction z is two orders of magnitude
larger than the gradients in the other directions. It is fairly uniform except close to the ends of the bar and
is reminiscent of the initial conditions given in section 4.3. The cumulative plastic slip γtot =

∑3
α=1 |γα| is

shown in the cross-section of the middle of the rod in Fig. 17a. It can be seen that the cumulative plastic slip
is made of concentric hexagons whose magnitude increases linearly from the center to the outer region of
the cross-section up to about 3%. As illustrated in Fig. 18, the stored energy field generated by the loading
is heterogeneous in the cross-section but its magnitude is rather low (max(Ē) ∼ 10−2), partly due to the
fact that only self hardening was considered (hij = δij). Thus, according to equation (56), one expects local
variations of ϕ of about 0.01 in the cross-section, which explains why the phase field is mostly impacted
by the longitudinal torsion. After subsequent annealing, grain nucleation is observed in Fig. 19 in the form
of a stack of pancake grains. As in section 5.3 grain nucleation is triggered by the rotation gradient. The
SSD-based stored energy being low, the grains are rather homogeneous in the cross-section. We expect that
increasing the magnitude of the torsion angle should still result in grains stacking along the rod, but the
phase field should consist of concentric hexagons whose magnitude decreases linearly along the radius. The
nucleation process being triggered by rotation gradients, it is not expected that grains will nucleate along
the radius of the rod. Such a nucleation process would require the presence of multiple grains in the cross-
section, or an additional mechanical loading prompting rotation gradients around the x or y axis. Another
requirement would be to increase the radius of the rod, as the interface width ℓϕ is larger than the radius
(ℓϕ/R ∼ 1.6 in this computation). The profiles of ϕ and θz along the axis of the cylinder are shown in Fig.
20 and are very similar to those in section 4.3. The nucleation process in this figure is still quite in its early
stage with misorientations ranging between 1◦ − 3◦. The model being computationally expensive, a later
simulation stage is not available at the time and a rather coarse mesh has been used. However, we think that
using a finer mesh will give quite similar qualitative results compared with the current mesh. In addition, it is
expected that upon further annealing the different grains will merge along the vertical axis to accommodate
the interface width ℓϕ with misorientation between grains increasing up to forming a bicrystal for t̄ → ∞,
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as with the KWC model. Given the boundary conditions of the simulation, the bicrystal should have a final
misorientation of about 30◦.
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Fig. 17. Cumulative plastic slip in the middle cross-section (a); magnitudes of the curvatures in cylindrical coordinates in the
longitudinal (b), radial (c) left) and tangential (d) directions after torsional loading of a single crystal rod.

In order to obtain nucleated grains with higher misorientation than in Fig. 20a, a similar computation
was performed on a shorter rod of total length L̄ = 10 and the magnitude of the applied rotation was
ϑ = 7.5◦. The mesh is made of 12960 hexahedral elements (20-node bricks), for a total of 55089 nodes,
here with reduced integration, 8 Gauss points per element, to limit the computation time. The computation
took approximately 178 days on 24 CPUs and required 50GB of memory. As visible in Fig. 21 and 22,
grain nucleation is observed again after relaxation/annealing. The microstructure at the latest available time
exhibits only three well-defined grains. Further microstructural evolution is still expected at a later stage.

6.3. Qualitative Comparison with experimental results from the literature

The simulations suggest that single crystal copper bars under torsion at sufficiently high temperature
will recrystallize and a bamboo grain microstructure is expected to form. Torsion tests at high temperature
are routinely performed for polycrystalline metals and alloys (Montheillet et al., 1984). They show typical
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Fig. 18. Phase field ϕ (left) and stored energy Ē (right) after torsional loading of a single crystal rod.
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Fig. 19. Phase field ϕ (left) and microrotation about e z (right) after torsional loading and subsequent annealing of a single crystal
rod.

oscillatory torque/angle responses due to successive recrystallization processes and strong crystallographic
texture and grain morphology evolution. However, only a few papers deal with torsion of single crystal
wires at high temperature. High pressure torsion of HCP Magnesium single crystals lead to recrystallization
as shown in (Bonarski et al., 2008) but the observed grain morphology was unfortunately not described.
Compression of aluminum single crystals and torsion of aluminum polycrystals also lead to recrystallization
phenomena observed by Gourdet and Montheillet (2000). Kassner (1989) performed large strain torsion
experiments on Al single crystals with the torsion axis parallel to [111], exactly the physical situation inves-
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Fig. 22. Profiles of ϕ (left) and θz (right) along the axis of the cylinder after torsional loading and subsequent relaxation of the short
single crystal of Fig. 21.

tigated in our simulations. This led to the early formation of geometrically necessary boundaries (GNBs)
parallel to the slip plane and perpendicular to the torsion axis, in agreement with the present simulation re-
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sults. The bamboo structure in the twisted rod can be observed in Fig. 3 of the paper by Kassner (1989) and
is comparable to the simulation results of Fig. 19a. Despite the very large strains of about 16 under creep
loading, only about 10% of the subgrain facets were found to be high angle boundaries (HABs) (Kassner
and Barrabes, 2005). In that case the overall torque/angle curve did not display peak stress oscillations. The
experimental results of Kassner (1989) therefore bring some experimental validation of the predicted mi-
crostructure evolution. However, the building-up of a low angle boundary bamboo grain structure predicted
by the present simulations during torsion calls for more systematic and quantitative experimental validation.

7. Conclusions

A numerical stability analysis of orientation gradients and gradients of stored energy was performed for
the KWC and KWC-Cosserat phase field models.

The ability of the KWC model to simulate grain nucleation in a single crystal in the presence of ori-
entation gradients without the need to introduce seeds was demonstrated through 1D numerical examples.
According to the simulations, the initial single crystal is fragmented into a multitude of grains with low
misorientation (LAB) that grow and merge due to the interaction between diffuse grain boundary zones. By
tracking the time evolution of the total energy, it was shown that grain nucleation contributes to the mini-
mization of total energy. It was demonstrated that the presence of orientation gradients is necessary to trigger
grain nucleation, as a gradient of stored energy in a single crystal cannot lead by itself to the formation of
new grains, according to the model. Gradients of stored energy influence the mobility of newly formed grain
and subgrain boundaries.

A similar study was carried out with the KWC-Cosserat model of Ask et al. (2020) to investigate me-
chanical effects on grain nucleation, firstly in the absence of overall loading. Special attention was drawn
on the development and relaxation of skew-symmetric stresses during the formation and the migration of
grain boundaries. Two different types of evolution law of the reference orientation – required to relax skew-
symmetric stresses at the grain boundaries – were considered: a Maxwell viscoelastic model and a Norton
viscoplastic model with threshold. It was shown that the stress profiles along the bicrystal share similarities
with the elasto-plastic theory of dislocations and disclinations (Taupin et al., 2013). The introduction of a
threshold in the relaxation law leads to residual stresses that delay grain boundary motion and nucleation.
Sufficiently high values of the threshold can impede grain nucleation within an orientation gradient.

A 3D finite element simulation combining crystal plasticity and grain boundary formation was then
performed for the torsion of a single crystal bar with circular cross-section. Initial quasi-static torsion was
followed by simulation of the annealing process during a relaxation stage. The torsion axis was aligned with
the [111] direction of the FCC crystal. The torsional loading generated a significant rotation gradient along
the cylinder axis that was sufficient to trigger grain nucleation in the form of a stack of cylindrical grains
with low angle grain boundaries, in agreement with the 1D stability analysis. The radial and circumferential
gradients of SSD-based stored energy induced by heterogeneous plastic slip in the cross-sections are too
low in magnitude to trigger subgrain formation in the cross-section. This results in a bamboo-like subgrain
microstructure in the wire. Experimental support of the torsion simulation result was found in the case of
torsion of aluminum single crystals under creep loading in (Kassner, 1989; Kassner and Barrabes, 2005)
where stacks of LABs were observed parallel to the (111) planes.

The results of the present work open new perspectives in the full field simulation of microstructure evo-
lution in plastically deformed crystals, including thermomechanical treatments of metals and alloys. It is
remarkable that the KWC-Cosserat model predicts the formation of subgrain boundaries in single crystals
due to the development of orientation gradients. The proposed analysis remains rather qualitative and sig-
nificant additional effort is needed to address specific materials with proper parameter identification over
a given temperature range. This includes consideration of anisotropic GB energy as done by Admal et al.
(2019) for the KWC model. The KWC-Cosserat model and suitable extensions for specific recrystallization
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mechanisms are promising tools for the simulation of recrystallization phenomena without ad hoc introduc-
tion of random seeds in crystal plasticity phase field simulations. Stochastic aspects of grain nucleation will
emerge from the strongly heterogeneous nature of plastic deformation in single and polycrystals.

KWC-Cosserat modeling entails considerable computational challenges due to the stiff nonlinearity of
the model and the large number of unknowns including degrees of freedom and internal variables. In view of
the model complexity, alternative more sophisticated algorithms and model simplifications are proposed by
Kim et al. (2021); He and Admal (2021b) and Baek et al. (2022) for more efficient computing and accuracy.
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Appendix A. Identification of parameters

We recall that the dimensionless KWC free energy is of the following form

ψ̄(∇̄θ, ϕ, ∇̄ϕ) = ψ(∇θ, ϕ,∇ϕ)/f0 = f(ϕ) +
ᾱ2

2

∣∣∇̄ϕ∣∣2 + s̄g(ϕ)
∣∣∇̄θ∣∣+ ε̄2

2
h(ϕ)

∣∣∇̄θ∣∣2
The phase field parameters ᾱ and s̄ in the free enery density can be calibrated using the asymptotic analysis
of Lobkovsky and Warren (2001) to fit a grain boundary energy misorientation curve found in the literature
(see Figure 1 in Ask et al. (2020)). The misorientation is capped at ∆θ = 30◦ to include only the Read-
Shockley part of the curve and discard the local GB energy cusps. A grain boundary energy magnification
factor fa can be defined such that

fa =
γref (∆θ = 30◦)

γ̃(∆θ = 30◦)
= f0Λε̄, γ(∆θ) = γ̃(∆θ)× fa (A.1)

where γref (∆θ = 30◦) and γ̃(∆θ = 30◦) are the reference (used to calibrate the parameters) and asymptotic
grain boundary energies, respectively, for a misorientation of 30◦. The parameter ε̄ in the free energy density,
which controls the grain boundary diffusivity, can be chosen freely. The parameters are calibrated for pure
copper with g(ϕ) = −2 (log(1− ϕ) + ϕ). At the mesoscale, appropriate length scale Λ and time scale
τ0 are respectively Λ = 1 µm and τ0 = 1 s. This calibration method gives s̄ = 0.75 and ᾱ = 0.31 for
ε̄ = 1. The grain boundary energy is fitted against that of a ⟨100⟩ Cu tilt boundary obtained from atomistic
simulations (Wolf, 1990), see Fig. A.23a. The grain boundary energy scale factor is fa = 2300mJm−2,
which corresponds to a grain boundary energy scale parameter f0 = fa

Λε̄ = 2.3MPa.
As there is no published asymptotic analysis that accounts for grain boundary migration due to a stored

energy difference, the mobility parameters η̄ϕ, η̄θ, µ̄p, βp must be tuned so that the resulting mobility of a 1D
boundary subjected to a stored energy difference is comparable to the data found in the literature (Gottstein
and Shvindlerman, 2009). The recovery parameters C̄A, CD are chosen so that full recovery, i.e. annihilation
of stored dislocations, occurs behind the moving grain boundary.

Data related to the grain boundary mobility of pure copper can be found in the work of Vandermeer et al.
(1997), where mobilities for a wide range of temperatures are presented, which can be used as a reference
to estimate the temperature in the KWC model. The data used in Fig. 5 of this reference is plotted in Fig.
A.23b. The basic test of a bicrystal with a lattice misorientation of 0.3 subjected to a stored energy difference
of 0.09 is carried out for the KWC and KWC-Cosserat models. In the simulations with both models the initial
state is in equilibrium. To do this, a KWC simulation is run to find the fields ϕ, θ at equilibrium, followed by
a KWC-Cosserat calculation to start from a stress-free state. The results are given in table A.5.

For the KWC-Cosserat model, the parameters related to the mechanical behavior are adapted from the
literature for pure copper, e.g. Gérard et al. (2009) and Cheong and Busso (2004). The different parameters
involved and their dimensionless versions are summarized in table A.6.
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Fig. A.23. Grain boundary energy–misorientation curve (left) and grain boundary–temperature curve (right) used for the identifica-
tion of parameters for copper.

Model η̄θ or η̄⋆ βp GB mobility×10−8m4/MJ/s Temperature ◦C

KWC
0.1 100 2.4 ∼ 225

1 1000 2.2 ∼ 220

KWC-Cosserat
0.1 100 1.5 ∼ 205

1. 1000 1.5 ∼ 205

Tab. A.5. Stored energy driven migration in a bicrystal for different mobility parameters. Parameters µ̄p = 106, η̄ϕ = 10 are fixed.

Appendix B. Matched asymptotics analysis

The profiles of ϕ and θ as well as the grain boundary energy and mobility predicted by the KWC model
can be obtained by a formal asymptotic expansion as shown by Lobkovsky and Warren (2001). The main
idea is based on the definition of the grain boundary as the strip S between two non-intersecting smooth
curves Γ− and Γ+ where ∇θ ̸= 0. An explicit, semi-analytical solution can be found for a flat, stationary
interface described in Fig. B.24. A stretched coordinate z = r

ε̄ is introduced and three regions can be
identified:

• Far from the interface, i.e. |z| → ∞, the fields are constant such that ∇ϕ = 0 and ∇θ = 0.

• In an intermediate region for |z| > δz, only θ is constant such that ∇θ = 0 but ∇ϕ ̸= 0.

• Finally, in an inner region where z < δz both gradients are non zero, i.e. ∇ϕ ̸= 0, ∇θ ̸= 0.

The fields are expanded into power series of ε̄:{
ϕ = ϕ0 + ε̄ϕ1 + ...

θ = θ0 + ε̄θ1 + ...

and the parameters ᾱ and s̄ are scaled with respect to ε̄ as follows:

α̃ = ᾱ/ε̄, s̃ = s̄/ε̄, η̃ϕ = η̄ϕ/ε̄
2, η̃θ = η̄θ/ε̄

2

so as to ensure that the intermediate and inner regions scale like O(ϵ̄) as ϵ̄→ 0, and that a flat interface does
not move (Lobkovsky and Warren, 2001).
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Parameter/
property

Unit Dimensionless expression Comment

τ0 s - Time scale

Λ µm - Length scale

f0 Jm−3 - Energy scale

α m ᾱ = α/Λ

Phase field parameterss m s̄ = s/Λ

ε m ε̄ = ε/Λ

ηϕ J sm−3 η̄ϕ = ηϕ/(f0τ0) Mobility for ϕ

η⋆ J sm−3 η̄⋆ = η⋆/(f0τ0) Mobility for θ ⋆

µp m µ̄p = µp/Λ Parameters for the localization function P (∇θ)
βp - -

Ee MPa Ēe = E/f0 Young’s modulus

ν - - Poisson’s ratio

K MPa s1/n K̄ = K/f0 Viscoplasticity parameters
n - -

τc MPa τ̄c = τc/f0
Critical resolved

shear stress
χ - - Coefficient

µ MPa µ̄ = µ/f0 Mean shear modulus

Kr - -
Kocks-Mecking parameters

d m d̄r = dr/Λ

b m b̄ = b/Λ Burgers vector

CA m2 C̄A = CA/Λ
2

Parameters for recovery
CD - -

γ m γ̄ = γ/Λ Regularization for |∇̄θ|
γg - - Regularization for g(ϕ) = −2(log(1− ϕ) + ϕ)

Tab. A.6. Parameters in the KWC-Cosserat model.

Inserting the expansions and scalings into the PDEs give series of PDEs for the functions at the different
orders (e.g. ϕ0 and θ0, ϕ1 and θ1 etc). The problem is then solved order by order, using matching conditions
between the different regions. The interface width and energy as well as the stationary profiles are obtained
using the 0th order solution whereas the interface mobility and velocity are obtained using the 1st order
solution. Note that this analysis has not been extended to account for stored energy driven migration. The
profiles of ϕ0 and θ0 are obtained by integrating

∂ϕ0

∂z
=

{
1
α̃

√
2f0 − s̃2

h0 (g0(ϕ0max)− g0), ϕ0min ≤ ϕ0 ≤ ϕ0max

1
α̂

√
2f0, ϕ0max < ϕ0 ≤ 1

(B.1)

∂θ0
∂z

= s̃
g0(ϕ0max)− g(ϕ0)

h0(ϕ0)
, 0 ≤ z ≤ δz (B.2)
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Fig. B.24. Schematic representation of the solution for a flat static interface between two grains.

The values of ϕ0min (at z = 0) and ϕ0max (at the junction δz between the inner and intermediate regions) are
obtained from

s̃

2

(
g0(ϕ0max)− g0(ϕ0min)

)2
h0(ϕ0min)

− f0(ϕ0min) = 0 (B.3)

∆θ

2
=

∫ ϕ0
max

ϕ0
min

∂θ0

∂z

∂z

∂ϕ0
dϕ0 (B.4)

The half interface width ℓθ/2 is given by

ℓθ/2 = δz = α̃

∫ ϕ0
max

ϕ0
min

1

2f0 − s̃2

h0 (g0(ϕ0max)− g0)
dϕ0 (B.5)

Finally, the grain boundary energy is found as

2α̃2

∫ 1

ϕ0
min

∂ϕ0

∂z
dϕ0 + s̃g0(ϕ0max)∆θ (B.6)

Appendix C. Three-dimensional finite element implementation of the KWC-Cosserat model

Although formulated in a three-dimensional framework in Ask et al. (2018b, 2020), the KWC-Cosserat
model has so far only been implemented in a two-dimensional finite element formulation. In this section,
details of its implementation in 3D are given since it is required for the simulation of the torsion of a single
crystal rod presented in this work. The framework is still that of small deformation, rotation and curvature
with grain boundary energy independent of the boundary plane. The weak form of the balance equations
(35)–(37) is obtained after multiplication by a virtual field, integration over the whole domain and use of the
divergence theorem, such that

−
∫
V

(
σ∼
s : u ⊗∇s + π θ·

×
ω
)
dV +

∫
∂V

u · t dS = 0 (C.1)∫
V

(
−ξ

∼θ : θ ⊗∇+ θ · π θ

)
dV +

∫
∂V

θ · ξ
∼θ · n dS = 0 (C.2)∫

V

(
−ξ

ϕ
· ∇ϕ+ ϕ · πϕ

)
dV +

∫
∂V
ϕ · ξ

ϕ
· n dS = 0 (C.3)
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with π θ = 2
×
σ , t = σ∼ · n , M = ξ

∼θ · n . The displacement, Cosserat microrotation and phase fields are
interpolated at the n nodes of each element such that

u (x , t) =

n∑
i=1

N eu

ij (x )u e
j(t), θ (x , t) =

n∑
i=1

N eθ

ij (x )θ e
j(t), ϕ (x , t) =

n∑
i=1

N e
i (x )ϕ e

i
(t)

(C.4)

with the nodal values arranged as follows:

ϕe(t) =
(
ϕ1 ϕ2 ϕ3 . . . ϕn

)T
(C.5)

u e(t) =
(
u11 u12 u13 u21 u22 u23 . . . un1 un2 un3

)T
(C.6)

θ e(t) =
(
θ11 θ21 . . . θn1 θ12 θ22 . . . θn2 θ13 θ23 . . . θn3

)T
(C.7)

The shape functions are thus:

N e
i =

[
N1 N2 N3 . . . Nn

]
(C.8)

N eu

ij =


N1 0 0 N2 0 0 . . . Nn 0 0

0 N1 0 0 N2 0 . . . 0 Nn 0

0 0 N1 0 0 N2 . . . 0 0 Nn

 (C.9)

N eθ

ij =


N1 N2 . . . Nn 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 N1 N2 . . . Nn 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 N1 N2 . . . Nn

 (C.10)

The discrete gradients of the degrees of freedom in the element are given by

∇ϕ(x , t) =
n∑

i=1

Beϕ

ij ϕ
e
j(t), θ (x , t)⊗∇ =

n∑
i=1

B∼
eθ

ij (x )θ e
j(t) (C.11)

u (x , t)⊗∇s =
n∑

i=1

B∼
eu

sij (x )u e
j(t),

×
ω (x , t) =

n∑
i=1

B∼
eu

ωij
(x )u e

j(t) (C.12)

such that



u1,1

u2,2

u3,3√
2ε12√
2ε23√
2ε31


=



∂N1
∂x 0 0 ∂N2

∂x 0 0 . . . ∂Nn
∂x 0 0

0 ∂N1
∂y 0 0 ∂N2

∂y 0 . . . 0 ∂Nn
∂y 0

0 0 ∂N1
∂z 0 0 ∂N2

∂z . . . 0 0 ∂N1
∂z

1√
2
∂N1
∂y

1√
2
∂N1
∂x 0 1√

2
∂N2
∂y

1√
2
∂N2
∂x 0 . . . 1√

2
∂Nn
∂y

1√
2
∂Nn
∂x 0

0 1√
2
∂N1
∂z

1√
2
∂N1
∂y 0 1√

2
∂N2
∂z

1√
2
∂N2
∂y . . . 0 1√

2
∂Nn
∂z

1√
2
∂Nn
∂y

1√
2
∂N1
∂z 0 ∂N1

∂x
1√
2
∂N2
∂z 0 ∂N2

∂x . . . 1√
2
∂Nn
∂z 0 ∂N1

∂x


︸ ︷︷ ︸

[B∼
eu
s ]

·



u11

u12

u13

u21

u22

u23
...

un1

un2

un3


(C.13)
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ω1

ω2

ω3

 =


0 −1

2
∂N1
∂z

1
2
∂N1
∂y 0 −1

2
∂N2
∂z

1
2
∂N2
∂y . . . 0 −1

2
∂Nn
∂z

1
2
∂Nn
∂y

1
2
∂N1
∂z 0 −1

2
∂N1
∂x

1
2
∂N2
∂z 0 −1

2
∂N2
∂x . . . 1

2
∂Nn
∂z 0 −1

2
∂N1n
∂x

−1
2
∂N1
∂y

1
2
∂N1
∂x 0 −1

2
∂N2
∂y

1
2
∂N2
∂x 0 . . . −1

2
∂Nn
∂y

1
2
∂Nn
∂x 0


︸ ︷︷ ︸

[B∼
eu
ω ]

·



u11

u12

u13

u21

u22

u23
...

un1

un2

un3


(C.14)



θ1,1

θ2,2

θ3,3

θ1,2

θ2,3

θ3,1

θ2,1

θ3,2

θ1,3



=



∂N1
∂x

∂N2
∂x . . . ∂Nn

∂x 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 ∂N1
∂y

∂N2
∂y . . . ∂Nn

∂y 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 ∂N1
∂z

∂N2
∂z . . . ∂Nn

∂z
∂N1
∂y

∂N2
∂y . . . ∂Nn

∂y 0 0 . . . 0 0 0 . . . 0

0 0 . . . 0 ∂N1
∂z

∂N2
∂z . . . ∂Nn

∂z 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 ∂N1
∂x

∂N2
∂x . . . ∂Nn

∂x

0 0 . . . 0 ∂N1
∂x

∂N2
∂x . . . ∂Nn

∂x 0 0 . . . 0

0 0 . . . 0 0 0 . . . 0 ∂N1
∂y

∂N2
∂y . . . ∂Nn

∂y
∂N1
∂z

∂N2
∂z . . . ∂Nn

∂z 0 0 . . . 0 0 0 . . . 0


︸ ︷︷ ︸[

B∼
eθ

]

·



θ11

θ21
...

θn1

θ12

θ22
...

θn2

θ13

θ23
...

θn3


(C.15)


ϕ,1

ϕ,2

ϕ,3

 =


∂N1
∂x

∂N2
∂x . . . ∂N1

∂n
∂N1
∂y

∂N2
∂y . . . ∂N1

∂n
∂N1
∂z

∂N2
∂z . . . ∂N1

∂n


︸ ︷︷ ︸

[Beϕ
ij ]

·


ϕ1

ϕ2
...

ϕn

 (C.16)

The element residuals Re•
i (where • is the degree of freedom considered) for the variational formulation are

then

Reu

i = −
∫
V e

([
B∼

eu

s

]T · {σs}+
[
B∼

eu

ω

]T · {πθ}
)
dV +

∫
∂V

[N eu ]T · {t} dS = 0 (C.17)

≡ {uF e
i } − {uF e

e } = 0 (C.18)

Reθ

i =

∫
V e

([
N eθ

]T
· {πθ} −

[
B∼

eθ
]T

· {ξθ}
)
dV +

∫
∂V

[N eθ ]T · {M}dS = 0 (C.19)

≡ {θF e
i } − {θF e

e } = 0 (C.20)

Reϕ

i =

∫
V e

(
−[Beϕ ]T {ξϕ}+ πϕ[N

eϕ ]
)
dV +

∫
∂V e

[N eϕ ]ΞϕdS = 0 (C.21)

≡ {ϕF e
i } − {ϕF e

e } = 0 (C.22)

(C.23)
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where {•F e
i } and {•F e

e } are the vector of the internal reactions associated with the degrees of freedom •
and the vector of the external forces in the element, respectively. The nonlinear system to be solved with
Newton’s method is then

A ({uF e
i })

A
(
{θF e

i }
)

A
(
{ϕF e

i }
)
−


A ({uF e

e })
A
(
{θF e

e }
)

A
(
{ϕF e

e }
)
 = 0 (C.24)

where A denotes the assembly operator over all the elements. The Jacobian matrix [Ke
t ] of the element is

obtained by derivation of the internal reactions with respect to the degrees of freedom:

[Ke
t ] =

∂
{
{uF e

i } {θF e
i } {ϕF e

i }
}T

∂
{
{u} {θ} {ϕ}

}T
=


[Ke

uu] [Ke
uθ] [Ke

uϕ]

[Ke
θu] [Ke

θθ] [Ke
θϕ]

[Ke
ϕu] [Ke

ϕθ] [Ke
ϕϕ]

 (C.25)

with

[Ke
uu] = −

∫
V e

[
B∼

eu

s

]T ·
[

∂σ∼
s

∂u ⊗∇s

]
·
[
B∼

eu

s

]
+
[
B∼

eu

ω

]T ·

[
∂π θ

∂
×
e

]
·
[
B∼

eu

ω

]
dV (C.26)

[Ke
uθ] =

∫
V e

−
[
B∼

eu

ω

]T ·

[
−∂π θ

∂
×
e

]
·
[
N eθ

]
dV (C.27)

[Ke
uϕ] =

∫
V e

−
[
B∼

eu

ω

]T ·
([

∂π θ

∂ϕ

]
⊗
[
N eϕ

])
dV (C.28)

[Ke
θu] =

∫
V e

[
N eθ

]T
·

[
∂π θ

∂
×
e

]
·
[
B∼

eu

ω

]
dV (C.29)

[Ke
θθ] =

∫
V e

[
N eθ

]T
·

[
−∂π θ

∂
×
e

]
·
[
N eθ

]
−
[
B∼

eθ
]T

·

[
∂ξ

∼θ

∂θ ⊗∇

] [
B∼

eθ
]
dV (C.30)

[Ke
θϕ] =

∫
V e

[
N eθ

]T
·
([

∂π θ

∂ϕ

]
⊗
[
N eϕ

])
−
[
B∼

eθ
]T

·

([
∂ξ

∼θ

∂ϕ

]
⊗
[
N eϕ

])
dV (C.31)

[Ke
ϕu] =

∫
V e

[N eϕ ]⊗

[
∂πϕ

∂
×
ω

]
·
[
B∼

eu

ω

]
dV (C.32)

[Ke
ϕθ] =

∫
V e

[N eϕ ]⊗
[
∂πϕ
∂θ

]
· [N eθ ] + [N eϕ ]⊗

[
∂πϕ

∂θ ⊗∇

]
·
[
B∼

eθ
]
dV (C.33)

[Ke
ϕϕ] =

∫
V e

−[Beϕ ]T ·

[
∂ξ

ϕ

∂∇ϕ

]
· [Beϕ ] +

∂πϕ
∂ϕ

(
[N eϕ ]⊗ [N eϕ ]

)
dV (C.34)
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